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Figure 1: (a) Distributed surveillance camera network in the DRFC park space; (b) examples of camera feeds showing user activities at various
park locations.

ABSTRACT
The field of Urban design considers how people utilize public open
spaces (POS) when designing spaces such as parks, plazas, and
streets. Current methods of observing public space use rely on vi-
sual observation which consumes much time and effort to detect
users’ physical activities in large POS; these methods also only
provide qualitative observations of how patrons behave in these
areas. Active sensors, such as wearable sensors and smart phones
with GPS tracking capabilities, have high costs and cannot sense all
users in a POS (namely, such sensors are "blind to" those without
wearable sensors). Therefore, it is appealing to make use of video
data from pre-installed surveillance cameras in POS to extract POS
use information from video using computer vision methods. This
paper proposes a sensing framework based on computer vision to
measure human activities in POS. As part of the study, an exten-
sively labeled datset of people and their activities in POS (termed
OPOS) is used to train detectors. A case study of the proposed
framework is presented using security camera feeds from a green-
way at the Detroit Riverfront. The AP0.50 results of the trained
detector are 96.3% for pedestrian detection and 96.5% for cyclist
detection, respectively. These results show such an approach can
reliably track patrons in parks to ascertain their behavior and to
inform future POS improvements.
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1 INTRODUCTION
Public open spaces are essential landscape elements used in the
design of cities. POS provide venues for urban activities such as
social and physical activities. Studies [3, 6, 27] show that physical
activities promoted by the availability of inviting POS substantially
reduce the risk of chronic diseases in communities. POS like parks
support a healthy lifestyle including offering access to POS for
exercise and for convening with nature. As a result, significant
efforts are also placed on ensuring such spaces are well designed
to offer an inviting atmosphere to encourage public use. Due to
these benefits, POS like parks, green ways, and plazas are widely
adopted by urban designers when efforts are aimed at driving the
transformation of once economically depressed cities into lively
urban environments.

In 2013, the Detroit Riverfront Conservancy (DRFC) was incor-
porated with the mission of restoring the international riverfront
area in Detroit. The newly renovated green lands, plazas, and pavil-
ions of the DRFC are connected along the Detroit River. The first
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phase of the DRFC transformation project was the creation of a
three-and-a-half mile walkway along the east end of the riverfront.
This walkway connects Ralph C. Wilson Centennial Park in mid-
town to Gabriel Richard Park located to the east of midtown. An
additional greenway was developed running north from the river
to Eastern Market called the Dequindre Cut which is two miles
long. The DRFC park area now attracts approximately three million
visitors annually. The DRFC aims to perform post-occupancy eval-
uation (POE) [24] and to use POE insights to inform future rounds
of renovation and development. However, the methods available to
measure the patron usage of DRFC spaces are largely manual, such
as visually counting and mapping users, and doing test walks [5].
Hence, an automatic method of people sensing is needed to study
the utilization of POS. The extensive camera network installed in
the DRFC park (Fig. 1) will be used.

In this study, an automatic user sensing framework is proposed
by using surveillance cameras and deep learning. First, a brief re-
view of the existing research on human sensing in POS is presented.
Second, a cyber-physical-social sensing (CPSS) framework is pro-
posed by using a surveillance camera network and convolutional
neural networks (CNN) for automating the detection of human
users. Third, a detection model is trained on a custom dataset with
the detection performance evaluated. In the end, a case study is
demonstrated using the framework to perform user detection and
mapping in a number of POS in the DRFC region.

2 HUMAN SENSING IN PUBLIC OPEN SPACES
For many years, researchers have been working on human activ-
ity recognition (HAR) using different types of sensing methods.
The sensors can be installed on humans (where sensors are mobile
and follow subjects) or installed within POS where sensors collect
data once subjects enter the POS (e.g. passive infrared sensors);
such sensors are static and embedded within the POS environment.
Within the studies using active sensors for human sensing, wear-
able sensors (e.g. watches, trackers) tend to dominate. Multiple
types of wearable sensors have been investigated to detect human
activities, to locate subjects, and to monitor subject health condi-
tions. For example, researchers [15, 23, 32] have attached multiple
inertial measurement sensors (e.g. accelerometers, gyroscopes, and
magnetometers) to subjects to measure their motion attributes and
to recognize their activities by processing motion data. However,
wearable sensors are intrusive to users [14] and can only sense
those wearing the sensors. Among the passive sensors used for
human sensing, there are studies that use geophones [22], LiDAR
[31], infrared sensors [13], and vision-based sensors [2] to track
people. Traditional computer vision (CV) methods using cameras
usually rely on a few visual features extracted from image making
them difficult to achieve robust people detection. In the past few
years, researchers [8, 18] have started to use deep-level features of
images to extract a high-level representation of image features that
allow for human activity recognition.

In urban planning and design, manual observation remains the
primary approach to study POS (either directly or through video
recordings [29]) with pedestrian movement usually mapped by
hand. With the development of CV-based sensing technology, there
are emerging studies [1, 11, 12] using CV in detecting humans in

both open and enclosed spaces. However, few studies have been
focused on measuring the usage of POS. A study reported in [30]
employed a computer vision-based method to measure human activ-
ity in a POS. The people detectionmethodwas based on background
subtraction and blob detection. The detection robustness and ac-
curacy is presumed to suffer from adopting low-level features of
images. In contrast, the goal of this paper is to perform automatic,
robust people sensing in POS using deep learning methods.

3 HUMAN SENSING FRAMEWORK
3.1 Cyber-Physical-Social Systems (CPSS)
Cyber-physical systems (CPS) are an emerging class of systems con-
sisting of a physical system coupled with sensing and/or actuation
systems and computing [19]. CPS applications have ranged from
autonomous cars to smart grids. While humans may be end-users
of CPS, they are often not explicitly included in the design and
operation of CPS platforms. A cyber-physical-social system (CPSS)
is a CPS that considers human factors as part of the system [28].
CPSS consists of not only a CPS but also human interaction where
human knowledge, mental capabilities, and sociocultural elements
are all key features of the CPSS performance [20].

In this study, a CPSS architecture is proposed to measure POS
utilization for improving the space as shown in Fig. 2. In the physi-
cal space, POS users (e.g. pedestrians, cyclists, skaters) are captured
by pre-installed surveillance cameras in real time. Video streams of
images are processed by a pre-trained detection model on an edge-
computing device (e.g. CPU or GPU) for user sensing (e.g. detection,
localization, and tracking); processed results and/or image-based
data is shared with other cameras through a communication net-
work. The processed data will also be transmitted to the cloud for
access to computing (e.g. prediction of possible recurrence of one
user in another camera view) or data management (e.g. dataset
augmentation or video storage for special events). The processed
data associated with POS use can be shared with the social system
layer, which includes the community, urban designers and man-
agers of the POS. The processed results representing the utilization
of the POS can provide insightful information to POS designers to
make informed decisions for future designs. The automatic sensing
framework can provide a quick assessment method to quantify the
use of a POS allowing for improved future investments.

A large surveillance camera network consisting of 100 cameras
has been installed by the DRFC to monitor and ensure the safety of
the entire POS the DRFC manages. The locations of the surveillance

Figure 2: CPSS-enabled sensing framework tomeasure utilization of
public open spaces (POS) with computer vision and deep learning.
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Figure 3: Schematics of the Mask R-CNN detection model for hu-
man user detection.

cameras are denoted by red markers in Fig. 1a. The surveillance
cameras can capture different user activities at various locations as
shown in Fig. 1b.

3.2 Deep Neural Networks for Human
Detection

Deep Neural Networks (DNN) are utilized to identify and locate ob-
jects in images or video frames. There are two types of DNN-based
detection methods: single-stage (i.e. non-region based) and two-
stage (i.e. region based) methods. Region-based detection models
(e.g. Faster R-CNN [26]) rely on region proposal networks (RPN)
[26] to estimate bounding boxes (bbox) on the feature maps which
are extracted by convolutional neural networks (CNN). Due to
the region proposal stage, region-based detection methods con-
sume more computational resources and take more time to execute.
In contrast, non-region based models (e.g. YOLO [25], RetinaNet
[17]) perform object detection without a separate region proposal
step which reduces their computational demands. The past few
years have led to significant improvements in region-based detec-
tors (especially Mask R-CNN [9]) that they now often outperform
single-stage detectors on the speed-vs-accuracy trade-off curve [4].

Mask R-CNN is a region-based detection method that provides
a richer set of information of a detected object with an additional
instance segmentation. Hence, a Mask R-CNN detector model (Fig.
3) is utilized in this study for user detection and activity recognition
in POS. The CNN part of the model extracts multiple feature maps
from an image while the RPN generates regions of interest by
sliding over the processed feature maps. The feature maps can
be generated from a feature pyramid network (FPN) [16]. In this
study, ResNet50-FPN (50 layered ResNet[10] with FPN) is chosen
as the CNN backbone to extract feature maps from an input image.
The weights of the RPN will be updated in parallel with the CNN
backbone during the model training process.

4 EXPERIMENTS AND RESULTS
4.1 OPOS Dataset and Model Training
A custom dataset for POS studies termed OPOS (“Objects in Public
Open Spaces”) is created and includes 7826 annotated images that
are collected from DRFC surveillance cameras. The weights of
the backbones were first pre-trained on the ImageNet-1K dataset
and then on the coco_2017_train dataset (pre-trained weights are
obtained from the Detectron website [7]). The training and test sets

of the OPOS dataset are split by the ratio of 9:1. The pre-trained
weights are fine-tuned on the OPOS dataset using the maskrcnn-
benchmark platform [21] implemented on an NVIDIA 1070 GPU.
The training schedule includes 90k iterations and the fine-tuning
process on the OPOS dataset consumes 14.8 hrs.

4.2 Detection Performance Evaluation
The detection task requires detecting 11 object classes (including
6 classes of people: pedestrian, cyclist, peopleother, sitter, scooterer,
skater) which are a subset of all 15 classes in the OPOS dataset.
The trained detector is evaluated on the test dataset consisting of
783 images. In the rest of the study, AP is referred to as bbox AP
because the segmentation AP values are very close to the bbox AP
values. The detailed performance of the detection model is demon-
strated in Table 1. The AP results at IoU=0.50 (AP0.50, where IoU
means intersection over union) for pedestrian and cyclist (the most
two common classes) are as high as 96.3% and 96.5%, respectively.
The mean average precision of overall objects (mAP0.50) is 87.9%
demonstrating a satisfactory detection performance.

4.3 Human Detection on the Dequindre Cut
The mapping and 3D bbox estimation modules are built on the de-
tection model to achieve detection and mapping tasks (i.e. placing
people in a georeferenced system). Camera parameters are cali-
brated and the assumption of flat ground is adopted. The steps
are as follows: (1) detecting users where users are located and seg-
mented on images; (2) extracting pixel location with the location
of the bottom pixel (corresponding to feet) and top pixel (corre-
sponding to head) are retrieved (denoted as pink dots in Fig. 4); (3)
mapping users using 2D image to place users in a 3D world space;
(4) estimating 3D bbox where the horizontal sizes of a pedestrian
are assumed fixed (i.e. w=60cm and d=50cm) and the height is op-
timized by a few trial calculations with geometry constraints (i.e.
trial height varies from 1.5m to 2.0m with a step size of 0.05m).

The locations of human users at a section of the Dequindre Cut
(a pedestrian path in the riverfront area as shown in Fig. 1) are
projected to a 2-D road map (width=4.5m, length=32m). A camera
is located 0.8 m from the left edge of the road. As shown in Fig. 4,
the user mapping and 3d bbox estimation of each detected user can
be obtained during a period of time. For example, the height of the
pedestrian on the right side is estimated as 195cm at t = 0s (detected
x=5.42m, y=8.90m, Fig. 4a), as 190cm at t = 2s (detected x=5.33m,
y=11.15m), as 185cm at t = 4s (detected x=5.21m, y=13.61m, Fig.
4b), as 185cm at t = 6s (detected x=5.23m, y=15.70m), as 185cm at t
= 8s (detected x=5.48m, y=17.78m), as 185cm at t = 10s (detected
x=5.31m, y=20.00m, Fig. 4c), as 175cm at t = 12s (detected x=5.20m,
y=21.77m), and as 180cm at t = 14s (detected x=5.35m, y=24.13m,

AP
Metrics

Most common ppl. cls. Ppl.-all Overall
ped. cycl. ppl.other

AP0.50 96.3% 96.5% 74.1% 89.2% 87.9%
AP0.75 92.6% 95.4% 59.6% 78.5% 81.3%
AP0.50:0.05:0.95 74.7% 81.2% 53.4% 69.4% 66.2%
APsm 55.2% 62.8% 24.1% 53.5% 57.6%
APmed 75.3% 80.9% 52.8% 71.3% 67.8%
APlд 81.2% 86.7% 80.0% 73.0% 77.4%

Table 1: Details of people detection performance (bbox) of Mask R-
CNN model.
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(a) t = 0s (b) t = 4s

(c) t = 10s (d) t = 14s
Figure 4: Examples of user detection and 3D bbox estimation at the
Dequindre Cut.

Fig. 4d), respectively. Hence, when a user is detected in near-field,
mid-field and far-field (>20m), the estimations of the height by the
proposed method are robust and the localization is very accurate.
The processed spatio-temporal data of human detection are format-
ted and stored in GIS map layers so that the information can be
used for other urban studies carried out using GIS analysis.

5 CONCLUSION AND FUTUREWORK
In this paper, a CPSS-enabled user sensing framework is presented
along with a baseline DNN-based detection model. A case study
of user detection and mapping on a park greenway in Detroit is
demonstrated as well. The detection results of human activity in
the POS reveals that the baseline detector has a bbox mAP0.50 of
87.9% for overall objects, and a mAP0.50 of 89.2% for the “people”
super-category. The AP0.50 for themost two common people classes
(pedestrian and cyclist) that appear in the Detroit Riverfront are
96.3% and 96.5%, respectively. In the future, the study would serve
as a stepping stone to build other sensing modules (e.g. counting
and tracking) that are associated with urban planning studies.
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