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Abstract

Faced with limitations in data availability, funding, and time constraints, ecologists are often

tasked with making predictions beyond the range of their data. In ecological studies, it is not

always obvious when and where extrapolation occurs because of the multivariate nature

of the data. Previous work on identifying extrapolation has focused on univariate response

data, but these methods are not directly applicable to multivariate response data, which are

common in ecological investigations. In this paper, we extend previous work that identified

extrapolation by applying the predictive variance from the univariate setting to the multivari-

ate case. We propose using the trace or determinant of the predictive variance matrix to

obtain a scalar value measure that, when paired with a selected cutoff value, allows for

delineation between prediction and extrapolation. We illustrate our approach through an

analysis of jointly modeled lake nutrients and indicators of algal biomass and water clarity

in over 7000 inland lakes from across the Northeast and Mid-west US. In addition, we

outline novel exploratory approaches for identifying regions of covariate space where

extrapolation is more likely to occur using classification and regression trees. The use of our

Multivariate Predictive Variance (MVPV) measures and multiple cutoff values when explor-

ing the validity of predictions made from multivariate statistical models can help guide eco-

logical inferences.

Introduction

The use of ecological modeling to translate observable patterns in nature into quantitative

predictions is vital for scientific understanding, policy making, and ecosystem management.

However, generating valid predictions requires robust information across a well-sampled sys-

tem which is not always feasible given constraints in gathering and accessing data. Extrapola-

tion is defined as a prediction from a model that is a projection, extension, or expansion of an

estimated model (e.g. regression equation, or Bayesian hierarchical model) beyond the range
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of the data set used to fit that model [1]. When we use a model fit on available data to predict a

value or values at a new location, it is important to consider how dissimilar this new observa-

tion is to previously observed values. If some or many covariate values of this new point are

dissimilar enough from those used when the model was fitted (i.e. either because they are out-

side the range of individual covariates or because they are a novel combination of covariates)

predictions at this point may be unreliable. Fig 1, adapted from work by Filstrup et al. [2], illus-

trates this risk with a simple linear regression between the log transformed measurements of

total phosphorous (TP) and chlorophyll a (Chl a) in U.S. lakes. The data shown in blue were

used to fit a linear model with the estimated regression line shown in the same color. While

the selected range of data may be reasonably approximated with a linear model, the linear

trend does not extend into more extreme values, and thus our model and predictions are no

longer appropriate.

While ecologists and other scientists know the risks associated with extrapolating beyond

the range of their data, they are often tasked with making predictions beyond the range of the

available data in efforts to understand processes at broad scales, or to make predictions about

the effects of different policies or management actions in new locations. Forbes and Carlow [3]

discuss the double-edged sword of supporting cost-effective progress while exhibiting caution

for potential misleading results that would hinder environmental protections. They outline the

need for extrapolation to balance these goals in ecological risk assessment. Other works [4–6]

Fig 1. Fit of Chl a–TP relationship for inland lakes using linear regression. A 95% confidence interval of the mean is included around the regression

line. Dashed red lines represents the 95% prediction interval. Areas shaded in darker grey indicate regions of extrapolation (using the maximum

leverage value (hii) to identify the boundaries).

https://doi.org/10.1371/journal.pone.0225715.g001
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explore strategies for addressing the problem of ecological extrapolation, often in space and

time, across applications in management tools and estimation practices. Previous work on

identifying extrapolation includes Cook’s early work on detecting outliers within a simple lin-

ear regression setting [7] and recent extensions to GLMs and similar models by Conn et al. [8].

The work of Conn et al. defines extrapolation as making predictions that occur outside of a

generalized independent variable hull (gIVH), defined by the estimated predictive variance of

the mean at observed data points. This definition allows for predictions to be either interpola-

tions (inside the hull) or extrapolations (outside the hull).

However, the work of Conn et al. [8] is restricted to univariate response data, which does

not allow for the application of these methods to multivariate response models. This is an

important limitation because many ecological and environmental research problems are

inherently multivariate in nature. Elith and Leathwick [9] note the need for additional extrapo-

lation assessments of fit in the context of using species distribution models (SDMs) for fore-

casting across different spatial and temporal scales. Mesgaran et al. [10] developed a new tool

for identifying extrapolation using the Mahalanobis distance to detect and quantify the degree

of dissimilarity for points either outside the univariate range or forming novel combinations

of covariates.

In our paper, we present a general framework for quantifying and evaluating extrapolation

in multivariate response models that can be applied to a broad class of problems. Our approach

may be succinctly summarized as follows:

1. Fit an appropriate model to available multi-response data.

2. Choose a numeric measure associated with extrapolation that provides a scalar value in a

multivariate setting.

3. Choose a cutoff or range of cutoffs for extrapolation/interpolation.

4. Given a cutoff, identify locations that are extrapolations.

5. Explore where extrapolations occur. Use this knowledge to help inform future analyses and

predictions.

We draw on extensive tools for measures of leverage and influential points to inform

decisions of a cutoff between extrapolation and interpolation. We illustrate our framework

through an application of this approach on jointly modeled lake nutrients, productivity, and

water clarity variables in over 7000 inland lakes from across the Northeast and Mid-west US.

Predicting lake nutrient and productivity variables

Inland lake ecosystems are threatened by cultural eutrophication, with excess nutrients such as

nitrogen (N) and phosphorus (P) resulting in poor water quality, harmful algal blooms, and

negative impacts to higher trophic levels [11]. Inland lakes are also critical components in the

global carbon (C) cycle [12]. Understanding the water quality in lakes allows for informed eco-

system management and better predictions of the ecological impacts of environmental change.

Water quality measurements are collected regularly by federal, state, local, and tribal govern-

ments, as well as citizen-science groups trained to sample water quality.

The LAGOS-NE database is a multi-scaled geospatial and temporal database for thousands

of inland lakes in 17 of the most lake-rich states in the eastern Mid-west and the Northeast of

the continental United States [13]. This database includes a variety of water quality measure-

ments and variables that describe a lake’s ecological context at multiple scales and across multi-

ple dimensions (such as hydrology, geology, land use, and climate).

Identifying and characterizing extrapolation in multivariate response data
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Wagner and Schliep [14] jointly modelled lake nutrient, productivity, and clarity variables

and found strong evidence these nutrient-productivity variables are dependent. They also

found that predictive performance was greatly enhanced by explicitly accounting for the multi-

variate nature of these data. Filstrup et al. [2] more closely examined the relationship between

Chl a and TP and found nonlinear models fit the data better than a log-linear model. Most

notably for this work, the relationship of these variables differ in the extreme values of the

observed ranges; while a linear model may work for a moderate range of these data it is imper-

ative that caution is shown before extending results to more extreme values (i.e., to extremely

nutrient-poor or nutrient-rich lakes).

In this study, following Wagner and Schliep, we consider four variables: total phosphorous

(TP), total nitrogen (TN), Chl a, and Secchi disk depth (Secchi) as joint response variables of

interests. Each lake may have observations for all four of these variables, or only a subset. Fig 2

shows response variable availability (fully observed, partially observed, or missing) for each

lake in the data set. A partially observed set of response variables for a lake indicates that at

least one, but not all, of the water quality measures were sampled. We consider several covari-

ates at the individual lake and watershed scales as explanatory variables including maximum

depth (m), mean base flow (%), mean runoff (mm/yr), road density (km/ha), elevation (m),

stream density (km/ha), the ratio of watershed area to lake area, and the proportion of forested

Fig 2. Left: map of inland lake locations with full, partial, or missing response variables. Missing response variables are lakes where all water quality

measures have not been observed, while partial status indicates only some lake response variables are unobserved. Covariates were quantified for all

locations. Right: subset of data status (observed or missing) for each response variable. All spatial plots in this paper were created using the Maps

package [15] in R to provide outline of US states.

https://doi.org/10.1371/journal.pone.0225715.g002
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and agricultural land in each lake’s watershed. One goal among many for developing this joint

model is to be able to predict TN concentrations for all lakes across this region, and eventually

the entire continental US. Our objective is to identify and characterize when predictions of

these multivariate lake variables are extrapolations. To this end, we will review and develop

methods for identifying and characterizing extrapolation in multivariate settings.

Materials and methods

Review of current work

Cook’s independent variable hull. As this work builds upon the work of Cook [7] and

Conn et al. [8], we start with a review of their independent variable hull (IVH) and generalized

independent variable hull (gIVH) approaches. Cook’s work focuses on the identification of

influential points in a linear regression setting. A linear regression model is written as

y ¼ Xβþ ϵ ð1Þ

where y = [y1, . . ., yn]0 denotes a vector of n univariate observed responses, X denotes the

covariate matrix with an intercept, β are the covariate coeffecients, and ϵ are independent,

mean-zero normally distributed residuals. Throughout this paper, we use bold lowercase let-

ters to denote vectors and bold uppercase letter to denote matrices. The predicted value of y

may be calculated

ŷ ¼ Xβ̂ ð2Þ

where β̂ may be replaced with its OLS estimate (β̂ ¼ ðX0XÞ�1X0y) to obtain

ŷ ¼ XðX0XÞ�1X0y ð3Þ

Equivalently, the hat matrix, H = X(X0X)−1 X0, when multiplied by the observed y vector

will produce the predicted values. The predicted response for observation i can be written as a

linear combination of the n response variables,

ŷi ¼ hi1y1 þ hi2y2 þ . . .þ hiiyi þ . . .þ hinyn for i ¼ 1; . . . ; n: ð4Þ

The diagonal elements of the hat matrix (hii ¼ x0iðX
0XÞ�1xi) are called leverages, and while

they only depend on the explanatory variables, they indicate the influence observations, yi,
have on their own predicted values, ŷi. A higher leverage hii indicates a higher influence of yi in

determining the model fitted response ŷi. This relationship means leverage values are useful

quantities to explore when looking for influential points. The corresponding residual vector is

r ¼ y�ŷ ¼ ðI�HÞy. Building on confidence ellipsoids for multiple coefficients, Cook’s Dis-

tance, Di, is a measure to explore the individual contribution of the ith data point in a linear

regression analysis. This measure may be calculated by

Di ¼
ðβ̂�ðiÞ �β̂Þ0X0Xðβ̂�ðiÞ �β̂Þ

ps2

¼
t2
i

p
hii

1�hii

� �
ð5Þ

where p represents the number of parameters, s2 is r0r/(n − p), and ti is the ith studentized resid-

ual. We use β̂�ðiÞ to indicate the estimate of the the β vector without the ith data point. With all

other values held constant, this measure increases as a function of the ratio of hii over 1 − hii,
which depends only on the design points within X. As such, Cook defines his independent
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variable hull (IVH) as the smallest convex set containing all of the design points. Let h denote

the maximum diagonal element of this hat matrix (i.e., h = max(diag(H))), then a new observa-

tion, x0, is within this defined IVH whenever

x0
0
ðX0XÞ�1x0 � h ð6Þ

and predicting at a point beyond the hull will imply an extrapolation.

The hat matrix and its diagonals are useful diagnostics for finding outliers in a linear regres-

sion setting. Similarly, the Mahalanobis distance (MD) [16] can be used for identifying outli-

ers. MD and leverage are monotonically related, as the scale-invariant squared MD may be

represented by

MD2
i ¼ ðxi��xÞΣ̂�1ðxi��xÞ0

¼ ðl�1Þ hii�
1

l

� � ð7Þ

where xi is a data point (with p total covariate observations), �x is the mean vector for all x (i.e.

�xi ¼
1

l

Pl
i¼1

xi where l is the number of observed lakes), and Σ̂ is the sample covariance matrix.

We assume �x ¼ 0 without loss of generality. This relationship assumes the model matrix X

includes an intercept and makes use of the following partitioning

ðX0XÞ�1
¼

1

l 00

0 1

l�1
Σ̂�1

 !

: ð8Þ

We may work backwards from hii to obtain

hii ¼ ð1; xiÞ
1

l 00

0 1

l�1
Σ̂�1

0

@

1

Að1; xiÞ
0

¼
1

l
þ

1

l�1
xiΣ̂

�1x0i

¼
1

l
þ

1

l�1
MD2

i :

ð9Þ

This definition remains useful without any underlying distributional assumption of the

data. For example, empirically obtained quantile cutoff values can serve reasonably well as

threshold for declaring outliers. However, for multivariate-normal data, the squared MD can

be transformed into probabilities using a chi-squared cumulative probability distribution [17]

such that points that have a very high probability of not belonging to the distribution could be

classified as outliers. In either scenario, outliers can be detected using only predictor variables

by calculating x0(X
0

X)−1 x0 and comparing with max(diag(X(X
0

X)−1 X)).

Conn’s generalized IVH. The work of Cook does not immediately extend to generalized

linear models (GLMs) where the assumption of Gaussian errors is relaxed. To extend to the

GLM case, Conn et al. (2015) define a generalized independent variable hull (gIVH) for a gen-

eralized linear model,

yi � fyðg�1ðmiÞÞ; ð10Þ

where fy denotes a probability density or mass function, g gives the necessary link function, and

μi is a linear predictor (e.g. mi ¼ x0iβ). Using Cook’s IVH boundary connection to predictive
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variance, Conn et al. define the gIVH as the set of all predicted locationsLP for which

varðŷpjyÞ � max
o2LO
½varðŷojyÞ� ð11Þ

where p 2 LP, ŷp ¼ g�1ðxpb̂Þ corresponds to the mean prediction at p,LO denotes the set of

locations where data are observed, and ŷo denotes predictions of observations at xo 2 LO. In

addition to this approach of using o and p to index observed and predicted locations, respec-

tively, we will also in this paper use i to index the collective set of locations (i.e. i 2 Lo [Lp).

The variance of this predictive mean when a non-identity link is used may be found using the

delta method which may be written as

varðŷiÞ ¼ varðgðm̂iÞÞ

� Δvarðm̂iÞΔ
0
;

ð12Þ

where Δ is a matrix of partial derivatives of the function g(μ) with respect to its parameters, eval-

uated at the estimators, m̂.

Prediction variance. The IVH approach of Cook’s work uses only the design matrix, X, to

calculate the hat matrix, H. Since the hat matrix is not always well defined for more compli-

cated models, prediction variance may be substituted as a boundary for Conn et al.’s gIVH.

This Prediction Variance (PV) approach requires the design matrix, X, in addition to the

response variable vector, y. Finding the prediction variance under a univariate response model

is accomplished by either direct calculation of varðŷÞ or through posterior predictive inference

resulting in a single scalar value for each location.

Writing our linear predictor generally as

μ ¼ Xβ ð13Þ

where X is the design matrix and β is the vector of unknown parameters to be estimated, we find

varðμ̂Þ ¼ Xvarðβ̂ÞX0: ð14Þ

Under a linear model,

β̂ ¼ ðX0XÞ�1X0y ð15Þ

where the distribution of β̂ is

β̂ � Nðβ; s2ðX0XÞ�1
Þ ð16Þ

and thus varðμ̂Þ ¼ s2XðX0XÞ�1X0 is proportional to the hat matrix used in Cook’s IVH criteria.

While this extrapolation approach can be applied under inference in both frequentist and

Bayesian approaches, we focus on a Bayesian setting in which we may calculate the prediction

variance using the posterior predictive distribution of an out-of-sample observation, yp, given

the observed data, y. Using [�] to denote a probability distribution, this distribution is

½ypjy� ¼
Z

½ypjθ�½θjy�dθ ð17Þ

where θ = (β, σ2) in our linear model and [θ|y] is the posterior distribution. We may approxi-

mate the posterior predictive distribution through MCMC by sampling yðaÞp � ½ypjθ
ðaÞ
� using

θ(a) at each iteration (a = 1, . . ., A) of the algorithm. With the posterior predictive distribution

and with observed covariates, xp at each new location we may calculate mðaÞ ¼ x0pβ
ðaÞ at each
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MCMC iteration and Monte Carlo predictive inference can be obtained using ŷðaÞp ¼ m
ðaÞ for

the converged MCMC samples. The prediction variance may be approximated by

^varðŷpjyÞ ¼
PA

a¼1
ðŷðaÞp �EðŷpjyÞÞ

2

A
: ð18Þ

With this sample-based calculation of prediction variance for our measure of extrapolation we

can easily extend this univariate approach to the multivariate setting.

Extension to the multivariate case

Building upon this previous work, we aim to extend measures of extrapolation to handle pre-

dictions of multivariate data. We illustrate this using the inland lake nutrient and productivity

data. Following the multivariate linear model developed by Wagner and Schliep [18], the joint

nutrient-productivity model can be collectively written as:

yi ¼ Bxi þ ϵi; ϵi�
iid Nð0;ΣÞ ð19Þ

where yi denotes a vector column of a matrix, Y, where yni is the value of the nth lake nutrient-

productivity variable for lake i. For each lake i,

yi ¼ ½TNi;TPi;CHLi; Secchii�
0

yi ¼ Bxi þ ϵi , yni ¼ b0nxi þ �ni
ð20Þ

where B is a matrix of coefficients such that b0n is a row vector where bnq is the coefficient of

the qth predictor variable for the nth lake nutrient response variable. The notation xi represents

a q × 1 vector of predictor variables for lake i. Here, again for lake i, ϵi� N(0, Σ) where Σ is a

n x n covariance matrix capturing the dependence between nutrient-productivity variables not

accounted for by the regression. We assume multivariate errors are independent and identi-

cally distributed across lakes. Following Wagner and Schliep (2018), we take a Bayesian

approach and specify priors for all model parameters.

brc �
iid Nð0; 100Þ; r ¼ 1; . . . ; n; c ¼ 1; . . . ; q

Σ � IWðI; qþ 1Þ

ð21Þ

Predictions of different response types covary in multivariate models, complicating our def-

inition of a gIVH (see Eq 11) which relies on finding a maximum univariate value. Where a

univariate model would yield a scalar prediction variance (Eq 18), a multivariate model will

have a prediction covariance matrix. We propose capturing the size of a covariance matrix

using univariate measures. Note this is similar to A-optimality and D-optimality criteria used

in experimental design [19].

Further, using our novel numeric measure of extrapolation, we aim to take advantage of the

multivariate response variable information to explore when we may identify an additional

observation’s (i.e. covariates for a new lake location) predictions as extrapolations for all

response values, jointly. We also present an approach to identify when we cannot trust a pre-

diction for only a single response variable at either a new lake location, or a currently partially-

sampled lake. The latter identification would be useful for a range of applications in ecology.

For example, in the inland lakes project, one important goal is to predict TN because this

essential nutrient is not well-sampled across the study extent, and yet is important for under-

standing nutrient dynamics and for informing eutrophication management strategies for
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inland lakes. In this case, to accommodate TN not being observed (i.e. sampled) as often as

some other water quality variables, we can leverage the knowledge gained from samples of

other water quality measures taken more often than TN (e.g. Secchi disk depth [20] is a com-

mon measure of water clarity obtained on site, while other water quality measurements require

samples to be sent to a lab for analysis). We first outline our approach for identifying extrapo-

lated new observations using a measure of predictive variance for lakes that have been fully or

partially sampled and used to fit a model. Then, we describe how this approach can be applied

to the prediction of TN in lakes for which it has not been sampled.

Multivariate extrapolation measures. Using available data for both complete and partial

measurements of water quality at inland lake observations (here, Y ¼ fyo; o 2 LOg) and

corresponding covariates of these sampled locations (X) we first fit an appropriate model to

obtain estimates for parameters needed for prediction (here, B̂ and Σ̂Þ. With these values, in

addition to covariates that correspond with unsampled locations, we may either directly calcu-

late the prediction variance or, in a Bayesian setting, simulate it via posterior predictive infer-

ence. We denote this prediction variance with Vi where

Vi ¼ varðŷ ijYÞ

¼ varðBxijYÞ:
ð22Þ

Each Vi is a square matrix for a sampled or unobserved location, (i.e. the combined sets of

LO andLP, respectively), with the dimensions equal to the number of response variables in

the model. As in the univariate case, we propose to characterize extrapolation by comparing

prediction variances of unobserved lakes with corresponding prediction variances of observed

lakes. To obtain a scalar value representation of each covariance matrix we propose using

the trace or determinant. In this paper, we will refer to these multivariate posterior variance

(MVPV) measures for each inland lake observation with respect to how this scalar value repre-

sentation is calculated:

MVPVðtrÞi ¼ trðViÞ ¼
X4

n¼1

Vi½n; n� where Vi½n; n� ¼ nth diagonal element of Vi

MVPVðDÞi ¼ jVij ¼
Y4

n¼1

lin where lin ¼ nth Eigenvalue of Vi

ð23Þ

The trace (tr) of an n × n square matrix V is defined to be the sum of the elements on the

main diagonal (the diagonal from the upper left to the lower right). This does not take into

account the correlation between variables and is not a scale-invariant measure. As the response

variables for the inland lakes example are log transformed, we chose to explore the use of this

measure for obtaining a scalar value extrapolation measure. The determinant (D) takes into

account the correlations among pairs of variables and is scale-invariant. In this paper, we

explore both approaches by quantifying extrapolation using our multivariate model of the

LAGOS-NE lake data set by:

1. Finding the joint posterior distribution B, S|Y

2. Calculating the posterior predictive variance at in-sample lakes

3. Calculating the posterior predictive variance at out of sample lakes

4. Identifying extrapolations by comparing out of sample MVPV values to a cutoff value cho-

sen using the in-sample values.
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Conditional single variable extrapolation measures. The chosen numeric measure of

MV extrapolation includes information from the entire set of responses. In the inland lake

example, this could be used to identify unsampled lakes where prediction of the whole vector

of response variables (TN, TP, Chl a, Secchi) are extrapolations. However, even when a joint

model is appropriate, there are important scientific questions that can be answered with pre-

diction of a single variable.

To focus on a single response variable (taken to be the nth variable without loss of general-

ity) conditioned on others, we now define the conditional multivariate predictive variance

(CMVPV) as

CMVPVi ¼ varðŷnijy�ni;YÞ ð24Þ

where y−ni are the response variables for the ith lake observation being conditioned upon. With

the Bayesian approach detailed above, we can get sample realizations of the conditional MVN

distribution of [yni|y−ni, Y] for all MCMC iterations, however, we still need a way to obtain uni-

variate prediction variance. While one could directly sample from ½ŷnijy�ni;Y�, we suggest the

following relationship

varðynijYÞ ¼ varðŷni þ �̂nijYÞ

¼ varðŷnijYÞ þ varð�̂nijYÞ

¼ varðŷnijYÞ þ ŝn

ð25Þ

Because in our model the multivariate errors ϵi are independently and identically distrib-

uted across lakes, then varð�̂niÞ ¼ sn. As σn is constant across all lakes, we can use either var

(yni|Y) or varðŷnijYÞ to characterize extrapolation. While the variances are different, the con-

clusions about extrapolation will be the same as both observed and unobserved lakes will have

the same constant added.

As the inland lake data are modelled with a multivariate normal (MVN) distribution, we

may use results from a conditional MVN distribution. If yi is jointly normally distributed as

yi � Nðμi;ΣÞ ð26Þ

where μi = Bxi and if we condition the response for one nutrient measure for lake i on all other

available nutrient measures for that lake then,

½ynijy�ni ¼ a;Y� � Nð�m; �ΣÞ ð27Þ

For a lake observation that has been fully sampled for all four measures, we may compart-

mentalize the covariance matrix Σ for use in calculating the scalar values �m and �Σ for [y1i|

y(2,3,4)i] in the following way,

§ =

2
66666664

§11 §12 §13 §14

§21 §22 §23 §24

§31 §32 §33 §34

§41 §42 §43 §44

3
77777775
´

2
64
§11 ~§12

~§21 ~§22

3
75 ð28Þ

Within this new configuration of Σ, S11 does not change, however ~Σ12 is the submatrix

of Σ of dimension 1× 3 containing S12, S13, and S14, ~Σ21 is the submatrix of dimension 3 × 1

containing S21, S31, and S41, and ~Σ22 is the submatrix of dimension 3 × 3 containing the
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remaining elements of Σ. Using this partitioned Σ we may obtain �m and �S.

�m ¼ mni�
~Σ12

~Σ�1
22
ða�m�niÞ

�S ¼ S11�
~Σ12

~Σ�1
22

~Σ21

ð29Þ

Any of the four response variables may be considered to be variable 1 and so this general

partition approach may be used for any variable conditioned on all others. The values of μ−ni

and Σ are determined by the availability of data for the three variables we are conditioning on.

These water quality measure can be fully, partially, or not observed.

In the instances where all other measures have not been observed then we may still proceed

to calculate varðŷnijYÞ as done for the MVPV. In order for this measure of variance to be

comparable to other CMVPV values, we must add varð�̂niÞ ¼ sn. This Conditional MVPV

(CMVPV) measure results in a single scalar value for each location, i 2 LO [LP, that may be

used as outlined above to diagnose extrapolation.

Cutoffs vs continuous measures

With our selection of multivariate prediction variance measures (MVPV(tr), MVPV(D), and

CMVPV) we may proceed by choosing a cutoff or range of cutoffs for delineating between

extrapolation and interpretation. The role of a cutoff value or criteria in identifying and char-

acterizing extrapolation is to delineate between prediction and extrapolation. Or rather, where

(among covariate values, time, space, etc) may we expect our model to provide accurate pre-

diction values versus where should we exhibit caution when using model-based predictions. A

key decision for whether or not we label a prediction as an extrapolation (and thus identifying

the location as a potentially unreliable extension of our model beyond the data) is the measure

used as a boundary cutoff. Previous work [8, 21] has used the maximum prediction variance as

the cutoff of the g(IVH). However, many datasets contain outliers and influential points—data

locations very different from the rest of the data. Choosing a cutoff for extrapolation based on

the most extreme outlier in a data set will result in a very conservative definition of extrapola-

tion for many datasets. We thus suggest (and illustrate below) a range of extrapolation cutoffs

be explored, resulting in a more complete understanding of potential extrapolation. Each cut-

off value we propose is a function of the scalar valued prediction variance representations of

MVPV(D or tr) and CMVPV, for observed locations (LO) only denoted collectively here by

vo. We examine the following cutoff options:

1. Maximum predictive variance (Cook, Conn)

kmax ¼ max
o2LO
ðvoÞ ð30Þ

2. Leverage-informed maximum predictive variance

klev ¼ max
o2LO;�lev

ðvoÞ

3. Quantile value

kr ¼ qrðvo; o 2 LOÞ

The leverage-informed cutoff value is calculated from a set of observations inLO;�lev,

where potential influential points (as determined based only on the covariate values, X) have

been removed. We suggest considering quantile-based approaches as cutoff values at the 0.99

and 0.95 quantiles of the prediction variances from observed locations. These cutoffs are less

conservative than the maximum predictive variance which may also be considered the 100%
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quantile value (i.e. a smaller cutoff value results in more unobserved locations identified as

places where the empirical model may not be trusted).

Identifying locations as extrapolations

With the (C)MVPV values and cutoff choice in hand, determining which locations (observed/

unobserved) are extrapolations is straightforward and results in a binary (yes/no) value. We

refer to this delineation as our extrapolation index (e)

ek
p¼

(
1 if vp > k

0 otherwise
ð31Þ

where k represents the cutoff choice obtained using vo. Each extrapolation index value is a

function of the scalar value prediction variance representations of MVPV(D or tr) and

CMVPV, for predicted locations (LP) only denoted collectively here by vp. While this binary

formulation allows for a simple way to determine whether or not we may diagnose a point as

being an extrapolation, it does not allow for much nuance. Should a prediction with its predic-

tive variance just beyond the boundary of the IVH be considered as untrustworthy as one

with a predictive variance well beyond the boundary? We thus propose a numeric measure of

extrapolation calculated by dividing predictive variance values for predicted locations by the

cutoff value to generate a Relative MVPV (RMVPV) measurement:

RkMVPVp ¼
vp
k
: ð32Þ

RkMVPV values greater than 1 would be considered to be extrapolations, but in addition

the larger the value the less trustworthy we would consider its prediction to be. This approach

does not change which locations are identified as extrapolations since the binary extrapolation

index as described above can be calculated from the RMVPV as

ek
p ¼

(
1 if RkMVPVp > 1

0 otherwise
: ð33Þ

Choosing IVH vs PV

With several methods of identifying extrapolations available we now provide additional guid-

ance on choosing between various options. Cook’s approach of using the maximum leverage

value to define the IVH boundary may be useful for either an univariate or a joint model in a

linear regression framework. However, as it depends on covariate values alone, it lacks any

influence of response data. Conn et al.’s gIVH introduces the use of posterior predictive vari-

ance instead of the hat matrix to define the hull boundary in the case of a generalized model.

One possible limitation of predictive variance approaches to obtain an extrapolation index

arises under certain generalized models. Models with constrained supports (i.e. binary, Pois-

son, etc) may exhibit decreased posterior variation when predictions are near the edges of the

support. For example, in the binary case with a single covariate, if

yi � BernðpiÞ

logitðpiÞ ¼ b0 þ b1xi
ð34Þ

then as xi!1 (xi −1), pi! 1 (pi 0), and var(yi|pi) = pi(1 − pi)!0. Thus, extreme

points on the outside range of the observed values may have tiny predicted variance. This

Identifying and characterizing extrapolation in multivariate response data

PLOS ONE | https://doi.org/10.1371/journal.pone.0225715 December 5, 2019 12 / 20

https://doi.org/10.1371/journal.pone.0225715


artificial decrease in variance may mask the identification of potentially extrapolated data

points when using PV methods. Missing these extrapolations may also hinder our ability to

characterize the covariate space, limiting the ability to provide reliable predictions. Thus, in

models where prediction variance decreases as means go to extreme values such as Binomial,

Beta, or Uniform distributions, we recommend IVH over PV approaches where this masking

of extrapolation locations does not occur. We use the inland lake data set (see Predicting lake

nutrient and productivity variables) to illustrate predicting joint response variables at unob-

served lake locations.

Visualization and interpretation

Exploring data and taking a principled approach to identifying potential extrapolation points

is often aided by visualization (and interpretation) of data and predictions. With the LAGOS

data we examine spatial plots of the lakes and their locations coded by extrapolation vs predic-

tion. Plotting this for multiple cutoff choices (as in Fig 3) is useful to explore how this choice

can influence which locations are considered extrapolations. This is important from both an

ecological and management perspective. For instance, if potential areas are identified as having

many extrapolations this might suggest that specific lake ecosystems or landscapes have char-

acteristics influencing processes governing nutrient dynamics in lakes not well captured by

previously collected data—and thus may require further investigation.

Fig 3. Identification of prediction vs extrapolation locations of LAGOS-NE lakes. Four cutoff approaches are compared and presented. Lakes in

orange diamonds and red triangles indicate those where predictions were beyond the 99% and 95% cutoff values, respectively, and thus considered

extrapolations. The color and shape of extrapolated lake locations are determined by which cutoff value first identifies the prediction at that location as

an extrapolation.

https://doi.org/10.1371/journal.pone.0225715.g003
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In addition to an exploration of possible extrapolation in physical space (through the plot

in Fig 3), we also examine possible extrapolation in covariate space. Using either of the binary/

numeric Extrapolation Index values, we propose a Classification and Regression Tree (CART)

analysis with the extrapolation values as the response. Our classification approach allows

for further insight into what covariates may be influential in determining whether a newly

observed location is too dissimilar to existing ones. A CART model allows for the identifica-

tion of regions in covariate space where predictions are suspect and may inform future sam-

pling efforts as the available data has not fully characterized all lakes.

Model fitting

The joint nutrient-productivity model (see Extension to the multivariate case) was fit using

MCMC in R [22]. We ran the MCMC algorithm for 20,000 iterations and used the coda pack-

age to analyze MCMC output and check for convergence [23]. Full conditional updates were

available for all parameters (B, Σ, and Z) thus Gibbs updates were specified. We generated pos-

terior predictions of lake nutrient levels across the entirety of observed and unobserved lake

locations as

yi � NðBxi;ΣÞ i ¼ 1; . . . ; n ð35Þ

and calculated multivariate prediction variance values as described in Multivariate extrapola-

tion measures.

Results

Fitting our multivariate linear model to the 8,910 lakes resulted in most lakes’ predictions

remaining within the extrapolation index cutoff and thus not being identified as extrapola-

tions. We explored the use of both trace and determinant for obtaining a scalar value represen-

tation of the multivariate posterior predictive variance in addition to four cutoff criteria.

Using MVPV(tr) with these cutoffs (max value, leverage max, 0.99 quantile, and 0.95 quantile)

resulted in 0, 1, 9, and 33 multivariate response predictions being identified as extrapolations,

respectively. In contrast, using MVPV(D) values combined with the four cutoffs resulted in 0,

0, 8, 37 predictions identified as extrapolations. Unless all response variables are on the same

scale we recommend the use of MVPV(D) over MVPV(tr). However, if a scale-invariant mea-

sure if not necessary, exploring the use of MVPV(tr) (in addition to MVPV(D) may reveal

single-response variables that are of interest to researchers for further exploration using our

Conditional MVPV approach. Fig 3 shows the spatial locations of lakes where the collective

model predictions for TP, TN, Chl a, and Secchi depth have been identified as extrapolations

using MVPV(D) combined with the cutoff measures. As the cutoff values become more con-

servative in nature the number of extrapolations identified increases. This figure shows the

level of cutoff that first identifies a location as an extrapolation, (e.g. red squares are locations

first flagged using the 99% cutoff, but they would also be included in the extrapolations found

with the 95% cutoff). This increasing number of extrapolations identified highlights the impor-

tance of exploring different choices for a cutoff value. When the maximum value or the lever-

age-informed maximum of the predictive variance measure (kmax and klev) are used as cutoffs

for determining when a prediction for an unsampled lake location should not be fully trusted,

zero lakes are identified as extrapolations. Exploratory data analysis (see S1 Fig) indicates that

for each of the lakes identified as extrapolations, the values are within the distribution of the

data, with only a few exceptions. Rather than a few key variables standing out, it appears to be

some combination of variables that makes a lake an extrapolation. To further characterize the

type of lake more likely to be identified as an extrapolation we used a CART Model with our
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binary extrapolation index results using the MVPV(D) and the 0.95 quantile cutoff. This

approach can help identify regions in the covariate space where extrapolations are more likely

to occur (Fig 4). This CART analysis suggests the most important factors associated with

extrapolation include shoreline length, elevation, stream density, and lake SDF. For example,

a lake with a shoreline greater than 26 kilometers and above a certain elevation (� 279 m), is

likely to be identified as an extrapolation when using this model to obtain predictions. This

type of information is useful for ecologists trying to model lake nutrients because it suggests

lakes with these types of characteristics may behave differently than other lakes. In fact, lake

perimeter, SDF, and elevation have been shown to be associated with reservoirs relative to

natural lakes [24]. Although it is beyond the scope of our paper to fully explore this notion

because our existing database does not differentiate between natural lakes and reservoirs, these

results lend support to our approach and conclusions.

We also employed the conditional single variable extrapolation through predictive variance

approach to leverage all information known about a lake when considering whether a

Fig 4. CART model results showing which variables may be useful in identifying extrapolations for inland lake. Each level of nodes include the

thresholds and variables used to sort the data. Node color indicate whether the majority of sorted inland lake locations were identified as predictions

(blue) or extrapolations (red). The first row of numbers in a node indicate the number of lakes identified as predictions (right) or extrapolations (left)

that have been sorted into this node. The second row of numbers indicate the percentage of lakes that are identified as predictions (left) or extrapolation

(right) with the terminal nodes (square nodes) including the percentage of records sorted by the decision tree.

https://doi.org/10.1371/journal.pone.0225715.g004
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prediction of a single response variable (e.g. TN, as explored here) is an extrapolation (Fig 5).

These cutoffs resulted in 0, 2, 73, and 386 lake multivariate response predictions out of 5031

being identified as extrapolations. To characterize the type of lake more likely to be identified

as an extrapolation we used a CART model using the 95% cutoff criterion. CART revealed

the most important factors associated with extrapolation were latitude, maximum depth, and

watershed to lake size ratio. Latitude may be expected as many of the lakes without measures

for TN are located in the northern region. An additional visualization and table exploring

extrapolation lakes and their covariate values may be found in S1 Tables.

Discussion

We have presented different approaches for identifying and characterizing potential extrapola-

tion points within multivariate response data. Ecological research is often faced with the

challenge of explaining processes at broad scales with limited data. Financial, temporal, and

logistical restrictions often prevent research efforts from fully exploring an ecosystem or eco-

logical setting. Rather, ecologists rely on predictions made on a select amount of available data

that may not fully represent the breadth of a system of study. By better understanding when

extrapolation is occurring scientists may avoid making unsound inferences.

Fig 5. Identification and locations of prediction vs extrapolation of the single response variable, TN. Four cutoff approaches are compared and

presented. Lakes in blue circles represent locations where TN predictions have been not been identified as extrapolations for any cutoff choice. Lakes in

red squares, orange triangles, and yellow diamonds indicate those where predictions were beyond the cutoff values and thus considered extrapolations.

The color and shape of extrapolated lake locations are determined by which cutoff value first identifies the prediction at that location as an

extrapolation.

https://doi.org/10.1371/journal.pone.0225715.g005
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In our inland lakes example we addressed the issue of large-scale predictions to fill in miss-

ing data using a joint linear model presented by Wagner and Schliep [18]. With our novel

approach for identifying and characterizing extrapolation in a multivariate setting we were

able to provide numeric measures associated with extrapolation (MVPV, CMVPV, R(C)

MVPV) allowing for focus on predictions for all response variables or a single response vari-

able while conditioning on others. Each of these measurements, when paired with a cutoff cri-

terion, identify novel locations that are extrapolations. Our recommendations for visualization

and interpretation of these extrapolated lakes is useful for future analyses and predictions

which inform policy and management decisions. Insight into identified extrapolations and

their characteristics provides additional sampling locations to consider for future work. In

this analysis we found certain lakes, such as lakes located at relatively higher elevations in our

study area, are more likely to be identified as an extrapolation. The available data may thus not

fully represent these types of lakes, resulting in them being poorly predicted, or identified as

extrapolations.

The tools outlined in this work provide novel insights into identifying and characterizing

extrapolations in multivariate response settings. Further extensions of this work are available

but not explored in this paper. In addition to the A- and D-optimality approaches (trace and

determinant, respectively) used to obtain scalar value representations of the covariance

matrices one may also explore the utility of E-optimality (maximum eigenvalue) as an addi-

tional criterion. This approach would focus on examining variance in the first principle

component of the predictive variance matrix and, like the trace, this variance is not a scale-

invariant measure. Our work takes advantage of posterior predictive inference under a

Bayesian setting to obtain an estimate of the variance of the predictive mean response vector

for each lake. However, a frequentist approach using simulation-based methods may also

provide an estimate of this variance through non-parametric or parametric bootstrapping

(a comparison of the two for spatial abundance estimates may be found in Hedley and Buck-

land [25]) and the extrapolation coefficients may be obtained through the trace and/or deter-

minant of this variance.

This work results in identification of extrapolated lake locations as well as further under-

standing of the unique covariate space they occupy. The resulting caution shown when using

joint nutrient models to estimate water quality variables at lakes with partially or completely

unsampled measures is necessary for larger goals such as estimating the overall combined

levels of varying water qualities in all US inland lakes. In addition, under- or overestimating

concentrations of key nutrients such as TN and TP can potentially lead to misinformed man-

agement strategies which may have deleterious effects on water quality and the lake ecosystem.

The identification of lake and landscape characteristics associated with extrapolation locations

can further understanding between natural/anthropogenic sources of nutrients in lakes not

well represented in the sampled population. In our database, TP is sampled more than TN,

which is likely due to the conventional wisdom that inland waters are P limited, where P con-

tributes the most to eutrophication [26]. However, nitrogen has been shown to be an impor-

tant nutrient in eutrophication in some lakes and some regions [27], and may be as important

to sample to fully understand lake eutrophication. Our results show it is possible to predict

TN if other water quality variables are available, but it would be better if it was sampled more

often.

The joint model used in this work can be improved upon in several regards; no spatial com-

ponent is included, response variables are averages over several years worth of data and thus

temporal variation is not considered, and data from different years are given equal weight. The

model we use to fit these data may be considered to be a simple one, but the novel approach

presented here may be applied to more complicated models. In a sample based approach using
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a Bayesian framework the MVPV and CMVPV values obtained come from the MCMC sam-

ples and are thus independent from model design choices.

Deeper understanding of where extrapolation is occurring will allow researchers to propa-

gate this uncertainty forward. Follow up analyses using model-based predictions need to

acknowledge that some predictions are less trustworthy than others. This approach and our

analysis here shows that while a model may be able to produce an estimate and a confidence or

prediction interval, that does not mean the truth is captured nor does the assumed relationship

persist, especially outside the range of observed data. The methods outlined here will serve to

guide future scientific inquiries involving joint distribution models.
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