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Abstract
Recent realization of Bose–Einstein condensation of light in 2Dprovides a newplatform for studying
novel phases and phase transitions. The combination of low effectivemass of the confined light and
the presence of the dyemolecules with randomly oriented directions of the dipolar transition engages
a competition between disorder and the tendency to forming algebraic off-diagonal order. The phase
diagramof possible phases is constructed at themean field level. One of the phases is the condensate of
photon pairs induced solely by the orientational disorder. Such a geometricalmechanismof pairing
has no analogy in other systems.

1. Introduction

About 25 years ago a new revolution in physics took place—three groups [1–3] realized Bose–Einstein
condensates (BECs) of ultracold atoms. This has initiated a search for newphases ofmatter culminating in
demonstrating Bose—Mott insulator quantumphase transition [4]. Since thenmanymore proposals of exotic
novel strongly interacting phases ofmatter have been put forward and realized experimentally (see in [5]).
Among the exciting possibilities is the bosonic fermionization [6] induced by artificial spin–orbit coupling [7].
Realization of interacting topological insulators with ultracold atoms also appears to bewithin the reach [8]. To a
great extent these achievements have stimulated the development of strongly interacting photonics where the
role of atoms is played by photons (see in [9]).

Creation of BECof light [10–14], has opened up a new chapter in the search for strongly interacting phases of
light. In these experiments the thermalization of light is achieved through absorption and reemission of photons
by dyemolecules which represent a thermal bath—thanks to theirmanifolds of rovibrational states exchanging
energywith the solvent [15, 16]. The equilibration of light occurs onmuch faster scale than the photon escape
from the cavity. Thus, for all practical purposes the emerging phase of light becomes a thermodynamical phase
where photons can be characterized byfinite chemical potential—due to a significant difference between
temperature and photon energies.

Themost recent exciting development in thisfield includes realization of the lattice consisting ofmicro
photonic condensates with the Josephson interaction between them [17]. It clearly opens up a pathway toward
realization of strongly interacting phases of light—bymeans of independent tuning of the Josephson tunneling
amplitude and onsite interaction.

At this juncture it is important tomention that there are some similarities and significant differences
between the dyemolecules in the resonator [10, 11, 13, 14] and excitons in the condensedmatter systems [18, 19]
(see also in [20]). In the exciton-polaritonicmaterials the effective interaction between photons is induced
through a direct exciton–exciton scattering—thanks to the linear and coherent coupling between exciton and
photon branches of the spectrum. Accordingly, theGross–Pitaevskii (GP) equation including two polarizations
of polaritons is straightforward to derive [21]. In the systems [10, 11, 13, 14] the dye ensemble is disordered and,
thus, it cannot be coherently coupled to photons. (The coherency and interaction between dyemolecules via
exchanging 2D-photonswas discussed in [22].)Anoption to include photon–photon interaction has been
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suggested in [12]—by taking into account theKerr effect. Another option is the thermal lensing effect in the dye
subsystem [10, 17].

The experimentally achieved condensation of light is characterized by aweak effective interaction between
photons [10, 11, 13, 14]. However, even infinitesimally small interaction changes dramatically the properties
of BEC (see in [23]). According to [10], the dimensionless interaction constant g 10 3~ -˜ and typical photon
numbersN∼105, with the condensate sizeD∼ 10− 20 μm.This corresponds to the healing length
l gn1 1 2 mh ph m» » -˜ , where n N Dph

2~ is the 2Ddensity of the photonic condensate. This estimate
shows that, despite the smallness of the interaction, the healing length ismuch smaller than the condensate size
and, thus, theGP equation is a relevant description of the system.

Aswill be discussed below, to achieve algebraic condensation of photons in 2D at finite temperatureT it is
important to have polarizational anisotropy of the photon–photon interaction. In this respect, the thermo-
optical effect, which is insensitive to the polarization [10, 17], cannot provide such an anisotropy.Herewewill
address this aspect by including the anisotropic photon–photon interaction induced by the dyemolecules each

represented as a two level system (TLS)with randomly oriented vector d

of the dipolar transition between the

ground and excited states. (In this analysis the role of the dye sub ensemble in the thermalization of photons is set
aside.) Furthermore, the limit of low density of the dyemolecules is considered so that their interaction through
nearfield photons, as discussed in [22], can be safely ignored. The analysis is conducted for uniform condensate
in the thermodynamical limit.

The principal focus of the study is on the orientational disorder of thefield d

in the dye ensemble.We argue

that it should result in a newphase of the photonicmatter—the geometrically paired photonic superfluid (PSF).
More specifically, such a pairing is induced by spatial randomness in d


so that no algebraic order can be detected

in the one-photon densitymatrix, while the two-photon densitymatrix (TPDM) demonstrates the algebraic off-
diagonal long range order (ODLRO). This result wasfirst introduced in [24]. Herewe providemore details and
suggest a possible pathway toward its realization. Another important and unique aspect of the system arises from
the possibility of the TLS centers to change their orientations and positions due to the interactionwith the PSF.
This can lead to the phase separation effect, implying that the condensation can proceed simultaneously with the
formation of non uniformity. This aspect of the systemwill be considered in the follow up publication.

Our paper is organized as follows. In section 2 the relevant variables are introduced. TheHamiltonian and
the effective action are discussed in section 3. Symmetries of the phases are analyzed in section 4, with the
geometrically paired PSF introduced in section 4.4. Finally, the overview and discussion is presented in section 5.
Appendices A, B, C, respectively, provide details on the derivation of theGP equation, on a possibility of the
realization of the paired PSF and on the nature of the phase transition from this phase to the ordinary PSF.

2.Order and disorder parameters

The setup [10] used to achieve thermalization and eventual condensation of light is explained infigure 1.
The order parameter of light is a complex vector E E x z,=

  ( ) representing the amplitude of electric field in
the rotatingwave approximation (RWA), with x x y,=

 ( ) and z being coordinates along and perpendicular to
theXYplane of the resonator [10], respectively. The geometry of the experiment [10] selects a singlemode
f=f(z) along the resonatorZ-axis so that thefield can be represented as E z xf y=

  ( ) ( ), where the complex

vector ,x yy y y=


( ) accounts for the transverse order and its longwavefluctuations in theXY-plane of the
resonator. (There is also theEz component present insuring the divergenceless nature of the photonic field as

E z 0z z yf +  =
 

( ) .)Wewill be using the normalization inwhich y y
 †

is the operator of the 2Ddensity of
photons. Then, in the standard SI units3

z
L

q z
2

sin , 1
z

0

0
0


f

w
e

=( ) ( ) ( )

where q0=ω0/c is thewavevector of the standingwave, with c being speed of light and L q7z 0p= is the
‘height’ of the resonator [10] (seefigure 1), and ε0 denotes the background electric permittivity of themedium.
The goal is to obtain the effective action for the amplitude y


in the longwave limit by eliminating TLSs and

integrating out the direction along the Z‐axis.
The TLSmolecules can be accounted for by a coarse grainedfield of their dipolar transitions

d d x z d d d, , ,x y z= =
  ( ) ( ) responsible for absorbing and emitting photons. Such a variable emerges because
the dyemolecules are characterized by low symmetry so that the dipolar transition is non-degenerate, (see in
[11, 25]) and, thus, is described by a specific (positive or negative) direction determined by the spatial orientation
of themolecule.

3
This normalization follows from equating the total energy of electromagnetic field in the condensate toÿω0N (in the limitN? 1).

2
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In order to derive the effective low energy description for 2D vector field xy
 ( ) it is necessary to project the

3Dfield d

onto theXY plane. Such a projection involves the integration of various tensors formed by d


over z.

Once projected onto theXYplane of the resonator, thisfield plays the role of essentially a static and random

gaugefield. It is also important to note that the orientational disorder of d

precludes formation of the

condensate of polaritons [26] (see in [27]). Despite that, there is a novel feature emerging—the geometrical
pairing of photons due to the orientational disorder. This aspect of the system is one of the principal focuses of
this work.

It is important to keep inmind the hierarchy of time scales. The shortest one is the thermalization time
τt∼20 ps [10]. It is about 2–3 orders ofmagnitude shorter than the photon life time in the cavity τph∼ few ns
[10]. Thus, for all practical purposes the system can be treated as an equilibriumone despite external pumping at
least on the time scale shorter than τph and in the limit of weak pumping. The translational and rotational
dynamics of the dye subsystem is characterized by its own time scales. These are determined by dynamical
viscosity η of the solvent (see in [28]). The rotational diffusion time a Tr

3t h~ , where a∼ 1 nm is a typical size
of the dyemolecule andT stands for temperature (in energy units). For typical viscosity η∼10−3 Pa s, this time

is τr ∼1–10 ns. Thus, the orientational disorder in d

can be considered as static on time scales t=τr only.

Beyond this time the dipolar variable d

must be treated as a dynamical (diffusive) degree of freedom. The

translational diffusion of the dyemolecules is characterized by a spread of times—from the travel time
R a Ttrc n

2t h~ to its closest neighbor (aboutRn∼10 nmapart) to the time R a Tcl cl
2t h~ it takes to diffuse on

some typical spatial scaleRcl. Taking R 1 10 mcl m~ - (comparable to the size of the condensate in [10]), this
range covers from 10 10 strc

7 6t ~ -- - to 0.1 1clt ~ - s. Similarly to the rotational degree of freedom, center
ofmass positions of themolecules should be considered as dynamical (diffusive) degrees of freedomon times
longer than τtrc.

Here themain analysis is conductedwithin the approximation that the dynamics of TLS centers is frozen.
That is, the focus is on the situation of short times t such that tt r trcpht t t t< <   .

3. TheHamiltonian and the effective action

TheHamiltonianH consists of three parts

H H H H , 2ph TLS int= + + ( )

where thefirst term accounts for the free photons inside the cavity; the second termdescribes the TLSs and the
last one stands for the interaction between the photons andTLSs. Explicitly,

Figure 1. Sketch of the setup [10]. Two parallel planes depict cavitymirrors with the dye solution (randomly oriented ellipses with
arrows) in between. (Themirrors in [10] have a curvature with the radius of a fewmeters, which creates a harmonic trap and ensures a
trueODLROof 2D light.)Externally pumped light forms standingwave alongZ-direction (green chain of ellipses). Low energy

perturbations of the photonic condensate are characterized by smallmomenta k k k, , 0x y=


( )with theX,Y components only. Inset:
dyemoleculemodeled as two level system characterized by the ground (g) and excited (e) states and the dipolemoment of the

transition d

.

3
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H x
m

d
2

, 3i j i j j jph
2

2

0


ò y y m y y=   -
⎡
⎣⎢

⎤
⎦⎥ ( )† †

where x x yd ... d d ...;2ò ò= m c0
2w= stands for the effectivemass of photons (induced by the dimensional

quantization), andμ0 is the effective chemical potential of excitations introduced into the systemby external
pumping. These include photons and excited TLS (seemore details in the appendix A. The summation over the
repeated coordinate indices (X,Y) here and below is implied.

The interaction can bewritten in terms of the photonic electricfield E

and the TLS centers in theminimal

formwithin the RWAas

H d E h.c. , 4
x z

int
,
å s= -


++[ ] ( )

where the summation runs over the locations x z,
( ) (with x x y,=

 ( )) of the centers andσ+,σ− are the Pauli
matrices describing absorption and emission of photons, respectively, by eachTLS. (The component
E qz 0y~ 

 
is ignored in equation (4) in the limit of smallmomenta alongX,Y directions.)TheTLS energy can

be accounted for by

H , 5
x z

zTLS
,
å d s=


· ( )

with d standing for the detuning of the TLS energy ò0 from the energy ÿω0 of the condensed photonicmode
(shifted by the chemical potential), andσz being the Paulimatrix.

Sincewe excluded vibrons from the consideration, the quantity ò0 should be attributed to Zero Phonon Line
of the electronic transition in the dyemolecule. In general, however, vibrons can change this interpretation. In
what follows δwill be considered as a free parameter.More details on the dynamical properties of the system as
well as on the derivation of the low energy action are given in the appendix A.

3.1. Free energy

In the presence ofmacroscopic occupation of photons forming thefield y

, the quantumnature of ,y y

  †
can be

safely ignored. Such an approach is the basis for describing superfluids by classical fields , *y y
 

within theGP
equation (see in [29, 30]). Thismethod is applicable in 2D atfiniteT as well (see in [30]) despite the absence of the
trueODLROwhich is replaced by algebraic off diagonal order (andwhichwewill be loosely referring to as
‘condensate’).

In the presence of the condensate, the TLS contribution to the partition function can be calculated explicitly.
Indeed, the thermal operator H Hexp TLS intb- +( ( )), withβ=1/T, can be represented as a product

Hexpi ib -( ) over each TLSwhereHi is the contribution from the ith TLS to the terms (5), (4). Then, using the
identity B B B B Bexp cosh sinhs s= +

    
( ) (∣ ∣) (∣ ) ∣ ∣ for Paulimatrices s and real vector B


and keeping inmind

that all the components of s are traceless, the contribution to the partition function Z Z , *y y=
 

[ ]evaluated
with respect to the electronic degrees of freedombecomes

Z Z Z d i E i, , cosh , 6
i

i i
2 2* y y b d= = +

   
[ ] ( ∣ ( ) ( )∣ ) ( )

where the coordinate dependence of d

and E

at the location of ith TLS is shown in a short hand

manner x z i, 
( ) ( ).

At this point it is important to note that, depending on the time scale of the experiment, the effective action
for the photonicfield should be derived differently. At times shorter than the time of themolecular reorientation
τr∼1−10 ns, the contribution to free energy from ith TLS should be taken asU T Zlni i= - , with the

orientation of di

treated as a non-dynamical (quenched) disorder variable. This gives the total free energy from

all TLSmolecules

U d T d i E i, ln cosh . 7
i

2 2åy b d= - +y
   

([ ] [ ]) [ ( ∣ ( ) ( )∣ )] ( )

It is worth noting that equation (7) is essentially the same as the one obtained in [31] (in the case of the triple
degenerate dipolar transition), although derived from a different perspective. (Wedon’t include the diamagnetic
term [32] because in the context of the pumped cavity it simply redefines the chemical potential and the
detuning.)After calculating all averages of the photonic variables with the energyU d,yy

 
([ ] [ ]) , the final

averaging over the quenched disorder should be performed.
At longer times, themolecules will be able to adjust their orientation in the presence of the photonic

condensate y

. In this limit themolecular orientation should be integrated out fromZi, that is, Z Zdi i iò W ,

4
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whereΩi stands for the solid angle as ameasure of the orientation of d

. Then, the free energy can be calculated as

U T d i E iln d cosh . 8
i

i
2 2òåy b d


= - W +

 
y

⎡
⎣⎢

⎤
⎦⎥([ ]) ( ∣ ( ) ( )∣ ) ( )

The detailed analysis of the situation described by equation (8)will be conducted elsewhere. Asmentioned
above, the present focus is on the short time limit, equation (7).

While considering low energy properties, it is reasonable to resort to a coarse grained description and, thus,
to replace the summation ...iå over locations of TLSs by integration z y xnd d d ...ò where n n x y z, ,= ( )
stands for the coarse grained density of TLSs (which is not necessarily uniform). At this point a comment about a
possible degeneracy of the TLS transition is in order. If the TLSmolecules were fully symmetric, the dipolar
transitionwould be triple degenerate. Accordingly, each component of E


would see no preferential orientation

of themolecules, and a contribution to free energy of onemolecule exposed to the condensate of light would

depend on the product d E


∣ ∣, where d d=


∣ ∣. Then, the free energyU, equation (7), would depend only on the
modulus E


∣ ∣. In other words, the term dE 2

 
∣ ∣ in equation (7) should be replaced by d E2 2


∣ ∣ . Accordingly, the

effective action (represented as a Landau expansion [29])would depend on 2y


∣ ∣ and its higher powers. This
implies theO(4) symmetry of the effective action. It is important that in 2D systems the symmetries higher than
O(2) preclude condensation at anyfinite temperature even in the algebraic sense [33]. This aspect has been
emphasized in the context of polariton condensation in [34] and remains valid in the case under consideration
too. Thus, in our analysis it is important that the TLS transition is not triple degenerate.

Here we consider the limit dEd 
 

∣ ∣ ∣ ∣validating the separation of fast and slow variables. Thus,U in

equation (7) can be expanded in 1/δ up to the quartic order in y

as

U x d dd , 9ij i j ijkl i j k l
2 * * *ò y y y y y y= - +y [ ] ( )

where the tensors

d c znd d z d c znd d d d zd , d 10ij i j ijkl i j k l2
2

4
4ò òf f= =∣ ( )∣ ∣ ( )∣ ( )

are introduced (withf(z) defined in equation (1)) and

c
tanh

2
, 112

bd
d

=
( ) ( )

c
T

tanh

8

1

8 cosh
. 124 3 2 2

bd
d d bd

= -
( )

( )
( )

It is worthmentioning that c4>0 and varies from c 1 84
3d= ( ) for δ?T to c4=1/(12T3) in the opposite

limit.
The summations in equation (9) run over theX,Ydirections only (because y


has onlyX,Y components).

Thus, dij and dijkl become 2D tensors. Then, it is convenient to introduce the representation

d n n m m 13ij i j i jm m= + ^ ( )

in terms of the local framewhere dij is diagonal and ,m m̂ are its eigenvalues. The unit vectors n m,
 

can be
represented as n cos , sinq q=

 ( ),m sin , cosq q= -
 ( ) by the angle θ=θ(x, y)with respect to, say, theX-axis.

These vectors satisfy the orthogonality condition n m 0=
 · so that thefield y


can be expanded as

n mi , 14y = F + F̂
   ( )

where ,F F̂ are complex coordinates of y

in the local frame n m,

 ( ). Accordingly, the energy (9) togetherwith
the free photonic part (3) becomes

U x
m

Ud
2

i i , 152
2

2 2 2 2
4


ò q q m m= F +  F + F +  F - F - F +^ ^ F F ^^

   ⎡
⎣⎢

⎤
⎦⎥(∣ ∣ ∣ ∣ ) ∣ ∣ ∣ ∣ ( )

where , ;0 0m m m m m m= + = +F F ^^ the free photonic chemical potentialμ0 was introduced in equation (3);
and the specific formof the quartic termU4 from equation (9)will be discussed below. The energy (15)
represents the potential part of the full GP action S derived in appendix A, equation (A11).

5
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4. Symmetries of the photonic condensate

Inmost cases the TLS transition is non-degenerate [11, 25, 35]. The case of a double degenerate transition is
qualitatively the same as the one considered below as long as the orientation of d


is not alignedwith the XY

plane. In this section, wewillfirst consider the case of full isotropy of the tensors d d,ij ijkl , equation (10).

4.1. Emerging isotropy
At short timeswhen thefield d x y z, ,


( ) can be treated as a static disorder variable, it is natural to assume that the

integration alongZ-direction in equation (10) returns isotropic tensors—because the distance Lz (which is
≈1.5 μm) ismuch larger than the inter TLS separation (of the order of few nm). This allows for averaging over
isotropic 3Dorientations of d x y z, ,


( ) in equation (10), which gives

d d g, , 16ij ij ijkl ij kl ik jl il jkm d d d d d d d= = + + ( ) ( )

where zndc d

3
22

2

òm m f= =^ ∣ ∣ and g zndc d

15
44

4

ò f=


∣ ∣ , and c2, c4 are given in equations (11) and (12). It is worth
mentioning that in theKronecker symbols the indices run overX,Y,Z directions while the summation in
equation (9) is performed only overX,Y. Accordingly, the substitution of equations (16) into (9) gives 2Ddensity
of the quartic part ofUψ as

U g 2 , 174
4 2 2*y y y= +
  

( ∣ ∣ ( ) ( ) ) ( )

or in terms of the representation (14):

U g 3 4 c.c. , 184
4 4 2 2 2 2*= F + F + F F - F F +^ ^ ^( (∣ ∣ ∣ ∣ ) ∣ ∣ ∣ ∣ ( )) ( )

which should be used in equation (15) above. These expressions are obtained under the assumption of self-
averaging of themolecular orientations despite the fact that they are frozen in at short time scales.

4.2.O(4) versusO(2)×Z2 symmetry
At this point it is important to note that, given m m= ^ andwithout the last term inU4, equation (17), the
symmetry of the free energy (15) is O(4). In this case, the vectors n


andm

in the representation (14) can be

gauged away and taken as alignedwith theXY axes. Thus, the gaugefield 0q =


in equation (15). As
mentioned above, the formation of the off-diagonal algebraic order ofO(4) symmetry is impossible at anyfinite

T. The situation is changed by the term 2 2*y y~
 

( ) ( ) which breaks theO(4) symmetry down toO(2)×Z2. This
makes the formation of the algebraic order possible (see [34]).

Introducing real a

and imaginary b


parts of a biy = +

  
, that is, a b a bi , ix x y yF = + F = +^ in

equation (14), the uniform term in equation (15) becomes

U a b g a b a b a b3 4 i , 192 2 2 2 2 2 * *m h h h h= - + + + - ´ - + + -F̂
           ( ) ( ( ) ( ) ) (( ) ( ) ) ( )

where for the sake of generality, the term linear in y

and *y


induced by the external pumping h~ [10]has been
introduced. Inwhat follows this termwill be ignoredwhich corresponds to the limit of weak pumping. In
section 5 the role of this term as a testing tool will be specifically addressed.

At themeanfield level the condensation corresponds to mF̂ >0. The lowest energy of the functional at

0h = is achieved for b a^
 

and a b g82 2
m= = F̂

 
( ). Explicitly, bx= ay, by=−ax or bx=−ay, by= ax so that

a a a ai , i , 20x x y y y xy y=  =  ( )

where the sign±is correlated in both equations and it represents two directions of the circularly polarized light.
Thus, the ground state of the condensed light is characterized by a spontaneous circular polarization—left or
right handed. This corresponds to the Z2 symmetry. Rotation of the vector a


(together with b


) in theXY-plane

impliesO(2) (orU(1)) symmetry. Accordingly, the BEC transition belongs to theO(2)×Z2 universality class,
which, in general, differs from the Berezinskii–Kosterlitz–Thouless (BKT) scenario characteristic ofO(2)
symmetry. On the phase diagram, figure 2, this transition corresponds to the point

0, 00m m m m= + = D =F̂  labeled as ‘O(2)×Z2’.

The emerging order is algebraic in 2Dbecause of the gaussian rotational fluctuations of the vectors a

and b


locked to each other. Thus, the one-photon densitymatrix (OPDM) behaves as x x0 1 K1*y yá ñ ~
   ( ) ( ) ∣ ∣ with

some indexK>0 determined by the parameters and temperature (see in [36]).
It should also be emphasized that the product S a b iz

*y y= ´ ~ ´
   

represents the order parameter
characterized by Z2 symmetry—similarly to 2D Isingmodel for the spin variable Sz∼±1. It forms trivially as
long asO(2) symmetry is broken. There is another option—theO(2)×Z2 transitionmay proceed as two
successive transitions, with the Sz condensing first andO(2) to follow as temperature lowers further down.
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Wenote that thefield theories withU(1)×Z2 symmetry describemulti-band superconductors exhibiting
spontaneous time reversal symmetry breaking [37–39]. These feature a variety of topological excitations [37] and
also allow for a splitting of the transition into two [39]. A significant difference between these systems and the
condensate of light lies in the structure of order parameters—scalars in [37–39] and a complex vector y


for the

light. This, in particular, determines the effect which is not present in superconductors—paired photonic
condensate induced by non-Abelian gauge disorder. This effect, which represents themain result of ourwork, is
described below.Here and belowwewill be using the abbreviationmPSF (m-photon superfluid) to characterize
algebraic order occurring inm-photon (m=1, 2) densitymatrix.

4.3.Dipolar anisotropy: the uniform case
Let us consider a situationwhen there is a residual dipolar anisotropy characterized by some finitefield d x0

 ( )
which is a result of themicroscopic averaging of d x y z, ,


( ). It can be induced by external fields (see appendix B)

or form spontaneously as a part of the orientational disorder (on a time scale shorter than τr). Then, the tensor dij
in equation (10)will deviate from the isotropic form (16) so that its eigenvalues ,m m̂ become unequal to each

other.Without loss of generality wewill assume that 0m m m m mD = - = - >F F ^^  .
Then, the order will formfirst inΦwhile 0F =^ in the representation (14). As follows from the

minimization ofU in equation (15), this occurs in the range 0m <F̂ and 0m m m= + D >F F̂ .

If d0

is uniform in space, the emerging (algebraic) order is characterized byO(2) symmetry of the 1PSF

linearly polarized along this vector (if ignoring h in equation (19)). This transition occurs along the solid line
mF̂ =−Δμ infigure 2. The dashed line, mF̂ =0.5Δμ, corresponds to the condensation of the second field,Φ⊥,
proceeding as Z2 transition. As a result, the 1PSF becomes elliptically polarized above this line.

There is also a possibility of a non-uniformone-component condensation if the residual anisotropy d0

,

while persisting on amesoscale, self averages to zero on the spatial scale of the cavity. Under this condition the
2PSF phase forms.

4.4. Non-uniformdipolar anisotropy: geometrically paired photonic condensate
Now let us consider a situationwhen d0


is not spatially uniform.One possibility how this can be achieved is

discussed in appendix B.We start with the case d0 =


∣ ∣ const. Then, the local eigenvalues ,m m̂ of dij are uniform

while the orientation of the tensor is set by a non-uniform 0q ¹


. Since the threshold for the condensation is
controlled by the quadratic part of the free energy (15), wewill ignore anisotropy of the quartic term andwill
consider it isotropic as represented in equation (18).

It is important to note that a longwave structure of the field q


withoutwindings of the angle θwill not
produce any significant deviation from the results discussed above in section 4.3 as long as the scale of the
variations is larger than the healing length. Themost interesting option occurs when q


is characterized by

topological defects—vortices. (These defects can be created by imposing external Gaussian–Laguerre beams—as

Figure 2.Mean field phase diagram ( 0h =


, units are arbitrary). Here m m mD = -F F̂ andμ=mF̂ . For the other notations see the
text.
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discussed in appendix B.) Let us consider a situationwhen there is a plasma of such proliferated (and frozen in)
vortex-antivortex pairs of the field xq

( ). If the distance between these vortices ξd is larger than the healing length
lh, the phase 0, 0F ¹ F =^ (realized in between the two lines infigure 2)persists. Then, setting 0F =^ in
equation (15) the free energy becomes

U x
m m

gd
2 2

3 . 212
2

2
2 2

2 4 
ò

q
m m= F +


- - D F + Fm^ ^ ^^

 ⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∣ ∣ ( ) ∣ ∣ ∣ ∣ ( )

Thus, the gauge effect of the field q


vanishes. The remaining term 2q~ 


( ) contributes to aweak suppression
of the local chemical potential—as long as ld hx  . According to theHarris criterion (see in [30]), the disorder
produced by∼ (∇θ)2 in equation (21) is diagonal and, thus, is irrelevant at the transitionmarked by the solid line
infigure 2. Thismeans that the transition ofΦ remains of the BKT type even in the presence of the disordered
field 2q~ ( ) . (The solid line in the phase diagramfigure 2 shifts slightly upward by the

term m
m d2

2 22 2

 x m» ~q
F


( )( ) ).

It is important to note that, despite the emerging order in the fieldΦ, the one-photon densitymatrix
(OPDM) becomes disordered—as long as θ contains frozen inwindings. Thesewindings are now imprinted
onto the physical field ny = F

 
through the factor n


. Accordingly, theOPDMbecomes

x x n x n x x x . 22i j i j* *y yá ¢ ñ = ¢ áF F ¢ ñ
     ( ) ( ) ( ) ( ) ( ) ( ) ( )

Since n

andΦ are not, practically, coupled, the averaging over the disorder ...á ñq in equation (22) can be applied

to the factor n x n xi j ¢
 ( ) ( ) only. At large distances ni can be considered as gaussian randomvariables coarse

grained over patches of size∼ξd. This produces exponential behavior n x n x x xexpi j dxá ¢ ñ ~ - - ¢q
   ( ) ( ) ( ∣ ∣ ) and,

accordingly, x x x xexp 0i j d*y y xá ¢ ñ ~ - - ¢ 
   ( ) ( ) ( ∣ ∣ ) , as long as x x dx- ¢

  ∣ ∣ .

In drastic contrast, the TPDM x x x xijkl i j k l
2 * *r y y y y= á ¢ ¢ ñ

   ( ) ( ) ( ) ( )( ) retains the algebraic order. The simplest

way to see this is to consider the scalar product
2y


which, after taking into account equation (14) becomes
2 2y = F


. That is, x x x xiikk
K2 2 2 2*r = á F F ¢ ñ ~ - ¢ -

   ( ( )) ( ( )) ∣ ∣( ) .
In general,

n x n x n x n x x x . 23ijkl i j k l
2 2 2*r = á ¢ ¢ ñ á F F ¢ ñq

     ( ) ( ) ( ) ( ) · ( ( )) ( ( )) ( )( )

At distances larger than ξd , the averaging over the disorder gives n x n x n x n x 4i j k l ij kld dá ¢ ¢ ñ =q
   ( ) ( ) ( ) ( ) . At

distances x x dx- ¢ <
 ∣ ∣ the factor n n n ni j k lá ñq becomes 8ij kl ik jl il jkd d d d d d~ + +( ) . Overall, however,

x x x xijkl
K2 2 2 2*r µ á F F ¢ ñ ~ - ¢ -

   ( ( )) ( ( )) ∣ ∣( ) .More specifically, the component xxxx
2r( ) changes from

x x3 8 2 2*á F F ¢ ñ
 ( ) ( ( )) ( ( )) at x x dx- ¢ <

 ∣ ∣ to x x1 4 2 2*á F F ¢ ñ
 ( ) ( ( )) ( ( )) in the opposite limit. For the component

xxyy
2r( ) the corresponding limits are x x1 8 2 2*á F F ¢ ñ

 ( ) ( ( )) ( ( )) and x x1 4 2 2*á F F ¢ ñ
 ( ) ( ( )) ( ( )) . Finally, for the

component xyxy
2r( ) the limits are x x1 8 2 2*á F F ¢ ñ

 ( ) ( ( )) ( ( )) and→0. This behavior describes the 2PSF phase

(labeled as ‘2PSF 0q ¹


( )’ infigure 2). In this phase the order parameter becomes a complex tensorψiψj, while
ψi=0.

The condensation of the fieldΦ⊥can restore the one-photon order by introducing vortices into the fieldsΦ,
Φ⊥which compensate partially the disorder created by xq

( ). Thismechanism corresponds to the transformation

of the phase gradient j


of thefieldsΦ andΦ⊥frombeing vortex free to acquiringwindings as j j   =
 

j q - 
 

˜ , with j̃ denoting the irrotational part of the phase. As a result, theOPDMof the physical field y


acquires algebraic order of circularly polarized light. This phase occurs above the dashed line infigure 2 and it is
labeled as ‘circular 1PSF ( 0q ¹


)’.More details on the 2PSF to 1PSF transformation are given in appendix C.

Finally, we note that including disorder in themodulus of d0

will affect the value of m m mD = -F F̂

introduced in section 4.3.However, weak disorder fluctuations ofΔμ should notmodify the above conclusions
—at least for theO(2) transition (see in [30]). Once the disorder becomes strong, a Bose glass phase can emerge.
This requires that fluctuations ofΔμ are comparable or stronger thanμΦ itself.

5.Discussion

Our phenomenological analysis of condensed phases of light points out tomultiple possibilities characterized by
various symmetries and symmetry breaking patterns of PSF. The algebraic condensation of light in 2D can only
occur if the TLS dipolar transition is not fully degenerate. Then, the resulting symmetry of the condensate is
O(2)×Z2, and the algebraic long range order becomes possible. The orientational anisotropy in the TLS
ensemble can break this transition into two.
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Themain prediction reported here is the geometrically paired photonic superfluid. At this point we
emphasize that, in contrast to the paired condensates of photons [40] or ultracold atoms [41] requiring an
effective attraction between photons, the pairing found here is of purely geometrical nature. It is induced by the
non-Abelian disorder in the TLS ensemble, and it does not require any attraction between photons. This effect
can be assigned into the class of phenomena named as order by disorder [42]. In some sense, there is a hidden
algebraic 1PSF order in the non-observable fieldΦwhile there is no algebraic order in the observable field y


in

the representation (14).
One option of detecting such a phasewould be by controlling orientation of the dyemolecules so that d


of

the dipolar transition can be ordered (see appendix B). Then, the non-observablefieldΦwill become observable
because n


in the representation (14) orders and, thus, restores the one-photon coherence in ny ~ F

 
. As

discussed above, detecting 2PSF directly requires two-photon correlation spectroscopy.
It is worthmentioning that, in the presence of the pumping of light into the cavity (described by the bias h in

equation (19)) the phases discussed above can be distorted and then destroyed. A strong external bias hmay
essentially lock the condensate polarization along the externalfield. (This whatwas likely observed in [43].)
Upon lowering η the crossover to the spontaneous polarization should occur. This effect can serve as ameasure
of the interaction strength between photons. An estimate of thefield strength for a crossover follows from
comparing the last terms in equation (19) as gn

ph
3 2h »∣ ∣ . A different situation occurs in the cases of the dipolar

anistropywhen the compettion occurs between the residual d0

and h . Thus, the phaseswill be destroyed

if d n0 phh


∣ ∣ ∣ ∣ .
The presentedmeanfield analysis is only afirst step toward detailed studies involving realistic geometries. It

gives a qualitative assessment of the emerging possibilities. There are several important questions to answer. The
nature of the 2PSF-1PSF transition involving the compensation of the frozen in vortices in the effective gauge
field needs to be explored. To the best of our knowledge, there is no known analogy to this transition.

Another exciting aspect of the system is the possibility of dynamical interaction between PSF and essentially
classical degrees of freedomof dyemolecules—their translational and rotational diffusive dynamics. This poses
fundamental questions about how classical diffusive bath affects off diagonal order and dynamics. Phase
separation effect leads to forming regions of higher TLS density which invokes the necessity to consider the near
field direct interaction between TLSs as initiated in [22]. In view of the emerging very promising experimental
possibilities [17] going beyondBEC, these questions acquiremuch greater significance.
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AppendixA. GP functional

TheHamiltonian (2) conserves the total amount of photons andTLSmolecules in their excited state. This can be
explicitly seen after calculating the time derivative H, ir r=˙ [ ] ( ) of the excitation density operator

x t x x x z x x,
1

2
, A1

x z
z i i i

, ,

2

i i

år y y s d= + -
       


( ) ( ) ( ) ( ) ( ) ( )† ( )

which leads to the 2D continuity equation

t
J 0, A2

r¶
¶
+  =
 

( )

where

J
mi2

c.c. A3j j

y y=  -

 
[ ] ( )†

is the photon current 2Ddensity; x xi2d -
 ( )( ) is 2D delta-function defined in the space x x y,=

 ( ).
It is important to emphasize that, in the absence of a direct exchange interaction between TLSmolecules, the

energy transfer is carried by photons onlywhile storage of the energy is due to both—photons and excitations
of TLSs.

In order to describe (slow) dynamics of the condensed light, the Berry term SB in the effective action
S S tUdB ò= - , where t is real time, should be constructed.Within the standardGP approach it is
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S t xd d i 2 c.c. A4B
0 2 *ò ò y y= +

 
( ) ˙ ( )( )

This form guarantees the conservation of photons and leads to the continuity equation t J 02y¶ ¶ +  =
  

∣ ∣ .

Since the actual conservation is given by equation (A1), theGP equation following from S 0*d dy =


must
feature the continuity equation

t
J 0, A5

2
exy r¶ +

¶
+  =


 (∣ ∣ )

( )

wherewe have introduced the local density of the excited TLS centers ρex.
Since TLSs represent fast degrees of freedom, ρex can be foundwithin the approximation of local equilibrium

with respect to TLS ensemble as

n 1 2, A6zexr s= + á ñ· ( ) ( )

where the averaging zsá ñ is done over the ground and excited TLS states in the presence of the condensed field E


with the equilibriumBoltzmannweight. The diagonalization ofH in equation (2)within this approximation
gives

n
1

2
1

tanh
, A7ex




r
d b

= -
⎡
⎣⎢

⎤
⎦⎥

( ) ( )

where

dE . A82 2 d= +
 

∣ ∣ ( )

Then, the Berry term consistent with the conservation law (A5) follows as S S SB B e
0= +( )

where

S t x z
d E d E

d E

i

2
d d d c.c. A9e

2

2
ex

*
ò ò r=

 

 +


( )( )

∣ ∣
( )

In order to project the form (A9) into theXY plane, the integration alongZ-directionmust be performed.

This can be done straightforwardly as an expansion in 1/δ. Expanding ρex up to thefirst term dE 2~
 

∣ ∣ and, then,
integrating overZ,

b , A10ex 0
2 2r r m m= + F + F^ ^( ∣ ∣ ∣ ∣ ) ( )

where zn1 tanh d0
1

2 òr bd= -( ( )) and the representation (14) has been used; b c c2 4 2d= .

Representing eiF = F j∣ ∣ and eiF = F j
^ ^ ^∣ ∣ and substituting into equations (A9) and (A10) and dropping

full time derivative terms, theGP action S can bewritten as

S t x b b Ud d 1 1 , A112 2 2ò ò m j m j= - + F + + F -^ ^ ^[ (( )∣ ∣ ˙ ( )∣ ∣ ˙ ) ] ( )

whereU is given in equation (15).

Appendix B. Inducing anisotropy

Equilibrium (weak) anisotropy in the cumulants of di can be created by external electric field E
ex( )

imposed at
optical frequency different from the photonic condensate—either by short pulses (as used to observe optical
Kerr gating [44]) or by stationary illumination. Using techniques for creating optical vortices [45, 46] and their
arrays [47], the field E

ex( )
can induce non-uniformpolarization of the dyemolecules with imprintedwindings

in d

.
Let’s estimate amagnitude of the effect in the equilibrium situation. The corresponding polarization energy

contribution (in the second order of the perturbation) isU E dex ex 2 exd= -
 

∣ ∣( ) ( ) ( ), where δ(ex) stands for the

detuning of the opticalfield E
ex( )

from the resonance. Then, the tensor d d dij i j~ á ñ (in equation (10)) averaged
over the orientations with the Boltzmann factor U Texp ex~ -( )( ) in the RWAbecomes

d d d
d E

T

d

T
E E

3
1

2

15 15
c.c. . B1ij i j ij i j

2 ex 2

ex

4

ex
ex ex*

d
d

d
~ á ñ = - + +

  ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ∣ ( ) ( )

( )

( ) ( )
( ) ( )

If thefield E
ex( )

is uniform, the case of the uniform anisotropy considered above in section 4.3 can be realized.
The corresponding phase is labeled as ‘linear 1PSF (∇θ=0)’ infigure 2.

In order to create the anisotropywithwindings discussed in section 4.4 the externalfield should be formed
by combinations of Laguerre–Gaussian beams. As a demonstrative example, let’s consider two circularly
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polarized standingwaves (alongZ)with the orbitalmomenta l=±1. Such twowaves can be represented by the
complex amplitudes

E E E u r zi , e , B2x y
ex ex i= + = q

+ +
+( ) ( )( ) ( )

E E E u r zi , e , B3x y
ex ex i= - = q

- -
-( ) ( )( ) ( )

where u±(r, z) are real amplitudes; r x y ;2 2= + and θ is the polar angle in theXY-plane. Then, the

anisotropic part dij˜ of dij, equation (B1), (that is, d E E Ec.c.ij i j ij
ex ex ex 2* d~ + -

˜ ( ) ∣ ∣( ) ( ) ( ) ) becomes

d d

d d
u u

cos 2 sin 2
sin 2 cos 2

. B4
xx xy

yx yy

q q
q q

~
-+ -

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

˜ ˜

˜ ˜
( ) ( )
( ) ( ) ( )

This term selects the orientation of the vectors n m,
 

in the representation (13), (14) favoring condensation ofΦ
(whileΦ⊥=0). (The vectors n m,

 
introduced in equations (13), (14) are eigenvector of thematrix (B4)with the

corresponding eigenvalues u u + -). The resulting phase, then, is 2PSF (labeled as ‘2PSF ( 0q ¹ )’ in figure 2).
Strength of the anisotropy can be estimated as the ratio of the anisotropic to the isotropic terms in

equation (B1). Then, m mD  introduced in section 4.3 can be estimated as

d

T
E . B5

2

ex

ex 2m
m d
D
»





∣ ∣ ( )( )

( )

This expression is valid as long as the conditionU(ex)=T holds. For E(ex)∼100 kV cm−1 (which corresponds
to energy density∼10−3 J cm−3), d∼1 Debye, δ(ex)∼0.1 eV and room temperature, this condition is well

satisfied, with the corresponding anisotropy value 10 4~m
m
D -


.

AppendixC. Transition 2PSF-1PSF

In the case when bothfields are condensed, themeanfield solution for (15) gives

g g

exp i , exp i ,

2 3

16
,

2

16
0,

C1

1 2

1
2

2
2

j j
m m m m

F = F F = F

F =
+ D

F =
- D

>

^

F F^ ^

( ) ( )
( )

which is valid for mF̂ >0.5Δμ. Here the phasej is to be determined from theminimumof the gradient part

U x
m

d
2

C22
2

1 2
2

2 1
2

ò j q j qD = F  + F  + F  + F 
   

[( ) ( ) ] ( )

of the energy functional (15).
Let us assume that thefield q


has just a single vortex. Then, theminimumofΔU can be reached either for

0j =


(which corresponds to 2PSF) or for j q = -
 

, which corresponds to circulary polarized 1PSF.
Comparison of these two energies leads to the condition

7 4 3 C32
2

1
2

F
F
< - ( )

for the existence of the 2PSF. Using the solution (C1) in equation (C3) gives

3 3 5

2 3 3
0.423 , C4m m m<

-
-
D » DF̂ ( )

which conflicts with the requirement mF̂ >0.5Δμneeded to have 02
2F > .

Thus, for mF̂ >0.5Δμ theminimumofΔU is achieved for j q = -
 

, that is when the phase of the

fieldsΦ,Φ⊥contains antivortex. In this case the components of the full field y

become

2 2
e e , C5x

1 2 1 2 2i iy =
F + F

+
F - F q j⎡

⎣⎢
⎤
⎦⎥ ( )˜

i
2 2

e e , C6y
1 2 2 1 2i iy = -
F + F

+
F - F q j⎡

⎣⎢
⎤
⎦⎥ ( )˜

where j̃ is a non-winding part ofj (accounting for non-topological excitations—phonons of 1PSF). The terms
exp 2iq~ ( ) containing thewinding field are washed out at large distances, and the coherent part of the totalfield
y

becomes
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1

2
exp i ,

i

2
exp i , C7x y1 2 1 2y j y j= F + F = - F + F( ) ( ˜ ) ( ) ( ˜ ) ( )

which describes 1PSFwith circular polarization. Such a transformation renders the gaugefield q


irrelevant,
and the algebraic part of theOPDMbecomes i x x x xexp K1j j~á - ¢ ñ ~ - ¢ -

   ( [ ˜ ( ) ˜ ( )]) ∣ ∣ .
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