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Abstract—Underwater imagery has enabled numerous civilian
applications in various domains, ranging from academia to
industry, and from industrial surveillance and maintenance to
environmental protection and behavior of marine creatures stud-
ies. The accumulation of litter and plastic debris at the seafloor
and the bottom of rivers are extremely harmful for the aquatic
life. We propose a solution for monitoring this problem using a
team of Autonomous Underwater Vehicles (AUVs) to exchange
the recorded video in order to reconstruct the map of regions of
interest. However, underwater video transmission is a challenge
in the harsh environment in which radio-frequency waves are
absorbed for distances above a few tens of meters, optical waves
require narrow laser beams and suffer from scattering and ocean
wave motion, and acoustic waves—while long range—provide a
very low bandwidth and unreliable channel for communication.
In our solution, the scalable coded video of each vehicle is shared
in-network with a selected group of receiving vehicles through the
underwater acoustic channel. Presented evaluations, including
both simulations and experiments, confirm the efficiency and
flexibility of the proposed solution using acoustic software-defined
modems.

Index Terms—Underwater Networks; Acoustic Communica-
tions; Broadcasting; Scalable Video Coding (SVC).

I. INTRODUCTION

Overview: Marine litter and debris, including both beached

and floating objects, is one of the most serious and fast

growing environmental threats in the oceans and seafloors.

The negative impacts of litter accumulation on the aquatic

life are unquestionable. Litter is spread widely throughout the

seafloor, but its distribution is usually patchy with densities

from 1 item up to around 200 items per each 10 m, as reported

for Messina Strait’s channels (one of geologically active areas

of the Central Mediterranean Sea) [1]. Rivers are one of the

main sources of entering litter to the seas, since they carry the

litter with their currents to the sea or ocean. Deploying a team

of Autonomous Underwater Vehicles (AUVs), equipped with

down-looking cameras, can help in detecting these objects on

the seafloor and riverbed, build a map of the pollution, and

therefore, can issue early warnings so to reduce the damage to

human and aquatic life. However, coordination among multiple

AUVs is a challenge [2], specially when video is the subject

of data exchange. AUVs should be able to encode the video,

and to transmit it to other vehicles (generally to heterogeneous

dynamic nodes) efficiently [3]. There are still open problems in

near-real-time underwater video processing and transmission.

To achieve these goals, novel efficient mechanisms and

hardware should be utilized to make the video transmission

feasible for underwater scenarios. Boosting the data rate and

system reliability is possible if all the available domains are

exploited in an efficient manner [4]. To stream and transmit

underwater video, we require reliable and robust techniques

in an environment, in which Radio Frequency (RF) waves are

absorbed for distances above a few tens of meters, optical

waves require narrow laser beams and suffer from scattering

and ocean wave motions, and acoustic waves—while being

able to propagate up to several tens of kilometers—lead to a

communication channel that is very dynamic, prone to fading,

spectrum limited with passband bandwidths of only a few tens

of kHz due to high transmission loss at frequencies above

50 kHz, and affected by the colored ambient noise.

Motivation: Traditional commercial acoustic modems with

their fixed-hardware designs hardly meet the required data-rate

and flexibility to support the futuristic underwater multimedia

applications. Over the past few years, novel solutions based on

adaptive and reconfigurable architectures—i.e., Software De-

fined Acoustic Radios (SDAR)—have been proposed. Using

SDAR helps the scientists and engineers to explore different

protocols and techniques on a single hardware, perform in-

network analysis, and transmit the high-volume data, such

as video, to a remote node depending on environment and

system specifications. This concept is changing the business

model of commercial acoustic modems in a near future since

they are focusing more on efficient hardware/architectures and

proprietary high-performance algorithms [5].

Furthermore, using conventional video compres-

sion/encoding techniques will not meet the requirements

for these futuristic underwater video transmissions due to

the need for higher data rate and more reliability. Therefore,

more reconfigurable and flexible techniques should be utilized

to address this problem. In practice and in many underwater

imagery/streaming applications, since the visual depth of

the camera is limited in the water, the vehicle should get

close enough to the target to be able to detect it, therefore,

usually a single vehicle/camera can not cover the whole scene

(because of the limitation in the field of view and visual

depth) and can not create the global map of the environment.

We will also address the challenge of coordination among the

underwater vehicles in this paper.

Our Vision: We propose a solution to encode and share the

video among AUVs until the global information/reconstruction

of the region of interest is achieved. Scalable Video Cod-

ing (SVC) [6], as the extension of H.264/MPEG-4 AVC,

offers the required flexibility by encoding the chunks of video
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Fig. 1. System model of the proposed Scalable Video Coding (SVC)-based
video transmission among a team of underwater vehicles (with the help of
high-performance modified vehicles, BlueROV2 [7]) which are used for video
capturing in marine litter detection missions. Video is encoded via a base-
quality layer and l enhancement layers and is shared separately with each
neighborhood using temporal, spatial, and quality scalabilities in SVC.

into a base layer and multiple enhancement layers given the

requirements of the underwater channel. Fig. 1 shows our

vision including multiple vehicles around a pile of objects.

SVC base layer provides the minimum required quality, while

enhancement layers offer a more enhanced quality based

on different modalities—–temporal scalability (frame rate),

spatial scalability (frame size), and quality scalability (fidelity

or SNR)—–which makes this encoding a good choice for lossy

video compression and erroneous transmission environments

such as underwater. Here, a group of independent frames in the

video structure is represented by a Group of Pictures (GOP) in

the figure. Efficient video coding and reliable communications

solutions are demanded for the coordination and communi-

cations among the vehicles. The reconstructed map can be

used for in-network decision among the vehicles or can be

transmitted to the buoy for further considerations.

Our Contributions: In many applications, more than one

vehicle, due to the limited field of view and the visual depth

of camera in the water, are needed to merge the video from

different angles so as to reconstruct the map of region of inter-

est. In this paper, we focus on in-network scalable underwater

video sharing between AUVs and offer these contributions:

• A framework for underwater imagery analysis using

partial information collected by various vehicles around

the scene;

• An optimized solution to provide the maximum possible

Quality of Service (QoS) via a proposed multicasting

scalable coded video, while achieving the maximum

Quality of Experience (QoE) for the scene reconstruction;

• Performance evaluation of this system with compre-

hensive simulations under different scenarios using real

videos captured from the Raritan river-New Jersey and

through an SDAR testbed.

Paper Organization: In Sect. II, we go over the state of the

art in underwater video transmission. In Sect. III, we present

our solution and discuss scalable video coding and the required

optimizations. In Sect. IV, we evaluate our solution via the

experiments and simulations, and then scale the results via

simulations. Finally, in Sect. V, we draw the main conclusions

and present the future work.

II. RELATED WORK

Underwater Video Transmission: There are several unique

characteristics of underwater wireless networks that make

Quality of Service (QoS) delivery of video content—ranging

from delay sensitive to delay tolerant, and from loss sensi-

tive to loss tolerant—a challenging task due to underwater

acoustic frequency-dependent transmission loss, colored noise,

multipath, Doppler frequency spread, high propagation delay

as discussed in [3], [8]. The multiview video transmission

in underwater acoustic path is discussed in [9] in which the

authors propose time-shifted transmission slots to the encoder

and other nodes to exchange control and video packets. The

feasibility of transmitting video over short-length underwater

links is investigated in [10], [11], where MPEG-4 video

compression and a wavelet-based transmission method are

tested on the coded Orthogonal Frequency Division Multi-

plexing (OFDM). Despite all these works, the problem of

robust video transmission is still unsolved, and achieving high

video quality is still a challenge when we consider the limited

available bandwidth along with the harsh characteristics of

the underwater acoustic channel, which calls for novel high-

spectral-efficiency in-network collaborative methods. In the

area of underwater video, [12] shows the feasibility of video

streaming using currently commercially available hardware

defined modems. The reconstructed objects can be used in

Simultaneous Localization And Mapping (SLAM). SLAM is

a widely used technique in ground robots, but less feasible in

underwater environment specially in high turbidity situations

and in the absence of reliable static landmarks. Some under-

water visual SLAM solutions, such as in [13], create a sparse

map for the navigation and localization in clear water.

Scalable Video Coding (SVC): SVC [6] outperforms the

regular H.264 encoding when more flexibility and adapta-

tion to the channel’s condition are required [14]. In the

area of SVC, previous papers have touched on video shar-

ing/multicasting in terrestrial context. A method for adapting

the number of layers based on a fixed time allotment is

proposed in [15], This link-level method does not explore

a multicast scenario. The authors in [16] explore dynamic

layer adjustment in a content-delivery context where a direct-

download system is paired with peer-to-peer. This sharing is

top-down content delivery, rather than a scheme for in-group

video sharing where each consumer is also a producer. A

method for SVC video transmission is proposed in [17] using

transmitter-side distortion estimates based on the channel state

information. However, none of these methods tackle the unique

challenges faced in an underwater acoustic channel.

An adaptive distortion-rate tradeoff for underwater video

transmission using a Multi-input Multi-output (MIMO)-based

SDAR system is proposed in [18]. The scalability of the

system is fulfilled using SVC compression standard. In [4] a

new signaling for SVC-encoded underwater videos is proposed

based on using non-contiguous OFDM and beamforming

techniques with the help of Acoustic Vector Sensors (AVSs).
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III. OUR SOLUTION

In this section, we present our solution for in-network video

sharing and coordination among multiple AUVs. In Sect. III-A,

we discuss the construction of SVC-encoded video streams

and the proposed strategy to estimate the optimal parameters

given underwater acoustic channel constraints as it will be

explained in the optimization problems. In Sect. III-B, we

present our SVC-based multicasting solution to increase the

overall quality of video. In Sect. III-C, the proposed protocol

will be presented for an efficient map reconstruction while

multiple vehicles are involved in the merging process.

A. Construction of SVC-encoded Video Streams

Encoding the original video into several layers using SVC

discards the need for transcoding or re-encoding the video.

However, an efficient strategy is required to leverage the

scalibiliteis of SVC and adapt the encoder to the receiver’s

status as well as the quality of acoustic channel.

Video Sharing Setup: Assume V vehicles are deployed

around a scene, as shown in Fig. 1, at time slot t and form

a wireless network of (V,H), where H stands for the point

to point link between two vehicles, when vehicles are in

the communications range of each other. Vehicles encode the

initial video using SVC, and make it ready for broadcasting.

To facilitate the communications, vehicles set up a basic

Time Domain Multiple Access (TDMA) system and assign

a time slot to each vehicle since the network size is small in

underwater scenarios and the nodes are usually close together.

The underwater acoustic channel presents problems for a

coordinated and synchronized system such as TDMA, but

due to the severe bandwidth constraint, it is important to

use a Medium Access Control (MAC) that does not constrain

vehicles to an even smaller slice of bandwidth, such as FDMA.

Authors in [19] show that even in the underwater acoustic

environment, and specially for multicast transmissions, TDMA

can allow for efficient and collision-free communications.

Other random- and controlled-access MAC solutions such

as Carrier-sense Multiple Access (CSMA) transmit multiple

packets through the same underwater channel, which might

lead to packet collisions at the receiver [2]. To address the

synchronization problem in TDMA (as the main weakness of

using TDMA underwater), we use an unsynchronized MAC

protocol, e.g., Tone Lohi (T-Lohi) [20], especially in sparse

networks with limited number of nodes. The vehicles start

contending any time they realize the channel is not occupied.

Base-layer Video Sharing: Assume each vehicle records

the scene from its own angle and possibly it has an overlapping

coverage with other vehicles. SVC-based video is segmented

into C chunks in each vehicle j ∈ {1, ..., V } with a base

layer bj (layer 0) with the rate R(bj) and lj ∈ 1, 2, ..., Lj

enhancement layers with rate R(lj). Each node broadcasts the

chunks of its base layer video through an acoustic channel.

When a vehicle i receives the base layer data of chunk c ∈ C
in time slot t from transmitting vehicle j ∈ {1, ..., V } and

j �= i in the communication range, the received signal can

be expressed as yci (t) = hc
ij(τij ; t) ∗ bcj(t) + zi(t), where

hc
ij(τ

c
ij ; t) stands for the channel coefficient with delay τ cij

between vehicles i and j, yci (t) represents the received signal,

∗ stands for the convolution operation, and zi(t) shows the

background underwater colored noise. For a band-limited

non-ideal underwater channel with the frequency response of

Hc
ij(f) and a Gaussian noise with the power spectral density

of Si(f), the capacity C of each channel can be expressed

as [21],

Cc
ij =

1

2

∫ ∞

−∞
log

(
1 +

P c
j (f)| Hc

ij(f) |
2

Si(f)

)
df. (1)

Here, P c
j (f) stands for the power spectral density of bcj

from transmitting vehicle j in chunk c. We drop time index t
for the sake of simplicity and present our analysis for the time

length of chunk c. Assume Channel State Information (CSI) is

available at the transmitter and the channel is constant during

broadcasting of a video stream in chunk c and BW represents

the channel bandwidth, which is assumed to be the same for

all the users. The base layer data rate Rij(b
c
j) can be expressed

as Rij(b
c
j) = BW Cc

ij . We consider the tradeoff between the

transmit power and data rate for a fixed bandwidth BW in

each vehicle j such that the outage does not occur. Since

we assume each vehicle j broadcasts its data to all other

vehicles in its neighborhood through independent channels, the

broadcast data rate Rj(bj)BC for all chunks can be bounded

as follows.

Rj(bj)BC = {Rij(b
c
j) : R

∗
m,j(bj) < Rij(b

c
j) < E[Cij ]}. (2)

In this equation, E[.] represents the expectation operator,

Rj(bj)BC stands for the practical transmission rate for broad-

casting, and R∗
m,j(bj) ∈ R

∗
j (bj) = [R∗

1j(bj), ..., R
∗
V−1j(bj)]

shows the minimum rate required in all fading situations [22]

for V − 1 receiving vehicles to avoid an outage.

In practical scenarios, in which the CSI is not fully known

at the transmitting vehicle and channel gains are not known in

advance, we assume that the transmitting vehicle j statistically

knows the ordering of the other vehicles for each chunk c
in time slot t in terms of their instantaneous channel gains,

i.e., | hc
1j |<| hc

2j |< ... <| hc
3j |, for receiving vehicles

1, ..., V − 1, from weak to strong. The broadcast channel

can be considered as a multiple-component channel such

that a weaker component is a degraded version of the other

component in a symmetric broadcast channel. It can be proved

that the vehicles have the same channel quality and hence

could decode the broadcast data. Here, the fading statistics

are assumed to be symmetric. Considering the principle of

ergodicity, if an arbitrary user k can decode its data reliably,

then we can conclude all the other users should be able to

decode the broadcast data in the same way. This assumption

breaks in the asymmetric fading case in which the users have

different fading distributions. Therefore, sorting is not possible

which leads to a non-degraded channel [23, Ch. 6].

We optimize the total rate for broadcasting from vehicle j
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to other vehicles via the following optimization problem.

maximize
pj

E

[ V∑
i=1
i �=j

αi log
(
1 +

pcj | hc
ij |

2

si

)]
, (3a)

s.t. pth ≤ pcj ≤ pmax, ∀j ∈ {1, ..., V } , (3b)

Rj(bj)BC � R∗
j (bj)1, (3c)

Rj(bj)BC � E[Cj ]. (3d)

Here αi ∈ {0, 1} is the weighting factor, which is defined in

the multicasting strategy, pth and pmax show the minimum and

maximum transmit power, respectively. 1 stands for an all-one

vector, i.e., a vector whose entries are all equal to one, � and

� represent the component-wise inequality. The capacity Cj

stands for the vector of all capacities to the receiving vehicles.

The optimization problem presented in (3) is a convex

problem, since the objective function and the constraints are

convex/concave; log(1 + pcj | hc
ij |

2
/si) is concave because

it is the composition of a concave function (log) with an

affine mapping of pcj . Moreover, the non-negative weighted

sum preserves the convexity (concavity) and the expectation

of a convex (concave) function is convex (concave) [24].

Furthermore, the constraints are all affine.

In a broadcast scenario, each transmitting vehicle propa-

gates its base layer video to all the receiving vehicles, since

decoding the base layer is independent of other enhancement

layers. However, the optimized data rate, calculated in (3),

might not be sufficient for a higher quality video through

the enhancement layers. Each enhancement layer lj with a

defined encoding rate of R(lj) can be decoded when firstly

it is received reliably and secondly its lower layer lj − 1
is successfully decoded, i.e., in other words, unsuccessful

decoding of the lower layers leads to a failure in decoding

the current layer.

B. Multicasting for Enhancement-layer Video Sharing

In a multicast scenario and due to heterogeneity of under-

water nodes, we assume the nodes with poor channel quality

are able to decode the video with the base layer (as discussed

in Sect. III-A), while the nodes with a better communications

channel quality can be served by a scalable video with a higher

quality, i.e., with more enhancement layers. To be able to send

the enhancement layers, we propose a broadcasting strategy in

which the vehicles with the worst channel are shut down in the

broadcasting, i.e., αi = 0 in (5a), in order to increase the total

transmission data rate. Therefore, a pseudo-multicasting net-

work is created. Apparently, the more vehicles with impaired

channels are shut down, the more enhancement layers can be

transmitted to the remaining vehicles and therefore video QoS

increases.

On the other hand, since the vehicles are at different

locations around the scene with different viewpoints (as it

is depicted in Fig. 2), shutting them down, leads to lack of

observation and so it results in losing some information while

the map is reconstructed. Map reconstruction requires a good

amount of Fields of View (FoV) overlap among the vehicles.

Fig. 2. Schematics of the potential overlap between the vehicles considering
the uncertainties in the location of vehicles.

Assume the vehicles’ cameras have some degrees of spatial

correlation, as shown in Fig. 2, which is identified via the

vehicles’ configuration, i.e., area of overlap between FoVs of

two cameras [25]. The FoV of cameras is limited to the area

they observe, therefore, the information they get is directly

related to the directional sensing and configuration of the

vehicle. This overlap is used by the algorithm as a measure

to shutdown the redundant vehicles if there exists a sufficient

overlap for map reconstruction.

Let the FoV model of vehicle i, after 3-D to 2-D projection

and calibration, be described by (loci, ri, �Di, βi) as in [26],

in which loci stands for the location of the vehicle, ri
represents the sensing radius of the camera, �Di indicates

the sensing direction (i.e., the center line of sight of the

camera’s FoV), and βi is the offset angle. A model for

the spatial correlation can be derived based on the above

parameters as follows. Suppose vehicles i and j are two

arbitrary vehicles that observe an overlapped area of interest;

their disparity function δ (complementary to the correlation

coefficient η as δ = 1 − η) is defined as follows [26]:

δ = 1
4

( ∣∣∣ d sin θ
d+cos θ

∣∣∣+
∣∣∣ d sin θ
d−cos θ

∣∣∣+
∣∣∣ d cos θ
d+sin θ − 1

∣∣∣+
∣∣∣−d cos θ
d−sin θ + 1

∣∣∣ ),

where d denotes the camera depth (here, the difference

between the loci and the target’s location assuming the

camera sensing direction �Di is headed to the target) and

θ is the angle between the sensing direction and the

x-axis, so that the location loci can be expressed by

(−d cos θ,−d sin θ) after the 2-D projection. Specifically,

for two vehicles i and j with parameters (di, ri, θi)
and (dj , rj , θj), respectively, the disparity between

their images can be calculated as follows [25], [26],

δi,j = 1
4

( ∣∣∣−di sin θi−ri cos θi
di+cos θi

− −dj sin θj−rj cos θj
dj+cos θj

∣∣∣ +∣∣∣di sin θi+ri cos θi
di−cos θi

− dj sin θj+rj cos θj
dj−cos θj

∣∣∣ +∣∣∣di cos θi−ri sin θi
di+sin θi

− dj cos θj−rj sin θj
dj+sin θj

∣∣∣ +
∣∣∣−di cos θi+ri sin θi

di−sin θi
−

−dj cos θj+rj sin θj
dj−sin θj

∣∣∣). However, finding the exact amount

of correlation might not be feasible due to the position

uncertainty of the vehicles and the effect of currents on the
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vehicles due to vehicle’s drifting. Therefore, inaccuracies in

position estimation increases and it becomes worse over time

when the vehicle stays longer underwater, which leads to

non-negligible drifts in the vehicle’s position and thus making

the camera overlap accurate calculations inapplicable.

In [2], an approach has been proposed to estimate vehicles’

position through a statistical method based on the vehicles’

confidence region. Assume each vehicle i measures N random

samples of its location as {loc(n)i }Nn=1. The measured locations

are samples of a normal distribution N (μi, σ
2
i ) with the mean

and variance μi and σ2
i , respectively. The samples also follow

a normal distribution with mean μ′
i and variance σ′2

i . It can

be inferred that
μ′
i − μi

σ′2
i /
√
N

is a pivot and it has a student’s

t-distribution with N − 1 degrees of freedom. The mean

μ′
i =

∑N
n=1 loc

(n)
i /N and the variance can be estimated as

σ′2
i = 1/(N − 1)

∑N
n=1

(
loc

(n)
i − μ′

i

)2

[2]. The uncertainty

region, i.e., confidence interval, of this vehicle can be derived

as Pr(Li ≤ μ′
i ≤ Ui) ≥ 1−γ. Here γ is the confidence degree,

Pr(.) represents the probability function, and Li and Ui are the

interval boundaries of vehicle i and are estimated as Li = μ′
i−

T(N−1,α/2)σ
2/
√
N and Ui = μ′

i + T(N−1,α/2)σ
2
i /
√
N . Here,

TN−1,α/2 is the t-distribution critical value with N−1 degrees

of freedom. To estimate the amount of overlap between two

vehicles i and j, we define the probability of overlap as

Pr
(o)
i,j = Pr(ηi,j > 0) = Pr(δi,j < 1), we have, Pr

(o)
i,j =∫∞

0
f(ηi,j)dηi,j =

1
σi,j

√
2π

∫∞
0

exp

{
− 1

2

(
ηi,j−μi,j

σi,j

)2
}
dηi,j. By

defining the auxiliary variable x = (ηi,j − μi,j)/σi,j , we

obtain,

Pr
(o)
i,j =

1√
2π

∫ (μi,j/σi,j)

−∞
e−(x2/2)dx = Φ(

μi,j

σi,j
), (4)

where Φ(.) is the Cumulative Distribution Function (CDF) of

the standard normal distribution.

The following optimization problem in (5) justifies the

discussion on the number of enhancement layers that the

transmitter can handle on the top of the encoded base layer

video. This is a knapsack program, which defines the enhance-

ment layers of rate Rj(lj) that could be transmitted over the

underwater channel with maximum achievable communication

data rate Rmax,

maximize
λk

L∑
l=1

λlλl−1Rj(lj), (5a)

s.t.

L∑
l=1

λlλl−1Rj(lj) ≤ Rmax, (5b)

λ0 = 1, λl ∈ {0, 1}, ∀l ∈ {1, ..., L}. (5c)

We determine the minimum number of vehicles to shut

down such that we achieve the required QoS in the received

video with an acceptable Quality of Experience (QoE) in

the reconstructed map of environment based on a defined

amount of spatial correlation. Vehicles are eligible to transmit

a video with higher enhancement layers while the layers

bellow are successfully received/decoded. In this case, the

following optimization problem can be presented for every

chunk c of the video, given the optimal power Pj and the

data rate Rj calculated from (3),

maximize
αi

V−1∑
i=1

αi (6a)

s.t. αi ∈ {0, 1}, (6b)

E

[ V∑
i=1
i �=j

αi log
(
1 +

pcj | hc
ij |

2

si

)]
≥ QoSth(lj),

(6c)

Di < Dth, (6d)

Pr
(o)
i,k ≥ Prth, ∀i, k ∈ {1, ...,V − 1} , (6e)

where the objective function (6a) is the total number of vehi-

cles. Maximizing the total number of vehicles (i.e. minimizing

the number of vehicles to shut down) ensures the QoE since

more vehicles from different angles are present in the map

reconstruction. On the other hand, to satisfy a threshold QoS,

the proposed method will shut down the vehicles with the

worst channel to keep the average broadcasting rate over a

minimum value, as shown in (6c). The other metric for QOS

is represented in constraint (6d) which is defined by the SVC

encoder and depends on the scalability and the number of

enhancement layers that the encoder uses. For an encoded

video, we can write [27] Di = θ̂/(Rj −R0) + D0, where

Di represents the distortion of the video at the vehicle i at

the time of reconstruction and Rj is the rate of the encoder

at vehicle j; the other remaining variables θ̂, R0, and D0

depend on the encoded video and on the model, and are

estimated empirically. The last constraint (6e) shuts down the

vehicles which have a higher probability of overlap with the

neighboring vehicles to have the minimum reduction in the

QoE in reconstruction from different angles.

C. In-network Marine Litter Map Reconstruction

As it was discussed in the previous sections and due to

the limited FoV of each single vehicle, a cooperation among

the vehicles is required so that the required map can be

reconstructed.

Potential Cooperation Strategies: We propose different

strategies based on the exchanged data, acoustic channel

requirements, level of complexity (that the vehicles can handle

to process the data locally) and the QoS/QoE requirements

as follows: (i) Vehicles exchange their local maps after each

partial map is created. This strategy requires the minimum

amount of data exchange since the merger creates the global

map based on only a consensus on the exchanged local maps.

(ii) Vehicles exchange the SVC-based channel independent

videos, i.e., base layers. (iii) Vehicles exchange SVC adaptive

channel dependent video, i.e., base and enhancement layers.

This is the most desirable strategy that is also adaptive with the

channel quality. (iv) Vehicles exchange the high quality video

considering the acoustic channel bandwidth and the channel
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Fig. 3. Required steps for a satisfactory map construction. Vehicles V1-
V3 share their encoded video (base layer) with other nodes. Enhancement
layers are shared with the vehicles with a better acoustic channel quality
(lower quality channels are shut down). After reaching a consensus, final
reconstruction is performed on the highest-rank vehicle after it receives a
high-quality video with higher QoS from other eligible nodes. If the QoE is
not satisfactory, the process is restarted using a feedback command.

fading. This strategy is usually not feasible underwater due

to the bandwidth limitation and time-varying nature of the

underwater acoustic channel. Fig. 3 depicts the strategy we

choose in this paper. After sharing the base layer, as we

discussed in the previous sections, we shut down the vehicles

with unreliable channels to be able to reach the required rate

for sending the enhancement layers. We lose some part of

the scene from those nodes which experience the shut down.

Therefore, the vehicles should reach a consensus to decide on

the node who finally reconstructs the global map.

Local Map Reconstruction: With the base layer video

received at each node, along with that node’s own high

quality 4K original video, each node can perform a quick

attempt at the map reconstruction. First, images are compared

pairwise using SIFT/ORB to determine feature matches. Some

of these pairwise matches will be false, and will appear

in some pairwise comparisons but not in others that show

similar perspectives on the scene. Because all nodes have

some versions of the video, from different angles, the quality

of reconstruction (measured by number of feature matches)

should relate to two factors. Firstly, it depends on the amount

of error-induced distortion in the base layer videos received

from the other nodes. Secondly, it depends on the utility the

locally stored 4K quality video on the reconstructing vehicle

provides to the map reconstruction. Therefore, a vehicle that

makes many feature matches in the intermediate local recon-

struction attempt is a good candidate to share its recorded

video at a higher quality in the next phase, because its video

is a valuable part of the reconstruction and easy to match with

the other videos. The underwater environment poses additional

challenges in recording good video for the purposes of map

reconstruction. While it can be shown that water itself is not

a barrier to getting a good reconstruction, there are serious

problems with lighting, scattering, turbidity, and clarity when

taking underwater video.

Scoring and Sharing: Using the optimizations described in

the previous sections, each transmitting node decides on the

set of nodes to shut down before broadcasts its higher quality

layers, i.e., enhancement layers. Therefore, some nodes miss

some portions of video from some other angles since they did

Algorithm 1 SVC-based Map Reconstruction.

1: while reconstruction is NOT satisfactory do

2: Layers = ScalableVideoCoder(localVideo)

3: EstablishMACchedule()

4: τb ← allotted time for base layer sharing

5: while t < τb do

6: Share(Layers.LayerIndex(0)) % broadcasting

7: Receive(ExternalVideo)

8: end while

9: receivedframes ← extractframes(receivedVideos)

10: SIFT/ORBmatch(receivedframes)

11: Reconstruct(matchedframes)

12: RS ← score(reconstruct)

13: random_broadcast_max(RS)

14: τl ← allotted time for enhancement layer sharing

15: while t < τl do

16: if v is not FRV then

17: Shut down the vehicles with the weakest channel

18: Share(Layers.LayerIndex(L)) % multicasting

19: Receive(ExternalVideo)

20: else

21: Reconstruct(Dataset)

22: end if

23: end while

24: end while=0

not receive them. We form a Reconstruction Score (RS) which

is taken as a metric for how successful this vehicle would be

at performing the later final reconstruction, as well as how

valuable its local video is. This RS is shared in the following

step to elect the Final Reconstructing Vehicle (FRV). Each

node will share its RS to the group, such that at the end of

this step all vehicles should have a list of each other vehicle’s

RS. As the process continues, nodes will become more aware

of their position relative to other nodes. Since the RS is a

very small amount of data, each vehicle can also share in the

packet a map of camera positions (past vehicle positions) it

has matched with. An average of these maps can be used to

inform the vehicle’s navigation in the time before the final

reconstruction can be performed.

Consensus Algorithm on the Scores: To select the vehicle

with the highest score for the final reconstruction, vehicles

form the communication primitive to their neighboring ve-

hicles. In particular, consensus is an iterative process where

the nodes communicate with their neighbors to exchange

their scores for a fixed number of iterations or until conver-

gence [25]. As the output of this process, we select the best

vehicle for final reconstruction. Asynchronous broadcasting-

based consensus method proposed in [25] is to achieve the

average value of the initial measurements. However, we wish

to sort the scores to find the maximum in each iteration of

the process. Each node v broadcasts its own score to its Nv

neighboring nodes within its communication range [28]. The

neighbors, such as w, which received the data, update their

data according to yw(tc + 1) = max
(
yv(tc), yw(tc)

)
, ∀w ∈
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(a) (b)

Fig. 4. (a) Software-defined acoustic testbed; (b) Water tank with TC4013
Teledyne transducers.
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Fig. 5. Experimental channel response in the water tank shows (a) Power
spectrum; (b) Phase.

Nv, where Nv stands for the neighborhood of transmitting

node v. The remaining nodes in the network update their

values as yw(tc + 1) = yw(tc), ∀w /∈ Nv . This algorithm

keeps the maximum value and so does not show an undesirable

behavior in terms of convergence. After consensus, each

vehicle should know the maximum RS among them and the

vehicle that has it. The vehicle who has the highest score will

transmit a final packet indicating its RS and intent to become

the FRV. If there is no reply within the time limit, it is the

FRV and the SVC enhancement layer sharing will commence.

Algorithm 1 represents the solution in a sequential procedure

for a specific coded video while the encoding and reconstruc-

tion is performed through the mentioned steps. Vehicles share

their encoded base-layer and enhancement layers videos (after

shutting down the vehicles with a low quality channel). After

local reconstruction, matching and ranking the scores, the node

with the highest score will be elected to perform the final

reconstruction.

IV. PERFORMANCE EVALUATION

In this section, we present the experimental and simulation

results to evaluate the proposed algorithm.

Testbed Setup: We evaluate the proposed approach by

conducting preliminary field experiments. A video feed, cap-

tured by our underwater vehicles in the Raritan river, New

Jersey, is passed to the SDAR and an acoustic transducer

in a water tank. A high-performance and scalable platform

with a programmable Kintex-7 FPGA, called X-300 designed

by Ettus Research Group [29], is exploited as SDAR in this

research, as the testbed shown in Fig. 4(a). It contains a main-

board to provide basic functionalities of the modem, while

the daughter-boards take care of up/down conversions and

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. (a)-(c) Frames from original video; (d)-(f) Frames of video re-
ceived/reconstructed in a vehicle with a good channel; (g)-(i) Frames of video
received/reconstructed at a vehicle with an average to low channel quality.

of the other required bandpass signal processing procedures.

Teledyne Marine TC4013 transducers [30] with a frequency

range of 170 kHz are used in the proposed testbed, shown in

Fig. 4(b). Fig. 5 represents the channel response experienced

in this testbed, containing the power spectrum of the channel

in 5(a) and its phase in 5(b). The video was collected from

the bottom of the Raritan river, New Jersey, using multiple

cameras. We use the Joint Scalable Video Mode (JSVM)

software as the reference package for implementing SVC.

Using the FixedQPEncoder program, test videos were down-

sampled and then encoded into multiple layers of different

qualities. Each layer has a target fixed bit rate, and the

Quantization Parameter (QP) is varied in order to optimize

the Peak Signal-to-Noise Ratio (PSNR) metric while staying

under the target bitrate.

Results: Fig. 6 shows the effect of the acoustic commu-

nication channel on the quality of the received video. The

passband channel bandwidth is 100 kHz with carrier frequency

of 100 kHz and the sampling rate is 200 kHz. In Figs. 6(a)-(c),

the original successive frames are shown, while in Figs. 6(d)-

(f) the quality of the received signal through a good channel is

compared to the quality of the received signal through a low

to average channel in Figs. 6(g)-(i).

Fig. 7 depicts different SVC layers of a single se-

lected frame from the captured video. Fig. 7(a) shows

the base layer and Fig. 7(b)-(e) represent the base and

1 to 4 enhancement layers of the original captured

video. The corresponding frame rates for these layers are

1.8750, 3.75, 7.5, 15, 30, respectively with the minimum bit

rates of 100.9, 179.4, 293.3, 415.3, 517.5 kbps. The cor-
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. SVC layers for a selected frame; (a) base layer of original video; (b)-(e) base layer and 1− 4 enhancement layers of original video; (f) base layer of
received video; (g)-(j) base layer and 1− 4 enhancement layers of received video.
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Fig. 8. Optimal received rate at different vehicles which are sorted based on their channel quality for two defined power profiles. In (a) all vehicles are active;
(b) the vehicle with the worst channel quality is shut down; (c) two vehicles are shut down; (d) Achieved broadcast rate for two defined power profiles when
the number of shut down vehicles changes.

(a) (b) (c)

Fig. 9. Feature matching for different vehicles.

responding PSNR values are 45.1, 44.14, 43.31, 42.68 and

42.19 dB, respectively. Fig. 7(f)-(j) show the associated base

and enhancement layers of the same frame, when passed

through our testbed. Note that the difference between number

of enhancement layers can be distinguished better in the video.

Figs. 8(a)-(c) demonstrate the optimal received rates at dif-

ferent vehicles as a result of solving the proposed optimization

problems. The vehicles are sorted based on their channel

quality for two different power profiles. In Fig. 8(a), all the

vehicles which are able to receive the base layer video are

assumed in active mode. The vehicle which experiences a

better channel receives the video with a higher rate. Fig. 8(b)-

(c) shows the vehicles with the worst channel quality are shut

down (one vehicle and two vehicles in these two figures,

respectively). Fig. 8(d) represents the proposed solution for

the broadcast rate when variable number of vehicles are shut

down. Two different power profiles are considered. By shutting

down the vehicles with a low channel quality, the average

broadcast rate is improved as shown in this figure. However,

QoE in the result decreases since less vehicles are involved in

the procedure, as explained in the solution.

Figs. 9(a)-(c) show the output of the feature matching and

reconstruction based on the proposed algorithm. As shown

in these figures, each vehicle observes the region of interest

partially since there are serious problems with lighting, scat-

tering, turbidity, and clarity when taking underwater videos.

In Figs. 9(a)-(b), the vehicles detect three objects, while

from other perspective, as shown in Fig. 9(c), six objects
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(a) (b)

Fig. 10. (a) Tracked points; (b) Reconstructed map.

are detected. Fig. 10 shows the final steps towards map

reconstruction. Fig. 10(a) represents the tracked features in

the shared images and Fig. 10(b) is the reconstructed map of

the region. The map can be used as a QoE metric to evaluate

how accurate the desired map should be.

V. CONCLUSIONS AND FUTURE WORK

A novel in-network coordination that employed Scalable

Video Coding (SVC) was introduced. Large amounts of data

such as videos underwater is not easy to transmit due to

the error-prone underwater channel. This paper investigated

sharing SVC streams among AUVs in a multicast manner in

which the vehicles with different capabilities/channel can be

served by a single scalable stream to perform in-network map

reconstruction. Performance evaluation was presented based

on experiments using video captured from the Raritan River,

New Jersey and transmitted through our software-defined

acoustic testbed, in addition to simulation. In the future, we

will extend our current solution to other efficient encoding

schemes such as High Efficiency Video Coding (HEVC) in

order to maximize the quality we can achieve under limited

bandwidth constraints. Different compression rates will be

compared and the effect of lighting, back scattering, and the

turbidity will be accounted for and evaluated.
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