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Abstract

Recent realization of Bose—Einstein condensation of light in 2D provides a new platform for studying
novel phases and phase transitions. The combination of low effective mass of the confined light and
the presence of the dye molecules with randomly oriented directions of the dipolar transition engages
a competition between disorder and the tendency to forming algebraic off-diagonal order. The phase
diagram of possible phases is constructed at the mean field level. One of the phases is the condensate of
photon pairs induced solely by the orientational disorder. Such a geometrical mechanism of pairing
has no analogy in other systems.

1. Introduction

About 25 years ago a new revolution in physics took place—three groups [1-3] realized Bose—Einstein
condensates (BECs) of ultracold atoms. This has initiated a search for new phases of matter culminating in
demonstrating Bose—Mott insulator quantum phase transition [4]. Since then many more proposals of exotic
novel strongly interacting phases of matter have been put forward and realized experimentally (see in [5]).
Among the exciting possibilities is the bosonic fermionization [6] induced by artificial spin—orbit coupling [7].
Realization of interacting topological insulators with ultracold atoms also appears to be within the reach [8]. To a
great extent these achievements have stimulated the development of strongly interacting photonics where the
role of atoms is played by photons (see in [9]).

Creation of BEC of light [ 10-14], has opened up a new chapter in the search for strongly interacting phases of
light. In these experiments the thermalization of light is achieved through absorption and reemission of photons
by dye molecules which represent a thermal bath—thanks to their manifolds of rovibrational states exchanging
energy with the solvent [15, 16]. The equilibration of light occurs on much faster scale than the photon escape
from the cavity. Thus, for all practical purposes the emerging phase of light becomes a thermodynamical phase
where photons can be characterized by finite chemical potential—due to a significant difference between
temperature and photon energies.

The most recent exciting development in this field includes realization of the lattice consisting of micro
photonic condensates with the Josephson interaction between them [17]. It clearly opens up a pathway toward
realization of strongly interacting phases of light—by means of independent tuning of the Josephson tunneling
amplitude and onsite interaction.

At this juncture it is important to mention that there are some similarities and significant differences
between the dye molecules in the resonator [10, 11, 13, 14] and excitons in the condensed matter systems [18, 19]
(see also in [20]). In the exciton-polaritonic materials the effective interaction between photons is induced
through a direct exciton—exciton scattering—thanks to the linear and coherent coupling between exciton and
photon branches of the spectrum. Accordingly, the Gross—Pitaevskii (GP) equation including two polarizations
of polaritons is straightforward to derive [21]. In the systems [10, 11, 13, 14] the dye ensemble is disordered and,
thus, it cannot be coherently coupled to photons. (The coherency and interaction between dye molecules via
exchanging 2D-photons was discussed in [22].) An option to include photon—photon interaction has been
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suggested in [12]—Dby taking into account the Kerr effect. Another option is the thermal lensing effect in the dye
subsystem [10, 17].

The experimentally achieved condensation of light is characterized by a weak effective interaction between
photons[10, 11, 13, 14]. However, even infinitesimally small interaction changes dramatically the properties
of BEC (see in [23]). According to [10], the dimensionless interaction constant § ~ 10~ and typical photon
numbers N ~ 10°, with the condensate size D ~ 10 — 20 um. This corresponds to the healing length
I, ~1 / [gnpn = 1 — 2 pm, where np, ~ N /D?is the 2D density of the photonic condensate. This estimate
shows that, despite the smallness of the interaction, the healing length is much smaller than the condensate size
and, thus, the GP equation is a relevant description of the system.

As will be discussed below, to achieve algebraic condensation of photons in 2D at finite temperature T'it is
important to have polarizational anisotropy of the photon—photon interaction. In this respect, the thermo-
optical effect, which is insensitive to the polarization [10, 17], cannot provide such an anisotropy. Here we will
address this aspect by including the anisotropic photon—photon interaction induced by the dye molecules each
represented as a two level system (TLS) with randomly oriented vector d of the dipolar transition between the
ground and excited states. (In this analysis the role of the dye sub ensemble in the thermalization of photons is set
aside.) Furthermore, the limit of low density of the dye molecules is considered so that their interaction through
near field photons, as discussed in [22], can be safely ignored. The analysis is conducted for uniform condensate
in the thermodynamical limit.

The principal focus of the study is on the orientational disorder of the field d inthe dye ensemble. We argue
that it should result in a new phase of the photonic matter—the geometrically paired photonic superfluid (PSF).
More specifically, such a pairing is induced by spatial randomness in d sothatno algebraic order can be detected
in the one-photon density matrix, while the two-photon density matrix (TPDM) demonstrates the algebraic off-
diagonal long range order (ODLRO). This result was first introduced in [24]. Here we provide more details and
suggest a possible pathway toward its realization. Another important and unique aspect of the system arises from
the possibility of the TLS centers to change their orientations and positions due to the interaction with the PSE.
This can lead to the phase separation effect, implying that the condensation can proceed simultaneously with the
formation of non uniformity. This aspect of the system will be considered in the follow up publication.

Our paper is organized as follows. In section 2 the relevant variables are introduced. The Hamiltonian and
the effective action are discussed in section 3. Symmetries of the phases are analyzed in section 4, with the
geometrically paired PSF introduced in section 4.4. Finally, the overview and discussion is presented in section 5.
Appendices A, B, C, respectively, provide details on the derivation of the GP equation, on a possibility of the
realization of the paired PSF and on the nature of the phase transition from this phase to the ordinary PSF.

2. Order and disorder parameters

The setup [10] used to achieve thermalization and eventual condensation of light is explained in figure 1.

The order parameter of light is a complex vector E = E®, 2) representing the amplitude of electric field in
the rotating wave approximation (RWA), with X = (x, y) and zbeing coordinates along and perpendicular to
the XY plane of the resonator [10], respectively. The geometry of the experiment [10] selects a single mode
¢ = ¢(z) along the resonator Z-axis so that the field can be represented as E=¢(2) fb()_c’ ), where the complex
vector Tp = (tx, 1) accounts for the transverse order and its long wave fluctuations in the XY-plane of the
resonator. (There is also the E, component present insuring the divergenceless nature of the photonic field as
VLE, + @z_/}(ﬁ (z) = 0.) We will be using the normalization in which z_f{[; is the operator of the 2D density of
photons. Then, in the standard SI units®

¢ (Z) _ 2ﬁw0

sin(q,2), (D
oLz

where gy = wy/cis the wavevector of the standing wave, with cbeing speed of lightand L, = 77 /q, is the
‘height’ of the resonator [10] (see figure 1), and £y denotes the background electric permittivity of the medium.
The goal is to obtain the effective action for the amplitude %) in the long wave limit by eliminating TLSs and
integrating out the direction along the Z-axis.

The TLS molecules can be accounted for by a coarse grained field of their dipolar transitions
d=d (X, z) = (dy, d,, d;) responsible for absorbing and emitting photons. Such a variable emerges because
the dye molecules are characterized by low symmetry so that the dipolar transition is non-degenerate, (see in
[11,25]) and, thus, is described by a specific (positive or negative) direction determined by the spatial orientation
of the molecule.

> This normalization follows from equating the total energy of electromagnetic field in the condensate to fuwoN (in the limit N> 1).
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Figure 1. Sketch of the setup [10]. Two parallel planes depict cavity mirrors with the dye solution (randomly oriented ellipses with
arrows) in between. (The mirrors in [10] have a curvature with the radius of a few meters, which creates a harmonic trap and ensures a
true ODLRO of 2D light.) Externally pumped light forms standing wave along Z-direction (green chain of ellipses). Low energy
perturbations of the photonic condensate are characterized by small momenta k= (ky, ky, 0) with the X, Y components only. Inset:
dye moleque modeled as two level system characterized by the ground (g) and excited (e) states and the dipole moment of the
transition d .

In order to derive the effective low energy description for 2D vector field D) itis necessary to project the
3D field d onto the XY plane. Such a projection involves the integration of various tensors formed by d overz.
Once projected onto the XY plane of the resonator, this field plays the role of essentially a static and random
gauge field. Itis also important to note that the orientational disorder of d precludes formation of the
condensate of polaritons [26] (see in [27]). Despite that, there is a novel feature emerging—the geometrical
pairing of photons due to the orientational disorder. This aspect of the system is one of the principal focuses of
this work.

Itis important to keep in mind the hierarchy of time scales. The shortest one is the thermalization time
T, ~ 20 ps [10]. Itis about 2—3 orders of magnitude shorter than the photon life time in the cavity 7, ~ few ns
[10]. Thus, for all practical purposes the system can be treated as an equilibrium one despite external pumping at
least on the time scale shorter than 7,,, and in the limit of weak pumping. The translational and rotational
dynamics of the dye subsystem is characterized by its own time scales. These are determined by dynamical
viscosity 17 of the solvent (see in [28]). The rotational diffusion time 7, ~ na’/ T, where a ~ 1 nm is a typical size
of the dye molecule and T stands for temperature (in energy units). For typical viscosity 17 ~ 10> Pa s, this time
is 7, ~ 1-10 ns. Thus, the orientational disorder in d can be considered as static on time scales t < 7,only.
Beyond this time the dipolar variable d must be treated asa dynamical (diffusive) degree of freedom. The
translational diffusion of the dye molecules is characterized by a spread of times—from the travel time
Tire ~ MR a/ T toits closest neighbor (about R,, ~ 10 nm apart) to the time 74 ~ nRja/ T it takes to diffuse on
some typical spatial scale R. Taking Ry ~ 1 — 10 pm (comparable to the size of the condensate in [10]), this
range covers from 7, ~ 1077 — 107 % sto 74 ~ 0.1 — 1s. Similarly to the rotational degree of freedom, center
of mass positions of the molecules should be considered as dynamical (diffusive) degrees of freedom on times
longer than 7.

Here the main analysis is conducted within the approximation that the dynamics of TLS centers is frozen.
That s, the focus is on the situation of short times tsuch that 7, < t < 7 K 7 <K Ty

3. The Hamiltonian and the effective action
The Hamiltonian H consists of three parts

H = Hpp + Hris + Hine (2)

where the first term accounts for the free photons inside the cavity; the second term describes the TLSs and the
last one stands for the interaction between the photons and TLSs. Explicitly,
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a2y i
Hpn = fd x %vzw]vﬂ/ﬁ - /‘07/)]'7/’]' ’ 3

where f ... = f dxdy...; m = /vy /c? stands for the effective mass of photons (induced by the dimensional
quantization), and p is the effective chemical potential of excitations introduced into the system by external
pumping. These include photons and excited TLS (see more details in the appendix A. The summation over the
repeated coordinate indices (X, Y) here and below is implied.

The interaction can be written in terms of the photonic electric field E and the TLS centers in the minimal
form within the RWA as

-
Hipe = —> [d Eo* + hecl, 4
X,z
where the summation runs over the locations (¥, z) (with X = (x, y)) of the centersand 0, o~ are the Pauli
matrices describing absorption and emission of photons, respectively, by each TLS. (The component

E, ~ Vi / q, isignored in equation (4) in the limit of small momenta along X, Y directions.) The TLS energy can
be accounted for by

Hps=Y .60, 5

with § standing for the detuning of the TLS energy ¢, from the energy #iw, of the condensed photonic mode
(shifted by the chemical potential), and o, being the Pauli matrix.

Since we excluded vibrons from the consideration, the quantity ¢, should be attributed to Zero Phonon Line
of the electronic transition in the dye molecule. In general, however, vibrons can change this interpretation. In
what follows ¢ will be considered as a free parameter. More details on the dynamical properties of the system as
well as on the derivation of the low energy action are given in the appendix A.

3.1. Free energy
In the presence of macroscopic occupation of photons forming the field 12, the quantum nature of 1_/;, 1_/;T canbe
safely ignored. Such an approach is the basis for describing superfluids by classical fields ¥, 1_/}* within the GP
equation (seein [29, 30]). This method is applicable in 2D at finite T as well (see in [30]) despite the absence of the
true ODLRO which is replaced by algebraic off diagonal order (and which we will be loosely referring to as
‘condensate’).

In the presence of the condensate, the TLS contribution to the partition function can be calculated explicitly.
Indeed, the thermal operator exp(— 3 (Hrrs + Hin)), with 8 = 1/T, can be represented as a product
[1; exp(—(H;) over each TLS where H; is the contribution from the ith TLS to the terms (5), (4). Then, using the
identity exp (B3) = cosh(|B|) + sinh(|B)B3 /|B|for Pauli matrices & and real vector Band keeping in mind
thatall the components of & are traceless, the contribution to the partition function Z = Z [1_/;, 171*] evaluated
with respect to the electronic degrees of freedom becomes

Z1, 01 =T] Z»  Zi = cosh(By6* + [dHEG)P), (6)

where the coordinate dependence of d and E at thelocation of ith TLS is shown in a short hand
manner (¥, z) — (i).

At this point it is important to note that, depending on the time scale of the experiment, the effective action
for the photonic field should be derived differently. At times shorter than the time of the molecular reorientation
7, ~ 1 — 10 ns, the contribution to free energy from ith TLS should be taken as U; = —T In Z;, with the
orientation of d; treated as a non-dynamical (quenched) disorder variable. This gives the total free energy from
all TLS molecules

Us(19), [d]) = =T Infcosh (38 + [dHE@))]. ™

Itis worth noting that equation (7) is essentially the same as the one obtained in [31] (in the case of the triple
degenerate dipolar transition), although derived from a different perspective. (We don’t include the diamagnetic
term [32] because in the context of the pumped cavity it simply redefines the chemical potential and the
detuning.) After calculating all averages of the photonic variables with the energy Uy, ([1,_/;] , [o? 1), the final
averaging over the quenched disorder should be performed.

Atlonger times, the molecules will be able to adjust their orientation in the presence of the photonic
condensate 12 In this limit the molecular orientation should be integrated out from Z;, thatis, Z; — f dQ;z;,
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where (2, stands for the solid angle as a measure of the orientation of d . Then, the free energy can be calculated as

Up([¥]) = ~TYIn [ [ a2 cosn B8+ [dDE ()P )]. ®)

The detailed analysis of the situation described by equation (8) will be conducted elsewhere. As mentioned
above, the present focus is on the short time limit, equation (7).

While considering low energy properties, it is reasonable to resort to a coarse grained description and, thus,
to replace the summation ), ... overlocations of TLSs by integration f dzdydxn...where n = n(x, y, z)
stands for the coarse grained density of TLSs (which is not necessarily uniform). At this point a comment about a
possible degeneracy of the TLS transition is in order. If the TLS molecules were fully symmetric, the dipolar
transition would be triple degenerate. Accordingly, each component of E would see no preferential orientation
of the molecules, and a contribution to free energy of one molecule exposed to the condensate of light would
depend on the product d|E|, where d = |c? | Then, the free energy U, equation (7), would depend only on the
modulus |E|. In other words, the term |(§ E[? in equation (7) should be replaced by d?|E|*. Accordingly, the
effective action (represented as a Landau expansion [29]) would depend on |?p|2 and its higher powers. This
implies the O(4) symmetry of the effective action. It is important that in 2D systems the symmetries higher than
O(2) preclude condensation at any finite temperature even in the algebraic sense [33]. This aspect has been
emphasized in the context of polariton condensation in [34] and remains valid in the case under consideration
too. Thus, in our analysis it is important that the TLS transition is not triple degenerate.

Here we consider the limit |§] > |ﬁ E| validating the separation of fast and slow variables. Thus, Uin
equation (7) can be expanded in 1 /8 up to the quartic order in 17) as

U, = f dx[—dipy + diga Tl 9
where the tensors

di=q f dznd;djo(D P, dig = f dznd;d;ded| 6 (2)|* (10)

are introduced (with ¢(z) defined in equation (1)) and

tanh(696)
o= —>", 11
2 Y (11
= tanh(36) _ 1 . (12)
863 8T6% cosh?(36)
Itis worth mentioning that ¢, > 0 and varies from ¢, = 1/(88%) for§ > Ttoc, = 1/(12T%) in the opposite
limit.
The summations in equation (9) run over the X, Y directions only (because 1) has only X, Y components).
Thus, d;jand d;j; become 2D tensors. Then, it is convenient to introduce the representation
d,’j = pynit; + p mim; (13)

in terms of the local frame where d;; is diagonal and 11, 14, are its eigenvalues. The unit vectors i, 1 canbe
represented as i = (cos 6, sin ), m = (sin f, —cos #) by the angle § = 0(x, y) with respect to, say, the X-axis.
These vectors satisfy the orthogonality condition 77 - #1 = 0 so that the field ¢ can be expanded as

-

D= i® + imd, (14)

where @, @ are complex coordinates of ¢ inthelocal frame (7, 7). Accordingly, the energy (9) together with
the free photonic part (3) becomes

2 — — — —
U= f dzx[f—qvq +iVODP + [VD + iVODP) — gl — jig |81 + U4], (15)
m

where g = ftg + pyp e, = 1o + ty; the free photonic chemical potential i was introduced in equation (3);
and the specific form of the quartic term U, from equation (9) will be discussed below. The energy (15)
represents the potential part of the full GP action S derived in appendix A, equation (A11).
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4. Symmetries of the photonic condensate

In most cases the TLS transition is non-degenerate [11, 25, 35]. The case of a double degenerate transition is
qualitatively the same as the one considered below as long as the orientation of d is not aligned with the XY
plane. In this section, we will first consider the case of full isotropy of the tensors d;, djjx, equation (10).

4.1. Emerging isotropy

At short times when the field d (x, y, z) can be treated as a static disorder variable, it is natural to assume that the
integration along Z-direction in equation (10) returns isotropic tensors—because the distance L, (which is

~1.5 pm) is much larger than the inter TLS separation (of the order of few nm). This allows for averaging over
isotropic 3D orientations of d (x, ¥, z) in equation (10), which gives

dij = by, dijin = g (661 + birdjy + bubje), (16)

4

where =y = jz fdznlqbl2 and g = % fdzn|¢|4, and ¢, ¢4 are given in equations (11) and (12). Itis worth
mentioning that in the Kronecker symbols the indices run over X, Y, Z directions while the summation in
equation (9) is performed only over X, Y. Accordingly, the substitution of equations (16) into (9) gives 2D density
of the quartic part of U, as

= gQIYI* + @), (17)

or in terms of the representation (14):
Us = gBUOI* + DY) + 4O B2 — (@F20] + c.c)), (18)

which should be used in equation (15) above. These expressions are obtained under the assumption of self-
averaging of the molecular orientations despite the fact that they are frozen in at short time scales.

4.2.0(4) versus O(2) X Z, symmetry
At this point it is important to note that, given i =y and without the last term in Uy, equation (17), the
symmetry of the free energy (15) is O(4). In this case, the vectors 7 and # in the representation (14) can be
gauged away and taken as aligned with the XY axes. Thus, the gauge field V6 = 0in equation (15). As
mentioned above, the formation of the off-diagonal algebraic order of O(4) symmetry is impossible at any finite
T. The situation is changed by the term N(zz*)z(l_[z)z which breaks the O(4) symmetry down to O(2) x Z,. This
makes the formation of the algebraic order possible (see [34]).

Introducing real @ and imaginary b parts of 1_/} =4+ ib ,thatis, ® = a, + ib,, ¢ = a, + ib, in
equation (14), the uniform term in equation (15) becomes

U= —pg @ + b))+ gB3@* + b — 4@ x b)») — (i + 1a + iGf* — mb), (19)

where for the sake of generality, the term linear in ¢ and 1_/}* induced by the external pumping ~7j [10] has been
introduced. In what follows this term will be ignored which corresponds to the limit of weak pumping. In
section 5 the role of this term as a testing tool will be specifically addressed.

At the mean field level the condensation corresponds to ji4, > 0.Thelowest energy of the functional at

7} = Oisachieved for bldaanda?=b = = pg, /(8¢). Explicitly, by =a,,b, = —a,orb, = —a,, b, = a,sothat
Yy = ay £ ia,, P, = a, F iay, (20)

where the sign =+ is correlated in both equations and it represents two directions of the circularly polarized light.
Thus, the ground state of the condensed light is characterized by a spontaneous circular polarization—left or
right handed. This corresponds to the Z, symmetry. Rotation of the vector 4 (together with b)inthe X Y-plane
implies O(2) (or U(1)) symmetry. Accordingly, the BEC transition belongs to the O(2) x Z, universality class,
which, in general, differs from the Berezinskii—Kosterlitz—Thouless (BKT) scenario characteristic of O(2)
symmetry. On the phase diagram, figure 2, this transition corresponds to the point

e, = Ho + py =0, Ap = Olabeledas‘O(2) x Z,".

The emerging order is algebraic in 2D because of the gaussian rotational fluctuations of the vectors 4 and b
locked to each other. Thus, the one-photon density matrix (OPDM) behaves as (17)*(55 ) @(0)) ~1 / |X]'/K with
someindex K > 0 determined by the parameters and temperature (see in [36])

It should also be emphasized that the product S, = 4 x b~ 1¢ X 1) represents the order parameter
characterized by Z, symmetry—similarly to 2D Ising model for the spin variable S, ~ £1. It forms trivially as
long as O(2) symmetry is broken. There is another option—the O(2) x Z, transition may proceed as two
successive transitions, with the S, condensing first and O(2) to follow as temperature lowers further down.
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Bl eliptical 1PSF (V6 = 0)
5+ circular 1PSF (V@ # 0) /

<I)7£O,(I>l7é0 _ I

linear 1PSF (V8 = 0)
2PSF (V0 # 0y
D£0, D, =0

5 p=—Ap

-10 -

A

Figure 2. Mean field phase diagram (7} = 0, units are arbitrary). Here Apt = jig — fiq, and pu = jig, . For the other notations see the
text.

We note that the field theories with U(1) x Z, symmetry describe multi-band superconductors exhibiting
spontaneous time reversal symmetry breaking [37—-39]. These feature a variety of topological excitations [37] and
also allow for a splitting of the transition into two [39]. A significant difference between these systems and the
condensate of light lies in the structure of order parameters—scalars in [37-39] and a complex vector {ﬁ for the
light. This, in particular, determines the effect which is not present in superconductors—paired photonic
condensate induced by non-Abelian gauge disorder. This effect, which represents the main result of our work, is
described below. Here and below we will be using the abbreviation mPSF (in-photon superfluid) to characterize
algebraic order occurring in m-photon (m = 1, 2) density matrix.

4.3. Dipolar anisotropy: the uniform case
Let us consider a situation when there is a residual dipolar anisotropy characterized by some finite field do(®)
which is a result of the microscopic averaging of d (x, ¥, z).It can be induced by external fields (see appendix B)
or form spontaneously as a part of the orientational disorder (on a time scale shorter than 7,). Then, the tensor d;;
in equation (10) will deviate from the isotropic form (16) so that its eigenvalues /4, /1, become unequal to each
other. Withoutloss of generality we will assume that Ape = 1, — p1g = py — > 0.

Then, the order will form firstin ® while & = 0 in the representation (14). As follows from the
minimization of Uin equation (15), this occurs in the range g < Oand pig, = p1g, + Ap > 0.

If dy is uniform in space, the emerging (algebraic) order is characterized by O(2) symmetry of the 1PSF
linearly polarized along this vector (if ignoring 7j in equation (19)). This transition occurs along the solid line
g, = —Apinfigure 2. The dashedline, y14, = 0.5Ap, corresponds to the condensation of the second field, ® |,
proceeding as Z, transition. As a result, the 1PSF becomes elliptically polarized above this line.

There is also a possibility of a non-uniform one-component condensation if the residual anisotropy do,
while persisting on a mesoscale, self averages to zero on the spatial scale of the cavity. Under this condition the
2PSF phase forms.

4.4. Non-uniform dipolar anisotropy: geometrically paired photonic condensate
Now let us consider a situation when d is not spatially uniform. One possibility how this can be achieved is
discussed in appendix B. We start with the case |do|= const. Then, thelocal eigenvalues 11, 11, of djjare uniform

while the orientation of the tensor is set by a non-uniform V@ = 0. Since the threshold for the condensation is
controlled by the quadratic part of the free energy (15), we will ignore anisotropy of the quartic term and will
consider it isotropic as represented in equation (18).

It is important to note that a long wave structure of the field V6 without windings of the angle § will not
produce any significant deviation from the results discussed above in section 4.3 as long as the scale of the
variations is larger than the healing length. The most interesting option occurs when V@ is characterized by
topological defects—vortices. (These defects can be created by imposing external Gaussian—Laguerre beams—as
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discussed in appendix B.) Let us consider a situation when there is a plasma of such proliferated (and frozen in)
vortex-antivortex pairs of the field 6 (X). If the distance between these vortices £, s larger than the healing length
Iy, the phase @ = 0, &, = 0 (realized in between the two lines in figure 2) persists. Then, setting & = 01in
equation (15) the free energy becomes

/2 72 (Vo)?
v=[ dlxl—wqmz + (L o, - Au]@m + 3g|<1>l|4]. @1)
2m 2m +

Thus, the gauge effect of the field V6 vanishes. The remaining term ~(V0)? contributes to a weak suppression
of the local chemical potential—as long as £; >> I, According to the Harris criterion (see in [30]), the disorder
produced by ~ (V6)? in equation (21) is diagonal and, thus, is irrelevant at the transition marked by the solid line
in figure 2. This means that the transition of ® remains of the BKT type even in the presence of the disordered
field N(VQ)z. (The solid line in the phase diagram figure 2 shifts slightly upward by the
term %% ~ 12/ (mE) <K fig).

Itis important to note that, despite the emerging order in the field ®, the one-photon density matrix
(OPDM) becomes disordered—as long as 6 contains frozen in windings. These windings are now imprinted
onto the physical field ) = id through the factor 7. Accordingly, the OPDM becomes

(PEE YD) = (@) (&) (PHER) PFE")). (22)

Since 7i and ® are not, practically, coupled, the averaging over the disorder (...} in equation (22) can be applied
to the factor n;(X)n;(x’) only. At large distances #; can be considered as gaussian random variables coarse
grained over patches of size ~&;. This produces exponential behavior (n;(X)n;(x"))y ~ exp(—|xX — X'|/{,;) and,
accordingly, (¢ (%) ¢;(x")) ~ exp(—|X — ¥/|/€,) — 0,aslongas|¥ — ¥| > &,.

In drastic contrast, the TPDM pfﬁ()l = (Y¥R) w’]'-‘(ic’ Y (X)) (X)) retains the algebraic order. The simplest
way to see this is to consider the scalar product 1_&2 which, after taking into account equation (14) becomes
J? = @2 Thatis, p2), = (B*E)H@E)?) ~ [ — ¥ ¥/K.

In general,

P2 = (i@ m @ m @) mE)) - (*E)ARE))). (23)

At distances larger than &,, the averaging over the disorder gives (n;(X) n;(X) m (XY n;(X"))g = 600 /4. At
distances |¥ — X'| < &, the factor (n;n;jnn;)g becomes ~(6;; 0 + 66t + 6idjx) /8. Overall, however,

pﬁ.].zk)l oc ((D*F(X))2(P(X))?) ~ |¥ — ¥'|2/K. More specifically, the component pifc)xx changes from

(B/8) ((P*EN*(P (X)) at|X — X'| < &;t0 (1/4) ((P*(X))*(P(X’))*) in the opposite limit. For the component
pgi)w the corresponding limits are (1/8) (($*(xX))2(®(x"))?) and (1/4) ((*(¥))*(®(X"))?). Finally, for the
component pgfy)xy the limits are (1/8) ((®*(xX))?(®(¥"))?) and —0. This behavior describes the 2PSF phase
(labeled as 2PSF (V0 = 0)’ in figure 2). In this phase the order parameter becomes a complex tensor 1); 1)j, while

;= 0.

The condensation of the field @ can restore the one-photon order by introducing vortices into the fields ®,
®, which compensate partially the disorder created by 0 (X). This mechanism corresponds to the transformation
of the phase gradient V¢ of the fields ® and @ | from being vortex free to acquiring windings as Vo - Vo =
%@ — V0, with @ denoting the irrotational part of the phase. As a result, the OPDM of the physical field ¥
acquires algebraic order of circularly polarized light. This phase occurs above the dashed line in figure 2 and it is
labeled as ‘circular 1PSF (V@ = 0)’. More details on the 2PSF to 1PSF transformation are given in appendix C.

Finally, we note that including disorder in the modulus of (;l'o will affect the value of Ay = g, — fig,
introduced in section 4.3. However, weak disorder fluctuations of Ay should not modify the above conclusions
—atleast for the O(2) transition (see in [30]). Once the disorder becomes strong, a Bose glass phase can emerge.
This requires that fluctuations of A are comparable or stronger than pg itself.

5. Discussion

Our phenomenological analysis of condensed phases of light points out to multiple possibilities characterized by
various symmetries and symmetry breaking patterns of PSF. The algebraic condensation of light in 2D can only
occur if the TLS dipolar transition is not fully degenerate. Then, the resulting symmetry of the condensate is
O(2) x Z,, and the algebraic long range order becomes possible. The orientational anisotropy in the TLS
ensemble can break this transition into two.
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The main prediction reported here is the geometrically paired photonic superfluid. At this point we
emphasize that, in contrast to the paired condensates of photons [40] or ultracold atoms [41] requiring an
effective attraction between photons, the pairing found here is of purely geometrical nature. It is induced by the
non-Abelian disorder in the TLS ensemble, and it does not require any attraction between photons. This effect
can be assigned into the class of phenomena named as order by disorder [42]. In some sense, there is a hidden
algebraic 1PSF order in the non-observable field ® while there is no algebraic order in the observable field Pin
the representation (14).

One option of detecting such a phase would be by controlling orientation of the dye molecules so that d of
the dipolar transition can be ordered (see appendix B). Then, the non-observable field ® will become observable
because 7 in the representation (14) orders and, thus, restores the one-photon coherence in 17) ~ 1nd. As
discussed above, detecting 2PSF directly requires two-photon correlation spectroscopy.

Itis worth mentioning that, in the presence of the pumping of light into the cavity (described by the bias 7j in
equation (19)) the phases discussed above can be distorted and then destroyed. A strong external bias 7j may
essentially lock the condensate polarization along the external field. (This what was likely observed in [43].)
Upon lowering 7 the crossover to the spontaneous polarization should occur. This effect can serve as a measure
of the interaction strength between photons. An estimate of the field strength for a crossover follows from

comparing the last terms in equation (19) as |7j| ~ gnsh/ 2, A different situation occurs in the cases of the dipolar

anistropy when the compettion occurs between the residual dyand 7). Thus, the phases will be destroyed
i > 1ol T

The presented mean field analysis is only a first step toward detailed studies involving realistic geometries. It
gives a qualitative assessment of the emerging possibilities. There are several important questions to answer. The
nature of the 2PSF-1PSF transition involving the compensation of the frozen in vortices in the effective gauge
field needs to be explored. To the best of our knowledge, there is no known analogy to this transition.

Another exciting aspect of the system is the possibility of dynamical interaction between PSF and essentially
classical degrees of freedom of dye molecules—their translational and rotational diffusive dynamics. This poses
fundamental questions about how classical diffusive bath affects off diagonal order and dynamics. Phase
separation effect leads to forming regions of higher TLS density which invokes the necessity to consider the near
field direct interaction between TLSs as initiated in [22]. In view of the emerging very promising experimental
possibilities [17] going beyond BEC, these questions acquire much greater significance.
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Appendix A. GP functional

The Hamiltonian (2) conserves the total amount of photons and TLS molecules in their excited state. This can be
explicitly seen after calculating the time derivative p = [p, H]/(i72) of the excitation density operator

p@ 0 = ®IE + 3 éaz@, 2)6OE — %) (A1)

which leads to the 2D continuity equation

9% | %7 =, (A2)
ot
where
- ﬁ R
J = WiV — el (A3)
2mi

is the photon current 2D density; 6 (X — ¥;) is 2D delta-function defined in the space ¥ = (x, ).
Itis important to emphasize that, in the absence of a direct exchange interaction between TLS molecules, the
energy transfer is carried by photons only while storage of the energy is due to both—photons and excitations
of TLSs.
In order to describe (slow) dynamics of the condensed light, the Berry term Sg in the effective action
S=35 — f dtU, where t is real time, should be constructed. Within the standard GP approach it is

9
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SO = f dr f Ex i/ 25 + cc. (Ad)

This form guarantees the conservation of photons and leads to the continuity equation AP /ot + VI = o.
Since the actual conservation is given by equation (A1), the GP equation following from 6S / 57:/;* = 0 must
feature the continuity equation

AL + pe)
ot
where we have introduced the local density of the excited TLS centers pey.
Since TLSs represent fast degrees of freedom, pe, can be found within the approximation oflocal equilibrium
with respect to TLS ensemble as

+VJ =0, (A5)

Pex =1 (1 + (02)) /2, (A6)
where the averaging (a,) is done over the ground and excited TLS states in the presence of the condensed field E
with the equilibrium Boltzmann weight. The diagonalization of H in equation (2) within this approximation
gives

P = 5 (A7)

2

€= +6*+ |dEP. (A8)

Then, the Berry term consistent with the conservation law (A5) follows as Sg = S + S,
where

1[1 B 6tanh(ﬂf)]n’

€

where

lf (dE*)(dE)
fdtfdz |d = |2 Pex T C.C. (A9)

In order to project the form (A9) into the XY plane, the integration along Z-direction must be performed.
This can be done straightforwardly as an expansion in 1/6. Expanding p., up to the first term ~|d Eand, then,
integrating over Z,

Pex = Po + by PP + 1 |®L]?), (A10)

where p, = ( — tanh((39)) f dzn and the representation (14) hasbeen used; b = 26c, /6.

Representmg & = |Pleiand & = |P, [e'¥ and substituting into equations (A9) and (A10) and dropping
full time derivative terms, the GP action S can be written as

S— fdtfdzx[—ﬁ((l + b LG + (1 + bu)I® ) — UL, (A1)

where Uis given in equation (15).

Appendix B. Inducing anisotropy

Equilibrium (weak) anisotropy in the cumulants of d; can be created by external electric field E ©9 imposed at
optical frequency different from the photonic condensate—either by short pulses (as used to observe optical
Kerr gating [44]) or by stationary illumination. Using techniques for creating optical vortices [45, 46] and their
arrays [47], the field £ can induce non-uniform polarization of the dye molecules with imprinted windings
ind.

Let’s estimate a magnitude of the effect in the equilibrium situation. The corresponding polarization energy
contribution (in the second order of the perturbation)is U = —|E EdP /6@, where 5§ stands for the
detuning of the optical field E 9 from the resonance. Then, the tensor dj; ~ (d;d;) (in equation (10)) averaged
over the orientations with the Boltzmann factor ~exp(— U /T in the RWA becomes

=2 (ex) =4
d 21E@Y) d
di ~ {d;d;) = —|1 — bi + EE*EE) 4 cc). B1
i~ (did;) 3 ( 155<EX>T] 155<6X>T( Lo ) (BL)

Ifthe field £ is uniform, the case of the uniform anisotropy considered above in section 4.3 can be realized.
The corresponding phase is labeled as ‘linear 1PSF (V6§ = 0)’ in figure 2.

In order to create the anisotropy with windings discussed in section 4.4 the external field should be formed
by combinations of Laguerre—Gaussian beams. As a demonstrative example, let’s consider two circularly

10
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polarized standing waves (along Z) with the orbital momenta ! = =£1. Such two waves can be represented by the
complex amplitudes

Ef = E& 4+ iES = u(r, z)et?, (B2)
E — EJ(Cex) _ iE}(,eX) _ u,(r, z)e*i(’, (B3)

where u. (r, z) are real amplitudes; r = /x?> + y?;and @1is the polar angle in the XY-plane. Then, the
equation (B1), (thatis, li,‘j ~ (Ei(ex)*E}ex) + c.c) — |E (@) |? bij) becomes

[axx &xy]Nu+u_[cos(29) sin(20) ] (B4)

anisotropic part c?ij ofdy;,

dy dyy sin(20) —cos(26)

This term selects the orientation of the vectors i, #i in the representation (13), (14) favoring condensation of ®

(while &, = 0). (The vectors 7, m introduced in equations (13), (14) are eigenvector of the matrix (B4) with the

corresponding eigenvalues +u_ u_). The resulting phase, then, is 2PSF (labeled as 2PSF (V6 = 0)’ in figure 2).
Strength of the anisotropy can be estimated as the ratio of the anisotropic to the isotropic terms in

equation (B1). Then, Ay / 1y introduced in section 4.3 can be estimated as

=22
A d =lex
S x L |EP (B5)
py o OT

This expression is valid as long as the condition U™ < Tholds. For E ~ 100 kV cm ™" (which corresponds
to energy density ~10 > J cm ), d ~ 1 Debye, 6 ~ 0.1 eV and room temperature, this condition is well

satisfied, with the corresponding anisotropy value % ~ 1074,
I

Appendix C. Transition 2PSF-1PSF

In the case when both fields are condensed, the mean field solution for (15) gives

O = Prexp(ip), & = Py exp(iv),
g + 3A 2pe — A
M, M’ cI)% _ M, 1 >0, (C1)

®F =
16g 16g

whichisvalid for pg > 0.5Au. Here the phase ¢ is to be determined from the minimum of the gradient part
2
m

of the energy functional (15).

Let us assume that the field V6 has just a single vortex. Then, the minimum of AU can be reached either for
V¢ = 0 (which corresponds to 2PSF) or for Vo = — V6, which corresponds to circulary polarized 1PSF.
Comparison of these two energies leads to the condition

o3
5 <7 43 (€3)

1

for the existence of the 2PSF. Using the solution (C1) in equation (C3) gives
- 3J3 -5
1% [ 2 \/g —3

which conflicts with the requirement 114, > 0.5A needed to have 3 > 0.
Thus, for pg > 0.5A 4 the minimum of AUis achieved for Vi = —V6, that is when the phase of the

Ap = 0.423Ap, (C4)

fields @, @ | contains antivortex. In this case the components of the full field 171 become

o= [@1 er e B ; P, em]ei@’ (C5)
by = —i[q)l e — em]eifa (c6)

where @ is a non-winding part of ¢ (accounting for non-topological excitations—phonons of 1PSF). The terms
~exp(2i0) containing the winding field are washed out at large distances, and the coherent part of the total field
7:[} becomes

11
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U = %(cbl + Bexp(p), vy =~ (B + LIexp() (C7)

which describes 1PSF with circular polarization. Such a transformation renders the gauge field V6 irrelevant,
and the algebraic part of the OPDM becomes ~ ( exp(i[p(X) — @(X")])) ~ ¥ — X/|7V/K,
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