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Abstract

Computational thinking is identified as one of the “essential skills for 21%-Century students.” [1]
Studies of CT in school programs are being funded by many organizations, including the United States
National Science Foundation. In this paper, we describe “lessons learned” over the first two years of a
research program (PREDICTS: Principles and Resources for Educators to Infuse Computational
Thinking in the Sciences) with the goal of developing knowledge of how to integrate CT into
introductory high school biology and chemistry classes for all students. Using curricular modules
developed by program staff, two in biology and two in chemistry, teachers piloting the program
engaged students in CT with computational evidence from authentic tools in order to develop
understanding of science concepts. Each module, representing about a week of instruction, addresses
science ideas in the prescribed course of study for high school programs. Project researchers have
collected survey data on teachers’: (1) beliefs about effective science teaching; (2) beliefs about their
effectiveness as a science teacher and their students’ ability to learn science, and; (3) content
preparedness. In addition, we observed module implementation, collected and analyzed student
artifacts, and interviewed teachers at the conclusion of module implementation. Preliminary results
indicated some challenges (access to technology, varying levels of experience among students) and
cause for optimism (student and teacher engagement in CT and the computational tools used in the
modules). Continuing research efforts are described in this paper, along with descriptions of the
curricular modules and the use of observations and “CT check-ins” to assess student engagement in,
application of, and learning of CT.
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1 INTRODUCTION

Over the past 10 years or so, the focus on computational thinking (CT) and its importance in the
STEM fields has increased significantly in the STEM and STEM education literature. Peter Denning
and Matti Tedre, both professors of computer science (Naval Postgraduate School and the University
of Eastern Finland, respectively), are among the more regular contributors to this discussion, including
in the pages of the Communications of the ACM. In their text Computational Thinking [2], they
describe the long history of CT, making the (bold) statement that “computational thinking evolved from
ancient origins over 4,500 years ago to its present, highly developed, professional state,” locating the
beginnings of CT in the Mesopotamian civilizations. More realistically, they describe the work of
mathematicians such as Euclid (300 BCE), the Greeks (400-350 BCE), Newton and Leibnz (1680),
and Gauss (mid-1800s). These mathematicians laid the foundation for many of the core mathematical
techniques that now can be implemented on a large scale with high-performance computers, capable
of trillions of calculations per second.

The current emphasis on CT can mark the early 2000s as the start of many conversations, especially
in education circles. The term “fluency with information technology” (and a textbook by that name) was
adopted by a group of high school teachers, primarily teachers of computer science. The focus of CT
was, and to a large extent still is, in the technologies, techniques, and tools of computer science.
However, Denning and Tedre [2 pp. 16—17] offer this observation:

“A turning point came in 2006 when Jeanette Wing, then starting as an assistant director at the US
National Science Foundation (NSF), reformulated the quest from fluency to CT. She proposed that CT
was a style of thinking that everyone needed to learn in the computing age. At the NSF she mobilized
significant resources to train teachers, upgrade the Advanced Placement test, design new ‘CS
[computer science] principles’ first-courses for colleges, define CT for the K—12 education sector, and
issue curriculum recommendations for K-12 schools. This ‘CS for all’ movement has achieved much
greater penetration of computing into K—12 schools than any of its predecessors.”



This movement has continued and expanded in the US education community by the prominence of
CT in the Next Generation Science Standards [1] and by a significant number of journal articles,
blogs, discussion forums, YouTube podcasts, and other media that extol the importance of CT,
especially in K—-12 education. Although there is consensus on the need for developing students’ CT
skills, how to do so in K—12 classrooms is not universally agreed upon nor has it been systemically
operationalized. The project described in this paper (PREDICTS: Principles and Resources for
Educators to Infuse Computational Thinking in the Sciences) has been funded under the NSF’s
STEM+C program, one of many CT-focused research programs. These programs, and the research
being conducted in them, represent a substantial effort by the NSF to understand the role of CT in the
K—12 classroom, especially in STEM subjects.

Fig. 1 [3] shows a relatively modern timeline of CT, with Wing's work squarely in the middle, but with
beginnings in the 1970s and 1980s in Don Knuth’s revolutionary work in computer science and
Seymour Papert's development of tools such as the LOGO programming environment for young
students. Groups like the Computer Science Teachers Association (CSTA) and the International
Society for Technology in Education (ISTE) have embraced CT concepts in a significant manner.
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Fig. 1. Computational Thinking Timeline

One of the more widely-cited taxonomies of CT is that of Weintrop and colleagues [4]. Uri Wilensky,
well-known for his work with the NetLogo agent-based programming environment, is also one of the
authors of this work. Their taxonomy describes four “practices” (see Fig. 2.) which served as a
foundation for the work described in this paper, but we found difficulty fitting our work into these
practices, and consequently moved to other CT frameworks as our efforts evolved.
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Fig. 2. Computational Thinking Taxonomy

Google, CSTA, ISTE, Brigham Young University [5], and others have developed a different taxonomy,
shown in Fig. 3, which has served as a basis for the current work described in this paper. Four of the
five essential skills—decomposition, pattern recognition, algorithm design, and evaluation—are the CT
skills that are the focus of our development and research. Although the skill of abstraction is
incorporated implicitly in our work, we elected not to explicitly address this skill. When operationalized
in science instruction, we found it difficult to distinguish abstraction from other skills in this taxonomy.
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In our review of the literature, both when writing our proposal to the NSF’'s STEM+C program and as a
part of our ongoing efforts, we have identified two common threads. First, we continually find
disclaimers to the fact that the field really does not have a good definition of what CT is, especially in
terms of the classroom environment. It's probably self-evident that if you can’t define it, you can’t
teach it, and if you can’t teach it, you can’t measure it. Given the already heavy burdens imposed on
most high school teachers in terms of high-stakes, end-of-course testing, adding a new “must have”
expectation for teachers is challenging. Second, most of the literature about CT is really focused on
computer science. Our question was: where is the place for computational science? This is the
interdisciplinary field of study that incorporates computer science, applied mathematics, and science
as a way to understand interesting scientific problems, such as the behavior of electrons in atoms and
molecules and the understanding of genomics data. Based on the Principal Investigator's exposure to
a local school’s large, specialized program (11 courses) in the computational sciences, the research
question of how to best integrate CT (in a computational science environment) in introductory high
school biology and chemistry classes for all students was developed, proposed, and funded. This
paper describes early results from our work.

2 METHODOLOGY

In this section, we describe the various components of the research project funded by the NSF,
including the curricular module development, in-school piloting, and early results.

Currently, science lab experiences in most high schools are typically limited to observational and
experimental approaches, despite the increasingly prevalent use of computational methods in science
research and application. The goals of PREDICTS are to generate knowledge, and related resources,
about: (1) how to create instructional experiences for all high school students that engage them in CT
in the learning of science; (2) what teachers require to effectively provide these experiences as a
regular part of their science program; and (3) how to measure student engagement in and learning of
CT in the context of science.

In order to reach the goals of the project, PREDICTS is conducting a three-year investigation that
involves two primary strands of work. The first strand included developing, piloting, and studying the
implementation of four curricular modules that use computational approaches to learning biology and
chemistry. Feedback from four veteran pilot teachers informed revisions to the modules that are
currently being field tested by 16 teachers (eight biology, eight chemistry) across seven school
districts in North Carolina. There are two research questions for this strand of work:

RQ1. How can CT be operationalized in high school courses?

a. What are the design features of curricular modules that feasibly and effectively infuse CT
into high school science courses?

b. What is an appropriate balance in designing experiences that use computational tools to
support learning science content authentically through computing, but also structure the
use of the tools to make them accessible to students and feasible to implement?

RQ2. What do high school teachers need to understand and believe to promote CT in their science
courses and to teach science using CT?



a. What professional learning experiences develop needed understandings and beliefs?

b. What support do classroom teachers need in order to effectively and efficiently integrate
CT into high school science programs?

The second strand of work includes developing and piloting instruments to assess both engagement
in CT and evidence of CT in student work. Two types of instruments have been developed. First, the
project staff adapted a classroom observation protocol developed in a previous project to measure
instructional opportunity for students to learn specific science ideas. The adapted protocol includes
both CT learning goals and science content learning goals addressed through CT. Specifically, the
instrument focuses on observable evidence of instructional opportunity for students to engage with
and learn the CT concepts in the service of learning the targeted science ideas. The rating categories
include:(1) appropriateness of science content addressed through CT, (2) motivation for and elicitation
of ideas for using computing to answer scientific questions, (3) engagement with computational
science and CT tools to generate and analyze evidence; and (4) using evidence to make claims and
sense making about computational evidence and CT to answer specific questions.

Second, the project staff developed brief assessment tasks, known internally as “CT check-ins”. Each
CT check-in is built into the sequence of the curricular modules where students are engaging in CT as
a part of doing science or explaining science concepts using computational evidence. The
administration of the tasks in each module is timed to capture assessable ideas at opportune
moments. Two CT-check-ins were developed for each module. The research question for this strand
of work is:

RQ3. How can CT integrated into science instruction be rigorously measured in terms of students’:
a. Opportunities to engage in and learn CT?
b. Learning outcomes in CT in the sciences?

The development and research for both strands of PREDICTS are ongoing. The remainder of this
paper will focus on describing the development and piloting of instructional materials intended to
engage students in CT in the service of learning science concepts. In addition, the findings from data
collected during the pilot test of the materials are presented.

2.1 Curricular module development

Four curricular modules were developed for this work, two in biology and two in chemistry. Each
module was designed to address topics already included in the North Carolina Standard Course of
Study for these introductory courses. We wanted to be careful that the materials did not require or
request that the teachers present information that was additional to what they were expected to teach
or spend more time on the topics than they would typically.

The modules were based on instructional materials that have been used for many years at a STEM
focused high school in the USA (The North Carolina School of Science and Mathematics) in a
computational science program of 11 courses, including computational biology and computational
chemistry (as well as physics, medicine, nanotechnology, scientific programming, digital humanities,
and two research courses). Module developers had the following design constraints: the modules had
to represent about 5 days of instruction (assuming a schedule of hour-long class periods); the
modules had to address course standards to replace a teacher’s existing instruction (not requiring
additional instructional time); and the activities could assume student mathematics knowledge was no
higher than first-year high school algebra. In addition, the modules were designed to embody
elements of effective science instruction based on learning theory [6].

Each curricular module was designed to have at least one “central computational activity” in which
students engage with computational evidence for a science idea. These activities use an authentic
tool that is used by the science research community to either access existing big data sets or
generate data using models. For example, in one of the biology modules students searched a
database maintained by the National Center for Biotechnology Information and used a tool called
BLAST to locate the mutation that results in Sickle Cell Anemia. In chemistry, students generate a
model of chemical bonding and use computational evidence from the model to make sense of the
properties of different types of materials based on the nature of bonds.

Activities that lead up to the central computational activities enable students to engage effectively with
the computational evidence that they will encounter in those activities. For example, these “enabling”



activities help students understand what the data in the tools represent and/or what is happening
within the computational process. Activities that follow the central computational activity are intended
to help students reinforce or apply what they have learned.

The four curricular modules we have developed are: in biology — (1) Cracking the Code: Using
Computation to Understand Genetic Disorders; (2) Traits to Phylogenetic Trees: Using Computation to
Understand Relatedness Among Organisms; and in chemistry — (3) Orbit Jumping: Using
Computation to Understand Atomic Emissions; and (4) The Bonding Triangle: Using Computation to
Understand Chemical Bonding.

After initial drafts of the four modules were completed, each was reviewed by at least one member of
the project’s external advisory board for alignment to the targeted learning standards, appropriateness
of the content and approach of the computational investigations, and potential to promote CT. (The
advisory board consists of computational scientists from local universities, science educators, and
computationally-savvy high school educators.) The project staff and members of the advisory board
also identified teacher needs for effective teaching of the modules, including both science and CT
ideas and practices, and learning-theory aligned pedagogy. All feedback informed the final revisions
to the modules and the substance of professional development provided for teachers.

2.2 Piloting of curricular modules

Four experienced high school science teachers (two biology, two chemistry) working in four different
North Carolina public schools were identified to pilot the PREDICTS modules during the 2018-2019
school year and provide detailed feedback on the modules and their implementation. In July 2018, the
pilot teachers attended a two-day orientation to familiarize them with the modules prior to the pilot test
and to get their initial feedback.

As a part of the orientation, pilot teachers had the opportunity to engage in CT and module activities
as learners. In addition, teachers posed questions they might have when teaching the modules and
discussed logistics issues. During the orientation, teachers also provided suggestions for the modules,
such as questions that might be added for students, which were incorporated in revisions made prior
to pilot test implementation.

Required research approvals were obtained from the participating schools, and pilot teachers
implemented the modules in both honors- and standard-level classes. Teachers were observed and
videorecorded as they implemented the modules. Researchers completed a daily log of instruction
and conducted a daily debriefing interview with each teacher to get immediate user feedback on
teaching with the modules.

3 RESULTS

Data collected during the pilot test were analyzed to identify needed revisions to the modules that
were evidence-based. The key findings from these analyses are listed below along with implications
for revisions and the resulting modifications to the modules.

Finding 1: There were varied technology issues depending on the types of computers students used
and the web access provided (e.g. access to Java, blocked websites).

Because the modules will be used by teachers in schools with varying technology, these findings
indicated that, if the modules were to be broadly accessible, teachers would need guidance on work-
arounds when they encounter similar technology issues. As a result, the modules now incorporate
suggestions for dealing with technology issues (e.g., suggesting where teachers can do a
demonstration when students don’t have access to the appropriate technology).

Finding 2: Within a school, the implementation of the modules was quite different comparing the
standard- and honors-level classes. For example, more teacher guidance occurred in the standard-
level classes and students in these classes appeared to struggle with the mathematics compared to
students in the honors-level classes (even though the computational methods used incorporated
mathematics that was no higher first year high school algebra). Also, the pace was slower in standard-
level compared to honors-level classes.



The intent of the modules is to provide students in all introductory high school science classes with
opportunities to engage with computational evidence and CT to develop an understanding of science.
Findings from the pilot test indicated that the module activities needed restructuring and additional
teacher guidance in order to provide access to students in different level courses. As of the result,
project staff reviewed the module activities to identify complex tasks, broke these down into smaller
steps, and revised questions posed in the student materials to emphasize each steps more clearly.
Additional guidance was also added for teachers on how to modify selected tasks, with integrity to the
intended goals, if a class was having difficulty.

Finding 3: The modules are intended as replacement units; that is, the module should replace the
teaching of the same content in the same amount of time it would typically take to teach the content
using non-CT activities. Pilot test data indicated that the modules replaced the content appropriately
but took longer to implement than the activities they replaced.

Because the time required to teach the modules is a key factor in the feasibility of their use, the
project staff worked to streamline them using two strategies. First, activities intended to teach
prerequisite content were removed and directions were made more explicit about what students
needed to know prior to starting each module. Second, enabling or extension activities deemed not
essential for engaging students in CT or learning the intended science content were shortened or
removed.

Finding 4: As expected, implementation varied substantially across pilot test classrooms.

The pilot test provided opportunities to observe different teachers implementing the activities of the
curricular modules. Differences in implementation (e.g., how the teachers managed activities,
questions posed to students) were carefully observed and documented. Successful strategies that
engaged students in CT and advanced the learning of key science content ideas were identified and
incorporated into the teacher guides.

Finding 5: Although there was evidence that students were engaged in CT, there was minimal focus
on helping students attend to the types of CT they were doing in the activities and how those types of
thinking were contributing to their understanding of the science ideas the modules target.

During the pilot test, teachers were made aware of the computational approaches students were using
but were given autonomy to explicitly discuss these approaches during instruction when they were
most comfortable doing so. Observational evidence indicated that students were engaging with
computational tools and using CT skills during instruction, namely, examining data for patterns,
experiencing decomposition of problems, applying algorithms to generate data, and evaluating
solutions. Unfortunately, there was insufficient explicit attention to the CT skills incorporated into these
modules, perhaps because the modules took longer to teach than anticipated. Because a primary
purpose of the modules is to help students understand how they are learning about the world using
computational data (which is different from experimental science), this message needs to be made
explicit or it may not be addressed.

As a result of these findings, revisions were made to student materials and teacher guides to
incorporate explicit attention to the four selected CT skills shown in Fig. 3. The project staff identified
activities in each module where it is very evident that students are engaging in specific CT skills,
added icons to alert teachers to the CT skills in these activities, incorporated opportunities for students
to reflect on what they are doing, and labeled these CT skills with a “student-friendly” definition. In
some instances (generally the second time in the module where students engage with a particular CT
skill), the advantages of CT and one or more specific CT skills are highlighted for students, both in the
context of the problem at hand and more broadly.

Fig. 5 shows an example of a student activity sheet (from the Cracking the Code bilology module) that
asks students to reflect on their thinking in the context of the problem at hand. A sample student
response to the activity is shown in red. This example shows how a student might describe the CT
skill of decomposition in a genetics scenario.
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4 CONCLUSIONS

Based on the preliminary work we have completed for PREDICTS, it is clear that there are challenges
to the integration of CT concepts and practices in the high school science classroom, but our evidence
also suggests that there are opportunities for and benefits to doing so. Evidence from this study
indicates that students in different levels of science classes can engage in CT as part of learning
science but that those experiences need to be carefully designed so that they engage students with
appropriate computational evidence and explicit attention to CT. It should be noted that this project did
not consider what teachers might need to develop computationally-based science teaching materials
on their own, so further work will be needed in this area. We anticipate that the “lessons learned” from
the field test taking place during the 2019-20 school year will result in a much better understanding of
integration of CT for diverse groups of science educators and their students in a broader range of
school settings.
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