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Stresses in thin sheets at fluid interfaces

To the editor — The mechanical response
of thin films and filaments at fluid interfaces
is affected by elastocapillary stresses. We
aim to clarify the role of the solid—fluid
interfacial energy in such situations by
showing that it affects the thermodynamic
distribution of stresses within the solid body
but not the mechanical response of the thin
film to external forces.

Molecules at the surface of a condensed
phase experience asymmetric interactions,
giving rise to an excess energy relative to
the bulk. For liquids at thermodynamic
equilibrium, this leads to a decreased
density near the surface, and hence an
isotropic tensile stress (force per unit
length) on surface molecules that is
numerically equal to the surface energy
(energy per unit area)'. Both at the surface
and in the bulk, solids differ fundamentally
from liquids in having a finite shear rigidity
due to preferred spatial arrangements of
particles whose relative distances determine
a ‘target metric’ and corresponding
stress-free configurations. Hence, when
a solid is placed in contact with a liquid
or vapour, its molecules do not flow, but
are displaced from their preferred relative
distances, which may give rise to strain.
The consequent stress induced in the solid
by the solid-fluid interaction has been the
subject of differing points of view in the
literature*™, which we seek to clarify in
this Correspondence. Here we focus on the
illustrative example of the stress in a thin,
flexible solid at a fluid interface.

There has been a recent surge in
designing responsive materials for
applications ranging from microfluidics,
soft robotics, drug delivery and tissue
engineering. In many cases, the
responsiveness of the material is designed
to take advantage of the deformation under
the capillary forces of the surrounding
fluid environment; in other cases, these
forces lead to elastic failure of the device.
The capacity for large deformations may be
imparted either by the slender geometry of
filaments or films, or by material softness
(using solids with low Young’s moduli of
a few megapascals or less). Based on an
experimental example drawn from the first
of these two classes, this Correspondence
clarifies that the stress in the body averaged
over a cross-section normal to its surface
is not affected by the solid interfacial
energy. This conclusion is valid for both
classes of ‘soft capillary’ phenomena, but
is particularly relevant for understanding
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Fig. 1| Measuring the stress in a thin film at a fluid interface. a, Two possibilities for the stress

in a thin solid film floating on the surface of a liquid. Possibility A, 6 =y, - (7, + 7.,), and possibility

B: 6 =y,,. b, Schematic of the experiment. A laser-sheet-based fluorescent imaging technique is used

to image the meniscus formed when one end of a rectangular film floating on the surface of water is
lifted slowly to avoid any inertial effects. The film is rectangular (width x length: 60 mm x 22 mm),
with one edge draped around a triangular frame (shaped like a clothes hanger) and made with graphite
rods. We choose the dimensions of the sheet to greatly exceed the capillary length. The water is dyed
with fluorescent dye rhodamine B at a concentration of 6.710°¢ wt%. The insets show schematic
representations of the geometry of the meniscus near the three-phase contact when viewed at two
different levels of magnifications corresponding to capillary length |. and bendo-capillary length /.

¢, Experimentally observed meniscus for a polystyrene film of thickness 54 nm on water surface
(I.=2.71mm). The image is taken with a Nikon 5300D-SLR camera, with a red filter corresponding

to the emission peak of the dye. The camera is levelled with a precision of ~0.01° with respect to the
horizontal. Forces acting at the vertex are marked; we discuss later in the Correspondence why it is
legitimate to mark y,, as a stress component. Note that the menisci on the film (left of the vertex) and
bare water (right of the vertex) sides appear indistinguishable. d, When magnified at the bendo-capillary
scale I, shown here for a polystyrene film of thickness t = 2 pm, one can see the smoothly varying slope
of the film near the vertex where the water-air surface (coming from the left side of the image) meets

the polystyrene film.

the mechanics of thin sheets and slender
filaments, as discussed later.

A classic example in which one may
confuse surface energy with stress is the
partial wetting of a sessile drop resting on
a solid surface. For a stiff solid substrate,
the contact angle (6y) is determined by a
minimization of the total surface energy
with contributions from all the three
interfaces: cos(fy) = L4, where y,,, 74
and y,, characterize, respectively, the energy
per unit area of the liquid-vapour, solid-
liquid, and solid-vapour surfaces. This
is commonly represented in the Young-
Laplace-Dupré (YLD) picture as a balance
between three forces acting tangentially
to the three interfaces with magnitudes

equal to the corresponding interfacial

energies. This force-balance picture has

formed the basis for analysing a wide range

of elastocapillary phenomena such as the

contact line at the wetting ridge formed by a

sessile drop on a soft elastomeric gel’”" and

the shape of a drop on a thin glassy polymer

film''-*. Despite the intuitive appeal of the

YLD picture, it is important to realize that

the surface energies y, and y,, should not

be automatically identified with tangential

stresses experienced through the solid">'**%.
We make explicit the distinction between

surface energy and stress associated

with a solid adjacent to a fluid through

a simple example. Consider a thin solid

film floating on a liquid: the net tangential
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stress in the plane of the film (Fig. 1a) is
the two-dimensional (2D) stress, denoted
as 0, obtained by integrating the tangential
components of the three-dimensional
(3D) stress over the thickness of the film

(6 = fi/f/z 6°P(z)dz); namely, ¢ is the

internal force exerted on a unit length in
the plane of the film. The stress is isotropic
in this simple arrangement, allowing us

to consider it as a spatially constant scalar
(under less trivial loads, o is spatially
varying and tensorial'“'¢). A natural
question, which is our focus here, is how

o relates to y,,, 74 and 7.

Figure 1a shows two possible answers to
this question. The first possibility (A) is that
o =7, - (y4+ 7). inspired by the classic
force-balance depiction of the YLD contact,
where the underlying assumption is that
the surface energies y, and y,, give rise to
compressive stresses acting to minimize the
solid-vapour and solid-liquid interfacial
areas, opposing the effect of the surrounding
liquid—vapour interface that pulls on the
edge of the film. The other possibility (B) is
o =y,,, which assumes that the solid surface
energies do not make any net contribution
to the 2D stress o (ref. '?). As we will show
later, underlying these two options are
different assumptions regarding the nature
of the stress-free state of the film, of which
only one can be correct.

To address this question, we perform
the experiment illustrated in Fig. 1b*. A
rectangular polymer film 60 mm wide, 22
mm long and with thickness ranging from
54 nm to 449 nm floats on a water-air
interface. The film is attached along one
of the wide edges to a frame that is lifted
vertically above the interface. The menisci
formed near the three-phase contact line
are imaged at a length scale comparable to
i
g
the liquid density and g is the gravitational
acceleration. A typical profile measured
experimentally is shown in Fig. 1c. Quite
remarkably, the shapes of the menisci
on the two sides are indistinguishable,
though one is a bare air-water surface and
the other is covered by a thin film. This
immediately suggests that the state of stress
on both sides is the same, as we argue in
greater detail below.

The shape of a 2D liquid meniscus y(x) is
given by a balance between the hydrostatic
pressure and the Laplace pressure: y,.k +
(H;T(:))Z)m is the local
curvature of the surface, and y'and y’
are the first and second derivatives with

the capillary length I. = where p is

pgy =0, where k =

respect to the horizontal coordinate x*'.
The characteristic length scale that arises
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Fig. 2 | Measured meniscus profiles. Measured profiles of the meniscus, y(x), on the water side (blue)
and film side (red). These are plotted along with the non-linear solution of the Young-Laplace equation
(black dashed line) where we use y(0) from the experimental data and the capillary length of water /.
= 2.71 mm with no fit parameters. All the three plots are in excellent agreement with each other. For
clarity, only every 25th data point from the experiment is plotted. b, Measured profiles of meniscus for
polystyrene (molecular weight = 97,582 Da obtained from Polymer Source) films of various thicknesses
from 54 nm to 449 nm and PMMA (molecular weight = 996,000 Da obtained from Aldrich) film of
thickness 300 nm on water surface, plotted along with the corresponding menisci on the water side.
Also plotted are the menisci on the two sides for a polystyrene film (t = 364 nm) on an ethanol-water
(20% v/v) mixture (I. = 2.10 mm). The straight lines are guides to the eye representing the slope —1/I..
Solid lines correspond to water with /. = 2.71 mm and the dashed line to water-ethanol mixture with

I, =210 mm. As discussed in the text, y, and ., do not appear in any of these quantities.

out of this balance is the capillary length

I. = i’)—‘;. A similar equation describes a
water surface covered by a solid film but the
Laplace pressure now arises from the 2D
stress in the film, o, resulting in a modified
capillary length I, = /%g. We should note
here that any correction to this picture

due to non-zero bending rigidity, B ~ Ef3,
where E is the Young’s modulus and ¢ the
thickness of the film, is relevant only at the

scale of bendo-capillary length Iy = \/%. At

this scale, the film has a smoothly varying
slope near the vertex where the water-air
surface meets the film. We illustrate this
schematically in Fig. 1b and show an

example in Fig. 1d where we zoom in on

a polystyrene film of thickness 2 um at its
bendo-capillary scale I &~ 200 pm (see also
Croll and colleagues™). However, for our
present discussion, we focus on a scale >y
where bending effects can be neglected.

In Fig. 2a, we plot the measured profiles
of the menisci on both the film-covered and
bare water surface. Also plotted is the full
non-linear solution of the Young-Laplace
equation using the capillary length of water
I, =2.71 mm. The indistinguishability of the
profiles on the two sides implies I, = [,
which in turn means that ¢ = ;. In Fig. 2b,
we systematically explore this result by

NATIIRF MATFRIAI S | winw natiire com /natiirematariale


http://www.nature.com/naturematerials

correspondence

a Liquid 1 b

—

W
External force Another liquid
at the ends with lower y
Liquid 1 Liquid 2
F
S
7 5/2 8/2
Liquid 1 Liquid 2

i ée,iﬁ@" F «

Fig. 3 | Gedankenexperiment. a, A thin film of length W completely immersed in liquid 1is subjected to
two distinct protocols. In the left panel, a force Fis applied at its ends causing a strain §/W. In the right
panel liquid 1is replaced by liquid 2, which has a lower y,, such that the film extends by the same amount
8. Although in both cases the film ends up having identical lengths, it is under stress in the left panel and
is free of 2D stress in the right panel. The difference in the states of stress is easily revealed if the films
are cut along their centres, causing the sheet under stress to spring apart and separate. b, A thin film

of width W and thickness t, initially part of a large bulk, is taken out in to air. Due to its surface energy

7., the film contracts by an amount 27% W. Although the volumetric stress varies across the thickness of
the film, being compressive at the surface and slightly tensile in the interior, the 2D stress obtained as

thickness-integrated volumetric stress is zero.

varying the bending modulus, the solid
surface energy, and the liquid-vapour
surface energy. To test the dependence on
bending rigidity we repeat the experiment
with polystyrene films of various thicknesses
corresponding to a 1,000-fold variation

in bending rigidity. The dependence on
solid interfacial energy is tested using a
poly(methylmethacrylate) (PMMA) film of
thickness # = 300 nm on the water surface.
We also replaced water as the sub-phase
with 20%(v/v) ethanol-water mixture with
capillary length I. = 2.10 mm. In all cases,
we find that the meniscus profile on the
film side is identical to that on the bare
liquid side and is fully described by the
Young-Laplace equation with the capillary
length corresponding to the sub-phase.

We conclude that possibility B in Fig. 1a is
correct — the 2D stress in the floating film
is equal to y,, with no contributions from the
solid surface energies y, and y,,.

To make sense of this result we recall
that for a solid, the state of stress must be
characterized with respect to a stress-free
reference state. We illustrate this conceptual
point through a gedankenexperiment.
Starting with a thin film of length W
immersed completely in liquid, we imagine
two different experiments. In the first case
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(left panel of Fig. 3a), we apply a force F at
the edges to cause a strain 6/ W in the film.
This results in an average 2D stress ¢ = Ywé
in the film, where Y = Et is the stretching
modulus of the film. In the second case,

we replace the surrounding liquid (1) with
another liquid (2), where yy, <y, such
that the film undergoes the same overall
extension & that it experienced under the
force F. Here the edges of the film are free,
and the new expanded configuration is the
2D stress-free reference state of the film.
Cutting the film has different results in these
two cases (bottom of Fig. 3a): in one case
the boundary force F is now unbalanced

on the two pieces of film, whereas in the
other case, the two pieces are in equilibrium.
This demonstrates that the film can have
the same extension in comparison to the
original stress-free state and, yet, in one

case be under stress, and in the other case
can adopt a new stress-free configuration.
An important lesson to draw from this
example is that there is no unique stress-free
configuration for a solid object, and that

the stress-free configuration depends on
thermodynamic conditions. Thus, the effect
of surface energy is similar to swelling or
thermal expansion in that it changes the 2D
stress-free configuration™.

While surface energies do not affect the
2D stress, they do affect the distribution
of the 3D stress across the thickness of the
film. This is illustrated in Fig. 3b, where
we consider a thin film that initially was
in the interior of a bulk material and is
now taken out into air. Due to the higher
surface energy in air the film contracts by
an amount 2?;” W. The point to note is that
in describing the mechanics of films or
filaments, we integrate out deformations
across the thickness and account for their
energetic effects through effective bending
and stretching moduli. In this description,
the contracted film (Fig. 3b, bottom)
defines a new stress-free reference state.
The volumetric stress inside the film,
o°°, varies across the thickness, but its
integral vanishes to give a zero 2D stress,
6= ft,,z/z 0°P(z)dz = 0. One may wish to
interpret an integral of o°°over a small depth
close to the surface (for example, % < t)as
a ‘surface stress’; however, it has no effect as
long as the relevant mechanics is governed
by o, as in the examples above.

While we showed that the net tangential
stress within the film does not depend on the
solid surface energies, the difference y, — y,,
does affect the height of the meniscus and
the angle ¢ at the vertex. When in balance
with the vertical force, F,,,, the angle at
the vertex, ¢, observed at the scale of the
capillary length, satisfies Fexr = 2y}, cos %)
In the YLD picture, F,,, = 7,,(1 + cosby),
and thus depends only on the difference
7+—74 (we are currently studying the slow
dynamics of relaxation of the vertex towards
force balance).

The surface energies of solids thus
play a crucial role in determining
stress-free configurations in a diverse
set of phenomena involving slender
solids in contact with liquid phases: the
spontaneous wrinkling in graphene films®,
the ‘pre-stress’ states in thin suspended' or
floating films'’, blisters caused in coatings
on solid surface by a thin liquid layer*,
spontaneous curling of nanoparticle
ribbons®, capillary deformation of soft
rods* immersed in liquids, and the
Shuttleworth effect in elastomeric films®.
However, one must recall that in these
problems, as in our example, solid surface
energies do not contribute to the 2D stress.
Consider a sessile liquid drop resting on a
thin floating"' or free-standing film'>'*'>%",
The data and discussion presented in this
Correspondence conclusively establish that
the 2D stress in the film, before the drop
is placed on it, is independent of the solid
surface energies and depends only on the
external forces, such as the surface tension
of the liquid bath or mechanical clamping at
the edges of the film.
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This message is of topical relevance for
studies of graphene oxide and other 2D solids
that have been proposed as candidates for
interfacial materials®. In characterizing the
behaviour of such a film at an interface, it is
tempting to use a Langmuir trough to obtain
a ‘surface pressure’ that depends on areal
coverage, akin to the characterization of a
thermodynamic equation of state in molecular
or particulate surfactants. In addition to
the known challenges of associating stress
in a solid film with the force measured by
a Wilhelmy plate”, our Correspondence
clarifies that any deviation of the stress in a
floating film (or assembly of films) from the
isotropic liquid-vapour surface tension does
not reflect a solid surface energy, but only the
loading exerted on the edges of the film by the
specific force apparatus.

We note that when one face of a film
is attached to a rigid support, the physics
cannot be described by slender body
mechanics, but requires the full 3D stress
distribution, even though the film itself
is thin. For example, the formation of a
wetting ridge”* or the development of
surface creasing®, cannot be described as
2D, slender-body deformations, but rather
imply a non-trivial deformation that varies
across the thickness of the solid film. Thus,
such examples of elastocapillary phenomena
where 3D effects are significant, are settings
in which the individual values of the solid
surface energy, 7., and y, (rather than merely
their difference) can have a physical effect.

Data availability

Source data for Fig. 2 are provided with the
paper. All remaining data are available from
the authors upon request. a
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