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The effect of nutrients on phytoplankton biomass in lakes continues to be a subject of debate by aquatic
scientists. However, determining whether or not chlorophyll a (CHL) is limited by phosphorus (P) and/or
nitrogen (N) is rarely considered using a probabilistic method in studies of hundreds of lakes across
broad spatial extents. Several studies have applied a unified CHL-nutrient relationship to determine nu-
trient limitation, but pose a risk of ecological fallacy because they neglect spatial heterogeneity in eco-
logical contexts. To examine whether or not CHL is limited by P, N, or both nutrients in hundreds of
lakes and across diverse ecological settings, a probabilistic machine learning method, Bayesian Network,
was applied. Spatial heterogeneity in ecological context was accommodated by the probabilistic nature
of the results. We analyzed data from 1382 lakes in 17 US states to evaluate the cause-effect relation-
ships between CHL and nutrients. Observations of CHL, total phosphorus (TP), and total nitrogen (TN)
were discretized into three trophic states (oligo-mesotrophic, eutrophic, and hypereutrophic) to train the
model. We found that although both nutrients were related to CHL trophic state, TP was more related
to CHL than TN, especially under oligo-mesotrophic and eutrophic CHL conditions. However, when the
CHL trophic state was hypereutrophic, both TP and TN were important. These results provide additional
evidence that P-limitation is more likely under oligo-mesotrophic or eutrophic CHL conditions and that
co-limitation of P and N occurs under hypereutrophic CHL conditions. We also found a decreasing pattern
of the TN/TP ratio with increasing CHL concentrations, which might be a key driver for the role change
of nutrients. Previous work performed at smaller scales support our findings, indicating potential for ex-
tension of our findings to other regions. Our findings enhance the understanding of nutrient limitation at
macroscales and revealed that the current debate on the limiting nutrient might be caused by failure to
consider CHL trophic state. Our findings also provide prior information for the site-specific eutrophication
management of unsampled or data-limited lakes.
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1. Introduction

Nutrients, including phosphorus (P) and nitrogen (N), are con-
sidered as main drivers of phytoplankton growth (Conley et al.,
2009). However, which nutrient is the primary limiting nutrient
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remains a topic of substantial debate. Generally, debate focuses on
whether or not lakes are solely P limited or co-limited by P and
N. Some researchers propose that P is the only limiting nutrient,
based on results of whole-lake experiments and historical obser-
vations (Correll, 1999; Schindler, 1974; Schindler et al., 2016). They
found that N fixation was sufficient for phytoplankton growth in
proportion to P (Schindler et al., 2008). Other researchers chal-
lenged the P control paradigm, mainly based on results of bottle
or mesocosm experiments, in which they found that the addition
of N could also significantly promote phytoplankton growth (Elser
et al.,, 2007; Xu et al., 2009). While these small-scale experiments
of short duration were criticized to give spurious and confus-
ing results (Schindler, 2012), a few recent studies used long-term
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observations to reveal N limitation in summer, which was believed
to support the notion of co-limitation by P and N (van Gerven
et al., 2019; Shatwell and Koéhler, 2019). However, short-term N
limitation as the evidence for controlling N has long been doubted
(Carpenter, 2008; Schindler et al., 2008).

Although whole-lake experiments or historical observations
provide useful information for informing lake eutrophication man-
agement (Schindler et al., 2016), previous studies typically focused
on a few, selected lakes, e.g. lakes in the Experimental Lakes Area
of Canada (Schindler, 2012), the Laurentian Great Lakes (Chaffin
et al,, 2013; Dove and Chapra, 2015), and Lake Taihu (Paerl et al.,
2011; Xu et al., 2009). However, several studies have shown that
the spatial heterogeneity of ecological contexts, including lake
characteristics and phytoplankton and fish community structure,
could impact the relationship between chlorophyll a (CHL) and
nutrients (Malve and Qian, 2006; Phillips et al., 2008; Wagner
et al., 2011). The CHL-nutrient relationship could vary among lakes
even in the same ecoregion and under the same trophic condi-
tions (Liang et al., 2019). The variation of CHL-nutrient relation-
ships might further change relative limitation strength of nutri-
ents (Kolzau et al., 2014). Moreover, the spatial heterogeneity of
other factors, e.g. climate and residence time, could determine the
availability of nutrients and thereby impact the limiting nutrient
for phytoplankton (Genkai-Kato and Carpenter, 2005; Lewis et al.,
2011; Maranger et al., 2018). Therefore, inferences deduced from a
limited numbers of lakes might be constrained to certain ecologi-
cal contexts.

Large datasets of lakes located across varied ecological con-
texts have long been used to explore CHL-nutrient relationships
(Canfield and Bachmann, 1981; Dillon and Rigler, 1974; Oliver
et al., 2017; Rast et al., 1983). A few studies also determined the
limiting nutrient based on the performance of CHL-nutrient log-
linear regressions. For example, Seip (1994) explored the limiting
nutrient of 46 north temperate lakes based on the predictive abil-
ity of the CHL-nutrient model. Abell et al. (2012) found that the
CHL-nutrient relationship varied with latitude and further explored
the nutrient limitation patterns based on the statistical significance
of regression coefficients. Similarly, Zou et al. (2020) determined
the limiting nutrient of lakes in the Chinese Eastern Plains. These
aforementioned studies always spatially aggregated data and then
developed a unified CHL-nutrient relationship (space-for-time sub-
stitution) that was believed to be suitable for all lakes in the anal-
ysis. As such, the deduced limiting nutrient(s) for aggregated lakes
are the same. However, because of the spatial heterogeneity of eco-
logical contexts of lakes, the regional relationship might not be ap-
plicable for some lakes. More importantly, as revealed in some re-
cent studies (Liang et al., 2020; Qian et al., 2019), the regional rela-
tionship might entirely over- or under-estimate the nutrient effect
of all the lakes, which is a typical phenomenon of ecological fallacy
(Maashebner et al., 2015). The deduced regional limiting nutrient
could be thereby misleading.

Classifying lakes into several types based on ecological con-
texts, e.g. lake characteristics, land use, meteorological factors, and
phytoplankton community structure, could improve CHL-nutrient
model performance (Hayes et al., 2015; Phillips et al., 2008; Yuan
and Pollard, 2014) and thereby provide more accurate information
for deducing the limiting nutrient. However, the number of poten-
tial factors effecting nutrient limitation could be large. In practice,
it is extremely difficult to collect data for many drivers and across
hundreds of lakes. As such, if only a limited number of drivers are
included in the modeling exercise, there is still no guarantee that
ecological fallacy won’t occur. Therefore, it is critical to apply ef-
fective tools to accommodate the spatial heterogeneity in ecologi-
cal contexts that exists for inland lakes, and at the same time, help
to overcome the data-limitation often present when exploring nu-
trient limitation of lakes at macroscales.

Table 1

Concentration thresholds used to determine the trophic state of TP, TN, and CHL
(modified from USEPA (2009). Please refer to Fig. 1 for the distributions of lake
trophic states in our study). For our analysis, we combined the oligotrophic and
mesotrophic states into a single category (USEPA, 2009).

Trophic state TP (pg/L) TN (mg/L) CHL (pg/L)
Oligo-mesotrophic (‘0’) < 25 < 0.75 <7
Eutrophic (‘E’) >25& <50 >075& <14 >7&<30
Hypereutrophic (‘H’) > 50 > 14 > 30

As a probabilistic machine learning method, Bayesian Network
(BN) can implicitly reflect the impacts of drivers in a probabilistic
manner (Rigosi et al., 2015), rather than including many potential
drivers in the model. BN is therefore suitable for handling the spa-
tial heterogeneity of ecological contexts and does not require ad-
ditional data for potential drivers. In a BN, it is straightforward to
conduct an analysis that provides easily communicated probability
distributions of the response given the predictors’ conditions. BN is
also capable of accommodating nonlinear relationships (Chen and
Pollino, 2012). In this study, our objective was to examine whether
or not CHL is limited by P, N or both nutrients in hundreds of
lakes located across diverse ecological settings. We applied BN to
analyzed data from a temporally and spatially extensive database
for lakes in 17 Northeastern and Midwest US states (LAGOS-NE;
Soranno et al., 2017). The usage of BN in developing CHL-nutrient
relationships of one or multiple lakes is not new (Nojavan et al.,
2017), but its application as a tool to explore nutrient limitation
of lakes that span a range of ecological contexts at macroscales is
novel.

2. Methods

Although nutrients have many different forms, total phosphorus
(TP) and total nitrogen (TN) were used here as the indicators of nu-
trients due to data availability. Also, TP and TN are the most widely
used indicators in determining the limiting nutrient of phytoplank-
ton (Cha et al, 2016; Liang et al., 2019; Sendergaard et al., 2017).
In north temperate lakes, summer is the most sensitive season for
phytoplankton growth, so we focused our analysis on the summer
period (June 15 to September 14) (Wagner and Schliep, 2018). Be-
cause there might be interannual dynamics of nutrient limitation
even in the same lake, we averaged TP, TN, and CHL concentrations
in the summer period of each year to obtain yearly lake-summer
average values. This resulted in 6424 average values of TP, TN, and
CHL from 1382 lakes. The lake-summer average values were then
used to determine the trophic state of TP, TN, and CHL, according
to the classification method of the National Lake Assessment (NLA)
(Table 1) (USEPA, 2009).

2.1. Bayesian network

BN is a probabilistic machine learning method. It is defined
in terms of a directed acyclic graph and conditional distributions
(Aguilera et al., 2011). BN models are based on a relatively simple
causal graphical structure, making them easy to build and under-
stand (Chen and Pollino, 2012). In addition, the probabilistic rep-
resentation of a BN model enables it to be a proper method to
deal with uncertainties (Aguilera et al., 2011). Moreover, the be-
lief propagation makes BN models an effective tool for reasoning,
which makes them useful for helping to inform and support de-
cision making (Chen and Pollino, 2012). As such, BN models have
been increasingly used in modeling ecological systems (Marcot and
Penman, 2019; McLaughlin and Reckhow, 2017; Yuan and Pollard,
2018).

To build a credible BN model, three key steps should be in-
cluded, namely the determination of model structure, learning of
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Fig. 1. Structure of the Bayesian Network model. Horizontal bars show the propor-
tion of lakes classified into each of the three trophic states. TP = total phosphorus,
TN = total nitrogen, CHL = chlorophyll a. Structure of BN model. Horizontal bars
show the proportion of lakes classified into each of the three trophic states.

model parameters, and model evaluation. In this study, the model
structure was very simple and was determined based on the basic
understanding of lake ecosystems. As shown in Fig. 1, TP and TN
were drivers (parents nodes) and CHL was the response variable
(child node). Note that although we gave the prior that both TN
and TP could impact CHL when determining the BN model struc-
ture, that did not have to lead to the conclusion that both nutrients
must have effects on the CHL trophic state. If a nutrient has no ef-
fect on the CHL state, the change of that nutrient will not cause
any change on the distribution of the CHL state. Distributions of
the trophic state of the three variables are also shown in Fig. 1.

The categorized data (data that represent the trophic state of TP,
TN, and CHL) were used as the input and output of the BN model.
Although there are many other supervised or unsupervised meth-
ods to discretize nutrients and CHL concentrations (Beuzen et al.,
2018), our NLA-guided data discretization method (Table 1) is
management-oriented and thus was expected to provide useful in-
formation for lake eutrophication management. Parameters esti-
mation was based on Bayes’ theorem, which is embedded in the
bnlearn package (Scutari, 2010) in the R software. We conducted
a 10-fold cross-validation for the BN model, in which the model
was fitted 10 times to 90% of the observations while the remain-
ing 10% was retained for out of sample prediction (Wagner and
Schliep, 2018). We used classification accuracy to evaluate model
performance. The classification accuracy was calculated by com-
paring highest probability predictions to observed real outcomes
(Marcot, 2012). The classification accuracy was high (76.4%), ensur-
ing the reliability of model results and corresponding inferences.

The ‘top-down’ reasoning of the calibrated BN model allows us
to determine the probability of a CHL tropic state under certain
trophic states of TP and TN. For example, we can obtain the prob-
ability of CHL being oligo-mesotrophic (‘O’) when setting TP to be
oligo-mesotrophic and TN to be eutrophic or hypereutrophic (‘E’ or
‘H’), as expressed by: P(CHL = O | TP = O, TN = (E or H)). Expres-
sions before and after the vertical bar (“|”) represent the event and
evidence, respectively. And we obtain the probability of the event
(the trophic state of CHL) under the evidence (trophic states of nu-
trients) via ‘top-down’ reasoning.

Note that we aggregated data from a large number of lakes
located across diverse ecological contexts. A unified deterministic
CHL-nutrient relationship (e.g. a linear regression model) to deter-
mine nutrient limitation could be misleading because of ecological

fallacy (Qian et al., 2019). In our study, the key advantage of the
application of BN is the implicit accounting of the effects of po-
tential drivers by the probabilistic results of CHL state given the
trophic state of the nutrients. We emphasize that the probability
of a CHL trophic state should be interpreted as the proportion of
lakes whose CHL concentration is in that certain state rather than
the possibility of that certain CHL state in a given lake. For exam-
ple, P(CHL = O) = 0.3 means there are 30% of the lakes whose CHL
state are oligo-mesotrophic - rather than that for a certain lake the
probability of CHL being oligo-mesotrophic is 0.3.

By comparing probabilities of the CHL trophic state under dif-
ferent combinations of nutrient trophic states, we can explore the
role of TP and TN on phytoplankton. Specifically, we addressed the
following three questions:

1) Is CHL limited by nutrients? Although the answer to this ques-
tion seems to be well established, it is rarely discussed based
on the results of analyses that examine hundreds of lakes using
a BN, in which the potential effects of spatial heterogeneity of
ecological contexts are implicitly accounted for.

2) If CHL is limited by nutrients, is CHL limited by both nutrients
or only one?

3) If CHL is limited by both nutrients, is there one nutrient that is
more important than the other one?

While there are many combinations of TP and TN trophic state
that are used as the evidence to calculate the probability of the
CHL trophic state in the BN, we focused on the nutrient trophic
state combinations which were helpful to answer the above ques-
tions. All the computations were conducted in R software (Ver-
sion 3.6.0) (R Core Team, 2019). We developed the BN using the
bnlearn package (Scutari, 2010).

3. Results

Probabilities of CHL trophic states under different combinations
of TP and TN trophic states are shown in Fig. 2. To answer the
question of whether nutrients affect the CHL trophic state, we
can compare the results of the CHL trophic state when both nu-
trients are oligo-mesotrophic (Fig. 2g) and when both nutrients
are eutrophic (Fig. 2e) or hypereutrophic (Fig. 2c). When both nu-
trients are oligo-mesotrophic, the probability of CHL being oligo-
mesotrophic is high (0.793) and the probability of CHL being eu-
trophic or hypereutrophic is small (0.201 and 0.006, respectively).
However, if nutrient trophic state becomes eutrophic or hypereu-
trophic, the probability of CHL being oligo-mesotrophic decreases
greatly to 0.104 and 0.023, respectively. That is, on one hand, the
trophic state of 68.9% (0.793 - 0.104) of lakes will shift to a more
enriched CHL trophic state when both nutrients become eutrophic
and 78.7% (0.793- 0.006) of lakes will shift to a more enriched CHL
state when both nutrients become hypereutrophic. On the other
hand, when nutrient trophic state becomes oligo-mesotrophic from
eutrophic or hypereutrophic the proportion of lakes being classi-
fied as eutrophic and hypereutrophic based on the CHL concen-
trations is greatly reduced (e.g., compare Fig. 2b, e, and h). There-
fore, TP and TN are indeed very important for determining the CHL
trophic state of lakes, indicating that CHL is limited by nutrients at
macroscales.

Next, we address the question of whether or not a single nu-
trient or both nutrients affect CHL trophic state - given that we
have established that nutrients are important determinants of CHL
trophic state. To explore the effect of one nutrient independent of
the other, we kept the trophic state of the other nutrient constant.
For example, we can determine the effect of TP on CHL trophic
state by comparing Fig. 2a, d, and g. When setting the TN trophic
state to be oligo-mesotrophic, changing the TP trophic state from
oligo-mesotrophic (Fig. 2g) to eutrophic (Fig. 2d) or hypereutrophic
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Fig. 2. Probabilities of the CHL trophic state under different combinations of nutrient trophic states. ‘Oligo-meso’ = oligo-mesotrophic, ‘Eutro’ = eutrophic, ‘Hyper’ =
total nitrogen. Probabilities of the CHL trophic state under different combinations of nutrient trophic states.

eutrophic, TP = total phosphorus, TN =

(Fig. 2a) will lead to a large decrease of the probability of CHL
being oligo-mesotrophic (a decline from 0.793 when TP is oligo-
mesotrophic to 0.056 when TP is hypereutrophic). Concurrently,
we see an increase in the probability of CHL being eutrophic and
hypereutrophic (Fig. 2g, d, & a). When holding the TN state con-
stant at eutrophic (Fig. 2b, e, & h) or hypereutrophic (Fig. 2c, f,
& i), we obtain similar results to the results for TP on the proba-
bility change of the CHL trophic state. To determine the effect of
TN on CHL trophic state, we compare plots holding the TP trophic
state constant. If the TP state is oligo-mesotrophic (Figs. 2g, h,
& i), changing the trophic state of TN from oligo-mesotrophic to
eutrophic or hypereutrophic will cause a decrease in the prob-
ability of CHL being oligo-mesotrophic (from 0.793 when TN is
oligo-mesotrophic to 0.609 when TN is hypereutrophic) and an
increase of the probability of CHL being eutrophic and hypereu-
trophic (Figs. 2g, h, & i). If the TP state is eutrophic (Fig. 2d, e, &
f) or hypereutrophic (Fig. 2a, b, & ¢), changing the trophic state of
TN from oligo-mesotrophic to eutrophic or hypereutrophic will pri-
marily lead to the shift of the CHL state from eutrophic to hyper-
eutrophic, since the probability of CHL being oligo-mesotrophic is
already very small. Therefore, according to the change of the prob-
ability of different CHL trophic states, both TP and TN could influ-

hyper-

ence the CHL trophic state, showing that both nutrients could be
limiting.

To determine the relative importance of nutrients - since both
nutrients could influence the CHL trophic state - we assume that
both nutrients are oligo-mesotrophic, and then shift either nutri-
ent to a more nutrient enriched trophic state. The shift of the TP
trophic state to a eutrophic state will lead to 67.7% (0.793 - 0.126)
of the lakes transferring from an oligo-mesotrophic trophic state
to a eutrophic or hypereutrophic state and 74.7% (0.793 - 0.056)
of lakes transferring from an oligo-mesotrophic trophic state to a
eutrophic or hypereutrophic state if TP shifts to a hypereutrophic
state (Figs. 2g, h, & i). In contrast, the shift of TN to a eutrophic
state or hypereutrophic state will only cause such a change for
12.7% (0.793 - 0.664) and 18.4% (0.793 - 0.609) of the lakes, re-
spectively (Fig. 2g, d, & a). In addition, the shift of the TP state
to a hypereutrophic state will lead to a larger proportion of lakes
being classified as hypereutrophic based on CHL (0.374), a much
larger proportion than that resulting from the shift of TN (0.015).
Moreover, when TP trophic state is hypereutrophic the probabil-
ity of CHL being oligo-mesotrophic is as small as 0.006 (Fig. 2a)
and changing the TN trophic state from oligo-mesotrophic to hy-
pereutrophic has little influence on that probability (Fig. 2c). How-
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ever, when the TN trophic state is hypereutrophic, changing the TP
trophic state from oligo-mesotrophic to hypereutrophic results in
a large decrease in the probability of CHL being oligo-mesotrophic
(from 0.609 to 0.023) (Fig. 2i & c). Therefore, although TN has an
influence on the CHL state, TP is substantially more important than
TN. Considering the huge difference between the TP and TN effect
and the large effect of TP on CHL trophic state, TP generally plays
a dominant role in determining the CHL state, indicating that TP
seems more important for limiting CHL compared to TN.

Finally, we examined if TP and TN could interactively impact
the CHL trophic state. We found that when the TP trophic state
was oligo-mesotrophic, changing the TN trophic state from oligo-
mesotrophic to eutrophic or hypereutrophic would only cause a
small increase in the probability of CHL being hypereutrophic
(Fig. 2g, h & i). However, when the TP state was eutrophic or
hypereutrophic, the probability of CHL being hypereutrophic in-
creased substantially when changing the TN trophic state from
oligo-mesotrophic to eutrophic or hypereutrophic (Fig. 2d, e & f for
TP in a eutrophic state and Fig. 2a, b, & ¢ when TP is in a hypereu-
trophic state). That is, the impact of the TN state on the CHL state
is much larger when the TP state is eutrophic or hypereutrophic,
indicating that there is a positive interaction between TP and TN
in determining the hypereutrophic state of CHL. When either TP
or TN goes to oligo-mesotrophic from being eutrophic or hypereu-
trophic, this will lead to a relatively large decrease in the proba-
bility of CHL being hypereutrophic. Therefore, when the CHL state
is hypereutrophic, both nutrients are likely important and suggests
potential co-limitation by TP and TN.

We further checked the robustness of the above results by
changing the sampling period, lake depth, and thresholds to de-
termine the CHL state. We set the sampling years <2000, <2005,
<2010, >1995, >2000, and >2005, and the mean lake depth
<3 m, <5m, >3 m, and >5 m. We tried another popular method
determining the CHL state proposed by Smith et al. (1999), by
which the lake is oligo-mesotrophic when CHL <9 pg/L, is eu-
trophic when CHL > 9 pg/L but <25 pg/L, and is hypereutrophic
when CHL > 25 pg/L. Note that thresholds in Smith et al. (1999) are
similar to those in USEPA (2009). We found that all the results
had a similar pattern. Therefore, our results are very robust, which
gives strength to the reliability of the analysis.

4. Discussion
4.1. The role of TP and TN on limiting CHL

We summarized whether or not CHL is limited by TP, TN, or
both nutrients in inland lakes at macroscales. Although both nutri-
ents affect CHL trophic state, TP generally plays a dominant role.
However, when the CHL trophic state is hypereutrophic, both TP
and TN are important. Our findings on the role of nutrients indi-
cate P-limitation when the CHL trophic state is not hypereutrophic
and the co-limitation of P and N when the CHL trophic state is
hypereutrophic.

The TN/TP ratio is one of the most widely used indicators to
explain the nutrient limitation for phytoplankton (Cha et al., 2016;
Liang et al., 2018; Redfield, 1958). It is well recognized that a
higher TN/TP ratio indicates a higher possibility of P-limitation. We
found a significant decreasing trend (the fitted linear regression
line in Fig. 3) of the TN/TP ratio with increasing CHL concentra-
tion for the lakes in the LAGOS-NE database (Fig. 3). As the TN/TP
ratio approaches the Redfield Ratio (7.2 by mass, the dashed hori-
zontal line in Fig. 3), the nutrient limitation condition shifts from
P-limitation to that of co-limitation by P and N. Average values of
the TN/TP ratio are 54.1, 26.8, and 18.1 (white points in Fig. 3),
when the CHL state is oligo-mesotrophic, eutrophic, and hyper-
eutrophic, respectively. According to the linear regression line be-

Oligo—mesotrophic

log(TN/TP)

2 3
log(CHL)

Fig. 3. The relationship between log. TN/TP ratio and log. CHL for lakes in the
LAGOS-NE database. Solid line is fitted regression line (R?> = 0.262, p < 0.001), verti-
cal lines indicate breaks in trophic status (indicated at the top of the figure), white
points are average TN/TP for each trophic state, and dashed horizontal line indi-
cates the Redfield Ratio on a log.-scale. The relationship between log. TN/TP ratio
and log, CHL for lakes in the LAGOS-NE database.

tween log(TN/TP) and log(CHL), we can set the CHL concentration
to be 30 pg/L (the threshold to determine the eutrophic and hy-
pertrophic state) and calculate the corresponding TN/TP ratio as a
rough estimation of the TN/TP ratio to classify the P-limitation and
co-limitation of P and N. The estimated TN/TP ratio is 20.2, which
is close to the proposal of 22 by Guildford and Hecky (2000).

There are several mechanisms that may influence the TN/TP ra-
tio in lakes, such as watershed nutrient input and atmospheric de-
position of nutrients (Downing and McCauley, 1992; Elser et al.,
2009). Two processes that are most related to the CHL trophic
state are the release of P from the sediment and the denitrifica-
tion of N in the waterbody (Cottingham et al., 2015; Zhang et al,,
2018). The decomposition of phytoplankton was identified as the
key process to the release of P from the sediment by providing the
low dissolved oxygen and proper pH environment supporting the
Iron(II)-P coupling (Chen et al., 2018). Moreover, lake eutrophica-
tion often leads to nuisance blooms of some phytoplankton species
(e.g. Cylindrospermopsis raciborskii) which are able to regulate their
metabolism to accommodate conditions of low dissolved inorganic
phosphorus (Araujo et al., 2018; Figueredo et al., 2014; Wu et al.,
2012). P thereby would increase faster in the waterbody than N.
Meanwhile, the decomposition of phytoplankton leads to the in-
crease of total organic carbon which could fuel the potential den-
itrification rate (Zhang et al., 2018). Moreover, N-fixation usually
cannot compensate for the loss of N caused by denitrification (van
Gerven et al., 2019; Hayes et al., 2018). At the continental scale,
net denitrification will lead to a larger N deficit in more produc-
tive lakes (Scott et al., 2019). As such, it appears that P accumulates
faster than N in more eutrophic lakes that are heavily impacted by
anthropogenic activities (Yan et al., 2016).

Globally, a decreasing trend of the TN/TP ratio with increasing
CHL concentration has also been shown. Yan et al. (2016) found a
similar negative relationship between the TN/TP ratio and CHL us-
ing worldwide data compiled from 157 publications. Some studies
also found a decreasing trend of the TN/TP ratio with the increase
of TP concentration based on compiled datasets (Downing and Mc-
Cauley, 1992; Sterner, 2008), which also indicated the negative cor-
relation of the TN/TP ratio with CHL concentrations - considering
the high positive correlation between CHL and TP. Across a larger
latitudinal range (from 70 °S to 83 °N), Abell et al. (2012) found
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Table 2
Documented cases of nutrient limitations. The CHL state is determined by the average CHL concentration.
CHL state Limiting nutrient ~ Lake name Country Location References
oligo-mesotrophic or Eutrophic TP Lake 227 Canada 50°N, 94°W Schindler et al. (2008)
Lake 261 50°N, 94°W  Schindler (2012)
Lake 303 50°N, 94°W
Lake 304 50°N, 94°W
Lake Erie Canada, US  42°N, 81°W Dove and Chapra (2015)
Lake Ontario us 44°N, 78°W
Lake Huron 44°N, 82°W
Lake Michigan 44°N, 87°W
Scharmiitzelsee ~ Germany 52°N, 14°E Kolzau et al. (2014)
Untere Havel 52°N, 13°E
Lake Chenghai China 26°N, 100°E  Yan et al. (2019)
Hypereutrophic TP & TN Langer See Germany 52°N, 14°E Kolzau et al. (2014)
Miiggelsee 52°N, 14°E
Lake Taihu China 31°N, 120°E  Paerl et al. (2011); Xu et al. (2009)
Lake Dianchi 24°N, 102°E ~ Wau et al. (2017)

that TN/TP ratios were smaller in lakes with a higher trophic state.
The same negative relationship between the TN/TP ratio and CHL
has also been shown in the same lake over time. For example, the
TN/TP ratio decreased with the increasing eutrophication in lakes
such as Dianchi, Taihu, and Okeechobee (Yan et al., 2016). Similarly,
the TN/TP ratio increased during the lake recovery period in the
Laurentian Great Lakes (Dove and Chapra, 2015) and some Chinese
lakes (Tong et al., 2018). Besides, the TN/TP ratio would be smaller
in summer than that in the other seasons because of the higher
CHL concentration in summer (Ding et al., 2018).

Our findings on the role of limiting nutrients are deduced from
cross-sectional data. However, our results are supported by several
case studies (i.e., non compiled, cross-sectional databases) world-
wide (Table 2). For example, for some lakes in the Experimental
Lakes Area of Canada (Schindler, 2012; Schindler et al., 2008) and
the Laurentian Great Lakes (Dove and Chapra, 2015), whose CHL
states were oligo-mesotrophic or eutrophic, the limiting nutrient
was identified as TP. In some hypereutrophic lakes (e.g. Lake Di-
anchi and Lake Taihu) in China, both TN and TP were determined
as limiting nutrients (Wu et al,, 2017; Xu et al, 2009). In addi-
tion, Sendergaard et al. (2017) found that CHL was generally more
strongly related to TP than to TN, but TN could be important to the
variability of CHL at high TP concentrations (> 107 pg/L) based on
the observations of 817 Danish lakes. Similarly, Filstrup and Down-
ing (2017) revealed that CHL was weakly related to TN when TP
concentration was low, but displayed a much stronger response to
TN at higher TP concentrations (> 100 pg/L) for lakes located in
an agricultural region in the Midwestern US. These high TP con-
centrations in both studies always corresponded to the hypereu-
trophic state of CHL. Considering the high correlation between CHL
and TP, the importance of TN at high TP concentrations indicates
the importance of TN when the CHL state is hypereutrophic. These
studies also support the dominant role of TP when the CHL state
is not hypereutrophic and the dual role of TP and TN when CHL is
hypereutrophic.

Because our analysis was performed using data from over 1300
lakes that spanned a wide range of trophic states and ecological
contexts, and because our results are supported be several single-
lake and multi-lake studies from across the globe, we believe that
our findings have great potential for generalizing to other lakes.
Therefore, our findings are helpful to better understand the role
of limiting nutrients and provide further insight to the current
controversy on limiting nutrients. For example, the debate over
limiting nutrients might be caused by trying to answer the same
question, but under two different CHL trophic state conditions. Re-
searchers insisting on P-limitation might focus on the lakes with
oligo-mesotrophic or eutrophic CHL trophc state, while researchers

finding evidence of co-limitation by P and N might have focused
efforts in lakes with hypereutrophic CHL conditions (Table 2). It
appears likely that the difference in CHL state was neglected in
previous studies.

4.2. Implications for management of lake eutrophication

It is impossible to propose a unique strategy for lake eutrophi-
cation management that is applicable for all lakes, given the spatial
and temporal variability of ecological contexts (Moal et al., 2019;
Qian et al., 2019; Wagner et al., 2011). Although deductions based
on our findings cannot be generalized to all lakes, since our find-
ings are deduced from spatially aggregated data, they are suitable
for providing some general guidance for lake eutrophication man-
agement for many lakes. Considering the impossibility of a unified
law, general guidance suitable for a large number of lakes is crit-
ical. Our findings would provide important prior information for
site-specific eutrophication management, particularly for unsam-
pled or data-limited lakes.

Firstly, for the recovery of hypereutrophic lakes, decreasing con-
centrations of both TP and TN would likely be advantageous. The
probability of CHL being hypereutrophic reduced by a large propor-
tion when the TP state changed from hypereutrophic to eutrophic
or oligo-mesotrophic state (left panel in Fig. 4). The probability of
CHL being hypereutrophic would be reduced by more than a half
(from 25.6% and 25.2% to 11.4%) when the TN state becomes oligo-
mesotrophic (right panel in Fig. 4).

Secondly, note that the co-limitation by P and N when CHL is
hypereutrophic does not have to lead to the strategy that both nu-
trients should be controlled in practice (Harpole et al., 2011), be-
cause the reduction of either nutrient would be helpful. However,
we should be aware that controlling TP solely imposes a high risk
of causing a hypereutrophic state of CHL (Fig. 2c & e) if, for ex-
ample, there is an abrupt TP concentration increase caused by a
sudden or extreme event. In other words, an oligo-mesotrophic or
eutrophic lake with a higher TN concentration has less resiliency
(the ability to keep the original state) to an abrupt increase in TP
concentration than a lake with a lower TN concentration.

Finally, to maintain the oligo-mesotrophic state of a lake, main-
taining an oligo-mesotrophic TP state will be important. Maintain-
ing an oligo-mesotrophic TP state would result in a more than
70 % of lakes being in an oligo-mesotrophic CHL state. However,
the change of TN trophic state will not lead to a large proportion
change of CHL oligo-mesotrophic state. Similarly, to further recover
a lake to the oligo-mesotrophic state, a decrease in TP will be more
effective than a decrease in TN.
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4.3. Importance of a large dataset and the use of a Bayesian Network

The novelty of our research is due to two primary factors: ex-
amining effects of N and P across hundreds of lakes and the appli-
cation of BN at macroscales. We emphasize the importance of us-
ing a dataset with large numbers of lakes and with a wide-range
of different ecological contexts, rather than using a limited num-
ber of lakes to explore the role of TP and TN as potential lim-
iting nutrients. The extension of results deduced from a limited
number of lakes to a broader population of lakes might improp-
erly identify the limiting nutrient and misinform lake eutrophica-
tion management. For example, as shown by our probabilistic re-
sults, there is a proportion of lakes whose CHL trophic state will be
oligo-mesotrophic when the TP state is hypereutrophic (left panel
in Fig. 4). If research focused only on these lakes we might con-
clude that TP is not related to the CHL trophic state (i.e., that CHL
is not limited by TP), while TP is in fact very important for many
other lakes. The extension of the corresponding strategy for lake
eutrophication control might be also ineffective for other lakes.
Similarly, there are a large proportion of lakes whose CHL state is
eutrophic or hypereutrophic when TP state is hypereutrophic (left
panel in Fig. 4). The generalization of nutrient limitation deduction
from these lakes to other lakes could also be misleading.

Our work also highlights the novel application of BN in ex-
ploring the role of P and N on CHL at macroscales. As shown in
Figs. 2 and 4, under certain nutrient states, the CHL state is not
deterministic but probabilistic, reflecting impacts of spatial hetero-
geneity of drivers that were not included in the analysis. We argue
that the application of BN could be encouraged as an effective tool
for use in macrosystem studies. Firstly, BN implicitly accounted for
impacts of spatial heterogeneity of ecological contexts and avoided
the risk of ecological fallacy. Secondly, although classifying ecosys-
tems is useful for improving our understanding of ecological pro-
cesses, data used for classification could be rare, particularly for
many systems at macroscales. Under this circumstance, BN allows
the probabilistic exploration of response-drivers relationship. Fi-
nally, if we are also interested in the effect of other factors or the
data of potential drivers become available, adding other factors as
predictors in BN is straightforward.

In the future, it will be critical to identify drivers of the limiting
nutrient at both the regional and site-specific scales so the limiting
nutrient of a lake can be determined more accurately according to
its ecological context. This would enable predicting limiting nutri-
ents to unsampled (or data-limited) lakes which could better in-
form the site-specific eutrophication management at macroscales.

5. Conclusions

We explored the TP vs. TN limitation in inland lakes at
macroscales. The novel application of BN allowed us to directly
build CHL-nutrient relationships without collecting extra data of
potential drivers of nutrient limitation. Results showed that TP
generally played a more important role on driving phytoplankton
biomass than TN. When CHL is in a hypereutrophic state, both
TP and TN are important. We revealed that the current debate on
the limiting nutrient might be caused by failure to consider CHL
trophic state. Our findings enhance the understanding of nutrient
limitation at macroscalea, which could also facilitate eutrophica-
tion management of unsampled or data-limited lakes.
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