Statistica Sinica 30 (2020), 439-465
doi:https://doi.org/10.5705/ss.202017.0246

ESTIMATION OF FUNCTIONAL SPARSITY IN
NONPARAMETRIC VARYING COEFFICIENT MODELS
FOR LONGITUDINAL DATA ANALYSIS

Catherine Y. Tu', Juhyun Park? and Haonan Wang!

LColorado State University and ? Lancaster University

Abstract: We study the simultaneous domain selection problem for varying coef-
ficient models as a functional regression model for longitudinal data with many
covariates. The domain selection problem in a functional regression mostly ap-
pears within a functional linear regression with a scalar response; however, there is
no direct correspondence to functional response models with many covariates. We
reformulate the problem as a nonparametric function estimation problem under the
notion of functional sparsity. Sparsity encapsulates interpretability in a regression
with multiple inputs, and the problem of sparse estimation is well understood in
the context of variable selection in a parametric setting. For nonparametric models,
interpretability not only concerns the number of covariates involved, but also the
zero regions in the functional form. Thus, the sparsity consideration is much more
complex. To distinguish the types of sparsity in nonparametric models, we refer
to the former as global sparsity and to the latter as local sparsity, both of which
constitute functional sparsity. Most existing methods focus on directly extending
the framework of parametric sparsity for linear models to nonparametric models to
address one type of sparsity, but not both. We develop a penalized estimation pro-
cedure that simultaneously addresses both types of sparsity in a unified framework.
We establish the asymptotic properties of estimation consistency and sparsistency
of the proposed method. Our method is illustrated by means of a simulation study
and real-data analysis, and is shown to outperform existing methods in terms of
identifying both local and global sparsity.
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1. Introduction

We study the simultaneous domain selection problem for varying coefficient
models as a functional regression model for longitudinal data, where the response
variable changes over time, recorded for multiple subjects with multiple predic-
tors. The varying coefficient models (Hastie and Tibshirani (1993); Hoover et al.
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(1998)) are defined as
y(t) =" (H)B(L) +e(t), (1.1)

where y(t) is the response at time ¢, z(t) = (z1(t),...,2,(t))T is a vector of
predictors at time ¢, €(t) is an error process independent of x(t), and B3(t) =
(Bi(1),...,Bp(1))T is a vector of time-varying regression coefficient functions.
This model assumes a linear relationship between the response and predictors
at each observation time point, but allows the coefficients to vary over time,
thus greatly enhancing the utility of the standard linear model formulation. For
generality, we consider the predictors to be functions. However, note that the
varying coefficient models are equally applicable when the predictors take scalar
values.

The domain selection problem in functional regression is known to be intrin-
sically difficult (Miller (2016)). Most prior studies examine the problem as a
functional linear regression with a scalar response and a single functional covari-
ate. Hall and Hooker (2016) formulated the problem as a truncated regression
model with a single unknown domain, in order to study the identifiability issues
in nonparametric function estimation. James, Wang and Zhu (2009) approached
the problem from the viewpoint of sparsity estimation as interpretable solutions.
Using a grid approximation, they imposed parametric sparsity constraints on
the derivatives of the underlying function at a large number of grid points, which
produces an estimate that distinguishes between zero and non-zero regions. How-
ever, as Zhou, Wang and Wang (2013) have noted, the overlapping contribution
of each coefficient to the neighboring regions means the independent shrinkage
of the coefficients does not necessarily induce zero values in the coefficient func-
tion, in general. Thus, the procedure tends to over-penalize. As a remedy, Zhou,
Wang and Wang (2013) suggested a two-step estimation procedure. Wang and
Kai (2015) studied a similar problem under a standard nonparametric regression,
suggesting the need to distinguish the functional features from the parametric
variable selection.

We consider the regression problem under a functional response variable with
varying coefficient models, involving multiple domain selection under the general
setting, where the true number of covariates is unknown. Although the views
and approaches adopted in prior studies are quite different, the domain selection
problem can be motivated as a means to enhance the interpretability of the
model selection in nonparametric models. In this regard, we share the view that
considering some form of sparsity could be useful. For nonparametric models,
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however, interpretability not only concerns the number of covariates involved
(Wang, Li and Huang (2008); Noh and Park (2010); Wei, Huang and Li (2011);
Xue and Qu (2012)), but also the zero regions in the functional form (James,
Wang and Zhu (2009); Zhou, Wang and Wang (2013)). To distinguish between
the types of sparsity in nonparametric models, we refer to the former as global
sparsity and to the latter as local sparsity, both of which constitute functional
sparsity (Tu et al. (2012); Wang and Kai (2015)). More formally, a function
has global sparsity if it is zero over the entire domain. This indicates that the
corresponding covariate is irrelevant to the response variable. A function has
local sparsity if it is nonzero, but remains zero for a set of intervals. Thus, this
identifies an inactive period for the corresponding covariate. These notions of
interpretability are used informally in a separate context of the analysis. Thus,
the significance of local sparsity estimation has not been well recognized.

We reformulate the domain selection problem as a nonparametric function
estimation problem under the unified theme of functional sparsity. Then, we pro-
pose a one-step penalized estimation procedure that automatically determines
the type of functional sparsity (i.e., local or global). Although we distinguish
between the two types of sparsity on a conceptual level, our unified formulation
does not require this distinction for the implementation. We directly exploit the
fact that global sparsity is a special case of local sparsity from the viewpoint
of domain selection, but not the other way around. Furthermore, the consis-
tency of the coefficient function estimation does not necessarily provide us with
information on local sparsity. This feature distinguishes our approach from the
majority of existing methods that target global sparsity, such as (Wei, Huang
and Li (2011)). Note that there is a fundamental difference in the underlying as-
sumption on sparsity between parametric and nonparametric models, because we
focus on function estimation with dependent variables over an unknown domain.
This difference was also recognized by Kneip, Pol and Sarda (2016). Moreover,
for parametric sparsity, an underlying sparse vector is specified. In contrast,
the true sparse representation for functional sparsity may not be well defined
in the function approximation. These differences pose different conceptual chal-
lenges in the development. Our proposed penalized procedure resembles a type
of parametric sparsity estimation. However, our analysis is not comparable with
those that focus on high-dimensional parametric sparsity estimation (e.g., James,
Wang and Zhu (2009)).

We provide a theoretical analysis of the proposed method. In particular, we
show that the local sparsity can be recovered consistently, and even diluted with
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the problem of global sparsity estimation. We study the properties of our pro-
posed method under the standard assumptions on nonparametric smooth func-
tion estimation, and exploit the functional property in a more natural manner. In
this way, we contribute to bridging the gap between parametric variable selection
and nonparametric functional sparsity in a coherent manner.

Our formulation is given in Section 2. Our approach is a one-step procedure
that allows us to directly control the functional sparsity through the coefficient
functions themselves, rather than using a pointwise evaluation. In Section 3,
we study the large-sample properties of the proposed method and establish the
consistency and sparsistency of the function estimates. Section 4 describes our
simulation studies under different scenarios, and a real-data analysis is provided
in Section 5, demonstrating the utility of functional sparsity in relation to the
interpretability of the results. All technical assumptions and proofs are provided
in the online Supplementary Material.

2. Methodology

Suppose that, for n randomly selected subjects, observations of the kth sub-
ject are obtained at {tx;,l = 1,...,nx}, and the measurements satisfy the varying
coefficient linear model relationship in (1.1):

yr(te) = f, (te) B(twr) + ex(thr), (2.1)
where x (tr) = (21(tk); - - -, 2p(trr))T and yg(tr) is the response of the kth sub-
ject at tg;. We assume that §;(t), for i = 1,..., p, are smooth coefficient functions

with bounded second derivatives for ¢ € 7. We use spline approximations to rep-
resent (3(t) and formulate a constrained optimization problem for the parameter
estimation.

2.1. Least squares estimation under a b-spline approximation

B-spline approximations are widely used to estimate smooth nonparametric
functions. For a detailed discussion on B-splines, see de Boor (2001) and Schu-
maker (1981). Specifically, for a smooth function 5(t), t € [0, 1], its approximant
can be written as

J
Bty =" a;B;(0), (2.2)
j=1

where {B;(-),j =1,...,J} is a group of B-spline basis functions of degree d > 1
and knots 0 =79 < m < --- < ng < nr4+1 = 1. Note that K is the number of
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interior knots and J = K +d + 1. Here, we adopt the definition of a B-spline as
stated in Definition 4.12 of Schumaker (1981). In general, the performance of B-
spline approximations has been well studied. For instance, under mild conditions,
there exists a function 3(t) of the form (2.2), such that the approximation error
goes to zero. See Theorem 6.27 of Schumaker (1981) for further detail.

We write the B-spline approximation for each smooth nonparametric coeffi-

cient function as
Ji
5 t) = ZaijBij(t) = B,-(t)Tai, t e [O, 1}, 7= 1, ey Py (23)

where Bz(t) = (Bil(t), ey BiJi (t))T, o = (Oéil, ey az‘ji)T, and JZ = Ki +d+1.
Here, K; is the number of interior knots for Ei(t), which may vary over i. For
simplicity, we assume that the knots are evenly distributed over [0, 1]. Define a
block diagonal matrix B(t) as

B(t) = diag{B{ (t),..., B} (t)}.
Using (2.3) in the varying coefficient model (2.1) leads to
yi(trr) = @, (tr) Bte) o + en(trr) = U (ti) o + ex(tra) ,

where Uy (tr) = @i (t)B(tw) and o = (e, ..., ag)T. The least squares crite-

rion of a (Huang, Wu and Zhou (2002)) is defined as

n
= willye — Usa3,

k=1
where Y = (yk(tkl), e ,yk(tknk))T and Uk = (Z/IkT(tkl), e ,Ug(tknk))T. The
weights wy, for k = 1,...,n, are usually chosen as wy = 1 or wy, = 1/n;, (Huang,

Wu and Zhou (2004)). In this study, for simplicity, we set equal weights to every
subject (i.e., wy = 1). Setting U = (U{,...,.UN)T and y = (y7,...,y)7T, the
least squares criterion /(a) can be written in matrix form; that is, l(a) = ||y —
Uc|3. Huang, Wu and Zhou (2004) proved that, under certain assumptions, the
matrix UTU is invertible for fixed p. Consequently, [(c) has a unique minimizer,

arse = (UTU) Uy,
which is the least squares estimator (LSE) of a. Thus, the LSEs of the coefficient

functions are

Ji
ALSE' LSE' .
B; E B;; 1=1,...,p,
J=1

SLSE

where a;;°" denotes an entry of arsg. Here, we take a marginal approach
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Figure 1. Top: A graphical display of a smooth function (solid thick line) and two
approximating functions from a family of cubic B-spline basis functions with nine equally
spaced interior knots. Bottom: A graphical display of the set of B-spline functions used
in the approximation.

(Wu and Zhang (2006)) to construct the LSE criterion, without accounting for
within-subject correlation. Proper modeling of the covariance structure would
require further parametric assumptions (Diggle et al. (1994)) or nonparametric
smoothing techniques (Wu and Zhang (2006)), which are not the focus of this
study.

2.2. B-spline approximation and sparsity

From B-spline approximation theory, there exists a function of the form given
in (2.2) that is very close to the true underlying function. However, this function
is not capable of characterizing the functional sparsity of the true function. Here,
the term “functional sparsity” is a generalization of the “parameter sparsity” in
regression models; see Wang and Kai (2015) for further detail.

For better illustration, we consider a toy example in Figure 1. Here, in
the top panel, a smooth function 8(¢) (thick line) with two spline approximants
(dashed, dotted) is depicted. In the bottom panel, a family of cubic B-spline basis
functions with nine interior knots is shown. The “best” fitted function from the
Lo criterion is shown as the dashed line in the upper panel, which signifies good
performance of the approximation. Furthermore, §(t) is zero on [0, 0.1] and
[0.9, 1], but its approximation is not zero, except for some singletons. From this
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aspect, the approximation does not capture the sparsity of the true underlying
function. In contrast, the dotted curve depicted in the upper panel, also a linear
combination of the B-spline basis functions, automatically corrects the function
to reflect local sparsity, with almost indistinguishable performance.

The other extreme case arises when the function is close to zero, for part
of or the whole of the interval. Our goal is to pursue a sparse solution, up to
a function approximation error, within the linear space spanned by the B-spline
basis functions. From a nonparametric estimation viewpoint, such a solution
preserves the statistical accuracy and enhances interpretability; in fact, it is
indistinguishable from the true underlying function.

Inspired by the above observations on functional sparsity, we develop a new
procedure that equips the least squares criterion with a regularization term. Usu-
ally, the regularization on parameters is expressed in terms of a penalty function.
Below, we introduce a composite penalty based on the B-spline approximation
of the coefficient functions.

2.3. Penalized least squares estimation with a composite penalty

It is not too difficult to see that global sparsity corresponds to the group
variable selection of a;, as a whole. To achieve local sparsity, these estimates need
to be adjusted so that some of the estimates can be exactly zero. As demonstrated
in Section 2.2, for the B-spline approximation, when o;j = 0 for j = [, ..., l4d, the
approximation 3 (t) = 0 on the interval [m_1,7;). In particular, when o; = 0 for
all 7, g(t) = 0 over the entire domain of [0, M]. This suggests local sparsity needs
to be imposed at the level of a group of neighboring coefficients. To incorporate
global sparsity in the varying coefficient model, we require another layer for the
group structure. These considerations lead to a composite penalty, defined as

follows:
K41 [m+d K
Li(e) = D lail ]
i=1 m=1 \j=m
which can be written simply as
p G
Li(a) =) llaa,ll, (2.4)
i=1 g=1
where aa,, = (g, - - -, Qi(g4a))’s for i = 1,...,p, g = 1,...,G;. The number of

groups for the ith coefficient function is G; = K; + 1.
Equipping the least squares criterion with the penalty defined in (2.4), we
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obtain the following penalized least squares (PLS) criterion:

p G
pll@) = ly—UalF+2) D laa,

i=1 g=1

I (2.5)

where A > 0 and 0 < v < 1 are tuning parameters. The proposed penalized
LSE (PLSE) & = a(A, ) is defined as the minimizer of pl(e). Consequently, the
functional estimate of 3;(t) is given by 53;(t) = B;(t)Tai;, where &; is a subvector
of a.

Note that, for v € (0, 1), the penalized criterion pl(«) is not a convex function
of . Thus, we implement the following iterative algorithm, proposed by Huang
et al. (2009), to minimize (2.5):

Step 1. Obtain an initial value a9,

Step 2. For a given tuning parameter \,, and for [ = 1,2,..., compute
1 1—7\" -1 :
Ggg):<’7> ||anle )||¥, fori=1,...,p, g=1,...,G;,
Ty i

where 7, = (Ay) /=07 (=7) (1 — ).

Step 3. Compute
G

ol = argmin [y — Ual3 + 33 (00) " aa,
i=1 g=1

1.

Step 4. Repeat steps 2 and 3 until convergence.

Note that, unlike the standard LASSO method, step 3 requires an overlapping
LASSO. Because the grouping does not change at each iteration, this can be
solved easily using a simple linear transformation with a grouping indicator ma-
trix for a.

The motivation for this algorithm is a reparametrization of the nonconvex
optimization problem into a complex optimization problem in terms of (6, 7),
which reaches an equivalent solution. In essence, the suggested algorithm per-
forms an iteratively reweighted LASSO until convergence. Thus, steps 2 and 3
can be expressed in more compact form. Given (\,,7),

Step 1. Obtain an initial value a(9).
Step 2. Forl =1,2,..., define VZ-(é) = ’yHag;l)H?_l, fori=1,...,p;9g=1,...,p.

Step 3. Solve
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O = argmin|ly - Uall3 + A, ZZ Jea,,
i=1 g=1

Step 4. Repeat steps 2 and 3 until convergence.

2.4. Variance estimation

In this section, we consider the problem of finding the asymptotic variance
of our proposed estimator of the coefficient functions. Let aig denote the nonzero
estimators of the coefficients «;;. Then from Step 3 in the aforementioned algo-
rithm and the Karush—Kuhn—Tucker condition, we have

_ 1\

ag = (UgUS + 295) Ugy,
where Ug is a sub-matrix of U, with each column corresponding to the selected
ajj, and Og is a diagonal matrix,

S g
g:Aig3j Vg

||

diag , for a;; # 0

In the absence of covariance modeling of y, we further approximate the

% can be estimated by 2 = |ly — Ua|3/n. Thus,

variance of y by o2I, where o
similar to Wang, Li and Huang (2008), the asymptotic variance of &g may be

expressed as

_ 1 1\
avar(ag) = (UgUs + 2@5) UgUS (UgUS + 2@5) 52

Let B;(t) be the i-th row of the basis matrix B(t). Thus, the functional estimate of
Bi(t) can be written as gl(t) = B;(t)a. Correspondingly, the asymptotic variance
of fj\l(t) is

avar(Bi(t)) = B;s(t)avar(aig)Bls(t), (2.6)

where B;g(t) is a sub-vector of B;(t), with each element corresponding to the se-
lected c;;. Note that the estimator of a depends on the choice of A; thus, asymp-
totic variances of g and B\Z (t) are also tuning-parameter dependent. Although
this is a naive estimator, as shown in our numerical studies, its approximation is
nevertheless found to be effective in capturing the level of variability. Alterna-
tively, we can estimate the full covariance function nonparametrically. However,
owing to the additional complexity in the implementation with irregular design
points, this is not very practical. The literature takes a more pragmatic approach
of using a random-effects formulation (e.g., Wu and Zhang (2006)). However, the
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difficulty of selecting the covariates in the random-effects terms under the cur-
rent context of sparse function estimation outweighs the potential benefits; thus,
we do not pursue this. Instead, we investigated using a fully nonparametric
approach to estimate the covariance surface by means of a functional principal
component analysis (Yao, Miiller and Wang (2005)). However, our numerical
study did not identify a clear advantage to this approach. Further investigation
is left for future work.

2.5. Choice of tuning parameters

To fit the model using a finite sample, we consider how to calibrate the
tuning parameters. The tuning parameter A > 0 balances the trade-off between
the goodness-of-fit and the model complexity. When A is large, we have strong
penalization, and thus are more likely to obtain a sparse solution with poor
model fitting. With a small A\, we would select more variables and obtain better
estimation results, but lose control of the functional sparsity. In the classical
nonparametric approaches, criteria such as the AIC, BIC, and GCV (Wahba
(1990)) are commonly used for model selection. Previous analyses noted that
the AIC and GCV tend to select more variables, and thus are better suited to
predictions. We use a BIC-type criterion in our analysis, reported in Section
4. To account for the increasing number of parameters when comparing models
with varying dimensions, we use the extended BIC (EBIC) (Huang, Horowitz
and Wei (2010)), which also penalizes the size of the full model. The EBIC is
given by

EBIC() = log (uy - Uau)n%) L KO)log(N) _ vK()log(SS2, )

N N N ’
where N = >}, ng, @(\) is the penalized estimator of e, given A, and K () is
the total number of nonzero estimates in &(A). Then, > ° | J; = >F_ (K;+d+1)

is the total number of parameters in the full model. Note that when v = 0,
the EBIC is the same as the BIC, but when v > 0, the EBIC imposes greater
penalty on overfitting. We use v = 0.5, as suggested in (Huang, Horowitz and
Wei (2010)).

Note that the tuning parameter v influences the performance of the group
selection. A value of v that is too small or too large could lead to inefficient
group variable selection. When ~ is close to 1, (2.4) is close to the L; penalty.
Consequently, the minimizer of (2.5) may not achieve functional sparsity in its
solution. Unlike A, however, 0 < v < 1 is more often viewed as a higher-level
model parameter (often set equal to 0.5, (Huang et al. (2009))), similarly to how
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the LASSO (v = 1) estimator may be chosen over the Ridge (7 = 2) estimator
in advance. Our theoretical results suggest that v is closely related to A, in the
asymptotic sense, similarly to (Huang et al. (2009); Knight and Fu (2000)). Thus
an adaptive selection of A in a finite sample is expected to reflect this relation
automatically. This is confirmed numerically (see Section 4), suggesting a value
of v = 0.5 as a rule of thumb.

In addition, because the parametric model formulation arises as an approxi-
mation to the nonparametric model, the parameter space to explore is not fixed,
and is potentially very large. Even with known covariates, the spline approxima-
tion with the fully adaptive choice of the degree, knot locations and number of
knots is impractical. Following a similar strategy to that in the literature (e.g.,
Huang, Wu and Zhou (2004); Wang, Li and Huang (2008)), we use equally spaced
knots with cubic splines and select the number of knots K adaptively. We at-
tempted to simultaneously optimize the parameter K inside the model selection
criterion. However, we found that the penalty was not effective in controlling
the systematic increase in the parameter space and that the criterion favored
the smallest possible K in the majority of cases. Instead, we select the num-
ber of knots K adaptively to the sample using 10-fold cross-validation without a
penalty, leaving the potentially adaptive choice of sparsity to be controlled solely
by the other tuning parameters.

3. Large-Sample Properties

We study the large-sample properties of our proposed PLSE Bi(t), for ¢ =
1,...,p, when the number of sampled subjects n goes to infinity. In the proofs, we
assume that the number of observations for each subject ny is bounded. However,
a similar argument can be applied to the case when nj increases to infinity with
n (Huang, Wu and Zhou (2004)). The number of interior knots increases with n;
therefore, we write K; = Kj, for each ¢ = 1,...,p, and denote K,, = maxo<;<,K;.
The standard regularity conditions for varying coefficient linear models (Huang,
Wu and Zhou (2004); Wang, Li and Huang (2008)) are provided in the online
Supplementary Material.

For mathematical convenience, we classify all group indices {1,...,G;} for
the coefficient function S;(t) into two groups, defined as

A = {g : max | Bi(t) [> C’iKJQ},

t€[ng—1,14)
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Aip = {g :0< max | Bi() [ CiKEQ}a

t€[ng—1,14)
for some positive constant C;. For sufficiently large C;, the zero region {t : 5;(t) =
0} is a subset of Uge 4,,[1g—1,7g)-

Theorem 6.27 of Schumaker (1981) shows that any smooth coefficient func-
tion (;(t) with a bounded second derivative has a B-spline approximant B;(t) of
the form given in (2.3) and that the approximation error is of order O(K; ?).
We denote the sparse modification introduced in Wang and Kai (2015) by g,?(t),
with coefficients a’.

Note that for a vector-valued square integrable function A(t) = (ai(t),...,
am(t))T, with t € [0,M], ||All2 denotes the Lo-norm defined by |[|Alz =
(7 llar]|2)Y/2, where ||a||2 is the usual Lo-norm in the function space.

Next, we establish the consistency of our proposed penalized estimator.

Theorem 1 (Consistency). Suppose that assumptions (A1)—(A6) in the online
Supplementary Material are satisfied. For some 0 < v < 1 and K, = O(n1/5),
we have the following assumption:

(S1) For a° defined above,

p
A(d+ D27 &,

1=1 geA;

1/2
?(7—1) _ O(nl/Q) )

If (S1) holds, then we have ||B — B2 = 0,(n=2/%), where B = (B1,...,58)".

Assumption (S1) provides a bound on the rate of A\, growing with n. The
convergence rate established in Theorem 1 is essentially optimal (Stone (1982)).
In fact, the result remains valid for more general classes of functions, for example,
the collection of functions the derivatives of which satisfy the Holder condition.
Next, Theorem 2 states that our proposed penalized method is consistent in
detecting functional sparsity. That is, if §;(t) = 0 for ¢ € [m_1,m), then the
proposed estimator produces @ 4, = 0 to identify local sparsity with probability
converging to one. In addition, B;(¢) = 0 for all ¢, then the proposed method
yields aq,, =0, for all I =1,..., K; + 1, with probability converging to one.

Theorem 2 (Sparsistency). Consider the following assumption:
(S2) MK /2 — 0.

If (S2) and the assumptions in Theorem 1 are satisfied, then we have for every
i,i=1,...,p, (g, : g € Aia) = 0, with probability converging to one as n goes
to oo.
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It is not surprising that our proposed method may yield a slightly more sparse
functional estimate. This is because, for all intervals with indices belonging to
A2, the value of §;(t) is quite small (the same order as the optimal rate) and is
indistinguishable from zeros. Moreover, such intervals can be further partitioned
into two groups, including the intervals on which the function is zero and the
intervals on which the function is not always zero. However, the total length of
the latter converges to zero as n increases.

The above discussion is related to the notion of selection consistency, an im-
portant and well-studied problem of variable selection under parametric settings;
for instance, see (Zhao and Yu (2006)). However, for nonparametric models,
particularly when local sparsity exists, selection consistency has not been widely
studied. For the convenience of our discussion, we begin with some notation. For
a coefficient function 5(t), let N(3) and S(8) denote the zero region and nonzero
region, respectively. The (closed) support of 3, denoted by C(f), is defined as
the closure of the nonzero region S(f). Assume that N(S) has finitely many
singletons (as zero crossing), and that C'(3) can be expressed as a finite union of
closed intervals.

If B(ty) # 0, for some ty, the consistency property in Theorem 1 and the
smoothness constraint of the function and its estimate ensure that B(to) # 0
for sufficiently large n. However, such a result may not be of great interest,
given that [(¢) lies in an infinite, not necessarily countable dimensional space.
Next, consider a simple case of an interval [a,b] C C(8) and S(t) # 0, for
all t € [a,b]. Thus, S(t) is bounded away from zero over [a,b]. Similarly, as
a consequence of Theorem 1, B(t) is also bounded away from zero over |[a,b]
for sufficiently large n. A more challenging case arises when f(a) = 0 and
B(t) # 0 over (a,b]. We further assume that there is a sequence of knots such
that mp, < a < Mgy1-+ < M < b < 1. The subinterval formed by two
adjacent knots is either in A;; or A;2. The total length of the subintervals in A;o
converges to zero as n increases. For those intervals in A;1, a suitable choice of
the constant C; suggests that the estimated function deviates from zero.

4. Simulation Study

We conducted simulation studies to assess the performance of our proposed
method, with the main emphasis on understanding the effects of the tuning pa-
rameters and the increasing dimension p on the functional sparsity estimation.

We consider three scenarios. In Scenario 1, we choose our tuning parameters
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(A, K) as described in Section 2.5, and compare the results under various ~-
values. In Scenario 2, we assess the impact of the increasing dimension p, given
v, assuming the number of relevant covariates, pg, is set to four. In Scenario 3,
we assess the performance with respect to K to study the effect of the adaptive
choice of knots on the sparsity estimation. In addition, the relative performance
is measured against that of the LSE and LASSO methods. The simulation results
are summarized based on 400 replications. In each iteration, subjects are gener-
ated randomly according to the following varying coeflicient model specification:

P
yk(tr) = Zl‘ki(tkz)ﬁz(tkz) +ep(te), =1,...,m, k=12...,n,

i=1
where z1(t) is a constant—equal to one, x;(t), for i = 2,3, 4, are similar to those
considered in Huang, Wu and Zhou (2002): z2(t) is a uniform random vari-
able over [4t,4t + 2]; x3(t), conditioning on z2(t), is a normal random variable
with mean zero and variance (1 + x2(t))/(2 + x2(t)); and z4(t), independent
of x9(t) and z3(t), is Bernoulli(0.6). The number of measurements available
varies across subjects. For each subject, a sequence of 40 possible observation
time points {(¢ — 0.5)/40 : ¢ = 1,...,40} is considered, but each time point
has a chance of 0.4 being selected. We further added a random perturbation
from U(—0.5/40,0.5/40) to each observation time. The random errors eg(tx)
are independent of the predictors, but include serial correlation and a measure-
ment error of €x(t) = elgl)(t) + 61(62) (t). The serial correlation component € (t)
is generated from a Gaussian process with mean zero and covariance function
cov(e,(gl)(t), e,(:)(s)) = exp(—10|t — s|) for the same subject k, and is uncorrelated
for different subjects. Then, e,(f) (t) follows a normal distribution with mean zero
and variance one, and is independent and identically distributed (i.i.d.).

The nonzero coeflicient functions used in all scenarios are displayed in Figure
2. The coefficient functions do not belong to the B-spline function space.

In Scenario 1, we add a redundant variable x5(¢) from a normal distribution
with mean zero and variance 0.1 exp(t) to illustrate global sparsity. In Scenario 2,
with increasing p, the extra predictors with zero coefficient functions are defined
as x;(t) = Zi(t) +3/203°0_, x;(t), for i = 6,...,p, where Z;(t) is i.i.d. from a
standard normal distribution.

The overall performance is measured in terms of bias and the mean integrated
squared error (MISE), based on R = 400 repetitions, computed as

—

R
Bias(u) = %ZB}“’(U) _Biw), i=1,....puel01],
r=1
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Figure 2. A graphical illustration of the coefficient functions §;, for i = 1,..
left to right, top to bottom).

R 1
MISE = 13- [ 0w - Biw)Pdu, i=1,
r=1"0

where B\Z-(r) is the estimated coefficient function from the rth repeated study.
In addition, we use the following summary measures to compare the functional
sparsity:

(a) Cp: average number of correctly identified constant zero-coefficient functions

(b) Iy: average number of incorrectly identified constant zero-coefficient func-
tions

(c) Ci0: average length of correctly identified zero intervals for the ith coefficient
function

(d) I; 0: average length of incorrectly identified zero intervals for the ith coeffi-
cient function.

Note that (a) and (b) summarize global sparsity, whereas (c) and (d) summarize
local sparsity.
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Figure 3. Comparison of the bias of the coefficient functions based on the LSE (dot-
dashed), the LASSO (dashed), and PLSEy 5 (solid) in Scenario 1, with n = 200. Note
that PLSEq 5 has zero bias in estimating the zero coefficient function ().

Scenario 1: Effect of v

Here, we consider the varying coefficient model with p = 5 and two differ-
ent numbers of subjects, n = 100,200. In each iteration, our proposed PLSE
method is implemented with v = 0.25,0.35,0.5, and 0.75. The MISE values for
each coefficient function are summarized in Table 1. In general, as n increases,
all methods yield decreasing MISE values. Notably, the results for the PLSE in-
dicate comparable performance across different «y; in fact, the PLSE and LASSO
methods show similar performance in terms of the function estimation. In ad-
dition, the PLSE with v = 0.35,0.50 successfully identifies the global sparsity
of B5(-) with zero MISE values for both choices of n, as does the PLSE with
~v = 0.75 for n = 200. The bias of PLSE( 5 (PLSE with v = 0.5) and the LASSO
and LSE methods with n = 200 is compared in Figure 3, showing that PLSEq 5
has zero bias in estimating [5(-).

Table 2 describes the performance when identifying local sparsity. The true
values of sparsity in terms of C; o and I; o are given in the last row of true model
as a reference. Hence, the closer the values of C; o are to those of the true model,
the better. In contrast, the value of I; o in the true model is the maximum error
each method can make; thus, the smaller I; o, the better. In general, the LASSO
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Table 1. Comparison of MISE for each coefficient function in Scenario 1.
Method MISE
P o Bs B Bs
n = 100
LSE 0.9519 0.0825 0.0365 0.1145 1.3199
LASSO 2.9156 0.1636 0.0314 0.0591 0.0114
PLSEg925 1.1115 0.0686 0.0281 0.0613 0.1330
PLSEp35 1.2199 0.0633 0.0307 0.0440 0
PLSEps 1.3156 0.0674 0.0319 0.0459 O
PLSEp 75 1.8267 0.0948 0.0317 0.0471 0.0005
n = 200
LSE 0.4232  0.0367 0.0165 0.0563 0.5745
LASSO 1.4561 0.0845 0.0153 0.0299 0.0041
PLSEgp95 0.7259 0.0424 0.0138 0.0329 0.0731
PLSEq35 0.6421 0.0351 0.0152 0.0235 0
PLSEps 0.7193 0.0382 0.0166 0.0250 O
PLSEp75 0.8615 0.0469 0.0157 0.0251 0

Table 2. Sparsity summary measures (a)—(d) in Scenario 1. Here, for the true model,
Cio, for i =1,...,6, are the lengths of the zero intervals, I, o denotes the length of a
nonezero interval, Cy is the number of zero-coefficient functions, and Iy is the number
of nonzero-coefficient functions.

Method  Cio Lip Coo Iog C3po Iso Capo Iiog  Cso Isg Co Ip
n = 100
LSE 0 0 O 0 0 0 0 0 0 0 O 0
LASSO 0 0 0.0219 0 0 0 0.0616 0.0009 0.8799 0 0.5675 0
PLSE( o5 0 0 0.1468 0.0003 O 0 0.1626 0.0004 0.8005 0 0.4975 0
PLSEq 35 0 0 0.3332 0.0048 O 0 0.3723 0.0062 1.0000 0 1 0
PLSEg 5 0 0 0.3360 0.0040 O 0 0.3809 0.0072 1.0000 0 1 0
PLSEq 75 0 0 0.2559 0.0005 O 0 0.3453 0.0042 0.9990 0 0.9975 0
n = 200
LSE 0 0 O 0 0 0 0 0 0 0 O 0
LASSO 0 0 0.0166 0 0 0 0.0736 0.0004 0.9087 0 0.6850 0
PLSE( o5 0 0 0.1299 0.0001 O 0 0.1433 0.0003 0.7510 0O 0.4175 0
PLSEg 35 0 0 0.3178 0.0022 O 0 0.3512 0.0030 1.0000 O 1 0
PLSEg 5 0 0 0.3343 0.0025 O 0 0.3735 0.0047 1.0000 0 1 0
PLSEg 75 0 0 0.2696 0.0005 O 0 0.3462 0.0026 1.0000 0 1 0
true model 0 1 0.4000 0.6000 O 1 0.4286 0.5714 1 0 1 4

and PLSE methods show better performance in terms of functional sparsity. In
addition, it can be seen that the PLSE with v = 0.35,0.5,0.75 has an advantage
in achieving both global and local sparsity, as compared with the LSE and LASSO
methods. The case of v = 0.5 performs slightly better than the others. For the
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Figure 4. Comparison of the bias of the nonzero coefficient functions g1, 82, 83, and
Ba (from left to right) based on the LSE (dot-dashed), LASSO (dashed), and PLSEy 5
(solid), for p =5 (top row), p = 20 (middle), and p = 50 (bottom) in Scenario 2.

remaining part, we use 7 = 0.5 for the comparisons.

Scenario 2: Effect of dimension p

In this scenario, we study the effect on the performance of increasing p, for a
given sample size. In particular, we consider the three choices of p = 5, 20, and 50.
Figure 4 and Table 3 show the results for the bias and MISE, respectively. The
last column of Tables 3 shows the maximum MISE among the zero-coefficient
functions as the selected variables vary between samples. Compared with the
LSE and LASSO, the PLSE method shows remarkable stability in terms of per-
formance over the increasing dimension p.

The performance for the sparsity is summarized in Table 4. The additional
two columns in C;o and [;o are added to summarize the performance on all
other redundant variables within an interval range of [min;>g C; 0, max;>¢ C; o]
and [min;>¢ I; 0, max;>¢ I; o). Together with the global sparsity measure in Cy
and Iy, we conclude that PLSEq 5 systematically outperforms the other methods

for all dimensions.
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Table 3. Comparison of MISE for each coefficient function with p = 5,20, and 50 in
Scenario 2.

Method MISE max;>¢ MISE;
b1 B2 B3 Ba Bs
P=35
LSE 0.4232 0.0367 0.0165 0.0563 0.5745 —

LASSO 1.4561 0.0845 0.0153 0.0299 0.0041 —
PLSEps  0.7193 0.0382 0.0166 0.0250 O —

p=20
LSE 0.5157 0.0434 0.0197 0.0612 0.6694 0.0151
LASSO  17.8758 0.8520 0.0331 0.0347 0 0.0016
PLSEq 5 0.7422 0.0391 0.0166 0.0240 O 2.1886e-05
p =350
LSE 0.8269 0.0724 0.0292 0.0897 1.1484 0.0281
LASSO  35.1543 1.6475 0.0497 0.0415 0 8.4758e-04
PLSEq 5 0.7360 0.0396 0.0149 0.0205 O 2.7551e-05

Scenario 3: Effect of knots selection

The variation in the selection of the knots is expected to mainly influence the
estimation of local sparsity. Increasing the number of knots helps to identify the
boundary of local sparsity, but runs the risk of over-fitting nonzero estimates.
Fine-tuning this parameter is much more delicate, because all model selection
criteria are developed to control the squared error loss (MISE) as a goodness-
of-fit, and thus are insensitive to the loss of missing local sparsity. That is,
the balance between global and local sparsity is beyond the usual control of the
bias-variance trade-off, and developing a new measure is still an open problem.
Our knot selection based on cross-validation is essentially tuned toward global
sparsity. Here, we assess the performance of our proposed estimator from the
point of view of robustness to these variations. For comparison, we include the
results for fixed knots (K = 11) across the sample.

Figure 5 and Table 5 summarize the bias and MISE. The sparsity summary is
given in Table 6. We conclude that the overall performance is fairly comparable
to that in Scenario 2, with no major concern over the sensitivity of the knots
selection in the comparison of the results.

In addition, in order to assess the usefulness of the asymptotic formula for
the standard errors in (2.6), we calculate both the asymptotic and the empirical
standard errors based on 400 repetitions. Then, we compare these standard
errors in Figure 6 for an adaptive number of knots, and in Figure 7 for a fixed



TU, PARK AND WANG

458

Table 4. Sparsity summary measures (a)—(d) for Scenario 2. Here, for the true model, I; ¢, for ¢ = 1,...,4, are the lengths of
the nonzero intervals and C; o are the lengths of the zero intervals.

Method Cio Lo Coo Lo Czo Iso Cao Iso Cso Isp [Ci(rénn), C’,(I()rlax)] [Ii(rgnn)Ji(Iglax)} Co Iy
p=>5
LSE 0 0 0 0 0 0 0 0 0 0 — — 0 0
LASSO 0 0 0.0166 0O 0 0 0.0736 0.0004 0.9087 O — — 0.6850 0
PLSEg 5 0 0 0.3343 0.0025 O 0 0.3735 0.0047 1 0 — — 1 0
true model 0 1 0.4000 0.6000 O 1 04286 0.5714 1 0 — — 1 4
p=20
LSE 0 0 0 0 0 0 0 0 0 0 0, 0 [0, 0] 0 0
LASSO 0 0 0.0060 0O 0 0 0.2398 0.0027 1 0 [0.4128, 0.5309] [0, 0] 2.1125 0
PLSEg 5 0 0 0.3286 0.0015 O 0 0.3754 0.0056 1 0 [0.9985, 1.0000] [0, 0] 15.9675 0
true model 0 1 0.4000 0.6000 0 1 0.4286 0.5714 1 0 L, 1 0, 0] 16 1
p =50
LSE 0 0 0 0 0 0 0 0 0 0 0, 0 [0, 0] 0 0
LASSO 0 0 0.0005 0O 0 0 0.2949 0.0018 1 0 [0.6039, 0.8226] [0, 0] 20.4425 0
PLSEg 5 0 0 0.3119 0.0005 O 0 0.3680 0.0015 1 0 [0.9971, 1.0000] [0, 0] 45.9000 0
true model 0 1 0.4000 0.6000 0 1 0.4286 0.5714 1 0 L, 1 0, 0] 16 1
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Figure 5. Comparison of the bias of the nonzero coefficient functions g1, 82, 83, and
Ba (from left to right) based on the LSE (dot-dashed), LASSO (dashed), and PLSE 5

(solid), for p =5 (top row), p = 20 (middle), and p = 50 (bottom) in Scenario 3.

Table 5. Comparison of MISE for each coefficient function in Scenario 3 . Here, the
number of knots is fixed at 11.

Method MISE max;>e MISEZ
b1 B2 B3 B Bs
p=>5
LSE 0.2783 0.0253 0.0108 0.0379 0.3888 —
LASSO 1.2993 0.0753 0.0096 0.0195 0.0029 —
PLSEg 5 0.6888 0.0405 0.0107 0.0154 O —
p=20
LSE 0.3376 0.0292 0.0127 0.0408 0.4429 0.0097
LASSO 11.6604 0.5420 0.0199 0.0211 O 0.0011
PLSEg 5 0.7180 0.0412 0.0114 0.0156 O 2.1444e-05
p=>50
LSE 0.4521 0.0387 0.0167 0.0528 0.6608 0.0138
LASSO  30.2698 1.3683 0.0352 0.0290 0 7.0743e-04
PLSEg 5 0.7279 0.0417 0.0114 0.0150 O 1.9744e-05

number of knots, with the results showing good agreement. Thus, the variation
in the number of knots greatly increases the variation in the estimation of the
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Table 6. Sparsity summary measures (a)—(d) for Scenario 3. Here, for the true model, I; o, for ¢ = 1,...,4, are the lengths of
the nonzero intervals and C; o are the lengths of the zero intervals.

Method Cipo Lip Cro Lo Cso Iso Cao Ino Cso Isp [Ci(rénn)’ C,l(r()rlax)] [I£I0111H)7I§Iglax)} Co Do
p=>5
LSE 0 0 0 0 0 0 0 0 0 0 — — 0 0
LASSO 0 0 0.0120 O 0 0 0.0660 0O 0.9105 O — — 0.7800 0
PLSEg 5 0 0 0.2647 0O 0 0 0.3348 0 1.0000 O — — 1 0
true model 0 1 0.4000 0.6000 O 1 04286 0.5714 1 0 — — 1 4
p=20
LSE 0 0 0 0 0 0 0 0 0 0 0, 0 [0, 0] 0 0
LASSO 0 0 0.0050 0O 0 0 0.2087 0 1.0000 O [0.3632, 0.4610] [0, 0] 2.5075 0
PLSEg 5 0 0 0.2682 0 0 0 0.3468 0 1.0000 O [0.9980, 1.0000] [0, 0] 15.9725 0
true model 0 1 0.4000 0.6000 0 1 0.4286 0.5714 1 0 L, 1 0, 0] 16 1
p =250
LSE 0 0 0 0 0 0 0 0 0 0 0, 0 [0, 0] 0 0
LASSO 0 0 0.0010 O 0 0 0.2863 0 1.0000 O [0.5870, 0.7960] [0, 0] 21.1400 O
PLSEg 5 0 0 0.2717 0 0 0 0.3518 0 1.0000 O [0.9970, 1.0000] [0, 0] 45.9300 0
true model 0 1 0.4000 0.6000 0 1 0.4286 0.5714 1 0 L, 1 0, 0] 16 1
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Figure 6. Asymptotic standard error (grey solid line) and empirical standard devia-
tion (black solid line) of the coefficient functions with an adaptive number of knots in
Scenario 2.

coefficient functions.

In summary, the simulation results demonstrate that our proposed method
not only has an advantage in achieving local sparsity compared with the LASSO
and LSE methods, but also ensures global sparsity for finite-dimensional models.
Moreover, this advantage applies to models with an increasing dimension.

5. Real-Data Analysis

We demonstrate our method by analyzing yeast cell cycle gene expression
data (Spellman et al. (1998); Lee et al. (2002)).

In the biological sciences, gene expression data are common. Scientists be-
lieve that transcription factors (TFs) might have an effect on a genome’s cell
cycle regulation. As a result, they have attempted to identify the key TFs in
the regulatory network, based on a set of gene expression measurements. In this
study, we analyze the relationship between the level of a gene expression and the
physical binding of the TFs from chromatin immunoprecipitation (ChIP-chip)
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Figure 7. Asymptotic standard error (grey solid line) and empirical standard deviation
(black solid line) of the coefficient functions with a fixed number of knots in Scenario 3.

data (Lee et al. (2002)). One set of gene expression data comes from an a-factor
synchronization experiment of 542 genes, in which mRNA levels are measured
every 7 minutes during a period of 119 minutes, resulting in 18 measurements in
total (Spellman et al. (1998)). For our analysis, the time has been rescaled to |0,
1].

The ChIP-chip data contain the binding information of 106 TFs, of which 21
TFs are confirmed to be related to cell cycle regulation, by experiment. Wang,
Chen and Li (2007) demonstrated that a variable selection procedure is able to
identify some of the key TFs. It is believed that the effects of TFs vary during
the cell cycle. In Chun and Keleg (2010), the authors considered a sparse partial
least squares regression to study which TF's are important in a gene expression.
However, they did not focus on the active periods of TF's. In this study, we apply
our method to identify the key TFs, and to estimate the effects of those selected
TFs over time. In addition, our approach allows us to investigate whether active
and inactive periods during the cycle can be identified for each TF. Let yz; denote
the gene expression level for gene k at time ¢, for k=1,...,542and t =1,...,18,
and let z; denote the binding information of TF i for gene k, for i = 1,...,106.
Then, the varying coefficient model can be written as
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Figure 8. Subplots of estimated coefficient functions for the 21 confirmed TFs using the
LSE (dashed), LASSO (dot-dashed), and PLSEq 5 (solid).

106
et = Bo(t) + Y Br(t) ik + exe,
=1
where (3;(t) models the effect of the ith TF on a gene expression at time ¢, and
for the kth gene, €;; are independent over time.

Similarly to the simulation study, we apply our method together with LSE
and LASSO methods, and compare the identification of the active period of each
TF within the cell cycle process. Each coefficient function is approximated us-
ing quadratic B-splines defined on time interval [0, 1], with seven equally spaced
knots. The number of knots is selected using cross-validation. It is not surprising
that the LSE selects all TFs. The LASSO method identifies 32 TFs as impor-
tant, while our proposed method identifies 16 TF's, which are a subset of those
identified by the LASSO method. In Figure 8, the estimated coefficient functions
for 21 experimentally confirmed TFs are shown. The figure shows that eight are
selected by both methods. The LASSO method selects an additional four TFs,
namely, SWI4, STB1, FKH1, and REB1, which show very low levels of activi-
ties. In Chun and Keleg (2010), the authors selected 32 TFs, 10 of which are
verified TFs. In addition, our proposed method identifies some inactive periods
for selected TFs. For example, STE12 tends to be inactive in the later period,
and ACE2 is inactive in the early period.
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Supplementary Material

The online Supplementary Material includes the technical assumptions and
proofs of the theoretical properties of our proposed method.
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