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Abstract: We study the simultaneous domain selection problem for varying coef-

ficient models as a functional regression model for longitudinal data with many

covariates. The domain selection problem in a functional regression mostly ap-

pears within a functional linear regression with a scalar response; however, there is

no direct correspondence to functional response models with many covariates. We

reformulate the problem as a nonparametric function estimation problem under the

notion of functional sparsity. Sparsity encapsulates interpretability in a regression

with multiple inputs, and the problem of sparse estimation is well understood in

the context of variable selection in a parametric setting. For nonparametric models,

interpretability not only concerns the number of covariates involved, but also the

zero regions in the functional form. Thus, the sparsity consideration is much more

complex. To distinguish the types of sparsity in nonparametric models, we refer

to the former as global sparsity and to the latter as local sparsity, both of which

constitute functional sparsity. Most existing methods focus on directly extending

the framework of parametric sparsity for linear models to nonparametric models to

address one type of sparsity, but not both. We develop a penalized estimation pro-

cedure that simultaneously addresses both types of sparsity in a unified framework.

We establish the asymptotic properties of estimation consistency and sparsistency

of the proposed method. Our method is illustrated by means of a simulation study

and real-data analysis, and is shown to outperform existing methods in terms of

identifying both local and global sparsity.

Key words and phrases: Functional sparsity, group bridge, longitudinal data, model

selection, nonparametric regression.

1. Introduction

We study the simultaneous domain selection problem for varying coefficient

models as a functional regression model for longitudinal data, where the response

variable changes over time, recorded for multiple subjects with multiple predic-

tors. The varying coefficient models (Hastie and Tibshirani (1993); Hoover et al.
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(1998)) are defined as

y(t) = xT (t)β(t) + ε(t), (1.1)

where y(t) is the response at time t, x(t) = (x1(t), . . . , xp(t))
T is a vector of

predictors at time t, ε(t) is an error process independent of x(t), and β(t) =

(β1(t), . . . , βp(t))
T is a vector of time-varying regression coefficient functions.

This model assumes a linear relationship between the response and predictors

at each observation time point, but allows the coefficients to vary over time,

thus greatly enhancing the utility of the standard linear model formulation. For

generality, we consider the predictors to be functions. However, note that the

varying coefficient models are equally applicable when the predictors take scalar

values.

The domain selection problem in functional regression is known to be intrin-

sically difficult (Müller (2016)). Most prior studies examine the problem as a

functional linear regression with a scalar response and a single functional covari-

ate. Hall and Hooker (2016) formulated the problem as a truncated regression

model with a single unknown domain, in order to study the identifiability issues

in nonparametric function estimation. James, Wang and Zhu (2009) approached

the problem from the viewpoint of sparsity estimation as interpretable solutions.

Using a grid approximation, they imposed parametric sparsity constraints on

the derivatives of the underlying function at a large number of grid points, which

produces an estimate that distinguishes between zero and non-zero regions. How-

ever, as Zhou, Wang and Wang (2013) have noted, the overlapping contribution

of each coefficient to the neighboring regions means the independent shrinkage

of the coefficients does not necessarily induce zero values in the coefficient func-

tion, in general. Thus, the procedure tends to over-penalize. As a remedy, Zhou,

Wang and Wang (2013) suggested a two-step estimation procedure. Wang and

Kai (2015) studied a similar problem under a standard nonparametric regression,

suggesting the need to distinguish the functional features from the parametric

variable selection.

We consider the regression problem under a functional response variable with

varying coefficient models, involving multiple domain selection under the general

setting, where the true number of covariates is unknown. Although the views

and approaches adopted in prior studies are quite different, the domain selection

problem can be motivated as a means to enhance the interpretability of the

model selection in nonparametric models. In this regard, we share the view that

considering some form of sparsity could be useful. For nonparametric models,
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however, interpretability not only concerns the number of covariates involved

(Wang, Li and Huang (2008); Noh and Park (2010); Wei, Huang and Li (2011);

Xue and Qu (2012)), but also the zero regions in the functional form (James,

Wang and Zhu (2009); Zhou, Wang and Wang (2013)). To distinguish between

the types of sparsity in nonparametric models, we refer to the former as global

sparsity and to the latter as local sparsity, both of which constitute functional

sparsity (Tu et al. (2012); Wang and Kai (2015)). More formally, a function

has global sparsity if it is zero over the entire domain. This indicates that the

corresponding covariate is irrelevant to the response variable. A function has

local sparsity if it is nonzero, but remains zero for a set of intervals. Thus, this

identifies an inactive period for the corresponding covariate. These notions of

interpretability are used informally in a separate context of the analysis. Thus,

the significance of local sparsity estimation has not been well recognized.

We reformulate the domain selection problem as a nonparametric function

estimation problem under the unified theme of functional sparsity. Then, we pro-

pose a one-step penalized estimation procedure that automatically determines

the type of functional sparsity (i.e., local or global). Although we distinguish

between the two types of sparsity on a conceptual level, our unified formulation

does not require this distinction for the implementation. We directly exploit the

fact that global sparsity is a special case of local sparsity from the viewpoint

of domain selection, but not the other way around. Furthermore, the consis-

tency of the coefficient function estimation does not necessarily provide us with

information on local sparsity. This feature distinguishes our approach from the

majority of existing methods that target global sparsity, such as (Wei, Huang

and Li (2011)). Note that there is a fundamental difference in the underlying as-

sumption on sparsity between parametric and nonparametric models, because we

focus on function estimation with dependent variables over an unknown domain.

This difference was also recognized by Kneip, Poß and Sarda (2016). Moreover,

for parametric sparsity, an underlying sparse vector is specified. In contrast,

the true sparse representation for functional sparsity may not be well defined

in the function approximation. These differences pose different conceptual chal-

lenges in the development. Our proposed penalized procedure resembles a type

of parametric sparsity estimation. However, our analysis is not comparable with

those that focus on high-dimensional parametric sparsity estimation (e.g., James,

Wang and Zhu (2009)).

We provide a theoretical analysis of the proposed method. In particular, we

show that the local sparsity can be recovered consistently, and even diluted with
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the problem of global sparsity estimation. We study the properties of our pro-

posed method under the standard assumptions on nonparametric smooth func-

tion estimation, and exploit the functional property in a more natural manner. In

this way, we contribute to bridging the gap between parametric variable selection

and nonparametric functional sparsity in a coherent manner.

Our formulation is given in Section 2. Our approach is a one-step procedure

that allows us to directly control the functional sparsity through the coefficient

functions themselves, rather than using a pointwise evaluation. In Section 3,

we study the large-sample properties of the proposed method and establish the

consistency and sparsistency of the function estimates. Section 4 describes our

simulation studies under different scenarios, and a real-data analysis is provided

in Section 5, demonstrating the utility of functional sparsity in relation to the

interpretability of the results. All technical assumptions and proofs are provided

in the online Supplementary Material.

2. Methodology

Suppose that, for n randomly selected subjects, observations of the kth sub-

ject are obtained at {tkl, l = 1, . . . , nk}, and the measurements satisfy the varying

coefficient linear model relationship in (1.1):

yk(tkl) = xT
k (tkl)β(tkl) + εk(tkl), (2.1)

where xk(tkl) = (x1(tkl), . . . , xp(tkl))
T and yk(tkl) is the response of the kth sub-

ject at tkl. We assume that βi(t), for i = 1, . . . , p, are smooth coefficient functions

with bounded second derivatives for t ∈ T . We use spline approximations to rep-

resent β(t) and formulate a constrained optimization problem for the parameter

estimation.

2.1. Least squares estimation under a b-spline approximation

B-spline approximations are widely used to estimate smooth nonparametric

functions. For a detailed discussion on B-splines, see de Boor (2001) and Schu-

maker (1981). Specifically, for a smooth function β(t), t ∈ [0, 1], its approximant

can be written as

β̃(t) =

J∑

j=1

αjBj(t), (2.2)

where {Bj(·), j = 1, . . . , J} is a group of B-spline basis functions of degree d ≥ 1

and knots 0 = η0 < η1 < · · · < ηK < ηK+1 = 1. Note that K is the number of
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interior knots and J = K + d+ 1. Here, we adopt the definition of a B-spline as

stated in Definition 4.12 of Schumaker (1981). In general, the performance of B-

spline approximations has been well studied. For instance, under mild conditions,

there exists a function β̃(t) of the form (2.2), such that the approximation error

goes to zero. See Theorem 6.27 of Schumaker (1981) for further detail.

We write the B-spline approximation for each smooth nonparametric coeffi-

cient function as

β̃i(t) =

Ji∑

j=1

αijBij(t) = Bi(t)
Tαi, t ∈ [0, 1], i = 1, . . . , p, (2.3)

where Bi(t) = (Bi1(t), . . . , BiJi
(t))T , αi = (αi1, . . . , αiji)

T , and Ji = Ki + d+ 1.

Here, Ki is the number of interior knots for β̃i(t), which may vary over i. For

simplicity, we assume that the knots are evenly distributed over [0, 1]. Define a

block diagonal matrix B(t) as

B(t) = diag{BT
1 (t), . . . ,B

T
p (t)}.

Using (2.3) in the varying coefficient model (2.1) leads to

yk(tkl) ≈ xT
k (tkl)B(tkl)α+ εk(tkl) = Uk(tkl)α+ εk(tkl) ,

where Uk(tkl) = xT
k (tkl)B(tkl) and α = (αT

1 , . . . ,α
T
p )

T . The least squares crite-

rion of α (Huang, Wu and Zhou (2002)) is defined as

`(α) =

n∑

k=1

ωk‖yk −Ukα‖22 ,

where yk = (yk(tk1), . . . , yk(tknk
))T and Uk = (UT

k (tk1), . . . ,U
T
k (tknk

))T . The

weights ωk, for k = 1, . . . , n, are usually chosen as ωk ≡ 1 or ωk ≡ 1/nk (Huang,

Wu and Zhou (2004)). In this study, for simplicity, we set equal weights to every

subject (i.e., ωk ≡ 1). Setting U = (UT
1 , . . . ,UT

n )T and y = (yT
1 , . . . ,y

T
n )

T , the

least squares criterion l(α) can be written in matrix form; that is, l(α) = ‖y −

Uα‖22. Huang, Wu and Zhou (2004) proved that, under certain assumptions, the

matrix UTU is invertible for fixed p. Consequently, l(α) has a unique minimizer,

α̂LSE = (UTU)−1UTy,

which is the least squares estimator (LSE) of α. Thus, the LSEs of the coefficient

functions are

β̂LSE
i (t) =

Ji∑

j=1

α̂LSE
ij Bij(t), i = 1, . . . , p,

where α̂LSE
ij denotes an entry of α̂LSE . Here, we take a marginal approach
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Figure 1. Top: A graphical display of a smooth function (solid thick line) and two
approximating functions from a family of cubic B-spline basis functions with nine equally
spaced interior knots. Bottom: A graphical display of the set of B-spline functions used
in the approximation.

(Wu and Zhang (2006)) to construct the LSE criterion, without accounting for

within-subject correlation. Proper modeling of the covariance structure would

require further parametric assumptions (Diggle et al. (1994)) or nonparametric

smoothing techniques (Wu and Zhang (2006)), which are not the focus of this

study.

2.2. B-spline approximation and sparsity

From B-spline approximation theory, there exists a function of the form given

in (2.2) that is very close to the true underlying function. However, this function

is not capable of characterizing the functional sparsity of the true function. Here,

the term “functional sparsity” is a generalization of the “parameter sparsity” in

regression models; see Wang and Kai (2015) for further detail.

For better illustration, we consider a toy example in Figure 1. Here, in

the top panel, a smooth function β(t) (thick line) with two spline approximants

(dashed, dotted) is depicted. In the bottom panel, a family of cubic B-spline basis

functions with nine interior knots is shown. The “best” fitted function from the

L2 criterion is shown as the dashed line in the upper panel, which signifies good

performance of the approximation. Furthermore, β(t) is zero on [0, 0.1] and

[0.9, 1], but its approximation is not zero, except for some singletons. From this



FUNCTIONAL SPARSITY IN VARYING COEFFICIENT MODELS 445

aspect, the approximation does not capture the sparsity of the true underlying

function. In contrast, the dotted curve depicted in the upper panel, also a linear

combination of the B-spline basis functions, automatically corrects the function

to reflect local sparsity, with almost indistinguishable performance.

The other extreme case arises when the function is close to zero, for part

of or the whole of the interval. Our goal is to pursue a sparse solution, up to

a function approximation error, within the linear space spanned by the B-spline

basis functions. From a nonparametric estimation viewpoint, such a solution

preserves the statistical accuracy and enhances interpretability; in fact, it is

indistinguishable from the true underlying function.

Inspired by the above observations on functional sparsity, we develop a new

procedure that equips the least squares criterion with a regularization term. Usu-

ally, the regularization on parameters is expressed in terms of a penalty function.

Below, we introduce a composite penalty based on the B-spline approximation

of the coefficient functions.

2.3. Penalized least squares estimation with a composite penalty

It is not too difficult to see that global sparsity corresponds to the group

variable selection of αi, as a whole. To achieve local sparsity, these estimates need

to be adjusted so that some of the estimates can be exactly zero. As demonstrated

in Section 2.2, for the B-spline approximation, when αj = 0 for j = l, . . . , l+d, the

approximation β̃(t) = 0 on the interval [ηl−1, ηl). In particular, when αj = 0 for

all j, β̃(t) = 0 over the entire domain of [0,M ]. This suggests local sparsity needs

to be imposed at the level of a group of neighboring coefficients. To incorporate

global sparsity in the varying coefficient model, we require another layer for the

group structure. These considerations lead to a composite penalty, defined as

follows:

Lγ
1(α) =

p∑

i=1

Ki+1∑

m=1




m+d∑

j=m

|αij |




γ

,

which can be written simply as

Lγ
1(α) =

p∑

i=1

Gi∑

g=1

‖αAig
‖γ1 , (2.4)

where αAig
= (αig, . . . , αi(g+d))

′, for i = 1, . . . , p, g = 1, . . . , Gi. The number of

groups for the ith coefficient function is Gi = Ki + 1.

Equipping the least squares criterion with the penalty defined in (2.4), we
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obtain the following penalized least squares (PLS) criterion:

pl(α) = ‖y −Uα‖22 + λ

p∑

i=1

Gi∑

g=1

‖αAig
‖γ1 , (2.5)

where λ > 0 and 0 < γ < 1 are tuning parameters. The proposed penalized

LSE (PLSE) α̂ = α̂(λ, γ) is defined as the minimizer of pl(α). Consequently, the

functional estimate of βi(t) is given by β̂i(t) = Bi(t)
T α̂i, where α̂i is a subvector

of α̂.

Note that, for γ ∈ (0, 1), the penalized criterion pl(α) is not a convex function

of α. Thus, we implement the following iterative algorithm, proposed by Huang

et al. (2009), to minimize (2.5):

Step 1. Obtain an initial value α(0).

Step 2. For a given tuning parameter λn, and for l = 1, 2, . . . , compute

θ
(l)
ig =

(
1− γ

τnγ

)γ

‖α
(l−1)
Aig

‖γ1 , for i = 1, . . . , p, g = 1, . . . , Gi,

where τn = (λn)
1/(1−γ)γγ/(1−γ)(1− γ).

Step 3. Compute

α(l) = argmin
α

‖y −Uα‖22 +

p∑

i=1

Gi∑

g=1

(θ
(l)
ig )

1−1/γ‖αAig
‖1.

Step 4. Repeat steps 2 and 3 until convergence.

Note that, unlike the standard LASSO method, step 3 requires an overlapping

LASSO. Because the grouping does not change at each iteration, this can be

solved easily using a simple linear transformation with a grouping indicator ma-

trix for α.

The motivation for this algorithm is a reparametrization of the nonconvex

optimization problem into a complex optimization problem in terms of (θ, τ),

which reaches an equivalent solution. In essence, the suggested algorithm per-

forms an iteratively reweighted LASSO until convergence. Thus, steps 2 and 3

can be expressed in more compact form. Given (λn, γ),

Step 1. Obtain an initial value α(0).

Step 2. For l = 1, 2, . . . , define ν
(l)
ig = γ‖α

(l−1)
Aig

‖γ−1
1 , for i = 1, . . . , p; g = 1, . . . , p.

Step 3. Solve
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α(l) = argmin
α

‖y −Uα‖22 + λn

p∑

i=1

Gi∑

g=1

ν
(l)
ig ‖αAig

‖1.

Step 4. Repeat steps 2 and 3 until convergence.

2.4. Variance estimation

In this section, we consider the problem of finding the asymptotic variance

of our proposed estimator of the coefficient functions. Let α̂S denote the nonzero

estimators of the coefficients αij . Then from Step 3 in the aforementioned algo-

rithm and the Karush–Kuhn–Tucker condition, we have

α̂S =

(
UT

S US +
1

2
ΘS

)−1

UT
S y,

where US is a sub-matrix of U , with each column corresponding to the selected

αij , and ΘS is a diagonal matrix,

diag





∑
g:Aig3j

θ̂
1−1/γ
ig

|α̂ij |
, for α̂ij 6= 0



 .

In the absence of covariance modeling of y, we further approximate the

variance of y by σ2I, where σ2 can be estimated by σ̂2 = ‖y −Uα̂‖22/n. Thus,

similar to Wang, Li and Huang (2008), the asymptotic variance of α̂S may be

expressed as

avar(α̂S) =

(
UT

S US +
1

2
ΘS

)−1

UT
S US

(
UT

S US +
1

2
ΘS

)−1

σ̂2.

Let Bi(t) be the i-th row of the basis matrix B(t). Thus, the functional estimate of

βi(t) can be written as β̂i(t) = Bi(t)α̂. Correspondingly, the asymptotic variance

of β̂i(t) is

avar(β̂i(t)) = BiS(t)avar(α̂S)B
T
iS(t), (2.6)

where BiS(t) is a sub-vector of Bi(t), with each element corresponding to the se-

lected αij . Note that the estimator of α depends on the choice of λ; thus, asymp-

totic variances of α̂S and β̂i(t) are also tuning-parameter dependent. Although

this is a naive estimator, as shown in our numerical studies, its approximation is

nevertheless found to be effective in capturing the level of variability. Alterna-

tively, we can estimate the full covariance function nonparametrically. However,

owing to the additional complexity in the implementation with irregular design

points, this is not very practical. The literature takes a more pragmatic approach

of using a random-effects formulation (e.g., Wu and Zhang (2006)). However, the
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difficulty of selecting the covariates in the random-effects terms under the cur-

rent context of sparse function estimation outweighs the potential benefits; thus,

we do not pursue this. Instead, we investigated using a fully nonparametric

approach to estimate the covariance surface by means of a functional principal

component analysis (Yao, Müller and Wang (2005)). However, our numerical

study did not identify a clear advantage to this approach. Further investigation

is left for future work.

2.5. Choice of tuning parameters

To fit the model using a finite sample, we consider how to calibrate the

tuning parameters. The tuning parameter λ > 0 balances the trade-off between

the goodness-of-fit and the model complexity. When λ is large, we have strong

penalization, and thus are more likely to obtain a sparse solution with poor

model fitting. With a small λ, we would select more variables and obtain better

estimation results, but lose control of the functional sparsity. In the classical

nonparametric approaches, criteria such as the AIC, BIC, and GCV (Wahba

(1990)) are commonly used for model selection. Previous analyses noted that

the AIC and GCV tend to select more variables, and thus are better suited to

predictions. We use a BIC-type criterion in our analysis, reported in Section

4. To account for the increasing number of parameters when comparing models

with varying dimensions, we use the extended BIC (EBIC) (Huang, Horowitz

and Wei (2010)), which also penalizes the size of the full model. The EBIC is

given by

EBIC(λ) = log

(
‖y −Uα̂(λ)‖22

N

)
+

K(λ) log(N)

N
+

νK(λ) log(
∑p

i=1 Ji)

N
,

where N =
∑n

k=1 nk, α̂(λ) is the penalized estimator of α, given λ, and K(λ) is

the total number of nonzero estimates in α̂(λ). Then,
∑p

i=1 Ji =
∑p

i=1(Ki+d+1)

is the total number of parameters in the full model. Note that when ν = 0,

the EBIC is the same as the BIC, but when ν > 0, the EBIC imposes greater

penalty on overfitting. We use ν = 0.5, as suggested in (Huang, Horowitz and

Wei (2010)).

Note that the tuning parameter γ influences the performance of the group

selection. A value of γ that is too small or too large could lead to inefficient

group variable selection. When γ is close to 1, (2.4) is close to the L1 penalty.

Consequently, the minimizer of (2.5) may not achieve functional sparsity in its

solution. Unlike λ, however, 0 < γ < 1 is more often viewed as a higher-level

model parameter (often set equal to 0.5, (Huang et al. (2009))), similarly to how
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the LASSO (γ = 1) estimator may be chosen over the Ridge (γ = 2) estimator

in advance. Our theoretical results suggest that γ is closely related to λ, in the

asymptotic sense, similarly to (Huang et al. (2009); Knight and Fu (2000)). Thus

an adaptive selection of λ in a finite sample is expected to reflect this relation

automatically. This is confirmed numerically (see Section 4), suggesting a value

of γ = 0.5 as a rule of thumb.

In addition, because the parametric model formulation arises as an approxi-

mation to the nonparametric model, the parameter space to explore is not fixed,

and is potentially very large. Even with known covariates, the spline approxima-

tion with the fully adaptive choice of the degree, knot locations and number of

knots is impractical. Following a similar strategy to that in the literature (e.g.,

Huang, Wu and Zhou (2004); Wang, Li and Huang (2008)), we use equally spaced

knots with cubic splines and select the number of knots K adaptively. We at-

tempted to simultaneously optimize the parameter K inside the model selection

criterion. However, we found that the penalty was not effective in controlling

the systematic increase in the parameter space and that the criterion favored

the smallest possible K in the majority of cases. Instead, we select the num-

ber of knots K adaptively to the sample using 10-fold cross-validation without a

penalty, leaving the potentially adaptive choice of sparsity to be controlled solely

by the other tuning parameters.

3. Large-Sample Properties

We study the large-sample properties of our proposed PLSE β̂i(t), for i =

1, . . . , p, when the number of sampled subjects n goes to infinity. In the proofs, we

assume that the number of observations for each subject nk is bounded. However,

a similar argument can be applied to the case when nk increases to infinity with

n (Huang, Wu and Zhou (2004)). The number of interior knots increases with n;

therefore, we writeKi = Kin for each i = 1, . . . , p, and denoteKn = max0≤i≤pKi.

The standard regularity conditions for varying coefficient linear models (Huang,

Wu and Zhou (2004); Wang, Li and Huang (2008)) are provided in the online

Supplementary Material.

For mathematical convenience, we classify all group indices {1, . . . , Gi} for

the coefficient function βi(t) into two groups, defined as

Ai1 =

{
g : max

t∈[ηg−1,ηg)
| βi(t) |> CiK

−2
n

}
,
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Ai2 =

{
g : 0 ≤ max

t∈[ηg−1,ηg)
| βi(t) |≤ CiK

−2
n

}
,

for some positive constant Ci. For sufficiently large Ci, the zero region {t : βi(t) =

0} is a subset of ∪g∈Ai2
[ηg−1, ηg).

Theorem 6.27 of Schumaker (1981) shows that any smooth coefficient func-

tion βi(t) with a bounded second derivative has a B-spline approximant β̃i(t) of

the form given in (2.3) and that the approximation error is of order O(K−2
in ).

We denote the sparse modification introduced in Wang and Kai (2015) by β̃0
i (t),

with coefficients α̃0.

Note that for a vector-valued square integrable function A(t) = (a1(t), . . . ,

am(t))T , with t ∈ [0,M ], ‖A‖2 denotes the L2-norm defined by ‖A‖2 =

(
∑m

l=1 ‖al‖
2
2)

1/2, where ‖al‖2 is the usual L2-norm in the function space.

Next, we establish the consistency of our proposed penalized estimator.

Theorem 1 (Consistency). Suppose that assumptions (A1)–(A6) in the online

Supplementary Material are satisfied. For some 0 < γ < 1 and Kn = O(n1/5),

we have the following assumption:

(S1) For α̃0 defined above,

λn(d+ 1)1/2




p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

‖
2(γ−1)
1




1/2

= O(n1/2) .

If (S1) holds, then we have ‖β̂ − β‖2 = Op(n
−2/5), where β = (β1, . . . , βp)

T .

Assumption (S1) provides a bound on the rate of λn growing with n. The

convergence rate established in Theorem 1 is essentially optimal (Stone (1982)).

In fact, the result remains valid for more general classes of functions, for example,

the collection of functions the derivatives of which satisfy the Hölder condition.

Next, Theorem 2 states that our proposed penalized method is consistent in

detecting functional sparsity. That is, if βi(t) = 0 for t ∈ [ηl−1, ηl), then the

proposed estimator produces α̂Ail
= 0 to identify local sparsity with probability

converging to one. In addition, βi(t) = 0 for all t, then the proposed method

yields α̂Ail
= 0, for all l = 1, . . . ,Ki + 1, with probability converging to one.

Theorem 2 (Sparsistency). Consider the following assumption:

(S2) λnK
γ−1
n n−γ/2 −→ ∞ .

If (S2) and the assumptions in Theorem 1 are satisfied, then we have for every

i, i = 1, . . . , p, (α̂Aig
: g ∈ Ai2) = 0, with probability converging to one as n goes

to ∞.
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It is not surprising that our proposed method may yield a slightly more sparse

functional estimate. This is because, for all intervals with indices belonging to

Ai2, the value of βi(t) is quite small (the same order as the optimal rate) and is

indistinguishable from zeros. Moreover, such intervals can be further partitioned

into two groups, including the intervals on which the function is zero and the

intervals on which the function is not always zero. However, the total length of

the latter converges to zero as n increases.

The above discussion is related to the notion of selection consistency, an im-

portant and well-studied problem of variable selection under parametric settings;

for instance, see (Zhao and Yu (2006)). However, for nonparametric models,

particularly when local sparsity exists, selection consistency has not been widely

studied. For the convenience of our discussion, we begin with some notation. For

a coefficient function β(t), let N(β) and S(β) denote the zero region and nonzero

region, respectively. The (closed) support of β, denoted by C(β), is defined as

the closure of the nonzero region S(β). Assume that N(β) has finitely many

singletons (as zero crossing), and that C(β) can be expressed as a finite union of

closed intervals.

If β(t0) 6= 0, for some t0, the consistency property in Theorem 1 and the

smoothness constraint of the function and its estimate ensure that β̂(t0) 6= 0

for sufficiently large n. However, such a result may not be of great interest,

given that β(t) lies in an infinite, not necessarily countable dimensional space.

Next, consider a simple case of an interval [a, b] ⊂ C(β) and β(t) 6= 0, for

all t ∈ [a, b]. Thus, β(t) is bounded away from zero over [a, b]. Similarly, as

a consequence of Theorem 1, β̂(t) is also bounded away from zero over [a, b]

for sufficiently large n. A more challenging case arises when β(a) = 0 and

β(t) 6= 0 over (a, b]. We further assume that there is a sequence of knots such

that ηk ≤ a < ηk+1 · · · < ηk′ < b ≤ ηk′+1. The subinterval formed by two

adjacent knots is either in Ai1 or Ai2. The total length of the subintervals in Ai2

converges to zero as n increases. For those intervals in Ai1, a suitable choice of

the constant Ci suggests that the estimated function deviates from zero.

4. Simulation Study

We conducted simulation studies to assess the performance of our proposed

method, with the main emphasis on understanding the effects of the tuning pa-

rameters and the increasing dimension p on the functional sparsity estimation.

We consider three scenarios. In Scenario 1, we choose our tuning parameters
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(λ,K) as described in Section 2.5, and compare the results under various γ-

values. In Scenario 2, we assess the impact of the increasing dimension p, given

γ, assuming the number of relevant covariates, p0, is set to four. In Scenario 3,

we assess the performance with respect to K to study the effect of the adaptive

choice of knots on the sparsity estimation. In addition, the relative performance

is measured against that of the LSE and LASSO methods. The simulation results

are summarized based on 400 replications. In each iteration, subjects are gener-

ated randomly according to the following varying coefficient model specification:

yk(tkl) =

p∑

i=1

xki(tkl)βi(tkl) + εk(tkl), l = 1, . . . , nk, k = 1, 2, . . . , n,

where x1(t) is a constant–equal to one, xi(t), for i = 2, 3, 4, are similar to those

considered in Huang, Wu and Zhou (2002): x2(t) is a uniform random vari-

able over [4t, 4t + 2]; x3(t), conditioning on x2(t), is a normal random variable

with mean zero and variance (1 + x2(t))/(2 + x2(t)); and x4(t), independent

of x2(t) and x3(t), is Bernoulli(0.6). The number of measurements available

varies across subjects. For each subject, a sequence of 40 possible observation

time points {(i − 0.5)/40 : i = 1, . . . , 40} is considered, but each time point

has a chance of 0.4 being selected. We further added a random perturbation

from U(−0.5/40, 0.5/40) to each observation time. The random errors εk(tkl)

are independent of the predictors, but include serial correlation and a measure-

ment error of εk(t) = ε
(1)
k (t) + ε

(2)
k (t). The serial correlation component ε(1)(t)

is generated from a Gaussian process with mean zero and covariance function

cov(ε
(1)
k (t), ε

(1)
k (s)) = exp(−10|t− s|) for the same subject k, and is uncorrelated

for different subjects. Then, ε
(2)
k (t) follows a normal distribution with mean zero

and variance one, and is independent and identically distributed (i.i.d.).

The nonzero coefficient functions used in all scenarios are displayed in Figure

2. The coefficient functions do not belong to the B-spline function space.

In Scenario 1, we add a redundant variable x5(t) from a normal distribution

with mean zero and variance 0.1 exp(t) to illustrate global sparsity. In Scenario 2,

with increasing p, the extra predictors with zero coefficient functions are defined

as xi(t) = Zi(t) + 3/20
∑5

l=1 xl(t), for i = 6, . . . , p, where Zi(t) is i.i.d. from a

standard normal distribution.

The overall performance is measured in terms of bias and the mean integrated

squared error (MISE), based on R = 400 repetitions, computed as

B̂iasi(u) =
1

R

R∑

r=1

β̂i
(r)

(u)− βi(u), i = 1, . . . , p, u ∈ [0, 1],
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Figure 2. A graphical illustration of the coefficient functions βi, for i = 1, . . . , 4 (from
left to right, top to bottom).

M̂ISEi =
1

R

R∑

r=1

∫ 1

0
(β̂

(r)
i (u)− βi(u))

2du, i = 1, . . . , p,

where β̂
(r)
i is the estimated coefficient function from the rth repeated study.

In addition, we use the following summary measures to compare the functional

sparsity:

(a) C0: average number of correctly identified constant zero-coefficient functions

(b) I0: average number of incorrectly identified constant zero-coefficient func-

tions

(c) Ci,0: average length of correctly identified zero intervals for the ith coefficient

function

(d) Ii,0: average length of incorrectly identified zero intervals for the ith coeffi-

cient function.

Note that (a) and (b) summarize global sparsity, whereas (c) and (d) summarize

local sparsity.
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Figure 3. Comparison of the bias of the coefficient functions based on the LSE (dot-
dashed), the LASSO (dashed), and PLSE0.5 (solid) in Scenario 1, with n = 200. Note
that PLSE0.5 has zero bias in estimating the zero coefficient function β5(·).

Scenario 1: Effect of γ

Here, we consider the varying coefficient model with p = 5 and two differ-

ent numbers of subjects, n = 100, 200. In each iteration, our proposed PLSE

method is implemented with γ = 0.25, 0.35, 0.5, and 0.75. The MISE values for

each coefficient function are summarized in Table 1. In general, as n increases,

all methods yield decreasing MISE values. Notably, the results for the PLSE in-

dicate comparable performance across different γ; in fact, the PLSE and LASSO

methods show similar performance in terms of the function estimation. In ad-

dition, the PLSE with γ = 0.35, 0.50 successfully identifies the global sparsity

of β5(·) with zero MISE values for both choices of n, as does the PLSE with

γ = 0.75 for n = 200. The bias of PLSE0.5 (PLSE with γ = 0.5) and the LASSO

and LSE methods with n = 200 is compared in Figure 3, showing that PLSE0.5

has zero bias in estimating β5(·).

Table 2 describes the performance when identifying local sparsity. The true

values of sparsity in terms of Ci,0 and Ii,0 are given in the last row of true model

as a reference. Hence, the closer the values of Ci,0 are to those of the true model,

the better. In contrast, the value of Ii,0 in the true model is the maximum error

each method can make; thus, the smaller Ii,0, the better. In general, the LASSO
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Table 1. Comparison of MISE for each coefficient function in Scenario 1.

Method MISE
β1 β2 β3 β4 β5

n = 100
LSE 0.9519 0.0825 0.0365 0.1145 1.3199
LASSO 2.9156 0.1636 0.0314 0.0591 0.0114
PLSE0.25 1.1115 0.0686 0.0281 0.0613 0.1330
PLSE0.35 1.2199 0.0633 0.0307 0.0440 0
PLSE0.5 1.3156 0.0674 0.0319 0.0459 0
PLSE0.75 1.8267 0.0948 0.0317 0.0471 0.0005

n = 200
LSE 0.4232 0.0367 0.0165 0.0563 0.5745
LASSO 1.4561 0.0845 0.0153 0.0299 0.0041
PLSE0.25 0.7259 0.0424 0.0138 0.0329 0.0731
PLSE0.35 0.6421 0.0351 0.0152 0.0235 0
PLSE0.5 0.7193 0.0382 0.0166 0.0250 0
PLSE0.75 0.8615 0.0469 0.0157 0.0251 0

Table 2. Sparsity summary measures (a)–(d) in Scenario 1. Here, for the true model,
Ci,0, for i = 1, . . . , 6, are the lengths of the zero intervals, Ii,0 denotes the length of a
nonezero interval, C0 is the number of zero-coefficient functions, and I0 is the number
of nonzero-coefficient functions.

Method C1,0 I1,0 C2,0 I2,0 C3,0 I3,0 C4,0 I4,0 C5,0 I5,0 C0 I0
n = 100

LSE 0 0 0 0 0 0 0 0 0 0 0 0
LASSO 0 0 0.0219 0 0 0 0.0616 0.0009 0.8799 0 0.5675 0
PLSE0.25 0 0 0.1468 0.0003 0 0 0.1626 0.0004 0.8005 0 0.4975 0
PLSE0.35 0 0 0.3332 0.0048 0 0 0.3723 0.0062 1.0000 0 1 0
PLSE0.5 0 0 0.3360 0.0040 0 0 0.3809 0.0072 1.0000 0 1 0
PLSE0.75 0 0 0.2559 0.0005 0 0 0.3453 0.0042 0.9990 0 0.9975 0

n = 200
LSE 0 0 0 0 0 0 0 0 0 0 0 0
LASSO 0 0 0.0166 0 0 0 0.0736 0.0004 0.9087 0 0.6850 0
PLSE0.25 0 0 0.1299 0.0001 0 0 0.1433 0.0003 0.7510 0 0.4175 0
PLSE0.35 0 0 0.3178 0.0022 0 0 0.3512 0.0030 1.0000 0 1 0
PLSE0.5 0 0 0.3343 0.0025 0 0 0.3735 0.0047 1.0000 0 1 0
PLSE0.75 0 0 0.2696 0.0005 0 0 0.3462 0.0026 1.0000 0 1 0
true model 0 1 0.4000 0.6000 0 1 0.4286 0.5714 1 0 1 4

and PLSE methods show better performance in terms of functional sparsity. In

addition, it can be seen that the PLSE with γ = 0.35, 0.5, 0.75 has an advantage

in achieving both global and local sparsity, as compared with the LSE and LASSO

methods. The case of γ = 0.5 performs slightly better than the others. For the
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Figure 4. Comparison of the bias of the nonzero coefficient functions β1, β2, β3, and
β4 (from left to right) based on the LSE (dot-dashed), LASSO (dashed), and PLSE0.5

(solid), for p = 5 (top row), p = 20 (middle), and p = 50 (bottom) in Scenario 2.

remaining part, we use γ = 0.5 for the comparisons.

Scenario 2: Effect of dimension p

In this scenario, we study the effect on the performance of increasing p, for a

given sample size. In particular, we consider the three choices of p = 5, 20, and 50.

Figure 4 and Table 3 show the results for the bias and MISE, respectively. The

last column of Tables 3 shows the maximum MISE among the zero-coefficient

functions as the selected variables vary between samples. Compared with the

LSE and LASSO, the PLSE method shows remarkable stability in terms of per-

formance over the increasing dimension p.

The performance for the sparsity is summarized in Table 4. The additional

two columns in Ci,0 and Ii,0 are added to summarize the performance on all

other redundant variables within an interval range of [mini≥6Ci,0,maxi≥6Ci,0]

and [mini≥6 Ii,0,maxi≥6 Ii,0]. Together with the global sparsity measure in C0

and I0, we conclude that PLSE0.5 systematically outperforms the other methods

for all dimensions.
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Table 3. Comparison of MISE for each coefficient function with p = 5, 20, and 50 in
Scenario 2.

Method MISE maxi≥6 MISEi

β1 β2 β3 β4 β5

p = 5
LSE 0.4232 0.0367 0.0165 0.0563 0.5745 —
LASSO 1.4561 0.0845 0.0153 0.0299 0.0041 —
PLSE0.5 0.7193 0.0382 0.0166 0.0250 0 —

p = 20
LSE 0.5157 0.0434 0.0197 0.0612 0.6694 0.0151
LASSO 17.8758 0.8520 0.0331 0.0347 0 0.0016
PLSE0.5 0.7422 0.0391 0.0166 0.0240 0 2.1886e-05

p = 50
LSE 0.8269 0.0724 0.0292 0.0897 1.1484 0.0281
LASSO 35.1543 1.6475 0.0497 0.0415 0 8.4758e-04
PLSE0.5 0.7360 0.0396 0.0149 0.0205 0 2.7551e-05

Scenario 3: Effect of knots selection

The variation in the selection of the knots is expected to mainly influence the

estimation of local sparsity. Increasing the number of knots helps to identify the

boundary of local sparsity, but runs the risk of over-fitting nonzero estimates.

Fine-tuning this parameter is much more delicate, because all model selection

criteria are developed to control the squared error loss (MISE) as a goodness-

of-fit, and thus are insensitive to the loss of missing local sparsity. That is,

the balance between global and local sparsity is beyond the usual control of the

bias-variance trade-off, and developing a new measure is still an open problem.

Our knot selection based on cross-validation is essentially tuned toward global

sparsity. Here, we assess the performance of our proposed estimator from the

point of view of robustness to these variations. For comparison, we include the

results for fixed knots (K = 11) across the sample.

Figure 5 and Table 5 summarize the bias and MISE. The sparsity summary is

given in Table 6. We conclude that the overall performance is fairly comparable

to that in Scenario 2, with no major concern over the sensitivity of the knots

selection in the comparison of the results.

In addition, in order to assess the usefulness of the asymptotic formula for

the standard errors in (2.6), we calculate both the asymptotic and the empirical

standard errors based on 400 repetitions. Then, we compare these standard

errors in Figure 6 for an adaptive number of knots, and in Figure 7 for a fixed
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Table 4. Sparsity summary measures (a)–(d) for Scenario 2. Here, for the true model, Ii,0, for i = 1, . . . , 4, are the lengths of
the nonzero intervals and Ci,0 are the lengths of the zero intervals.

Method C1,0 I1,0 C2,0 I2,0 C3,0 I3,0 C4,0 I4,0 C5,0 I5,0 [C
(min)
i,0 , C

(max)
i,0 ] [I

(min)
i,0 , I

(max)
i,0 ] C0 I0

p = 5
LSE 0 0 0 0 0 0 0 0 0 0 — — 0 0
LASSO 0 0 0.0166 0 0 0 0.0736 0.0004 0.9087 0 — — 0.6850 0
PLSE0.5 0 0 0.3343 0.0025 0 0 0.3735 0.0047 1 0 — — 1 0
true model 0 1 0.4000 0.6000 0 1 0.4286 0.5714 1 0 — — 1 4

p = 20
LSE 0 0 0 0 0 0 0 0 0 0 [0, 0] [0, 0] 0 0
LASSO 0 0 0.0060 0 0 0 0.2398 0.0027 1 0 [0.4128, 0.5309] [0, 0] 2.1125 0
PLSE0.5 0 0 0.3286 0.0015 0 0 0.3754 0.0056 1 0 [0.9985, 1.0000] [0, 0] 15.9675 0
true model 0 1 0.4000 0.6000 0 1 0.4286 0.5714 1 0 [1, 1] [0, 0] 16 4

p = 50
LSE 0 0 0 0 0 0 0 0 0 0 [0, 0] [0, 0] 0 0
LASSO 0 0 0.0005 0 0 0 0.2949 0.0018 1 0 [0.6039, 0.8226] [0, 0] 20.4425 0
PLSE0.5 0 0 0.3119 0.0005 0 0 0.3680 0.0015 1 0 [0.9971, 1.0000] [0, 0] 45.9000 0
true model 0 1 0.4000 0.6000 0 1 0.4286 0.5714 1 0 [1, 1] [0, 0] 46 4
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Figure 5. Comparison of the bias of the nonzero coefficient functions β1, β2, β3, and
β4 (from left to right) based on the LSE (dot-dashed), LASSO (dashed), and PLSE0.5

(solid), for p = 5 (top row), p = 20 (middle), and p = 50 (bottom) in Scenario 3.

Table 5. Comparison of MISE for each coefficient function in Scenario 3 . Here, the
number of knots is fixed at 11.

Method MISE maxi≥6 MISEi

β1 β2 β3 β4 β5

p = 5
LSE 0.2783 0.0253 0.0108 0.0379 0.3888 —
LASSO 1.2993 0.0753 0.0096 0.0195 0.0029 —
PLSE0.5 0.6888 0.0405 0.0107 0.0154 0 —

p = 20
LSE 0.3376 0.0292 0.0127 0.0408 0.4429 0.0097
LASSO 11.6604 0.5420 0.0199 0.0211 0 0.0011
PLSE0.5 0.7180 0.0412 0.0114 0.0156 0 2.1444e-05

p = 50
LSE 0.4521 0.0387 0.0167 0.0528 0.6608 0.0138
LASSO 30.2698 1.3683 0.0352 0.0290 0 7.0743e-04
PLSE0.5 0.7279 0.0417 0.0114 0.0150 0 1.9744e-05

number of knots, with the results showing good agreement. Thus, the variation

in the number of knots greatly increases the variation in the estimation of the
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Table 6. Sparsity summary measures (a)–(d) for Scenario 3. Here, for the true model, Ii,0, for i = 1, . . . , 4, are the lengths of
the nonzero intervals and Ci,0 are the lengths of the zero intervals.

Method C1,0 I1,0 C2,0 I2,0 C3,0 I3,0 C4,0 I4,0 C5,0 I5,0 [C
(min)
i,0 , C

(max)
i,0 ] [I

(min)
i,0 , I

(max)
i,0 ] C0 I0

p = 5
LSE 0 0 0 0 0 0 0 0 0 0 — — 0 0
LASSO 0 0 0.0120 0 0 0 0.0660 0 0.9105 0 — — 0.7800 0
PLSE0.5 0 0 0.2647 0 0 0 0.3348 0 1.0000 0 — — 1 0
true model 0 1 0.4000 0.6000 0 1 0.4286 0.5714 1 0 — — 1 4

p = 20
LSE 0 0 0 0 0 0 0 0 0 0 [0, 0] [0, 0] 0 0
LASSO 0 0 0.0050 0 0 0 0.2087 0 1.0000 0 [0.3632, 0.4610] [0, 0] 2.5075 0
PLSE0.5 0 0 0.2682 0 0 0 0.3468 0 1.0000 0 [0.9980, 1.0000] [0, 0] 15.9725 0
true model 0 1 0.4000 0.6000 0 1 0.4286 0.5714 1 0 [1, 1] [0, 0] 16 4

p = 50
LSE 0 0 0 0 0 0 0 0 0 0 [0, 0] [0, 0] 0 0
LASSO 0 0 0.0010 0 0 0 0.2863 0 1.0000 0 [0.5870, 0.7960] [0, 0] 21.1400 0
PLSE0.5 0 0 0.2717 0 0 0 0.3518 0 1.0000 0 [0.9970, 1.0000] [0, 0] 45.9300 0
true model 0 1 0.4000 0.6000 0 1 0.4286 0.5714 1 0 [1, 1] [0, 0] 46 4
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Figure 6. Asymptotic standard error (grey solid line) and empirical standard devia-
tion (black solid line) of the coefficient functions with an adaptive number of knots in
Scenario 2.

coefficient functions.

In summary, the simulation results demonstrate that our proposed method

not only has an advantage in achieving local sparsity compared with the LASSO

and LSE methods, but also ensures global sparsity for finite-dimensional models.

Moreover, this advantage applies to models with an increasing dimension.

5. Real-Data Analysis

We demonstrate our method by analyzing yeast cell cycle gene expression

data (Spellman et al. (1998); Lee et al. (2002)).

In the biological sciences, gene expression data are common. Scientists be-

lieve that transcription factors (TFs) might have an effect on a genome’s cell

cycle regulation. As a result, they have attempted to identify the key TFs in

the regulatory network, based on a set of gene expression measurements. In this

study, we analyze the relationship between the level of a gene expression and the

physical binding of the TFs from chromatin immunoprecipitation (ChIP-chip)
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Figure 7. Asymptotic standard error (grey solid line) and empirical standard deviation
(black solid line) of the coefficient functions with a fixed number of knots in Scenario 3.

data (Lee et al. (2002)). One set of gene expression data comes from an α-factor

synchronization experiment of 542 genes, in which mRNA levels are measured

every 7 minutes during a period of 119 minutes, resulting in 18 measurements in

total (Spellman et al. (1998)). For our analysis, the time has been rescaled to [0,

1].

The ChIP-chip data contain the binding information of 106 TFs, of which 21

TFs are confirmed to be related to cell cycle regulation, by experiment. Wang,

Chen and Li (2007) demonstrated that a variable selection procedure is able to

identify some of the key TFs. It is believed that the effects of TFs vary during

the cell cycle. In Chun and Keleş (2010), the authors considered a sparse partial

least squares regression to study which TFs are important in a gene expression.

However, they did not focus on the active periods of TFs. In this study, we apply

our method to identify the key TFs, and to estimate the effects of those selected

TFs over time. In addition, our approach allows us to investigate whether active

and inactive periods during the cycle can be identified for each TF. Let ykt denote

the gene expression level for gene k at time t, for k = 1, . . . , 542 and t = 1, . . . , 18,

and let xki denote the binding information of TF i for gene k, for i = 1, . . . , 106.

Then, the varying coefficient model can be written as
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Figure 8. Subplots of estimated coefficient functions for the 21 confirmed TFs using the
LSE (dashed), LASSO (dot-dashed), and PLSE0.5 (solid).

ykt = β0(t) +

106∑

i=1

βk(t)xik + εkt,

where βi(t) models the effect of the ith TF on a gene expression at time t, and

for the kth gene, εkt are independent over time.

Similarly to the simulation study, we apply our method together with LSE

and LASSO methods, and compare the identification of the active period of each

TF within the cell cycle process. Each coefficient function is approximated us-

ing quadratic B-splines defined on time interval [0, 1], with seven equally spaced

knots. The number of knots is selected using cross-validation. It is not surprising

that the LSE selects all TFs. The LASSO method identifies 32 TFs as impor-

tant, while our proposed method identifies 16 TFs, which are a subset of those

identified by the LASSO method. In Figure 8, the estimated coefficient functions

for 21 experimentally confirmed TFs are shown. The figure shows that eight are

selected by both methods. The LASSO method selects an additional four TFs,

namely, SWI4, STB1, FKH1, and REB1, which show very low levels of activi-

ties. In Chun and Keleş (2010), the authors selected 32 TFs, 10 of which are

verified TFs. In addition, our proposed method identifies some inactive periods

for selected TFs. For example, STE12 tends to be inactive in the later period,

and ACE2 is inactive in the early period.
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Supplementary Material

The online Supplementary Material includes the technical assumptions and

proofs of the theoretical properties of our proposed method.

Acknowledgments

The authors are grateful to the three referees and the associate editor for their

careful reading and helpful comments. The research of Haonan Wang was par-

tially supported by NSF grants DMS-1106975, DMS-1521746, and DMS-1737795.

References
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