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Impacts of ozone and climate change on yields of
perennial crops in California

Chaopeng Hong ®'™, Nathaniel D. Mueller?3, Jennifer A. Burney ®4, Yang Zhang®,
Amir AghaKouchak ®'¢, Frances C. Moore’, Yue Qin'®°, Dan Tong' and Steven J. Davis ®'®

Changes in temperature and air pollution affect agricultural productivity, but most relevant research has focused on major
annual crops (for example, wheat, maize, soy and rice). In contrast, relatively little is known about the effects of climate change
and air quality on perennial crops such as fruits and nuts, which are important to dietary diversity and nutrition, and represent
~38% of California's agriculture by economic value. Moreover, the adaptive capacity of perennial crops may be limited by their
long lifespans and sometimes large establishment costs. Here, on the basis of statistical modelling of historical data and down-
scaled climate model projections, we jointly assess the impacts of climate and ozone levels on historical and future yields of
perennial crops in California. Although the effects of warming to date are not statistically significant for many perennial crops,
the yields of most perennials show a significant negative response to ambient ozone, ranging from —2% for strawberries to
—22% for table grapes, implying total losses of roughly US$1 billion per year. This suggests that historical improvements in
California's air quality that reduced ozone exposures may have had large, unaccounted co-benefits for the state's perennial crop
yields, and further pollution reduction could create additional gains. Indeed, the co-location of regions with high production and

high ozone damage indicates that opportunities to improve crop yields through pollution mitigation are large.

rop production is vulnerable to both climate change and air

pollution'~. To date, efforts to understand the agricultural

impacts of climate change and air pollution have focused
on annual crops such as wheat, rice, maize and soybean®-, which
provide the majority of calories directly consumed by humans. In
contrast, relatively few studies have assessed such impacts on long-
lived perennial crops such as fruits and nuts’'*, which are impor-
tant for dietary diversity and nutrition, and are often grown in niche
environments'>~"". Indeed, the few studies that exist have focused
on climate impacts’'?, and very little is known about how air pollu-
tion has affected perennial crops. Moreover, given their long lifes-
pans (many trees grow for 30yr) and large establishment costs (for
example, ~US$20,000 per hectare of almonds; 3-4 yr for grape vines
or orange trees to begin bearing fruit)'¥, adaptive responses such as
the adoption of new varieties will be slower than for annual crops'.
Perennials may thus be especially vulnerable to both climate and
ozone trends in the coming decades.

California produces over 400 agricultural commodities, sup-
plies two-thirds of the nation’s fruits and nuts, and over one-third of
the nation’s vegetables®. In 2015, the state’s agricultural output was
valued at US$59.4 billion, accounting for 13% of the national total,
with more than one-third (US$23.0 billion) derived from long-
lived perennial crops such as almonds, grapes and strawberries?'.
The state also plays an important role in the world food economy,
and global food and nutrition security: California exports approxi-
mately 28% of its agricultural production®, and as but one example,
it is a major producer of tree nuts and grows over 80% of the world’s
almonds*.

Meanwhile, despite steady improvements (Supplementary Fig. 1)
and efforts to raise environmental standards, cut carbon emissions
and combat climate change, California’s particulate and ozone pol-
lution remains among the worst in the nation*’. Some of the produc-
tive agricultural areas in California are exposed to elevated ozone
levels (Supplementary Fig. 2). The combined historical and future
effects of ozone and climate trends on the yields of different peren-
nial crops in California are not well understood. More in-depth
research in this direction is essential to identify key vulnerabilities
and to prioritize adaptation strategies.

Tropospheric ozone (O,) is produced when nitrogen oxides (a
large component of anthropogenic pollutant emissions) and volatile
organic compounds react in the presence of sunlight. Ozone, a pow-
erful oxidant, enters leaves via the stomata, damaging plant tissues
and impairing photosynthesis****. There are several approaches
to estimate crop yield responses to climate and ozone at regional
scales. Damage functions (also known as dose-response or expo-
sure-response functions) derived from controlled experimental
and field studies are one possibility, but extrapolating over larger
regions on the basis of limited observations at a small number of
field locations may be unreliable, particularly for perennial crops®.
In contrast, long-term records of perennial crop yields, climate and
air pollution in the state provide a new opportunity to determine
their relationships by analysing the covariance among them with
statistical models™. Regression analysis of historical data is inde-
pendent of experimental and field studies, and may be especially
useful for perennial crops, where there are few experimental studies
and limited reliable process-based models.
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Fig. 1| Yield response of the 20 most valuable perennial crops to ambient
ozone and a uniform 2 °C warming. The average yield response over the
period 1980 to 2015 is plotted as bars with points (median estimates), with
error bars (95% Cls) calculated by bootstrapping the model 1,000 times.
The darker-shaded bars on the left denote models of good performance
(with high training and test determination coefficients), as opposed to
models of poor performance (on the right, with significantly lower R?

test values; see Methods). a, Left y axis: crop types in two groups (good
and poor model performance) ranked by the mean economic value of
production for 2011-2015. Right y axis: state-wide average ozone exposures
(W126 index) for each crop, calculated similarly to the state-wide average
yields, with the county weights proportional to the harvested areas in each
county. b, The percentage reduction from ambient ozone, estimated as the
difference between predictions using historical ozone levels (W126 index)
and a hypothetical scenario with zero ozone (W126 index). ¢, The yield
response to warming, shown as percentage changes in yields that would
result from a uniform 2 °C warming.

This study jointly assesses the impacts of climate and ozone levels
on historical and future yields of multiple perennial crops. We use
a panel regression analysis of historical crop yields and exposures
from 1980 to 2015 to estimate the sensitivities of a suite of peren-
nial crops to ozone and temperature. We then estimate future crop
yields to 2050 by combining our estimated historical responses with
downscaled climate model projections, including ozone concen-
trations, under two representative concentration pathways (RCPs)
4.5 and 8.5,

Yield response to ozone and temperature

Figure 1 represents the response of California’s top 20 most valuable
perennial crop yields to ambient ozone and a uniform 2°C warm-
ing. The average yield response over the period 1980-2015 is plotted
as bars with points (median estimates), with confidence intervals
(CIs) calculated by bootstrapping the model 1,000 times using the
least absolute selection and shrinkage operator (LASSO) regression.

Darker-shaded bars denote crop models with good performance, as
determined by out-of-sample cross-validation. Crop models with
both high training and test determination coefficients (R?) are con-
sidered to have good performance, while models in which the test
R? was significantly lower than the training R? indicate the risk of
overfitting. Ten perennial crops (almonds, wine grapes, strawber-
ries, table grapes, walnuts, hay, lemons, freestone peaches, nectar-
ines and plums) exhibit good model performance, with the models
explaining more than 50% of the variance in training data and 35%
of the variance in test data (Supplementary Fig. 3), and accurately
predicting historical yields (Supplementary Fig. 4). The remain-
ing crops exhibit poor model performance, with a relatively low or
even negative test R* that differs substantially from their training R?,
although their training R* is generally higher than 0.4. Our results
focus on the crops with good model performance. Interestingly, the
crops with good model performance are high value and represent
the majority of the economic value of California’s perennial crops
(Fig. 1a, left axis).

The yield response to ambient ozone was estimated from the per-
centage difference between predictions using historical ozone levels
and a hypothetical scenario with zero ozone (Fig. 1b). We calcu-
lated three widely used ozone cumulative exposure indices (W126,
AOT40 and SUMO06) during the warm season to reflect ozone expo-
sures on perennial crops. Only results for the W126 ozone index
are reported here; responses for good-performance models were
similar when using the AOT40 and SUMO06 indices (Supplementary
Fig. 5). For most of these crops, ozone has significant negative
effects on yields. The yield changes from ambient ozone (that is,
the change in yield given the estimated sensitivity of crops and the
ozone exposure in growing areas) range from less than —2% (95%
CI: 0% to —4%) for strawberries to —22% (95% CI: —10% to —33%)
for table grapes (Fig. 1b). Seven of the ten crops with good model
performance (wine grapes, strawberries, table grapes, walnuts, hay,
freestone peaches and nectarines) appear to have significant reduc-
tions in yield in response to ambient ozone (=7%, —2%, —22%,
—3%, —4%, —11% and —9%, respectively), and many of them are
among the top ten most valuable perennial crops in California. The
variations in yield response to ambient ozone between crops are not
only attributed to their different ozone sensitivity, but also due to
their different ozone exposures in differentiated growing regions.
Grapes appear to be more sensitive to ozone than many other
perennial crops (Supplementary Fig. 6); this finding is consistent
with literature describing grapes as a moderately ozone-sensitive
crop” that can experience visible leaf damage from ozone expo-
sure'®. The high ozone damage to table grapes is also related to their
high ozone exposure (W126—58 parts per million hours (ppmh);
Fig. 1a, right axis) (most grapes are grown in the San Joaquin Valley;
Supplementary Fig. 2), while the small ozone damage to strawber-
ries is partly related to their low ozone exposure (15 ppmh; Fig. 1a,
right axis) (many of them grow in the Central Coast; Supplementary
Fig. 2). The total economic loss from ozone damage to these seven
crops was estimated at roughly US$1 billion (95% CI: US$0.5-1.3
billion) per year, ignoring price feedback effects. This significant
loss of yield and production value indicates that ozone has a con-
siderably negative impact on California’s agricultural economy, and
thus provides an important motivation for further reduction of
ozone levels.

Using the same LASSO-based approach, we also extract the yield
response to warming, which is shown as percentage changes in
yields that would result from a uniform 2 °C warming (an approxi-
mation for the magnitude of warming by 2050) (Fig. 1c). In con-
trast to ozone, yield responses to warming are not significant for
most crops, with Cls often spanning zero. Only two crops (almonds
and walnuts) appear to have significant negative yield responses to
warming (—9% and —8% from a uniform 2°C warming, respec-
tively). Almonds are susceptible to winter warming, which may be
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associated with poor pollination and chilling hour accumulation'’.
Walnut yields are sensitive to warming, which may be partly related
to their substantial chilling requirements'>. We also assessed the
sensitivity of the yield responses to different warming levels (1°C,
2°C and 3°C) and found that greater warming has a greater impact
on the yield for most crops (Supplementary Fig. 7). These results are
generally consistent with those identified by Lobell and Field"', indi-
cating that an additional decade of agriculture and climate data have
not altered previously observed relationships, and that the effects of
warming, at least within the range observed in historical data, may
not be as significant as ozone damage.

Historical trends from 1980 to 2015

Figure 2 shows historical relative yield changes for six impor-
tant perennial crops over the period from 1980 to 2015 due to
changes in ozone concentrations (Fig. 2a-d) and temperature
(Fig. 2e,f) over that time period. Historical changes in ambient
ozone levels and temperature are shown in Supplementary Fig. 1.
As ozone concentrations have decreased in California over the
past several decades (Supplementary Fig. 1), ozone damage to
yields has declined (Fig. 2a-d), but damage in recent years is still
large. For table grapes and nectarines, the ozone damage on yields
remained relatively constant until the year 2000, when there was a
trend towards less ozone damage, consistent with the ozone trend
in the San Joaquin Valley (Supplementary Fig. 1) where most of
them are grown. In the case of table grapes, yield losses were 28%
(95% CI: 13% to 42%) in the 1980s and declined to 14% (95%
CIL: 6% to 22%) in the 2010s (Fig. 2¢). For nectarines, the 67%
CI of the ozone impact is negative, but the 95% CI extends to
positive values, indicating that the impact may be less significant
than for table grapes. Ozone damage to strawberries peaked in
the 1980s, and has declined since, in part affected by the ozone
trend in Southern California (Supplementary Fig. 1) where many
of them were grown. Interannual variations in yield loss due to
ozone damage (mainly attributable to meteorological differences)
were as high as nearly 10% for table grapes in the 1990s, but have
been decreasing in recent years probably due to reduced emissions
of ozone precursors. In general, our results suggest that air quality
regulations in California have been effective in reducing ozone-
induced crop production losses, and that there are opportunities
for further improvements. Reductions in ozone levels between the
1980s and the early 2010s are modelled to have increased the agri-
cultural output of the seven crops with ozone damage by US$0.6
billion (95% CI: US$0.1-1.1 billion) per year.

Figure 2e,f shows the impact of year-to-year temperature vari-
ability on yields of almonds and walnuts during the period 1980-
2015. In contrast to ozone, there is not a significant historical
temperature trend, although there are large interannual variations
(up to 2°C) and a recent upward trend. The variations in yield due
to temperature are mostly within +10% (Fig. 2). The yield responses
to historical temperatures also do not exhibit a clear trend, with the
possible exception of 2010-2015, during which a warming period
reduced yields of both nuts (Fig. 2e,f and Supplementary Fig. 1).

Projections of impacts to 2050

Figure 3 shows the projected 2005-2050 changes in yields of four
perennial crops by agricultural district (see Supplementary Fig. 2
for region definitions) due to warming and ozone changes from
2001-2010 to 2046-2055 in the RCP4.5 and RCP8.5 climate sce-
narios, with uncertainty ranges quantified using bootstrapping.
Projected changes in ambient ozone levels and temperature under
the two RCPs scenarios are shown in Supplementary Fig. 8. The
large ozone precursor emission reductions®-** lead to greater warm-
season daylight ozone reductions in RCP4.5 (Supplementary Fig. 8).
Assuming no changes to agronomic technology or crop area, the
greater ozone reductions in RCP4.5 (Supplementary Fig. 8) lead to
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larger benefits to yields (+5%, +20% and +8% for wine grapes, table
grapes and nectarines, respectively), compared to +3%, +13% and
+5% for the same crops, respectively, in RCP8.5 (Fig. 3). Similarly,
higher levels of warming under RCP8.5 (Supplementary Fig. 8) cor-
respond to larger yield losses: for example, 16% for almonds com-
pared to 11% under RCP4.5 (Fig. 3). Under RCP4.5, the benefits of
ozone reductions are larger than the effects of warming for most
crops in most districts, leading to a net gain in yield for some crops.
In particular, the yield benefits of ozone reduction could be as high
as 20% for table grapes. However, future warming may cause yield
loss for particular crops such as almonds.

The impacts show regional differences across California. For
example, the San Joaquin Valley, where many of the nation’s fruits
and nuts (such as grapes and nectarines) are grown, is the region
most severely affected by ozone (Supplementary Fig. 2), and may
thus witness substantial benefits from ozone reduction in the future
(Fig. 3 and Supplementary Fig. 8). For example, yields of wine
grapes in the San Joaquin Valley are projected to increase by 6% in
the RCP4.5 scenario due to ozone reductions, substantially more
than other regions (1-4%). Most table grapes are currently grown
in counties with high ozone levels in the San Joaquin Valley and
Southern California (Supplementary Fig. 2), and their yields are
projected to increase by up to 20% in the RCP4.5 scenario due to
ozone reductions. Our results reveal the co-location of regions with
high agricultural production and high ozone damage, suggesting
the potential benefits on future yields by reducing ozone levels or by
relocating crop planting areas.

Discussion

Our results suggest that for most perennial crops, ozone damage to
yields may be more substantial than warming effects. This is con-
sistent with studies of major crops from other parts of the world.
In California, our models suggest current production losses due to
ozone damage can be as high as US$1 billion (95% CI: US$0.5-1.3
billion) per year. Reducing air pollution may provide immediate
benefits for agricultural producers. Substantial warming from his-
torical emissions will be difficult to avoid, although mitigation mea-
sures will help to limit the overall magnitude of future warming.
The substantial decline in yield loss from ozone since 1980 indicates
that pollution control has had widespread benefits on perennial
crop production (increased agricultural output by US$0.6 billion
per year). Yield losses of 5-15% for some crops are still occurring
currently. Our projections suggest that further pollution reduction
would create further benefits. The co-location of regions with high
production and high ozone damage indicates large opportunities
to improve crop yields. For regions where yield loss due to ozone
damage is large, the success in California suggests that air quality
regulation in those regions could be an effective means of boost-
ing crop yields. In contrast to ozone, the limited temperature trends
(Supplementary Fig. 1) exhibit no clear pattern on yields (Fig. 2e,f),
and may be related to the protective effect of irrigation against crop
damage from high temperature’"*.

Although we have used longer records of agricultural production
and temperature than prior studies, our analyses of crop responses
to warming are generally consistent with studies that evaluated the
effects of climate and ozone in isolation on perennial crop yields.
For example, Lobell and Field"' used data spanning 1980-2005 and
also found that few of California’s perennial crops showed damage
due to warming. Earlier, Olszyk et al.”” summarized the yield loss
equations for California crop ozone exposure based on experimen-
tal field studies and found that grapes and hay were estimated to
have yield losses from ozone greater than 5% and strawberries less
than 5%, similar to the statistical results of this study. Olszyk et al.**
had no air pollution response data to assess walnuts and nectarines,
but noted that those crops were potentially at risk from ozone, a
suggestion that is supported by this study’s results.
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Fig. 2 | Historical yield changes for selected perennial crops during 1980-2015. a-f, Yield changes of six important perennial crops over the period from
1980 to 2015 due to changes in ambient ozone (a-d) and temperature (e,f). The dotted lines denote the median estimates, and the dark and light areas
span the 67% and 95% Cls, respectively. The percentage reduction from ambient ozone was estimated from the difference between predictions using
historical ozone levels (W126) and a hypothetical scenario with zero ozone (W126). The impact of historical climate trends on crop yields was estimated
from the difference between predictions using historical temperature and a hypothetical scenario using the 1980-2015 average temperature, thus
representing the impact of year-to-year temperature variability during 1980-2015. The 95% Cls of ozone damage for some crops extend to zero or positive
values, indicating that ozone coefficients were shrunk to zero or positive values for some bootstrap replicates by the LASSO model.

Our findings are subject to several important caveats and limita-
tions. First, we have reported large uncertainties associated with the
modelled responses of crops to changes in temperature and ozone
concentrations. To further evaluate uncertainties, we compare the
results of our LASSO with those from stepwise regression. The step-
wise results generally support the LASSO results. For most crops,
the two models provided similar predictions, with overlapping CIs
(Supplementary Fig. 9). The stepwise results showed that negative
yield responses to ozone for wine grapes, strawberries, table grapes,
hay and nectarines are all significant (P<0.05; Student’s t-test).
Although we find significant ozone damage for some crops (for
example, table grapes), other crops show little response to ozone
within the range of historical observations. We calculated ozone

cumulative indices over the warm season; additional regression
using ozone cumulative indices over the whole year provided simi-
lar predictions (Supplementary Fig. 10). Second, like other statisti-
cal approaches, our results depend on the model specification. Our
model includes time trends that control for technological changes
and county fixed effects that control for cross-sectional differences
in management and soil quality across the state. However, the model
specification presented here ignores interactions between indepen-
dent variables, such as the interactions between ozone and tempera-
ture, but supplementary analysis suggests that ozone-temperature
interactions may not significantly alter the estimated yield responses
(Supplementary Notes). We also assessed collinearity between inde-
pendent variables such as ozone and temperature (Supplementary
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Fig. 3 | Projected percentage change in yields of selected crops by region 2005—2050. Future changes in yields in eight agricultural districts in California
due to temperature and ozone concentration changes under RCP4.5 and RCP8.5. The top panels show the contributions to current production from

eight agricultural districts (see Supplementary Fig. 2 for region definitions). The middle and bottom panels show the projected 2005—2050 percentage
change in yield. The dark and light bars denote ozone and temperature effects (median estimates), respectively. The total yield change is plotted as points
(median estimates), with error bars (95% Cls) calculated by bootstrapping the crop model 1,000 times.

Notes). Correlations between some of the variables indicate that
our estimates of effects are not ideal, but the relationships are not
strong enough to undermine our conclusions. We also focus our
analysis of climate change on the temperature effects; other factors
related to climate change, including the fertilization effect of future
elevated atmospheric CO,, are not investigated (past studies have
highlighted the potential effects of warming on perennial crops in
California''). We also assessed uncertainties in model simulations,
and found that our future projections are generally consistent with
multi-model ensembles, and the warming we project is near the
upper bounds (Supplementary Notes).

Agricultural adaptation efforts such as heat-tolerant and ozone-
resistant crop varieties’* may bring future gains in perennial crop
production and warrant further investigation, although imple-
mentation may be challenging given the normally slow turnover of
long-lived perennial crops. Even with these limitations, our results
suggest that clean air policies have been an unheralded but partic-
ularly effective and practical option to secure perennial crop pro-
duction, and that collaboration among agricultural policymakers,
air quality managers and climate policymakers can thus help to
ensure the future productivity of perennial crops in California in a
changing climate.

Methods

County-level data in California. We use annual crop yields, harvested area,
production and economic value data for 58 counties in California for the years
1980-2015 from the California County Agricultural Commissioners’ reports*'.
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We analyse the 20 most valuable perennial crops in California: almonds, wine
grapes, strawberries, table grapes, walnuts, hay, pistachios, navel oranges, raisin
grapes, lemons, avocados, cherries, freestone peaches, nectarines, Valencia oranges,
plums, dried plums, clingstone peaches, grapefruit and bushberries''. These crops
represent an average total production value of US$23.0 billion per year over the
period of 2011-2015, accounting for more than 70% of the production value of

all perennial crops in California*'. The relationships of agricultural production,
climate and ozone are analysed using historical climate and ozone data. The
monthly average of the daily maximum temperature (Ty,x) and the monthly total
precipitation (PRCP) at 379 stations in California are obtained from the National
Weather Service Cooperative Network. Hourly ozone data at 190 sites in California
from the Environmental Protection Agency’s Air Quality System™ are used to
calculate three widely used ozone cumulative indices designed to reflect ozone
exposures on plants (that is, W126, AOT40 and SUMO06)***. W126 is a cumulative
indicator of hourly ozone concentrations weighted by a sigmoidal scale. AOT40
and SUMO06 are cumulative indicators of hourly ozone concentrations exceeding
0.04 ppm and 0.06 ppm thresholds, respectively. They are calculated as:

n
w126 = 3 (04 1yt

h=1
& [ O, —0.04, 0;,>0.04
AOT40 = h;l Ch where Ch = { 0 Oh <0.04
_ u _ Op, 0,>0.06
SUMO06 = hgl Cj, where C, = { 0. 0,<0.06

where O, is the hourly ozone concentration in ppm for hour h during daylight
hours (8:00-19:59), and 7 is the total number of hours within a period. The ozone
cumulative indices are cumulated over the warm season (March to August) when
ozone levels are the highest and plant growth is more likely to be affected. To adjust
for missing hourly observations, similar to the correction approach suggested by
the US Environmental Protection Agency™, we sum the cumulative indices over the
reporting hours, divide by the number of reported hours and then multiply by the
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total number of daylight hours within the period. To be comparable with crop data
at the county level, data for sites adjacent to cropland areas within each county were
averaged to produce county-wide averages. The cropland map obtained from the
US Department of Agriculture National Agricultural Statistics Service™ was used to
limit the observations to relevant agriculture areas. Counties with less than 20 yr of
data are excluded from the analysis.

Statistical yield models. On the basis of the historical data, we develop statistical
yield models for each crop using the following linear regression model:

4
yield,; = f,x Ol + E} (ﬁ'r.s * Tniaxyi + Bras* Tiaxgi

+Pp X PRCPg;i + fip; X PRCP?yi) + Pev,ix year, + fc;

where Ol is one of the three warm-season ozone cumulative indices (in units of
ppm h); Ty, and PRCP,; here are seasonal mean of daily maximum temperature
(°C) and seasonal total precipitation (mm), respectively; the subscripts y, i and s are
indices for year, county and season, respectively, such that Ty, is Ty,x in season s
of year y in county i; 8,, Br, Prs e Prr Poy and f are regression coefficients. Similar
to a previous study of the temperature sensitivity of California perennials'’, for each
harvest year we consider weather variables from the September prior to the harvest
year to the August of the harvest year to account for different seasonal influences.
We use seasonal average weather variables instead of monthly variables in the
model to avoid too many predictor variables and thus overfitting. The four seasons
are defined as autumn (September-November), winter (December-February),
spring (March-May) and summer (June-August). The county-specific time trend
(represented by the year term) accounts for changes in agronomic practices over
time that influence yields. County fixed effects account for time-invariant factors
that vary across counties, such as differences in soil quality. Similar crop models
have been used in previous studies of ozone and climate®''.

We use the LASSO regression method to fit the regression model, in which
predictors are chosen in an automatic manner (using the ‘lars’ package in R) that
is thus independent from researcher choice. The LASSO method selects a subset
of predictors that explain most of the variation in outcomes by shrinking the
regression coefficient towards zero, avoiding the statistical penalties of including
irrelevant predictors, and is thought to improve prediction accuracy. We then
perform an out-of-sample cross-validation as a robustness check, using two-
thirds of the data for training (that is, model calibration), and the other one-third
for testing. We compute determination coefficients (R?) between actual and
predicted yields for both the training and test data. Models in which the test R> was
significantly lower than the training R* indicate the risk of overfitting. CIs of R* are
derived from 1,000 repeated tests with a random one-third of observations omitted.

On the basis of temperature and ozone sensitivities given by the statistical yield
model, we then determine the crop yield responses as percentage changes in yields.
We first estimate the overall yield response to warming as the percentage difference
between predictions using historical temperature and a scenario with a uniform
2°C warming (an approximation for the magnitude of warming by 2050). Next, the
impact of historical climate trends on crop yields is estimated from the difference
between predictions using historical temperature and a hypothetical scenario
using the 1980-2015 average temperature, to evaluate the impact of year-to-year
temperature variability during 1980-2015. Similarly to Lobell and Field"', we also
found small sensitivities to precipitation for many crops, presumably because
most crops are irrigated'’. Given the small sensitivities and large uncertainties
in precipitation projections”'?, we focus our analysis of climate change on the
temperature effects. The yield effect of ambient ozone is estimated from the
percentage differences between predictions using historical ozone levels and a
hypothetical scenario with zero ozone (which has been used in other studies)>**.
To get state-wide average yields, yields are weighted by the harvested area of each
crop in each county. To analyse regional differences, we also gathered counties into
eight agricultural districts. The definition of agricultural districts is consistent with
the California County Agricultural Commissioners’ reports (Supplementary Fig. 2).

Finally, to determine the CIs related to these estimates, we use the
bootstrapping method* to produce distributions by using a set of crop models
generated from resampling (with replacement) the observations 1,000 times, and
the 2.5th and 97.5th percentiles from the 1,000 bootstrap replicates are selected as
95% Cls. By selecting new predictors for each replicate, the bootstrapping method
accounts for uncertainties in model formulation.

Future projections. On the basis of the crop models we developed, we combine
historical sensitivities with future projections of ozone and climate to assess

their potential impacts on yields to 2050. The future projections assume no new
adaptation between now and then, or holding technology equivalent to current
levels (2001-2010), so that the effects of changes in ozone levels and climate on
future yields can be isolated. Two RCP scenarios (RCP4.5 and RCP8.5) are used
to represent a range of policy options regarding ozone regulation and climate
adaptation. RCP8.5 represents a business-as-usual scenario in which mean global
temperatures increase by >4°C (ref. ), while RCP4.5 represents a mitigation
scenario with moderate ozone regulation that is likely to limit the increase of mean
global temperature to ~3 °C (ref.”).

We use decadal projections of regional air quality and climate over the US
for current (2001-2010) and future (2046-2055) decades at a 36-km resolution
simulated by the Weather Research and Forecasting Model with Chemistry (WRF/
Chem)***, downscaled from the North Carolina State University’s version of the
Community Earth System Model (CESM_NCSU)"-*2, Future predicted air quality
takes changes in both emissions and climate into account. The gridded data are
aggregated to the county level by calculating the average of all the grids classified as
cropland areas within each county. Climate and air quality data are bias-corrected
to ensure that they are consistent with the observations used in model calibration.
For the climate data, following Bruyeére et al.”, seasonal mean biases between
simulations and observations by county are calculated and then subtracted from
the original simulations for both current and future years to generate the bias-
corrected data. We corrected the simulated ozone exposures in each county by
multiplying the ratio of observed/simulated ozone levels in current years as has
been done in previous similar studies’. The simulated data at county level are
combined with statistical yield models to predict yields of each county, assuming
the current technology. State-average yields are calculated by assuming the current
crop area distribution. To obtain CIs related to crop model uncertainty, the yield
projections are repeated 1,000 times by using a set of crop models generated from
bootstrap samples of historical observation data.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All historical data used are publicly available and open access, with the data sources
listed in the Methods. The other data that support the findings of this study are
available from the corresponding author upon reasonable request.

Code availability
The LASSO regression was conducted by using the lars 1.2 package in R, which is
available at https://CRAN.R-project.org/package=lars.
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Software and code

Policy information about availability of computer code

Data collection No software was used.

Data analysis The LASSO regression was conducted by using the lars 1.2 package in R, which is available at https://CRAN.R-project.org/package=lars.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The manuscript contains the following data availability statement - "All historical data used are publicly available and open access, with the data sources listed in
Methods. The other data that support the findings of this study are available from the corresponding author upon reasonable request."

In addition, we list all data sources below:

1. Crop yield, harvested area, production and economic value data were obtained from the California County Agricultural Commissioners’ reports (https://
www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/index.php).

2. Historical climate data at 379 stations in California were obtained from the National Weather Service Cooperative Network (https://www.ncei.noaa.gov/data/).
3. Historical ozone data at 190 sites in California were obtained from the EPA’s Air Quality System (https://ags.epa.gov/agsweb/airdata/download_files.html).

4. Cropland map was obtained from the USDA-NASS Cropland Data Layer (https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php).

5. Decadal projections of regional air quality and climate simulated by WRF/Chem are available from the corresponding author upon reasonable request.

o]
Q
=
C
=
D
=
D
wv
()
eY)
=
(@)
>
=
D
o
©)
=
=
Q
(%]
(-
3
3
Q
=
=




Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[ ] Life sciences [ ] Behavioural & social sciences  [X] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We use a panel regression analysis of historical crop yields and exposures from 1980 to 2015 to estimate the sensitivities of a suite of
perennial crops to ozone and temperature. County-level ozone exposure (i.e., W126, AOT40 and SUMO06), seasonal average of
maximum temperature and precipitation from 1980 to 2015 were used in a regression model to determine their effects on yields of
perennial crops.
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Research sample The research sample is historical yield, ozone and weather observations in each county in California in each year. The main advantage
of using county data is that it provides more data points and a wider range of ozone and temperature than looking at the statewide
average.

Sampling strategy To include as many samples as possible, all the valid county-year observations in 58 counties in California during 1980-2015 were

used for the regression. We also performed an out-of-sample cross validation as a robustness check, and used bootstrap resampling
to determine the confidence intervals related to our estimates.

Data collection Annual crop yields data for each county in California for the years 1980-2015 were obtained from the California County Agricultural
Commissioners’ reports. Monthly average of daily maximum temperature and monthly total precipitation at 379 stations in California
were obtained from the NWS (National Weather Service) Cooperative Network. Hourly ozone data at 190 sites in California were
obtained from the EPA’s Air Quality System.

Timing and spatial scale  Timing scale: each year from 1980 to 2015, the same as the reporting years of county statistics.
Spatial scale: county level in California. To be comparable with crop yield data at the county level, ozone and weather data for sites
adjacent to cropland areas within each county were averaged to produce countywide averages.

Data exclusions To include a sufficiently long period, counties with less than 20 years of observations are excluded from the analysis. Extreme outliers
and large jumps were identified and removed from the time series of yield, ozone and climate data by county, which may reflect
aberrations in data quality or abnormal factors that the model cannot explain.

Reproducibility We rerun the regression model with bootstrapping methods, and got very similar estimates and confidence intervals. All attempts to
repeat the experiment were successful.

Randomization To determine the confidence intervals related to our estimates, we use the bootstrapping method to produce distributions by using a
set of crop models generated from resampling (with replacement) the observations 1000 times, and the 2.5th and 97.5th percentiles
from the 1000 bootstrap replicates are selected as 95% Cls. By selecting new predictors for each replicate, the bootstrapping method

accounts for uncertainties in model formulation.

Blinding We used historical records, so blinding was not relevant to this study.

Did the study involve field work? [ ] Yes X No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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