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Abstract

Faced with limitations in data availability, funding, and time constraints, ecologists are often
tasked with making predictions beyond the range of their data. In ecological studies, it is not
always obvious when and where extrapolation occurs because of the multivariate nature

of the data. Previous work on identifying extrapolation has focused on univariate response
data, but these methods are not directly applicable to multivariate response data, which are
common in ecological investigations. In this paper, we extend previous work that identified
extrapolation by applying the predictive variance from the univariate setting to the multivari-
ate case. We propose using the trace or determinant of the predictive variance matrix to
obtain a scalar value measure that, when paired with a selected cutoff value, allows for
delineation between prediction and extrapolation. We illustrate our approach through an
analysis of jointly modeled lake nutrients and indicators of algal biomass and water clarity

in over 7000 inland lakes from across the Northeast and Mid-west US. In addition, we
outline novel exploratory approaches for identifying regions of covariate space where
extrapolation is more likely to occur using classification and regression trees. The use of our
Multivariate Predictive Variance (MVPV) measures and multiple cutoff values when explor-
ing the validity of predictions made from multivariate statistical models can help guide eco-
logical inferences.

Introduction

The use of ecological modeling to translate observable patterns in nature into quantitative
predictions is vital for scientific understanding, policy making, and ecosystem management.
However, generating valid predictions requires robust information across a well-sampled sys-
tem which is not always feasible given constraints in gathering and accessing data. Extrapola-
tion is defined as a prediction from a model that is a projection, extension, or expansion of an
estimated model (e.g. regression equation, or Bayesian hierarchical model) beyond the range
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of the data set used to fit that model [1]. When we use a model fit on available data to predict a
value or values at a new location, it is important to consider how dissimilar this new observa-
tion is to previously observed values. If some or many covariate values of this new point are
dissimilar enough from those used when the model was fitted (i.e. either because they are out-
side the range of individual covariates or because they are a novel combination of covariates)
predictions at this point may be unreliable. Fig 1, adapted from work by Filstrup et al. [2], illus-
trates this risk with a simple linear regression between the log transformed measurements of
total phosphorous (TP) and chlorophyll a (Chl a) in U.S. lakes. The data shown in blue were
used to fit a linear model with the estimated regression line shown in the same color. While
the selected range of data may be reasonably approximated with a linear model, the linear
trend does not extend into more extreme values, and thus our model and predictions are no
longer appropriate.

While ecologists and other scientists know the risks associated with extrapolating beyond
the range of their data, they are often tasked with making predictions beyond the range of the
available data in efforts to understand processes at broad scales, or to make predictions about
the effects of different policies or management actions in new locations. Forbes and Carlow [3]
discuss the double-edged sword of supporting cost-effective progress while exhibiting caution
for potential misleading results that would hinder environmental protections. They outline the
need for extrapolation to balance these goals in ecological risk assessment. Other works [4-6]
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Fig 1. Fit of Chl a-TP relationship for inland lakes using linear regression. A 95% confidence interval of the mean is included around the regression
line. Dashed red lines represents the 95% prediction interval. Areas shaded in darker grey indicate regions of extrapolation (using the maximum
leverage value (h;;) to identify the boundaries).

https://doi.org/10.1371/journal.pone.0225715.g001
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explore strategies for addressing the problem of ecological extrapolation, often in space and
time, across applications in management tools and estimation practices. Previous work on
identifying extrapolation includes Cook’s early work on detecting outliers within a simple lin-
ear regression setting [7] and recent extensions to GLMs and similar models by Conn et al. [8].
The work of Conn et al. defines extrapolation as making predictions that occur outside of a
generalized independent variable hull (gIVH), defined by the estimated predictive variance of
the mean at observed data points. This definition allows for predictions to be either interpola-
tions (inside the hull) or extrapolations (outside the hull).

However, the work of Conn et al. [8] is restricted to univariate response data, which does
not allow for the application of these methods to multivariate response models. This is an
important limitation because many ecological and environmental research problems are
inherently multivariate in nature. Elith and Leathwick [9] note the need for additional extrapo-
lation assessments of fit in the context of using species distribution models (SDMs) for fore-
casting across different spatial and temporal scales. Mesgaran et al. [10] developed a new tool
for identifying extrapolation using the Mahalanobis distance to detect and quantify the degree
of dissimilarity for points either outside the univariate range or forming novel combinations
of covariates.

In our paper, we present a general framework for quantifying and evaluating extrapolation
in multivariate response models that can be applied to a broad class of problems. Our approach
may be succinctly summarized as follows:

1. Fitan appropriate model to available multi-response data.

2. Choose a numeric measure associated with extrapolation that provides a scalar value in a
multivariate setting.

3. Choose a cutoff or range of cutoffs for extrapolation/interpolation.
4. Given a cutoff, identify locations that are extrapolations.

5. Explore where extrapolations occur. Use this knowledge to help inform future analyses and
predictions.

We draw on extensive tools for measures of leverage and influential points to inform
decisions of a cutoff between extrapolation and interpolation. We illustrate our framework
through an application of this approach on jointly modeled lake nutrients, productivity, and
water clarity variables in over 7000 inland lakes from across the Northeast and Mid-west US.

Predicting lake nutrient and productivity variables

Inland lake ecosystems are threatened by cultural eutrophication, with excess nutrients such as
nitrogen (N) and phosphorus (P) resulting in poor water quality, harmful algal blooms, and
negative impacts to higher trophic levels [11]. Inland lakes are also critical components in the
global carbon (C) cycle [12]. Understanding the water quality in lakes allows for informed eco-
system management and better predictions of the ecological impacts of environmental change.
Water quality measurements are collected regularly by federal, state, local, and tribal govern-
ments, as well as citizen-science groups trained to sample water quality.

The LAGOS-NE database is a multi-scaled geospatial and temporal database for thousands
of inland lakes in 17 of the most lake-rich states in the eastern Mid-west and the Northeast of
the continental United States [13]. This database includes a variety of water quality measure-
ments and variables that describe a lake’s ecological context at multiple scales and across multi-
ple dimensions (such as hydrology, geology, land use, and climate).
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Wagner and Schliep [14] jointly modelled lake nutrient, productivity, and clarity variables
and found strong evidence these nutrient-productivity variables are dependent. They also
found that predictive performance was greatly enhanced by explicitly accounting for the multi-
variate nature of these data. Filstrup et al. [2] more closely examined the relationship between
Chl a and TP and found nonlinear models fit the data better than a log-linear model. Most
notably for this work, the relationship of these variables differ in the extreme values of the
observed ranges; while a linear model may work for a moderate range of these data it is imper-
ative that caution is shown before extending results to more extreme values (i.e., to extremely
nutrient-poor or nutrient-rich lakes).

In this study, following Wagner and Schliep, we consider four variables: total phosphorous
(TP), total nitrogen (TN), Chl a, and Secchi disk depth (Secchi) as joint response variables of
interests. Each lake may have observations for all four of these variables, or only a subset. Fig 2
shows response variable availability (fully observed, partially observed, or missing) for each
lake in the data set. A partially observed set of response variables for a lake indicates that at
least one, but not all, of the water quality measures were sampled. We consider several covari-
ates at the individual lake and watershed scales as explanatory variables including maximum
depth (m), mean base flow (%), mean runoff (mm/yr), road density (km/ha), elevation (m),
stream density (km/ha), the ratio of watershed area to lake area, and the proportion of forested

A. Total Nitrogen B. Total Phosphorous

C. Chlorophyl-a D. Secchi Disk

® observed ® unobserved

Fig 2. Left: map of inland lake locations with full, partial, or missing response variables. Missing response variables are lakes where all water quality
measures have not been observed, while partial status indicates only some lake response variables are unobserved. Covariates were quantified for all
locations. Right: subset of data status (observed or missing) for each response variable. All spatial plots in this paper were created using the Maps
package [15] in R to provide outline of US states.

https://doi.org/10.1371/journal.pone.0225715.9002
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and agricultural land in each lake’s watershed. One goal among many for developing this joint
model is to be able to predict TN concentrations for all lakes across this region, and eventually
the entire continental US. Our objective is to identify and characterize when predictions of
these multivariate lake variables are extrapolations. To this end, we will review and develop
methods for identifying and characterizing extrapolation in multivariate settings.

Materials and methods
Review of current work

Cook’s independent variable hull. As this work builds upon the work of Cook [7] and
Conn et al. [8], we start with a review of their independent variable hull (IVH) and generalized
independent variable hull (gIVH) approaches. Cook’s work focuses on the identification of
influential points in a linear regression setting. A linear regression model is written as

y=XB+e (1)

wherey = [y, ..., y,,J denotes a vector of n univariate observed responses, X denotes the
covarjate matrix with an intercept, § are the covariate coeffecients, and € are independent,
mean-zero normally distributed residuals. Throughout this paper, we use bold lowercase let-
ters to denote vectors and bold uppercase letter to denote matrices. The predicted value of y
may be calculated

y=XB (2)
where  may be replaced with its OLS estimate (8 = (X'X) 'X'y) to obtain
¥ = X(XX) XYy (3)

Equivalently, the hat matrix, H = X(X'X) ' X/, when multiplied by the observed y vector
will produce the predicted values. The predicted response for observation i can be written as a
linear combination of the n response variables,

Vi=hy, +hyy, +...+hy+...+hy fori=1...n (4)

The diagonal elements of the hat matrix (h; = x,(X'X)™'x,) are called leverages, and while
they only depend on the explanatory variables, they indicate the influence observations, y;,
have on their own predicted values, ;. A higher leverage h;; indicates a higher influence of y; in
determining the model fitted response ,. This relationship means leverage values are useful
quantities to explore when looking for influential points. The corresponding residual vector is
r =y —y = (I — H)y. Building on confidence ellipsoids for multiple coefficients, Cook’s Dis-
tance, D;, is a measure to explore the individual contribution of the i data point in a linear
regression analysis. This measure may be calculated by

(ﬁ—(i) - ﬁ)/xlx(ﬁf(i) - ﬁ)
ps

_i hii
_P 17hii

where p represents the number of parameters, s is ¥'r/(n — p), and t; is the i studentized resid-
ual. We use [ALU) to indicate the estimate of the the f vector without the i™ data point. With all

D. =

i

(5)

other values held constant, this measure increases as a function of the ratio of h;; over 1 — h;;,
which depends only on the design points within X. As such, Cook defines his independent
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variable hull (IVH) as the smallest convex set containing all of the design points. Let h denote
the maximum diagonal element of this hat matrix (i.e., h = max(diag(H))), then a new observa-
tion, X, is within this defined IVH whenever

X,(XX) 'x, <h (6)

and predicting at a point beyond the hull will imply an extrapolation.

The hat matrix and its diagonals are useful diagnostics for finding outliers in a linear regres-
sion setting. Similarly, the Mahalanobis distance (MD) [16] can be used for identifying outli-
ers. MD and leverage are monotonically related, as the scale-invariant squared MD may be
represented by

t=n(n-1) 7

where x; is a data point (with p total covariate observations), X is the mean vector for all x (i.e.

X =1 |, x, where [ is the number of observed lakes), and ¥ is the sample covariance matrix.
We assume X = 0 without loss of generality. This relationship assumes the model matrix X

includes an intercept and makes use of the following partitioning

/ -1 % 0,
(X'X) _<0 L)A:1>' (8)

-1
We may work backwards from 4;; to obtain

1 /
| 0

h, =(Lx,) (1§xi)/
0 Lz

-1

= % + Z_leiﬁ‘ilxg
(AR

This definition remains useful without any underlying distributional assumption of the
data. For example, empirically obtained quantile cutoff values can serve reasonably well as
threshold for declaring outliers. However, for multivariate-normal data, the squared MD can
be transformed into probabilities using a chi-squared cumulative probability distribution [17]
such that points that have a very high probability of not belonging to the distribution could be
classified as outliers. In either scenario, outliers can be detected using only predictor variables
by calculating XO(X/X)_I X, and comparing with max(diag(X(X/X)_l X)).

Conn’s generalized IVH. The work of Cook does not immediately extend to generalized
linear models (GLMs) where the assumption of Gaussian errors is relaxed. To extend to the
GLM case, Conn et al. (2015) define a generalized independent variable hull (gIVH) for a gen-

eralized linear model,
yi ~ g7 (), (10)

where f, denotes a probability density or mass function, g gives the necessary link function, and
i is alinear predictor (e.g. u; = x;8). Using Cook’s IVH boundary connection to predictive
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variance, Conn et al. define the gIVH as the set of all predicted locations .%, for which

var(y,ly) < max [var(j,y)] (11)
wherep € £, 5, =g '(x, B) corresponds to the mean prediction at p, ., denotes the set of
locations where data are observed, and y, denotes predictions of observations at x, € .Z,,. In
addition to this approach of using o and p to index observed and predicted locations, respec-
tively, we will also in this paper use i to index the collective set of locations (i.e. i € £, U Z)).

The variance of this predictive mean when a non-identity link is used may be found using the
delta method which may be written as

var(y,) = var(g(#,))

~ Avar(ii,)A,

(12)

where A is a matrix of partial derivatives of the function g(y) with respect to its parameters, eval-
uated at the estimators, ji.

Prediction variance. The IVH approach of Cook’s work uses only the design matrix, X, to
calculate the hat matrix, H. Since the hat matrix is not always well defined for more compli-
cated models, prediction variance may be substituted as a boundary for Conn et al.’s gIVH.
This Prediction Variance (PV) approach requires the design matrix, X, in addition to the
response variable vector, y. Finding the prediction variance under a univariate response model
is accomplished by either direct calculation of var(y) or through posterior predictive inference
resulting in a single scalar value for each location.

Writing our linear predictor generally as

n=Xp (13)
where X is the design matrix and f8 is the vector of unknown parameters to be estimated, we find
var(j) = Xvar(B)X'. (14)
Under a linear model,
B =(XX) XYy (15)
where the distribution of § is
B ~N(B,0*(XX) ) (16)

and thus var(f1) = ¢®X(X'X) ' X' is proportional to the hat matrix used in Cook’s IVH criteria.

While this extrapolation approach can be applied under inference in both frequentist and
Bayesian approaches, we focus on a Bayesian setting in which we may calculate the prediction
variance using the posterior predictive distribution of an out-of-sample observation, y,, given
the observed data, y. Using [-] to denote a probability distribution, this distribution is

b, ly] = / 1, 161[6lyld6 (17)

where 0 = (8, 0°) in our linear model and [6]y] is the posterior distribution. We may approxi-
mate the posterior predictive distribution through MCMC by sampling yl(,“) ~ [yp|0(“)] using
0'“ at each iteration (a=1,..., A) of the algorithm. With the posterior predictive distribution
and with observed covariates, x,, at each new location we may calculate ¥ = x}ﬂ(“) at each

PLOS ONE | https://doi.org/10.1371/journal.pone.0225715 December 5, 2019 7/20


https://doi.org/10.1371/journal.pone.0225715

@ PLOS|ONE

Identifying and characterizing extrapolation in multivariate response data

MCMC iteration and Monte Carlo predictive inference can be obtained using yi* = u'® for
the converged MCMC samples. The prediction variance may be approximated by
X G —EG,ly)

var(y, ly) = T . (18)

With this sample-based calculation of prediction variance for our measure of extrapolation we
can easily extend this univariate approach to the multivariate setting.

Extension to the multivariate case

Building upon this previous work, we aim to extend measures of extrapolation to handle pre-
dictions of multivariate data. We illustrate this using the inland lake nutrient and productivity
data. Following the multivariate linear model developed by Wagner and Schliep [18], the joint
nutrient-productivity model can be collectively written as:

y; = Bx; +¢€, ei%N(O,E) (19)

where y; denotes a vector column of a matrix, Y, where y,,; is the value of the n'" lake nutrient-
productivity variable for lake i. For each lake i,

¥, = [TN,, TP, CHL,, Secchi]’
(20)
Yi = Bxi + €i <:>yni = b;xi + €,

where B is a matrix of coefficients such that b/, is a row vector where b4 is the coefficient of
the g™ predictor variable for the n™ lake nutrient response variable. The notation x; represents
a g x 1 vector of predictor variables for lake i. Here, again for lake i, €; ~ N(0, ) where Zis a

n X n covariance matrix capturing the dependence between nutrient-productivity variables not
accounted for by the regression. We assume multivariate errors are independent and identi-
cally distributed across lakes. Following Wagner and Schliep (2018), we take a Bayesian
approach and specify priors for all model parameters.

b X N(0,100), r=1,....,nc=1,....q
(21)
T ~IW(I, g+1)

Predictions of different response types covary in multivariate models, complicating our def-
inition of a gIVH (see Eq 11) which relies on finding a maximum univariate value. Where a
univariate model would yield a scalar prediction variance (Eq 18), a multivariate model will
have a prediction covariance matrix. We propose capturing the size of a covariance matrix
using univariate measures. Note this is similar to A-optimality and D-optimality criteria used
in experimental design [19].

Further, using our novel numeric measure of extrapolation, we aim to take advantage of the
multivariate response variable information to explore when we may identify an additional
observation’s (i.e. covariates for a new lake location) predictions as extrapolations for all
response values, jointly. We also present an approach to identify when we cannot trust a pre-
diction for only a single response variable at either a new lake location, or a currently partially-
sampled lake. The latter identification would be useful for a range of applications in ecology.
For example, in the inland lakes project, one important goal is to predict TN because this
essential nutrient is not well-sampled across the study extent, and yet is important for under-
standing nutrient dynamics and for informing eutrophication management strategies for
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inland lakes. In this case, to accommodate TN not being observed (i.e. sampled) as often as
some other water quality variables, we can leverage the knowledge gained from samples of
other water quality measures taken more often than TN (e.g. Secchi disk depth [20] is a com-
mon measure of water clarity obtained on site, while other water quality measurements require
samples to be sent to a lab for analysis). We first outline our approach for identifying extrapo-
lated new observations using a measure of predictive variance for lakes that have been fully or
partially sampled and used to fit a model. Then, we describe how this approach can be applied
to the prediction of TN in lakes for which it has not been sampled.

Multivariate extrapolation measures. Using available data for both complete and partial
measurements of water quality at inland lake observations (here, Y = {y, ,0 € .Z,}) and
corresponding covariates of these sampled locations (X) we first fit an appropriate model to
obtain estimates for parameters needed for prediction (here, B and )i) With these values, in
addition to covariates that correspond with unsampled locations, we may either directly calcu-
late the prediction variance or, in a Bayesian setting, simulate it via posterior predictive infer-
ence. We denote this prediction variance with V; where

v, = var(3Y)
(22)
= var(Bx,|Y).

Each V; is a square matrix for a sampled or unobserved location, (i.e. the combined sets of
%, and %, respectively), with the dimensions equal to the number of response variables in
the model. As in the univariate case, we propose to characterize extrapolation by comparing
prediction variances of unobserved lakes with corresponding prediction variances of observed
lakes. To obtain a scalar value representation of each covariance matrix we propose using
the trace or determinant. In this paper, we will refer to these multivariate posterior variance
(MVPV) measures for each inland lake observation with respect to how this scalar value repre-
sentation is calculated:

4
MVPV (tr), = tr(V,) = ZVi[n, n] where V,[n,n] = n™ diagonal element of V,
n=1
(23)
4
MVPV(D), =|V,| = H?»m where A,, = n" Eigenvalue of V,

n=1

The trace (tr) of an n x n square matrix V is defined to be the sum of the elements on the
main diagonal (the diagonal from the upper left to the lower right). This does not take into
account the correlation between variables and is not a scale-invariant measure. As the response
variables for the inland lakes example are log transformed, we chose to explore the use of this
measure for obtaining a scalar value extrapolation measure. The determinant (D) takes into
account the correlations among pairs of variables and is scale-invariant. In this paper, we
explore both approaches by quantifying extrapolation using our multivariate model of the
LAGOS-NE lake data set by:

1. Finding the joint posterior distribution B, Z|Y
2. Calculating the posterior predictive variance at in-sample lakes
3. Calculating the posterior predictive variance at out of sample lakes

4. Identifying extrapolations by comparing out of sample MVPV values to a cutoff value cho-
sen using the in-sample values.
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Conditional single variable extrapolation measures. The chosen numeric measure of
MYV extrapolation includes information from the entire set of responses. In the inland lake
example, this could be used to identify unsampled lakes where prediction of the whole vector
of response variables (TN, TP, Chl a, Secchi) are extrapolations. However, even when a joint
model is appropriate, there are important scientific questions that can be answered with pre-
diction of a single variable.

To focus on a single response variable (taken to be the #n'™ variable without loss of general-
ity) conditioned on others, we now define the conditional multivariate predictive variance
(CMVPV) as

CMVPV, =var(y,ly_,., Y) (24)

ni?

where y_,,; are the response variables for the i™ lake observation being conditioned upon. With
the Bayesian approach detailed above, we can get sample realizations of the conditional MVN
distribution of [y,,,|y_,.;» Y] for all MCMC iterations, however, we still need a way to obtain uni-
variate prediction variance. While one could directly sample from [y,,y_, ., Y], we suggest the
following relationship

ni?

Var(ym'|Y) = Var(j/ni + gm|Y)
= var(y,;|Y) + var(é,[Y) (25)
= Var(j/ni|Y) + 611

Because in our model the multivariate errors €; are independently and identically distrib-
uted across lakes, then var(€é,,) = o,. As 0,, is constant across all lakes, we can use either var
(ynilY) or var(p,,]Y) to characterize extrapolation. While the variances are different, the con-
clusions about extrapolation will be the same as both observed and unobserved lakes will have
the same constant added.

As the inland lake data are modelled with a multivariate normal (MVN) distribution, we
may use results from a conditional MVN distribution. If y; is jointly normally distributed as

yi ~ N(ﬂiv Z) (26)

where p; = Bx; and if we condition the response for one nutrient measure for lake i on all other
available nutrient measures for that lake then,

Yuly i = 3, Y] ~ N(, X) (27)
For a lake observation that has been fully sampled for all four measures, we may compart-
mentalize the covariance matrix X for use in calculating the scalar values ji and X for [yy|
Y(2,3,4] in the following way,

E11 Z12 E13 E14

Yo1 | Yoz Yoz Yo Y X
Y31 | Y32 sz Xss Sy oo
Ya1 | Va2 a3 X

Within this new configuration of £, X, does not change, however X, is the submatrix

of X of dimension 1x 3 containing X;,, X3, and X4, X, is the submatrix of dimension 3 x 1

containing ¥,;, ¥3;, and 243, and 5222 is the submatrix of dimension 3 x 3 containing the
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remaining elements of . Using this partitioned X we may obtain fi and X.

—XpE,(a—u,)

lum'
Z“ - i122’;21221

ii
_ (29)
s

Any of the four response variables may be considered to be variable 1 and so this general
partition approach may be used for any variable conditioned on all others. The values of g_,,;
and X are determined by the availability of data for the three variables we are conditioning on.
These water quality measure can be fully, partially, or not observed.

In the instances where all other measures have not been observed then we may still proceed
to calculate var(y,,|Y) as done for the MVPV. In order for this measure of variance to be
comparable to other CMVPYV values, we must add var(é,;) = ¢,. This Conditional MVPV
(CMVPV) measure results in a single scalar value for each location, i € £, U .%,, that may be
used as outlined above to diagnose extrapolation.

Cutoffs vs continuous measures

With our selection of multivariate prediction variance measures (MVPV(tr), MVPV(D), and
CMVPV) we may proceed by choosing a cutoff or range of cutoffs for delineating between
extrapolation and interpretation. The role of a cutoff value or criteria in identifying and char-
acterizing extrapolation is to delineate between prediction and extrapolation. Or rather, where
(among covariate values, time, space, etc) may we expect our model to provide accurate pre-
diction values versus where should we exhibit caution when using model-based predictions. A
key decision for whether or not we label a prediction as an extrapolation (and thus identifying
the location as a potentially unreliable extension of our model beyond the data) is the measure
used as a boundary cutoff. Previous work [8, 21] has used the maximum prediction variance as
the cutoff of the g(IVH). However, many datasets contain outliers and influential points—data
locations very different from the rest of the data. Choosing a cutoff for extrapolation based on
the most extreme outlier in a data set will result in a very conservative definition of extrapola-
tion for many datasets. We thus suggest (and illustrate below) a range of extrapolation cutoffs
be explored, resulting in a more complete understanding of potential extrapolation. Each cut-
off value we propose is a function of the scalar valued prediction variance representations of
MVPV(D or tr) and CMVPYV, for observed locations (.%},) only denoted collectively here by
v,. We examine the following cutoff options:

1. Maximum predictive variance (Cook, Conn)

Koo = max (v,) (30)

2. Leverage-informed maximum predictive variance

k

— max (v,)

lev
0€L0 —lev

3. Quantile value

kr = qr(vo’o € "gO)

The leverage-informed cutoff value is calculated from a set of observations in %, ..,
where potential influential points (as determined based only on the covariate values, X) have
been removed. We suggest considering quantile-based approaches as cutoff values at the 0.99
and 0.95 quantiles of the prediction variances from observed locations. These cutoffs are less
conservative than the maximum predictive variance which may also be considered the 100%
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quantile value (i.e. a smaller cutoff value results in more unobserved locations identified as
places where the empirical model may not be trusted).

Identifying locations as extrapolations

With the (C)MVPYV values and cutoff choice in hand, determining which locations (observed/
unobserved) are extrapolations is straightforward and results in a binary (yes/no) value. We
refer to this delineation as our extrapolation index (e)

L ifv, >k
e, = (31)

0 otherwise

where k represents the cutoff choice obtained using v,. Each extrapolation index value is a
function of the scalar value prediction variance representations of MVPV(D or tr) and
CMVPV, for predicted locations (.%}) only denoted collectively here by v,. While this binary
formulation allows for a simple way to determine whether or not we may diagnose a point as
being an extrapolation, it does not allow for much nuance. Should a prediction with its predic-
tive variance just beyond the boundary of the IVH be considered as untrustworthy as one
with a predictive variance well beyond the boundary? We thus propose a numeric measure of
extrapolation calculated by dividing predictive variance values for predicted locations by the
cutoff value to generate a Relative MVPV (RMVPV) measurement:

v
RMVPY, = -E. (32)

RMVPYV values greater than 1 would be considered to be extrapolations, but in addition
the larger the value the less trustworthy we would consider its prediction to be. This approach
does not change which locations are identified as extrapolations since the binary extrapolation
index as described above can be calculated from the RMVPV as

1 if RMVPV, >1
. (33)

0 otherwise

Choosing IVH vs PV

With several methods of identifying extrapolations available we now provide additional guid-
ance on choosing between various options. Cook’s approach of using the maximum leverage
value to define the IVH boundary may be useful for either an univariate or a joint model in a
linear regression framework. However, as it depends on covariate values alone, it lacks any
influence of response data. Conn et al.’s gIVH introduces the use of posterior predictive vari-
ance instead of the hat matrix to define the hull boundary in the case of a generalized model.

One possible limitation of predictive variance approaches to obtain an extrapolation index
arises under certain generalized models. Models with constrained supports (i.e. binary, Pois-
son, etc) may exhibit decreased posterior variation when predictions are near the edges of the
support. For example, in the binary case with a single covariate, if

Yi ™~ Bern(pi)
logit(p,) = B, + B,

then as x; — 00 (x; < —00), p; — 1 (p; < 0), and var(y;|p;) = pi(1 — p;)—0. Thus, extreme
points on the outside range of the observed values may have tiny predicted variance. This

(34)
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artificial decrease in variance may mask the identification of potentially extrapolated data
points when using PV methods. Missing these extrapolations may also hinder our ability to
characterize the covariate space, limiting the ability to provide reliable predictions. Thus, in
models where prediction variance decreases as means go to extreme values such as Binomial,
Beta, or Uniform distributions, we recommend IVH over PV approaches where this masking
of extrapolation locations does not occur. We use the inland lake data set (see Predicting lake
nutrient and productivity variables) to illustrate predicting joint response variables at unob-
served lake locations.

Visualization and interpretation

Exploring data and taking a principled approach to identifying potential extrapolation points
is often aided by visualization (and interpretation) of data and predictions. With the LAGOS
data we examine spatial plots of the lakes and their locations coded by extrapolation vs predic-
tion. Plotting this for multiple cutoff choices (as in Fig 3) is useful to explore how this choice
can influence which locations are considered extrapolations. This is important from both an
ecological and management perspective. For instance, if potential areas are identified as having
many extrapolations this might suggest that specific lake ecosystems or landscapes have char-
acteristics influencing processes governing nutrient dynamics in lakes not well captured by
previously collected data—and thus may require further investigation.

PR

Extrapolation Cutoff © Prediction A 99% Cutoff ¢ 95% Cutoff

Fig 3. Identification of prediction vs extrapolation locations of LAGOS-NE lakes. Four cutoff approaches are compared and presented. Lakes in
orange diamonds and red triangles indicate those where predictions were beyond the 99% and 95% cutoff values, respectively, and thus considered
extrapolations. The color and shape of extrapolated lake locations are determined by which cutoff value first identifies the prediction at that location as

an extrapolation.

https://doi.org/10.1371/journal.pone.0225715.9003
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In addition to an exploration of possible extrapolation in physical space (through the plot
in Fig 3), we also examine possible extrapolation in covariate space. Using either of the binary/
numeric Extrapolation Index values, we propose a Classification and Regression Tree (CART)
analysis with the extrapolation values as the response. Our classification approach allows
for further insight into what covariates may be influential in determining whether a newly
observed location is too dissimilar to existing ones. A CART model allows for the identifica-
tion of regions in covariate space where predictions are suspect and may inform future sam-
pling efforts as the available data has not fully characterized all lakes.

Model fitting

The joint nutrient-productivity model (see Extension to the multivariate case) was fit using
MCMC in R [22]. We ran the MCMC algorithm for 20,000 iterations and used the coda pack-
age to analyze MCMC output and check for convergence [23]. Full conditional updates were
available for all parameters (B, X, and Z) thus Gibbs updates were specified. We generated pos-
terior predictions of lake nutrient levels across the entirety of observed and unobserved lake
locations as

y,~N(Bx,X) i=1,...,n (35)

and calculated multivariate prediction variance values as described in Multivariate extrapola-
tion measures.

Results

Fitting our multivariate linear model to the 8,910 lakes resulted in most lakes’ predictions
remaining within the extrapolation index cutoff and thus not being identified as extrapola-
tions. We explored the use of both trace and determinant for obtaining a scalar value represen-
tation of the multivariate posterior predictive variance in addition to four cutoff criteria.
Using MVPV(tr) with these cutoffs (max value, leverage max, 0.99 quantile, and 0.95 quantile)
resulted in 0, 1, 9, and 33 multivariate response predictions being identified as extrapolations,
respectively. In contrast, using MVPV(D) values combined with the four cutoffs resulted in 0,
0, 8, 37 predictions identified as extrapolations. Unless all response variables are on the same
scale we recommend the use of MVPV(D) over MVPV(tr). However, if a scale-invariant mea-
sure if not necessary, exploring the use of MVPV(tr) (in addition to MVPV(D) may reveal
single-response variables that are of interest to researchers for further exploration using our
Conditional MVPV approach. Fig 3 shows the spatial locations of lakes where the collective
model predictions for TP, TN, Chl a, and Secchi depth have been identified as extrapolations
using MVPV(D) combined with the cutoff measures. As the cutoff values become more con-
servative in nature the number of extrapolations identified increases. This figure shows the
level of cutoff that first identifies a location as an extrapolation, (e.g. red squares are locations
first flagged using the 99% cutoff, but they would also be included in the extrapolations found
with the 95% cutoff). This increasing number of extrapolations identified highlights the impor-
tance of exploring different choices for a cutoff value. When the maximum value or the lever-
age-informed maximum of the predictive variance measure (k. and kj.,) are used as cutoffs
for determining when a prediction for an unsampled lake location should not be fully trusted,
zero lakes are identified as extrapolations. Exploratory data analysis (see S1 Fig) indicates that
for each of the lakes identified as extrapolations, the values are within the distribution of the
data, with only a few exceptions. Rather than a few key variables standing out, it appears to be
some combination of variables that makes a lake an extrapolation. To further characterize the
type of lake more likely to be identified as an extrapolation we used a CART Model with our
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0.01 0.99
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Fig 4. CART model results showing which variables may be useful in identifying extrapolations for inland lake. Each level of nodes include the
thresholds and variables used to sort the data. Node color indicate whether the majority of sorted inland lake locations were identified as predictions
(blue) or extrapolations (red). The first row of numbers in a node indicate the number of lakes identified as predictions (right) or extrapolations (left)
that have been sorted into this node. The second row of numbers indicate the percentage of lakes that are identified as predictions (left) or extrapolation
(right) with the terminal nodes (square nodes) including the percentage of records sorted by the decision tree.

https://doi.org/10.1371/journal.pone.0225715.9g004

binary extrapolation index results using the MVPV(D) and the 0.95 quantile cutoff. This
approach can help identify regions in the covariate space where extrapolations are more likely
to occur (Fig 4). This CART analysis suggests the most important factors associated with
extrapolation include shoreline length, elevation, stream density, and lake SDF. For example,
a lake with a shoreline greater than 26 kilometers and above a certain elevation (> 279 m), is
likely to be identified as an extrapolation when using this model to obtain predictions. This
type of information is useful for ecologists trying to model lake nutrients because it suggests
lakes with these types of characteristics may behave differently than other lakes. In fact, lake
perimeter, SDF, and elevation have been shown to be associated with reservoirs relative to
natural lakes [24]. Although it is beyond the scope of our paper to fully explore this notion
because our existing database does not differentiate between natural lakes and reservoirs, these
results lend support to our approach and conclusions.

We also employed the conditional single variable extrapolation through predictive variance
approach to leverage all information known about a lake when considering whether a
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Extrapolation Cutoff ©~ Prediction ® Leverage Cutoff 4 99% Cutoff = 95% Cutoff

Fig 5. Identification and locations of prediction vs extrapolation of the single response variable, TN. Four cutoff approaches are compared and
presented. Lakes in blue circles represent locations where TN predictions have been not been identified as extrapolations for any cutoff choice. Lakes in
red squares, orange triangles, and yellow diamonds indicate those where predictions were beyond the cutoff values and thus considered extrapolations.
The color and shape of extrapolated lake locations are determined by which cutoff value first identifies the prediction at that location as an
extrapolation.

https://doi.org/10.1371/journal.pone.0225715.9005

prediction of a single response variable (e.g. TN, as explored here) is an extrapolation (Fig 5).
These cutoffs resulted in 0, 2, 73, and 386 lake multivariate response predictions out of 5031
being identified as extrapolations. To characterize the type of lake more likely to be identified
as an extrapolation we used a CART model using the 95% cutoff criterion. CART revealed
the most important factors associated with extrapolation were latitude, maximum depth, and
watershed to lake size ratio. Latitude may be expected as many of the lakes without measures
for TN are located in the northern region. An additional visualization and table exploring
extrapolation lakes and their covariate values may be found in S1 Tables.

Discussion

We have presented different approaches for identifying and characterizing potential extrapola-
tion points within multivariate response data. Ecological research is often faced with the
challenge of explaining processes at broad scales with limited data. Financial, temporal, and
logistical restrictions often prevent research efforts from fully exploring an ecosystem or eco-
logical setting. Rather, ecologists rely on predictions made on a select amount of available data
that may not fully represent the breadth of a system of study. By better understanding when
extrapolation is occurring scientists may avoid making unsound inferences.
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In our inland lakes example we addressed the issue of large-scale predictions to fill in miss-
ing data using a joint linear model presented by Wagner and Schliep [18]. With our novel
approach for identifying and characterizing extrapolation in a multivariate setting we were
able to provide numeric measures associated with extrapolation (MVPV, CMVPV, R(C)
MVPV) allowing for focus on predictions for all response variables or a single response vari-
able while conditioning on others. Each of these measurements, when paired with a cutoff cri-
terion, identify novel locations that are extrapolations. Our recommendations for visualization
and interpretation of these extrapolated lakes is useful for future analyses and predictions
which inform policy and management decisions. Insight into identified extrapolations and
their characteristics provides additional sampling locations to consider for future work. In
this analysis we found certain lakes, such as lakes located at relatively higher elevations in our
study area, are more likely to be identified as an extrapolation. The available data may thus not
fully represent these types of lakes, resulting in them being poorly predicted, or identified as
extrapolations.

The tools outlined in this work provide novel insights into identifying and characterizing
extrapolations in multivariate response settings. Further extensions of this work are available
but not explored in this paper. In addition to the A- and D-optimality approaches (trace and
determinant, respectively) used to obtain scalar value representations of the covariance
matrices one may also explore the utility of E-optimality (maximum eigenvalue) as an addi-
tional criterion. This approach would focus on examining variance in the first principle
component of the predictive variance matrix and, like the trace, this variance is not a scale-
invariant measure. Our work takes advantage of posterior predictive inference under a
Bayesian setting to obtain an estimate of the variance of the predictive mean response vector
for each lake. However, a frequentist approach using simulation-based methods may also
provide an estimate of this variance through non-parametric or parametric bootstrapping
(a comparison of the two for spatial abundance estimates may be found in Hedley and Buck-
land [25]) and the extrapolation coefficients may be obtained through the trace and/or deter-
minant of this variance.

This work results in identification of extrapolated lake locations as well as further under-
standing of the unique covariate space they occupy. The resulting caution shown when using
joint nutrient models to estimate water quality variables at lakes with partially or completely
unsampled measures is necessary for larger goals such as estimating the overall combined
levels of varying water qualities in all US inland lakes. In addition, under- or overestimating
concentrations of key nutrients such as TN and TP can potentially lead to misinformed man-
agement strategies which may have deleterious effects on water quality and the lake ecosystem.
The identification of lake and landscape characteristics associated with extrapolation locations
can further understanding between natural/anthropogenic sources of nutrients in lakes not
well represented in the sampled population. In our database, TP is sampled more than TN,
which is likely due to the conventional wisdom that inland waters are P limited, where P con-
tributes the most to eutrophication [26]. However, nitrogen has been shown to be an impor-
tant nutrient in eutrophication in some lakes and some regions [27], and may be as important
to sample to fully understand lake eutrophication. Our results show it is possible to predict
TN if other water quality variables are available, but it would be better if it was sampled more
often.

The joint model used in this work can be improved upon in several regards; no spatial com-
ponent is included, response variables are averages over several years worth of data and thus
temporal variation is not considered, and data from different years are given equal weight. The
model we use to fit these data may be considered to be a simple one, but the novel approach
presented here may be applied to more complicated models. In a sample based approach using
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a Bayesian framework the MVPV and CM VPV values obtained come from the MCMC sam-
ples and are thus independent from model design choices.

Deeper understanding of where extrapolation is occurring will allow researchers to propa-
gate this uncertainty forward. Follow up analyses using model-based predictions need to
acknowledge that some predictions are less trustworthy than others. This approach and our
analysis here shows that while a model may be able to produce an estimate and a confidence or
prediction interval, that does not mean the truth is captured nor does the assumed relationship
persist, especially outside the range of observed data. The methods outlined here will serve to
guide future scientific inquiries involving joint distribution models.

Supporting information

S1 Fig. Violin plots of covariate densities and extrapolation points plotted.
(PDF)

S1 Tables. Tables of covariate values for lakes identified as extrapolations using MVPV(D)
and CMVPYV for TN.
(TEX)
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