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Stresses in thin sheets at fluid interfaces
To the editor — The mechanical response 
of thin films and filaments at fluid interfaces 
is affected by elastocapillary stresses. We 
aim to clarify the role of the solid–fluid 
interfacial energy in such situations by 
showing that it affects the thermodynamic 
distribution of stresses within the solid body 
but not the mechanical response of the thin 
film to external forces.

Molecules at the surface of a condensed 
phase experience asymmetric interactions, 
giving rise to an excess energy relative to 
the bulk. For liquids at thermodynamic 
equilibrium, this leads to a decreased 
density near the surface, and hence an 
isotropic tensile stress (force per unit 
length) on surface molecules that is 
numerically equal to the surface energy 
(energy per unit area)1. Both at the surface 
and in the bulk, solids differ fundamentally 
from liquids in having a finite shear rigidity 
due to preferred spatial arrangements of 
particles whose relative distances determine 
a ‘target metric’ and corresponding 
stress-free configurations. Hence, when 
a solid is placed in contact with a liquid 
or vapour, its molecules do not flow, but 
are displaced from their preferred relative 
distances, which may give rise to strain. 
The consequent stress induced in the solid 
by the solid–fluid interaction has been the 
subject of differing points of view in the 
literature2–6, which we seek to clarify in 
this Correspondence. Here we focus on the 
illustrative example of the stress in a thin, 
flexible solid at a fluid interface.

There has been a recent surge in 
designing responsive materials for 
applications ranging from microfluidics, 
soft robotics, drug delivery and tissue 
engineering. In many cases, the 
responsiveness of the material is designed 
to take advantage of the deformation under 
the capillary forces of the surrounding 
fluid environment; in other cases, these 
forces lead to elastic failure of the device. 
The capacity for large deformations may be 
imparted either by the slender geometry of 
filaments or films, or by material softness 
(using solids with low Young’s moduli of 
a few megapascals or less). Based on an 
experimental example drawn from the first 
of these two classes, this Correspondence 
clarifies that the stress in the body averaged 
over a cross-section normal to its surface 
is not affected by the solid interfacial 
energy. This conclusion is valid for both 
classes of ‘soft capillary’ phenomena, but 
is particularly relevant for understanding 

the mechanics of thin sheets and slender 
filaments, as discussed later.

A classic example in which one may 
confuse surface energy with stress is the 
partial wetting of a sessile drop resting on 
a solid surface. For a stiff solid substrate, 
the contact angle (θY) is determined by a 
minimization of the total surface energy 
with contributions from all the three 
interfaces: cos θYð Þ ¼ γsv$γsl

γlv
I

, where γlv, γsl 
and γsv characterize, respectively, the energy 
per unit area of the liquid–vapour, solid–
liquid, and solid–vapour surfaces. This 
is commonly represented in the Young–
Laplace–Dupré (YLD) picture as a balance 
between three forces acting tangentially 
to the three interfaces with magnitudes 

equal to the corresponding interfacial 
energies. This force-balance picture has 
formed the basis for analysing a wide range 
of elastocapillary phenomena such as the 
contact line at the wetting ridge formed by a 
sessile drop on a soft elastomeric gel7–10 and 
the shape of a drop on a thin glassy polymer 
film11–15. Despite the intuitive appeal of the 
YLD picture, it is important to realize that 
the surface energies γsl and γsv should not 
be automatically identified with tangential 
stresses experienced through the solid11,16–18.

We make explicit the distinction between 
surface energy and stress associated 
with a solid adjacent to a fluid through 
a simple example. Consider a thin solid 
film floating on a liquid: the net tangential 
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Fig. 1 | Measuring the stress in a thin film at a fluid interface. a, Two possibilities for the stress  
in a thin solid film floating on the surface of a liquid. Possibility A, σ = γlv – (γsl + γsv), and possibility  
B: σ = γlv. b, Schematic of the experiment. A laser-sheet-based fluorescent imaging technique is used 
to image the meniscus formed when one end of a rectangular film floating on the surface of water is 
lifted slowly to avoid any inertial effects. The film is rectangular (width × length: 60 mm × 22 mm), 
with one edge draped around a triangular frame (shaped like a clothes hanger) and made with graphite 
rods. We choose the dimensions of the sheet to greatly exceed the capillary length. The water is dyed 
with fluorescent dye rhodamine B at a concentration of 6.710–6 wt%. The insets show schematic 
representations of the geometry of the meniscus near the three-phase contact when viewed at two 
different levels of magnifications corresponding to capillary length lc and bendo-capillary length lB.  
c, Experimentally observed meniscus for a polystyrene film of thickness 54 nm on water surface  
(lc = 2.71 mm). The image is taken with a Nikon 5300D-SLR camera, with a red filter corresponding 
to the emission peak of the dye. The camera is levelled with a precision of ~0.01° with respect to the 
horizontal. Forces acting at the vertex are marked; we discuss later in the Correspondence why it is 
legitimate to mark γlv as a stress component. Note that the menisci on the film (left of the vertex) and 
bare water (right of the vertex) sides appear indistinguishable. d, When magnified at the bendo-capillary 
scale lB, shown here for a polystyrene film of thickness t = 2 μm, one can see the smoothly varying slope 
of the film near the vertex where the water–air surface (coming from the left side of the image) meets 
the polystyrene film.
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stress in the plane of the film (Fig. 1a) is 
the two-dimensional (2D) stress, denoted 
as σ, obtained by integrating the tangential 
components of the three-dimensional 
(3D) stress over the thickness of the film 
(σ ¼

R t=2
"t=2 σ

3D zð Þdz
I

); namely, σ is the 

internal force exerted on a unit length in 
the plane of the film. The stress is isotropic 
in this simple arrangement, allowing us 
to consider it as a spatially constant scalar 
(under less trivial loads, σ is spatially  
varying and tensorial11,16). A natural 
question, which is our focus here, is how  
σ relates to γlv, γsl and γsv.

Figure 1a shows two possible answers to 
this question. The first possibility (A) is that 
σ = γlv – (γsl + γsv), inspired by the classic 
force-balance depiction of the YLD contact, 
where the underlying assumption is that 
the surface energies γsl and γsv give rise to 
compressive stresses acting to minimize the 
solid–vapour and solid–liquid interfacial 
areas, opposing the effect of the surrounding 
liquid–vapour interface that pulls on the 
edge of the film. The other possibility (B) is 
σ = γlv, which assumes that the solid surface 
energies do not make any net contribution 
to the 2D stress σ (ref. 19). As we will show 
later, underlying these two options are 
different assumptions regarding the nature 
of the stress-free state of the film, of which 
only one can be correct.

To address this question, we perform 
the experiment illustrated in Fig. 1b20. A 
rectangular polymer film 60 mm wide, 22 
mm long and with thickness ranging from 
54 nm to 449 nm floats on a water–air 
interface. The film is attached along one 
of the wide edges to a frame that is lifted 
vertically above the interface. The menisci 
formed near the three-phase contact line 
are imaged at a length scale comparable to 
the capillary length lc ¼

ffiffiffiffi
γlv
ρg

q

I

, where ρ is 
the liquid density and g is the gravitational 
acceleration. A typical profile measured 
experimentally is shown in Fig. 1c. Quite 
remarkably, the shapes of the menisci 
on the two sides are indistinguishable, 
though one is a bare air–water surface and 
the other is covered by a thin film. This 
immediately suggests that the state of stress 
on both sides is the same, as we argue in 
greater detail below.

The shape of a 2D liquid meniscus y(x) is 
given by a balance between the hydrostatic 
pressure and the Laplace pressure: γlvκ + 
ρgy = 0, where κ ¼ y00 xð Þ

1þ y0 xð Þ2ð Þ3=2
I

 is the local 

curvature of the surface, and y0
I
and y00

I
 

are the first and second derivatives with 
respect to the horizontal coordinate x21. 
The characteristic length scale that arises 

out of this balance is the capillary length 
lc ¼

ffiffiffiffi
γlv
ρg

q

I

. A similar equation describes a 
water surface covered by a solid film but the 
Laplace pressure now arises from the 2D 
stress in the film, σ, resulting in a modified 
capillary length lcs ¼

ffiffiffiffi
σ
ρg

q

I

. We should note 
here that any correction to this picture 
due to non-zero bending rigidity, B ! Et3

I
, 

where E is the Young’s modulus and t the 
thickness of the film, is relevant only at the 
scale of bendo-capillary length lB ¼

ffiffiffiffi
B
γlv

q

I

. At 
this scale, the film has a smoothly varying 
slope near the vertex where the water–air 
surface meets the film. We illustrate this 
schematically in Fig. 1b and show an 

example in Fig. 1d where we zoom in on 
a polystyrene film of thickness 2 µm at its 
bendo-capillary scale lB ≈  200 μm (see also 
Croll and colleagues20). However, for our 
present discussion, we focus on a scale ≫lB 
where bending effects can be neglected.

In Fig. 2a, we plot the measured profiles 
of the menisci on both the film-covered and 
bare water surface. Also plotted is the full 
non-linear solution of the Young–Laplace 
equation using the capillary length of water 
lc = 2.71 mm. The indistinguishability of the 
profiles on the two sides implies lcs = lc,  
which in turn means that σ = γlv. In Fig. 2b,  
we systematically explore this result by 
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Fig. 2 | Measured meniscus profiles. Measured profiles of the meniscus, y(x), on the water side (blue) 
and film side (red). These are plotted along with the non-linear solution of the Young–Laplace equation 
(black dashed line) where we use y(0) from the experimental data and the capillary length of water lc 
= 2.71 mm with no fit parameters. All the three plots are in excellent agreement with each other. For 
clarity, only every 25th data point from the experiment is plotted. b, Measured profiles of meniscus for 
polystyrene (molecular weight = 97,582 Da obtained from Polymer Source) films of various thicknesses 
from 54 nm to 449 nm and PMMA (molecular weight = 996,000 Da obtained from Aldrich) film of 
thickness 300 nm on water surface, plotted along with the corresponding menisci on the water side. 
Also plotted are the menisci on the two sides for a polystyrene film (t = 364 nm) on an ethanol–water 
(20% v/v) mixture (lc = 2.10 mm). The straight lines are guides to the eye representing the slope −1/lc. 
Solid lines correspond to water with lc = 2.71 mm and the dashed line to water–ethanol mixture with  
lc = 2.10 mm. As discussed in the text, γsl and γsv do not appear in any of these quantities.
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varying the bending modulus, the solid 
surface energy, and the liquid–vapour 
surface energy. To test the dependence on 
bending rigidity we repeat the experiment 
with polystyrene films of various thicknesses 
corresponding to a 1,000-fold variation 
in bending rigidity. The dependence on 
solid interfacial energy is tested using a 
poly(methylmethacrylate) (PMMA) film of 
thickness t = 300 nm on the water surface. 
We also replaced water as the sub-phase 
with 20%(v/v) ethanol–water mixture with 
capillary length lc = 2.10 mm. In all cases, 
we find that the meniscus profile on the 
film side is identical to that on the bare 
liquid side and is fully described by the 
Young–Laplace equation with the capillary 
length corresponding to the sub-phase. 
We conclude that possibility B in Fig. 1a is 
correct — the 2D stress in the floating film 
is equal to γlv with no contributions from the 
solid surface energies γsl and γsv.

To make sense of this result we recall 
that for a solid, the state of stress must be 
characterized with respect to a stress-free 
reference state. We illustrate this conceptual 
point through a gedankenexperiment. 
Starting with a thin film of length W 
immersed completely in liquid, we imagine 
two different experiments. In the first case 

(left panel of Fig. 3a), we apply a force F at 
the edges to cause a strain δ/W in the film. 
This results in an average 2D stress σ ¼ Yδ

W
I

 
in the film, where Y = Et is the stretching 
modulus of the film. In the second case, 
we replace the surrounding liquid (1) with 
another liquid (2), where γsl2 <γsl1

I
, such 

that the film undergoes the same overall 
extension δ that it experienced under the 
force F. Here the edges of the film are free, 
and the new expanded configuration is the 
2D stress-free reference state of the film. 
Cutting the film has different results in these 
two cases (bottom of Fig. 3a): in one case 
the boundary force F is now unbalanced 
on the two pieces of film, whereas in the 
other case, the two pieces are in equilibrium. 
This demonstrates that the film can have 
the same extension in comparison to the 
original stress-free state and, yet, in one 
case be under stress, and in the other case 
can adopt a new stress-free configuration. 
An important lesson to draw from this 
example is that there is no unique stress-free 
configuration for a solid object, and that 
the stress-free configuration depends on 
thermodynamic conditions. Thus, the effect 
of surface energy is similar to swelling or 
thermal expansion in that it changes the 2D 
stress-free configuration22.

While surface energies do not affect the 
2D stress, they do affect the distribution 
of the 3D stress across the thickness of the 
film. This is illustrated in Fig. 3b, where 
we consider a thin film that initially was 
in the interior of a bulk material and is 
now taken out into air. Due to the higher 
surface energy in air the film contracts by 
an amount 2γsvY W

I
. The point to note is that 

in describing the mechanics of films or 
filaments, we integrate out deformations 
across the thickness and account for their 
energetic effects through effective bending 
and stretching moduli. In this description, 
the contracted film (Fig. 3b, bottom) 
defines a new stress-free reference state. 
The volumetric stress inside the film, 
σ3D, varies across the thickness, but its 
integral vanishes to give a zero 2D stress, 
σ ¼

R t=2
"t=2 σ

3D zð Þdz ¼ 0
I

. One may wish to 
interpret an integral of σ3Dover a small depth 
close to the surface (for example, γsvE ! t

I
) as 

a ‘surface stress’; however, it has no effect as 
long as the relevant mechanics is governed 
by σ, as in the examples above.

While we showed that the net tangential 
stress within the film does not depend on the 
solid surface energies, the difference γsl − γsv  
does affect the height of the meniscus and 
the angle ϕ at the vertex. When in balance 
with the vertical force, Fext, the angle at 
the vertex, ϕ, observed at the scale of the 
capillary length, satisfies Fext ¼ 2γlv cos

ϕ
2

! "

I

. 
In the YLD picture, Fext = γlv(1 + cosθY), 
and thus depends only on the difference 
γsv−γsl (we are currently studying the slow 
dynamics of relaxation of the vertex towards 
force balance).

The surface energies of solids thus 
play a crucial role in determining 
stress-free configurations in a diverse 
set of phenomena involving slender 
solids in contact with liquid phases: the 
spontaneous wrinkling in graphene films23, 
the ‘pre-stress’ states in thin suspended14 or 
floating films11, blisters caused in coatings 
on solid surface by a thin liquid layer24, 
spontaneous curling of nanoparticle 
ribbons25, capillary deformation of soft 
rods26 immersed in liquids, and the 
Shuttleworth effect in elastomeric films6. 
However, one must recall that in these 
problems, as in our example, solid surface 
energies do not contribute to the 2D stress. 
Consider a sessile liquid drop resting on a 
thin floating11 or free-standing film12,14,15,27. 
The data and discussion presented in this 
Correspondence conclusively establish that 
the 2D stress in the film, before the drop 
is placed on it, is independent of the solid 
surface energies and depends only on the 
external forces, such as the surface tension 
of the liquid bath or mechanical clamping at 
the edges of the film.

Another liquid 
with lower  γsl

External force 
at the ends

x

z W

t

γsv

Y W

γsv
Y W

t

W

a b

W

Liquid 1

Liquid 2Liquid 1

Liquid 2Liquid 1

F

F

F

F

δ/2δ/2

σxx(2D) σxx(3D)

σxx(3D)

=

t/2

–t/2

(z )  dz   =  0

Fig. 3 | Gedankenexperiment. a, A thin film of length W completely immersed in liquid 1 is subjected to 
two distinct protocols. In the left panel, a force F is applied at its ends causing a strain δ/W. In the right 
panel liquid 1 is replaced by liquid 2, which has a lower γsl such that the film extends by the same amount 
δ. Although in both cases the film ends up having identical lengths, it is under stress in the left panel and 
is free of 2D stress in the right panel. The difference in the states of stress is easily revealed if the films 
are cut along their centres, causing the sheet under stress to spring apart and separate. b, A thin film 
of width W and thickness t, initially part of a large bulk, is taken out in to air. Due to its surface energy 
γsv the film contracts by an amount 2γsvY W

I
. Although the volumetric stress varies across the thickness of 

the film, being compressive at the surface and slightly tensile in the interior, the 2D stress obtained as 
thickness-integrated volumetric stress is zero.
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This message is of topical relevance for 
studies of graphene oxide and other 2D solids 
that have been proposed as candidates for 
interfacial materials28. In characterizing the 
behaviour of such a film at an interface, it is 
tempting to use a Langmuir trough to obtain 
a ‘surface pressure’ that depends on areal 
coverage, akin to the characterization of a 
thermodynamic equation of state in molecular 
or particulate surfactants. In addition to 
the known challenges of associating stress 
in a solid film with the force measured by 
a Wilhelmy plate29, our Correspondence 
clarifies that any deviation of the stress in a 
floating film (or assembly of films) from the 
isotropic liquid–vapour surface tension does 
not reflect a solid surface energy, but only the 
loading exerted on the edges of the film by the 
specific force apparatus.

We note that when one face of a film 
is attached to a rigid support, the physics 
cannot be described by slender body 
mechanics, but requires the full 3D stress 
distribution, even though the film itself 
is thin. For example, the formation of a 
wetting ridge7,30 or the development of 
surface creasing31, cannot be described as 
2D, slender-body deformations, but rather 
imply a non-trivial deformation that varies 
across the thickness of the solid film. Thus, 
such examples of elastocapillary phenomena 
where 3D effects are significant, are settings 
in which the individual values of the solid 
surface energy, γsv and γsl (rather than merely 
their difference) can have a physical effect.

Data availability
Source data for Fig. 2 are provided with the 
paper. All remaining data are available from 
the authors upon request. ❐
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