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Crop production is vulnerable to both climate change and air 
pollution1–5. To date, efforts to understand the agricultural 
impacts of climate change and air pollution have focused 

on annual crops such as wheat, rice, maize and soybean6–8, which 
provide the majority of calories directly consumed by humans. In 
contrast, relatively few studies have assessed such impacts on long-
lived perennial crops such as fruits and nuts9–14, which are impor-
tant for dietary diversity and nutrition, and are often grown in niche 
environments15–17. Indeed, the few studies that exist have focused 
on climate impacts9–12, and very little is known about how air pollu-
tion has affected perennial crops. Moreover, given their long lifes-
pans (many trees grow for 30 yr) and large establishment costs (for 
example, ~US$20,000 per hectare of almonds; 3–4 yr for grape vines 
or orange trees to begin bearing fruit)18, adaptive responses such as 
the adoption of new varieties will be slower than for annual crops19. 
Perennials may thus be especially vulnerable to both climate and 
ozone trends in the coming decades.

California produces over 400 agricultural commodities, sup-
plies two-thirds of the nation’s fruits and nuts, and over one-third of 
the nation’s vegetables20. In 2015, the state’s agricultural output was 
valued at US$59.4 billion, accounting for 13% of the national total, 
with more than one-third (US$23.0 billion) derived from long-
lived perennial crops such as almonds, grapes and strawberries21. 
The state also plays an important role in the world food economy, 
and global food and nutrition security: California exports approxi-
mately 28% of its agricultural production22, and as but one example, 
it is a major producer of tree nuts and grows over 80% of the world’s 
almonds22.

Meanwhile, despite steady improvements (Supplementary Fig. 1) 
and efforts to raise environmental standards, cut carbon emissions 
and combat climate change, California’s particulate and ozone pol-
lution remains among the worst in the nation23. Some of the produc-
tive agricultural areas in California are exposed to elevated ozone 
levels (Supplementary Fig. 2). The combined historical and future 
effects of ozone and climate trends on the yields of different peren-
nial crops in California are not well understood. More in-depth 
research in this direction is essential to identify key vulnerabilities 
and to prioritize adaptation strategies.

Tropospheric ozone (O3) is produced when nitrogen oxides (a 
large component of anthropogenic pollutant emissions) and volatile 
organic compounds react in the presence of sunlight. Ozone, a pow-
erful oxidant, enters leaves via the stomata, damaging plant tissues 
and impairing photosynthesis3,8,24. There are several approaches 
to estimate crop yield responses to climate and ozone at regional 
scales. Damage functions (also known as dose–response or expo-
sure–response functions) derived from controlled experimental 
and field studies are one possibility, but extrapolating over larger 
regions on the basis of limited observations at a small number of 
field locations may be unreliable, particularly for perennial crops8. 
In contrast, long-term records of perennial crop yields, climate and 
air pollution in the state provide a new opportunity to determine 
their relationships by analysing the covariance among them with 
statistical models25. Regression analysis of historical data is inde-
pendent of experimental and field studies, and may be especially 
useful for perennial crops, where there are few experimental studies 
and limited reliable process-based models.
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This study jointly assesses the impacts of climate and ozone levels 
on historical and future yields of multiple perennial crops. We use 
a panel regression analysis of historical crop yields and exposures 
from 1980 to 2015 to estimate the sensitivities of a suite of peren-
nial crops to ozone and temperature. We then estimate future crop 
yields to 2050 by combining our estimated historical responses with 
downscaled climate model projections, including ozone concen-
trations, under two representative concentration pathways (RCPs)  
4.5 and 8.526,27.

Yield response to ozone and temperature
Figure 1 represents the response of California’s top 20 most valuable 
perennial crop yields to ambient ozone and a uniform 2 °C warm-
ing. The average yield response over the period 1980–2015 is plotted 
as bars with points (median estimates), with confidence intervals 
(CIs) calculated by bootstrapping the model 1,000 times using the 
least absolute selection and shrinkage operator (LASSO) regression. 

Darker-shaded bars denote crop models with good performance, as 
determined by out-of-sample cross-validation. Crop models with 
both high training and test determination coefficients (R2) are con-
sidered to have good performance, while models in which the test 
R2 was significantly lower than the training R2 indicate the risk of 
overfitting. Ten perennial crops (almonds, wine grapes, strawber-
ries, table grapes, walnuts, hay, lemons, freestone peaches, nectar-
ines and plums) exhibit good model performance, with the models 
explaining more than 50% of the variance in training data and 35% 
of the variance in test data (Supplementary Fig. 3), and accurately 
predicting historical yields (Supplementary Fig. 4). The remain-
ing crops exhibit poor model performance, with a relatively low or 
even negative test R2 that differs substantially from their training R2, 
although their training R2 is generally higher than 0.4. Our results 
focus on the crops with good model performance. Interestingly, the 
crops with good model performance are high value and represent 
the majority of the economic value of California’s perennial crops 
(Fig. 1a, left axis).

The yield response to ambient ozone was estimated from the per-
centage difference between predictions using historical ozone levels 
and a hypothetical scenario with zero ozone (Fig. 1b). We calcu-
lated three widely used ozone cumulative exposure indices (W126, 
AOT40 and SUM06) during the warm season to reflect ozone expo-
sures on perennial crops. Only results for the W126 ozone index 
are reported here; responses for good-performance models were 
similar when using the AOT40 and SUM06 indices (Supplementary 
Fig. 5). For most of these crops, ozone has significant negative 
effects on yields. The yield changes from ambient ozone (that is, 
the change in yield given the estimated sensitivity of crops and the 
ozone exposure in growing areas) range from less than −2% (95% 
CI: 0% to −4%) for strawberries to −22% (95% CI: −10% to −33%) 
for table grapes (Fig. 1b). Seven of the ten crops with good model 
performance (wine grapes, strawberries, table grapes, walnuts, hay, 
freestone peaches and nectarines) appear to have significant reduc-
tions in yield in response to ambient ozone (−7%, −2%, −22%, 
−3%, −4%, −11% and −9%, respectively), and many of them are 
among the top ten most valuable perennial crops in California. The 
variations in yield response to ambient ozone between crops are not 
only attributed to their different ozone sensitivity, but also due to 
their different ozone exposures in differentiated growing regions. 
Grapes appear to be more sensitive to ozone than many other 
perennial crops (Supplementary Fig. 6); this finding is consistent 
with literature describing grapes as a moderately ozone-sensitive 
crop13 that can experience visible leaf damage from ozone expo-
sure14. The high ozone damage to table grapes is also related to their 
high ozone exposure (W126—58 parts per million hours (ppm h); 
Fig. 1a, right axis) (most grapes are grown in the San Joaquin Valley; 
Supplementary Fig. 2), while the small ozone damage to strawber-
ries is partly related to their low ozone exposure (15 ppm h; Fig. 1a, 
right axis) (many of them grow in the Central Coast; Supplementary 
Fig. 2). The total economic loss from ozone damage to these seven 
crops was estimated at roughly US$1 billion (95% CI: US$0.5–1.3 
billion) per year, ignoring price feedback effects. This significant 
loss of yield and production value indicates that ozone has a con-
siderably negative impact on California’s agricultural economy, and 
thus provides an important motivation for further reduction of 
ozone levels.

Using the same LASSO-based approach, we also extract the yield 
response to warming, which is shown as percentage changes in 
yields that would result from a uniform 2 °C warming (an approxi-
mation for the magnitude of warming by 2050) (Fig. 1c). In con-
trast to ozone, yield responses to warming are not significant for 
most crops, with CIs often spanning zero. Only two crops (almonds 
and walnuts) appear to have significant negative yield responses to 
warming (−9% and −8% from a uniform 2 °C warming, respec-
tively). Almonds are susceptible to winter warming, which may be 
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Fig. 1 | Yield response of the 20 most valuable perennial crops to ambient 
ozone and a uniform 2 °C warming. The average yield response over the 
period 1980 to 2015 is plotted as bars with points (median estimates), with 
error bars (95% CIs) calculated by bootstrapping the model 1,000 times. 
The darker-shaded bars on the left denote models of good performance 
(with high training and test determination coefficients), as opposed to 
models of poor performance (on the right, with significantly lower R2 
test values; see Methods). a, Left y axis: crop types in two groups (good 
and poor model performance) ranked by the mean economic value of 
production for 2011–2015. Right y axis: state-wide average ozone exposures 
(W126 index) for each crop, calculated similarly to the state-wide average 
yields, with the county weights proportional to the harvested areas in each 
county. b, The percentage reduction from ambient ozone, estimated as the 
difference between predictions using historical ozone levels (W126 index) 
and a hypothetical scenario with zero ozone (W126 index). c, The yield 
response to warming, shown as percentage changes in yields that would 
result from a uniform 2 °C warming.
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associated with poor pollination and chilling hour accumulation11. 
Walnut yields are sensitive to warming, which may be partly related 
to their substantial chilling requirements12. We also assessed the 
sensitivity of the yield responses to different warming levels (1 °C, 
2 °C and 3 °C) and found that greater warming has a greater impact 
on the yield for most crops (Supplementary Fig. 7). These results are 
generally consistent with those identified by Lobell and Field11, indi-
cating that an additional decade of agriculture and climate data have 
not altered previously observed relationships, and that the effects of 
warming, at least within the range observed in historical data, may 
not be as significant as ozone damage.

Historical trends from 1980 to 2015
Figure 2 shows historical relative yield changes for six impor-
tant perennial crops over the period from 1980 to 2015 due to 
changes in ozone concentrations (Fig. 2a–d) and temperature 
(Fig. 2e,f) over that time period. Historical changes in ambient 
ozone levels and temperature are shown in Supplementary Fig. 1.  
As ozone concentrations have decreased in California over the 
past several decades (Supplementary Fig. 1), ozone damage to 
yields has declined (Fig. 2a–d), but damage in recent years is still 
large. For table grapes and nectarines, the ozone damage on yields 
remained relatively constant until the year 2000, when there was a 
trend towards less ozone damage, consistent with the ozone trend 
in the San Joaquin Valley (Supplementary Fig. 1) where most of 
them are grown. In the case of table grapes, yield losses were 28% 
(95% CI: 13% to 42%) in the 1980s and declined to 14% (95% 
CI: 6% to 22%) in the 2010s (Fig. 2c). For nectarines, the 67% 
CI of the ozone impact is negative, but the 95% CI extends to 
positive values, indicating that the impact may be less significant 
than for table grapes. Ozone damage to strawberries peaked in 
the 1980s, and has declined since, in part affected by the ozone 
trend in Southern California (Supplementary Fig. 1) where many 
of them were grown. Interannual variations in yield loss due to 
ozone damage (mainly attributable to meteorological differences) 
were as high as nearly 10% for table grapes in the 1990s, but have 
been decreasing in recent years probably due to reduced emissions 
of ozone precursors. In general, our results suggest that air quality 
regulations in California have been effective in reducing ozone-
induced crop production losses, and that there are opportunities 
for further improvements. Reductions in ozone levels between the 
1980s and the early 2010s are modelled to have increased the agri-
cultural output of the seven crops with ozone damage by US$0.6 
billion (95% CI: US$0.1–1.1 billion) per year.

Figure 2e,f shows the impact of year-to-year temperature vari-
ability on yields of almonds and walnuts during the period 1980–
2015. In contrast to ozone, there is not a significant historical 
temperature trend, although there are large interannual variations 
(up to 2 °C) and a recent upward trend. The variations in yield due 
to temperature are mostly within ±10% (Fig. 2). The yield responses 
to historical temperatures also do not exhibit a clear trend, with the 
possible exception of 2010–2015, during which a warming period 
reduced yields of both nuts (Fig. 2e,f and Supplementary Fig. 1).

Projections of impacts to 2050
Figure 3 shows the projected 2005–2050 changes in yields of four 
perennial crops by agricultural district (see Supplementary Fig. 2 
for region definitions) due to warming and ozone changes from 
2001–2010 to 2046–2055 in the RCP4.5 and RCP8.5 climate sce-
narios, with uncertainty ranges quantified using bootstrapping. 
Projected changes in ambient ozone levels and temperature under 
the two RCPs scenarios are shown in Supplementary Fig. 8. The 
large ozone precursor emission reductions28–30 lead to greater warm-
season daylight ozone reductions in RCP4.5 (Supplementary Fig. 8).  
Assuming no changes to agronomic technology or crop area, the 
greater ozone reductions in RCP4.5 (Supplementary Fig. 8) lead to 

larger benefits to yields (+5%, +20% and +8% for wine grapes, table 
grapes and nectarines, respectively), compared to +3%, +13% and 
+5% for the same crops, respectively, in RCP8.5 (Fig. 3). Similarly, 
higher levels of warming under RCP8.5 (Supplementary Fig. 8) cor-
respond to larger yield losses: for example, 16% for almonds com-
pared to 11% under RCP4.5 (Fig. 3). Under RCP4.5, the benefits of 
ozone reductions are larger than the effects of warming for most 
crops in most districts, leading to a net gain in yield for some crops. 
In particular, the yield benefits of ozone reduction could be as high 
as 20% for table grapes. However, future warming may cause yield 
loss for particular crops such as almonds.

The impacts show regional differences across California. For 
example, the San Joaquin Valley, where many of the nation’s fruits 
and nuts (such as grapes and nectarines) are grown, is the region 
most severely affected by ozone (Supplementary Fig. 2), and may 
thus witness substantial benefits from ozone reduction in the future 
(Fig. 3 and Supplementary Fig. 8). For example, yields of wine 
grapes in the San Joaquin Valley are projected to increase by 6% in 
the RCP4.5 scenario due to ozone reductions, substantially more 
than other regions (1–4%). Most table grapes are currently grown 
in counties with high ozone levels in the San Joaquin Valley and 
Southern California (Supplementary Fig. 2), and their yields are 
projected to increase by up to 20% in the RCP4.5 scenario due to 
ozone reductions. Our results reveal the co-location of regions with 
high agricultural production and high ozone damage, suggesting 
the potential benefits on future yields by reducing ozone levels or by 
relocating crop planting areas.

Discussion
Our results suggest that for most perennial crops, ozone damage to 
yields may be more substantial than warming effects. This is con-
sistent with studies of major crops from other parts of the world. 
In California, our models suggest current production losses due to 
ozone damage can be as high as US$1 billion (95% CI: US$0.5–1.3 
billion) per year. Reducing air pollution may provide immediate 
benefits for agricultural producers. Substantial warming from his-
torical emissions will be difficult to avoid, although mitigation mea-
sures will help to limit the overall magnitude of future warming. 
The substantial decline in yield loss from ozone since 1980 indicates 
that pollution control has had widespread benefits on perennial 
crop production (increased agricultural output by US$0.6 billion 
per year). Yield losses of 5–15% for some crops are still occurring 
currently. Our projections suggest that further pollution reduction 
would create further benefits. The co-location of regions with high 
production and high ozone damage indicates large opportunities 
to improve crop yields. For regions where yield loss due to ozone 
damage is large, the success in California suggests that air quality 
regulation in those regions could be an effective means of boost-
ing crop yields. In contrast to ozone, the limited temperature trends 
(Supplementary Fig. 1) exhibit no clear pattern on yields (Fig. 2e,f), 
and may be related to the protective effect of irrigation against crop 
damage from high temperature31,32.

Although we have used longer records of agricultural production 
and temperature than prior studies, our analyses of crop responses 
to warming are generally consistent with studies that evaluated the 
effects of climate and ozone in isolation on perennial crop yields. 
For example, Lobell and Field11 used data spanning 1980–2005 and 
also found that few of California’s perennial crops showed damage 
due to warming. Earlier, Olszyk et al.33 summarized the yield loss 
equations for California crop ozone exposure based on experimen-
tal field studies and found that grapes and hay were estimated to 
have yield losses from ozone greater than 5% and strawberries less 
than 5%, similar to the statistical results of this study. Olszyk et al.33 
had no air pollution response data to assess walnuts and nectarines, 
but noted that those crops were potentially at risk from ozone, a 
suggestion that is supported by this study’s results.
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Our findings are subject to several important caveats and limita-
tions. First, we have reported large uncertainties associated with the 
modelled responses of crops to changes in temperature and ozone 
concentrations. To further evaluate uncertainties, we compare the 
results of our LASSO with those from stepwise regression. The step-
wise results generally support the LASSO results. For most crops, 
the two models provided similar predictions, with overlapping CIs 
(Supplementary Fig. 9). The stepwise results showed that negative 
yield responses to ozone for wine grapes, strawberries, table grapes, 
hay and nectarines are all significant (P ≤ 0.05; Student’s t-test). 
Although we find significant ozone damage for some crops (for 
example, table grapes), other crops show little response to ozone 
within the range of historical observations. We calculated ozone 

cumulative indices over the warm season; additional regression 
using ozone cumulative indices over the whole year provided simi-
lar predictions (Supplementary Fig. 10). Second, like other statisti-
cal approaches, our results depend on the model specification. Our 
model includes time trends that control for technological changes 
and county fixed effects that control for cross-sectional differences 
in management and soil quality across the state. However, the model 
specification presented here ignores interactions between indepen-
dent variables, such as the interactions between ozone and tempera-
ture, but supplementary analysis suggests that ozone–temperature 
interactions may not significantly alter the estimated yield responses 
(Supplementary Notes). We also assessed collinearity between inde-
pendent variables such as ozone and temperature (Supplementary 
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Notes). Correlations between some of the variables indicate that 
our estimates of effects are not ideal, but the relationships are not 
strong enough to undermine our conclusions. We also focus our 
analysis of climate change on the temperature effects; other factors 
related to climate change, including the fertilization effect of future 
elevated atmospheric CO2, are not investigated (past studies have 
highlighted the potential effects of warming on perennial crops in 
California11). We also assessed uncertainties in model simulations, 
and found that our future projections are generally consistent with 
multi-model ensembles, and the warming we project is near the 
upper bounds (Supplementary Notes).

Agricultural adaptation efforts such as heat-tolerant and ozone-
resistant crop varieties24 may bring future gains in perennial crop 
production and warrant further investigation, although imple-
mentation may be challenging given the normally slow turnover of 
long-lived perennial crops. Even with these limitations, our results 
suggest that clean air policies have been an unheralded but partic-
ularly effective and practical option to secure perennial crop pro-
duction, and that collaboration among agricultural policymakers,  
air quality managers and climate policymakers can thus help to 
ensure the future productivity of perennial crops in California in a 
changing climate.

Methods
County-level data in California. We use annual crop yields, harvested area, 
production and economic value data for 58 counties in California for the years 
1980–2015 from the California County Agricultural Commissioners’ reports21. 

We analyse the 20 most valuable perennial crops in California: almonds, wine 
grapes, strawberries, table grapes, walnuts, hay, pistachios, navel oranges, raisin 
grapes, lemons, avocados, cherries, freestone peaches, nectarines, Valencia oranges, 
plums, dried plums, clingstone peaches, grapefruit and bushberries11. These crops 
represent an average total production value of US$23.0 billion per year over the 
period of 2011–2015, accounting for more than 70% of the production value of 
all perennial crops in California21. The relationships of agricultural production, 
climate and ozone are analysed using historical climate and ozone data. The 
monthly average of the daily maximum temperature (TMAX) and the monthly total 
precipitation (PRCP) at 379 stations in California are obtained from the National 
Weather Service Cooperative Network. Hourly ozone data at 190 sites in California 
from the Environmental Protection Agency’s Air Quality System34 are used to 
calculate three widely used ozone cumulative indices designed to reflect ozone 
exposures on plants (that is, W126, AOT40 and SUM06)8,24. W126 is a cumulative 
indicator of hourly ozone concentrations weighted by a sigmoidal scale. AOT40 
and SUM06 are cumulative indicators of hourly ozone concentrations exceeding 
0.04 ppm and 0.06 ppm thresholds, respectively. They are calculated as:

W126 ¼ Pn
h¼1

Oh ´ 1
1þ4;403 ´ e�126 ´Oh

 

AOT40 ¼ Pn
h¼1

Ch whereCh ¼
Oh � 0:04; Oh>0:04

0; Oh≤0:04



SUM06 ¼
Pn
h¼1

Ch whereCh ¼
Oh; Oh>0:06
0; Oh≤0:06



where Oh is the hourly ozone concentration in ppm for hour h during daylight 
hours (8:00–19:59), and n is the total number of hours within a period. The ozone 
cumulative indices are cumulated over the warm season (March to August) when 
ozone levels are the highest and plant growth is more likely to be affected. To adjust 
for missing hourly observations, similar to the correction approach suggested by 
the US Environmental Protection Agency35, we sum the cumulative indices over the 
reporting hours, divide by the number of reported hours and then multiply by the 
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Fig. 3 | Projected percentage change in yields of selected crops by region 2005−2050. Future changes in yields in eight agricultural districts in California 
due to temperature and ozone concentration changes under RCP4.5 and RCP8.5. The top panels show the contributions to current production from 
eight agricultural districts (see Supplementary Fig. 2 for region definitions). The middle and bottom panels show the projected 2005−2050 percentage 
change in yield. The dark and light bars denote ozone and temperature effects (median estimates), respectively. The total yield change is plotted as points 
(median estimates), with error bars (95% CIs) calculated by bootstrapping the crop model 1,000 times.
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total number of daylight hours within the period. To be comparable with crop data 
at the county level, data for sites adjacent to cropland areas within each county were 
averaged to produce county-wide averages. The cropland map obtained from the 
US Department of Agriculture National Agricultural Statistics Service36 was used to 
limit the observations to relevant agriculture areas. Counties with less than 20 yr of 
data are excluded from the analysis.

Statistical yield models. On the basis of the historical data, we develop statistical 
yield models for each crop using the following linear regression model:

yieldyi ¼ βo ´OIyi þ
P4
s¼1

βT;s ´TMAX;syi þ βT2;s ´T2
MAX;syi



þβP;s ´PRCPsyi þ βP2;s ´ PRCP
2
syi


þ βCY ;i ´ yeary þ βC;i

where OI is one of the three warm-season ozone cumulative indices (in units of 
ppm h); TMAX,syi and PRCPsyi here are seasonal mean of daily maximum temperature 
(°C) and seasonal total precipitation (mm), respectively; the subscripts y, i and s are 
indices for year, county and season, respectively, such that TMAX,syi is TMAX in season s 
of year y in county i; βo, βT, βT2, βP, βP2, βCY and βC are regression coefficients. Similar 
to a previous study of the temperature sensitivity of California perennials11, for each 
harvest year we consider weather variables from the September prior to the harvest 
year to the August of the harvest year to account for different seasonal influences. 
We use seasonal average weather variables instead of monthly variables in the 
model to avoid too many predictor variables and thus overfitting. The four seasons 
are defined as autumn (September–November), winter (December–February), 
spring (March–May) and summer (June–August). The county-specific time trend 
(represented by the year term) accounts for changes in agronomic practices over 
time that influence yields. County fixed effects account for time-invariant factors 
that vary across counties, such as differences in soil quality. Similar crop models 
have been used in previous studies of ozone and climate8,11.

We use the LASSO37 regression method to fit the regression model, in which 
predictors are chosen in an automatic manner (using the ‘lars’ package in R) that 
is thus independent from researcher choice. The LASSO method selects a subset 
of predictors that explain most of the variation in outcomes by shrinking the 
regression coefficient towards zero, avoiding the statistical penalties of including 
irrelevant predictors, and is thought to improve prediction accuracy. We then 
perform an out-of-sample cross-validation as a robustness check, using two-
thirds of the data for training (that is, model calibration), and the other one-third 
for testing. We compute determination coefficients (R2) between actual and 
predicted yields for both the training and test data. Models in which the test R2 was 
significantly lower than the training R2 indicate the risk of overfitting. CIs of R2 are 
derived from 1,000 repeated tests with a random one-third of observations omitted.

On the basis of temperature and ozone sensitivities given by the statistical yield 
model, we then determine the crop yield responses as percentage changes in yields. 
We first estimate the overall yield response to warming as the percentage difference 
between predictions using historical temperature and a scenario with a uniform 
2 °C warming (an approximation for the magnitude of warming by 2050). Next, the 
impact of historical climate trends on crop yields is estimated from the difference 
between predictions using historical temperature and a hypothetical scenario 
using the 1980–2015 average temperature, to evaluate the impact of year-to-year 
temperature variability during 1980–2015. Similarly to Lobell and Field11, we also 
found small sensitivities to precipitation for many crops, presumably because 
most crops are irrigated12. Given the small sensitivities and large uncertainties 
in precipitation projections9,12, we focus our analysis of climate change on the 
temperature effects. The yield effect of ambient ozone is estimated from the 
percentage differences between predictions using historical ozone levels and a 
hypothetical scenario with zero ozone (which has been used in other studies)3,6,8.  
To get state-wide average yields, yields are weighted by the harvested area of each 
crop in each county. To analyse regional differences, we also gathered counties into 
eight agricultural districts. The definition of agricultural districts is consistent with 
the California County Agricultural Commissioners’ reports (Supplementary Fig. 2).

Finally, to determine the CIs related to these estimates, we use the 
bootstrapping method38 to produce distributions by using a set of crop models 
generated from resampling (with replacement) the observations 1,000 times, and 
the 2.5th and 97.5th percentiles from the 1,000 bootstrap replicates are selected as 
95% CIs. By selecting new predictors for each replicate, the bootstrapping method 
accounts for uncertainties in model formulation.

Future projections. On the basis of the crop models we developed, we combine 
historical sensitivities with future projections of ozone and climate to assess 
their potential impacts on yields to 2050. The future projections assume no new 
adaptation between now and then, or holding technology equivalent to current 
levels (2001–2010), so that the effects of changes in ozone levels and climate on 
future yields can be isolated. Two RCP scenarios (RCP4.5 and RCP8.5) are used 
to represent a range of policy options regarding ozone regulation and climate 
adaptation. RCP8.5 represents a business-as-usual scenario in which mean global 
temperatures increase by >4 °C (ref. 26), while RCP4.5 represents a mitigation 
scenario with moderate ozone regulation that is likely to limit the increase of mean 
global temperature to ~3 °C (ref. 27).

We use decadal projections of regional air quality and climate over the US 
for current (2001–2010) and future (2046–2055) decades at a 36-km resolution 
simulated by the Weather Research and Forecasting Model with Chemistry (WRF/
Chem)30,39, downscaled from the North Carolina State University’s version of the 
Community Earth System Model (CESM_NCSU)40–42. Future predicted air quality 
takes changes in both emissions and climate into account. The gridded data are 
aggregated to the county level by calculating the average of all the grids classified as 
cropland areas within each county. Climate and air quality data are bias-corrected 
to ensure that they are consistent with the observations used in model calibration. 
For the climate data, following Bruyère et al.43, seasonal mean biases between 
simulations and observations by county are calculated and then subtracted from 
the original simulations for both current and future years to generate the bias-
corrected data. We corrected the simulated ozone exposures in each county by 
multiplying the ratio of observed/simulated ozone levels in current years as has 
been done in previous similar studies4. The simulated data at county level are 
combined with statistical yield models to predict yields of each county, assuming 
the current technology. State-average yields are calculated by assuming the current 
crop area distribution. To obtain CIs related to crop model uncertainty, the yield 
projections are repeated 1,000 times by using a set of crop models generated from 
bootstrap samples of historical observation data.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All historical data used are publicly available and open access, with the data sources 
listed in the Methods. The other data that support the findings of this study are 
available from the corresponding author upon reasonable request.

Code availability
The LASSO regression was conducted by using the lars 1.2 package in R, which is 
available at https://CRAN.R-project.org/package=lars.
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Study description We use a panel regression analysis of historical crop yields and exposures from 1980 to 2015 to estimate the sensitivities of a suite of 
perennial crops to ozone and temperature. County-level ozone exposure (i.e., W126, AOT40 and SUM06), seasonal average of 
maximum temperature and precipitation from 1980 to 2015 were used in a regression model to determine their effects on yields of 
perennial crops.

Research sample The research sample is historical yield, ozone and weather observations in each county in California in each year. The main advantage 
of using county data is that it provides more data points and a wider range of ozone and temperature than looking at the statewide 
average.

Sampling strategy To include as many samples as possible, all the valid county-year observations in 58 counties in California during 1980-2015 were 
used for the regression. We also performed an out-of-sample cross validation as a robustness check, and used bootstrap resampling 
to determine the confidence intervals related to our estimates.

Data collection Annual crop yields data for each county in California for the years 1980-2015 were obtained from the California County Agricultural 
Commissioners’ reports. Monthly average of daily maximum temperature and monthly total precipitation at 379 stations in California 
were obtained from the NWS (National Weather Service) Cooperative Network. Hourly ozone data at 190 sites in California were 
obtained from the EPA’s Air Quality System.

Timing and spatial scale Timing scale: each year from 1980 to 2015, the same as the reporting years of county statistics. 
Spatial scale: county level in California. To be comparable with crop yield data at the county level, ozone and weather data for sites 
adjacent to cropland areas within each county were averaged to produce countywide averages.

Data exclusions To include a sufficiently long period, counties with less than 20 years of observations are excluded from the analysis. Extreme outliers 
and large jumps were identified and removed from the time series of yield, ozone and climate data by county, which may reflect 
aberrations in data quality or abnormal factors that the model cannot explain. 

Reproducibility We rerun the regression model with bootstrapping methods, and got very similar estimates and confidence intervals. All attempts to 
repeat the experiment were successful.

Randomization To determine the confidence intervals related to our estimates, we use the bootstrapping method to produce distributions by using a 
set of crop models generated from resampling (with replacement) the observations 1000 times, and the 2.5th and 97.5th percentiles 
from the 1000 bootstrap replicates are selected as 95% CIs. By selecting new predictors for each replicate, the bootstrapping method 
accounts for uncertainties in model formulation.

Blinding We used historical records, so blinding was not relevant to this study.
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