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ABSTRACT
Near-real-timewater-qualitymonitoring in uncertain environments
such as rivers, lakes, and water reservoirs of different variables is
critical to protect the aquatic life and to prevent further propaga-
tion of the potential pollution in the water. In order to measure the
physical values in a region of interest, adaptive sampling is help-
ful as an energy- and time-efficient technique since an exhaustive
search of an area is not feasible with a single vehicle. We propose an
adaptive sampling algorithm using multiple autonomous vehicles,
which are well-trained, as agents, in a Multi-Agent Reinforcement
Learning (MARL) framework to make efficient sequence of deci-
sions on the adaptive sampling procedure. The proposed solution
is evaluated using experimental data, which is fed into a simula-
tion framework. Experiments were conducted in the Raritan River,
Somerset and in Carnegie Lake, Princeton, NJ during July 2019.
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1 INTRODUCTION
Overview: Underwater networks enable various applications such
as oceanographic data collection, pollution monitoring [10], and
disaster prevention using static nodes [8] and/or mobile vehicles [9].
In many applications, we need mobile vehicles, equipped with ap-
propriate on-board sensors, rather than static nodes in order to
traverse the area and measure the required parameters across the
regions of interest, since static nodes pose many limitations [7] in
applications such as adaptive sampling. While Remotely Operated
Vehicles (ROVs) are completely human controlled, autonomous ve-
hicles, on the opposite end, should be able to completely accomplish
the required missions by controlling their movement and trajectory
without any external inputs. However, using conventional solu-
tions, fully autonomous vehicles are still not fully safe and reliable
in navigation and decision-making in practical scenarios.

Motivation and Vision: Using one robot to capture the spa-
tial and temporal distributions of the phenomenon with adaptive
sampling [6] is subject to many constraints, such as a single point
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of failure and energy inefficiency [17]. For example, a robot could
run out of energy midway during adaptive sampling. Also, if the
robot which performs the sampling fails, the entire data is lost.
Therefore, in time-critical applications, a multi-vehicle formation
is more efficient than a single vehicle mission in terms of energy
consumption and processing time [11]. Using multiple agents leads
to less processing time, which in turn corresponds to lower en-
ergy consumption. Given the inherent constraints of vehicles, more
scheduling and coordination, such as an accurate path planning
algorithm, is required to avoid collisions and to maximize the sys-
tem performance. To reduce energy consumption, we would also
like to prevent redundant work done by the vehicles. To rectify
the aforementioned issues, we propose a solution involving mul-
tiple agents in an initially unknown environment that share the
workload to perform sampling. No particular formation is initially
enforced by the team. However, the algorithm selects samples such
that a desired accuracy in reconstruction is maintained.

Contribution: The goal of this paper is to conduct adaptive
sampling using a team of underwater/surface autonomous vehi-
cles using the Multi-Agent Reinforcement Learning (MARL). To
achieve this goal, the vehicles explore the environment to learn the
policy through experience and to make future actions in a MARL
framework under uncertainty. The way we handle the problem is
different from other non-interactive machine learning problems,
since (i) the underwater environment is challenging and impose
uncertainties due to the currents; (ii) the communication is per-
formed as long as the vehicles are on the surface; (iii) connection is
not possible without acoustic communications and the navigation
faces more challenges without the Global Positioning System (GPS),
while the vehicles are underwater; therefore, in our solution, the ve-
hicles surface periodically to reconnect and resume the algorithm;
and (iv) a solution is proposed while scalability of the vehicles is
considered. We propose map reconstruction and communication
protocols that allow coordination between the robots.

RelatedWork: Our previous work on distributed adaptive sam-
pling uses multiple gliders to follow a predefined path in parallel
without communication between the robots [1]. The gliders tra-
verse the area using a lawnmower-style trajectory. Afterward, they
adaptively scan the area by changing the width of the lawnmower
trajectory based on the concentration of the valuable data. Our
other work on underwater adaptive sampling performs a Simulta-
neous Localization and Mapping (SLAM) to adjust the trajectory
for an underwater robot [6]. A cooperative approach to MARL for
autonomous path planning is discussed in [5]. Every spot, visited
by a vehicle, is marked to reduce the reward for visiting that spot
again to prevent redundant work. In [18], estimation of teammates
behavior for MARL is proposed for communication constrained
scenarios by having each agent store a teammate model for all of
its teammates and continuously update this model. Deep Learning
is used for collision avoidance and path planning in [16] for non-
communicating agents. In [13], reinforcement learning is used to
coordinate between different portions of a serpentine robot. In [3],
a combination of reinforcement learning and flocking control is
used for predator avoidance for groups of robots. In [15], a rein-
forcement learning algorithm for AUV trajectory planning was
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Figure 1: System model including multiple vehicles, as agents, in a MARL
framework. The parameter changes both on the surface and in depth, as
shown with the map.

proposed. In [12], MARL has been developed with distributed Q-
learning for coordinated data collection of an emergency situation
among bystanders and drones. The proposed approach uses a cen-
tralized Q-table, but the agents update the Q-table in a distributed
and synchronous manner. Most of the above works are not directly
applicable to the underwater environment as mentioned earlier. Our
work however differs in that ours is an underwater environment
with communication and navigation constraints.

Paper Organization: In Sect. 2, we first define the problem
and then present our proposed solution using MARL. In Sect. 3,
we evaluate our approach via simulations and field experiments.
Finally, in Sect. 4, we draw conclusions and discuss future work.

2 PROPOSED SOLUTION
In this section, we first present the problem statement and then
present our proposed approach to solve the problem.

Problem Statement: Assume a set of V vehicles, as agents,
in an obstacle-free underwater/surface environment as shown in
Fig. 1, which aims to conduct adaptive sampling to measure the
variation of environmental parameters, on different locations over
the surface and in various depths.

Reinforcement Learning (RL), as a model-free data driven ap-
proach with aMarkov decision process (MDP) framework, is a novel
solution to the problem of multi-vehicle adaptive sampling. Various
RL algorithms can be utilized based on the application. Q-learning
as a value-based algorithm calculates the long-term value function
based on the rewards and actions and is updated step-wise. Given
all the constraints we mentioned for adaptive sampling, a coop-
erative multi-vehicle solution under a MARL framework should
account to address the aforementioned issues. MARL matches per-
fectly with Q-learning algorithm and performs by sharing the global
Q-function between the vehicles, as agents, or by forming indepen-
dent Q-learning policies in each vehicle while assuming the other
vehicles as part of the system dynamics [14].

Proposed Approach: We conduct adaptive sampling in two
phases through exploration and exploitation of the MARL frame-
work. The region to explore is modeled as a M ×N rectangular
grid. Each cell on the grid has the same area and dimensions. For
each cell, after exploration, we calculate a variance value based on
the distribution of the data collected in the same cell, which we
associate as the reward for the cell. Exploration phase of MARL is
used to obtain this variance data in Phase 1, through a distributed
Q-learning approach [2, 4].

The size of the grid is determined by the dimension of the inter-
est region, the battery remaining on the agents’ devices and the
number of agents available. The states are the cells of the grid. The

actions for each state are that of a standard grid-world MDP: {Left,
Right, Up, Down}. When an agent is given a particular action, it
goes to the adjacent cell (up to a specified distance determined by
the cell size) in the grid in that particular direction. Whenever an
agent takes an action to move to a different state, it captures the
data of the current state (grid cell in the MDP) before executing
the action. This data determines the reward the agent receives for
that state. In other words, the reward is dependent on the state
alone rather than on the state-action-state sequence. A high vari-
ance from a cell indicates that the data cannot be predicted in that
cell, which means there is more information to gain and hence
a higher reward is assigned as r (s) = Var (data). A more varied
dataset implies that searching this cell further is more helpful than
searching a cell with more uniform data. For the purposes of re-
constructing a map with accuracy, we want to explore the more
varied areas. Thus, we want to associate a higher reward for these
more varied areas. Distributed Q-learning method is used where
the agents share the same Q-values using a shared database (with
synchronous read/write) to expedite the exploration process. Each
agent still acts independently. As all agents are exploring in parallel
and making use of the knowledge/experience gained from all other
agents (Q-values), the exploration process is greatly sped up. We
use Boltzmann exploration strategy as it is known to give better
performance than ϵ-greedy [12]. In Boltzmann exploration, the
probability of selecting an action, a, in a given state, s , is directly
related to its Q-value as πt (s,a) = eQt (s,a)/T /

∑
a′∈A eQt (s,a′)/T .

Here, the parameter (temperature T ) decides the amount of explo-
ration or exploitation; if T is large, all actions have almost equal
probability resulting in pure exploration whereas when T tends to
0 the optimal action has the highest probability, resulting in pure
exploitation. Hence, it is desired to have a high value forT in the be-
ginning and reduce it gradually to get optimal performance (similar
variation is needed for learning rate, α ). To enable such variation,
the decay in Boltzmann temperatureT (same for α ) is modeled as a

radioactive decay, T = Tmin + (Tmax −Tmin )e
−

log 2
tHal f t .

In phase 2, the vehicles use the data obtained from phase 1. Each
vehicle searches cells based on the expected reward values asso-
ciated with that location. Vehicles exchange the data through a
proposed communication protocol, in which each vehicle broad-
casts its decision to go to a certain cell along with the reward
associated with that location. Each vehicle has to query the Q-table
in order to find the cell which it wants to explore to maximize the
rewards. To prevent a cell to be searched twice, a table is stored on
the reserved server that keeps track of the searched cells. Before
searching a cell, each vehicle queries this table as well, to check the
available cells to search. After all cells in the region of interest are
explored and exploited, each vehicle shares its map with the others
to obtain a global map.

Without loss of generality, let a vehicle vj have the option of
searching cells C1,C2...CN . The reward associated with each cell
is r1, r2...rN . Assume that rn is the maximum reward possible and
this reward corresponds to cellCn . However, the vehicle chooses to
explore cellCm , wherem , n. As a result, data is not collected from
cell Cn which had a more varied dataset and thus, the resultant
map is inferior to the map that could be obtained if the vehicle
searched cell Cn . For each vehicle, there is a unique pre-defined
reward threshold such that any value below this threshold will
not be counted as a reward. However, for any reward above this
threshold, each vehicle will spend time and energy to get it.

Map Reconstruction: To reconstruct the global map of environ-
ment, the data should be shared among the vehicles following a
communications protocol to share the Q-tables. A server is reserved
to obtain the data, update the tables, create the map, and send back



(a) (b) (c) (d)
Figure 2: (a) The pool at Rutgers Sonny Werblin Recreation Center as a controlled environment to confirm the script written for the autonomous control loop;
(b) Experiments in the Raritan canal in Somerset-New Jersey; and (c) Experiments in Carnegie Lake in Princeton-New Jersey; (d) Area of operation: (top) Raritan
canal in Somerset-New Jersey; (bottom) Carnegie Lake in Princeton-New Jersey.
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Figure 3: (a) Heatmap of the expanded variance data; (b) Heatmap overlaid on
data-collection site (Raritan canal).

Algorithm 1 Map Reconstruction.
1: repeat
2: Phase 1 initialization; Grid the area; Communications algorithm( )
3: until receive the data from the vehicles
4: while Convergence do
5: Receive data; Perform MARL algorithm ( )
6: end while
7: Generate the initial global map; Scan the cells (Cn, n = 1, ..., N )
8: Detect the RoIs (Ri , i = 1, ..., P, P ≤ N ); Find the area of RoI (Di )
9: Find the data variation index of each RoI (Γi ) %rewards from phase 1
10: Find the priority index for each ROI (Λi = µDi + βΓi )
11: Find the distance between each vehicle (vj ) and Ri , (di j )
12: Sort the Ri ’s based on Λi
13: Sort vehicles based on di j + Ψej %ej :remaining energy of vj
14: Initialization for phase 2: Grid the RoIs
15: while Convergence do
16: Receive data; Perform MARL( ) for each RoI
17: end while
18: Generate the final global map

Algorithm 2 Communications Protocol.
1: Asynchronous data communications
2: while Surface MARL mission until convergence do
3: for i : 1 : V do
4: Broadcast <IDi ,request>; if no collision: Broadcast <IDi ,data>
5: else Wait for random delay, then resend <IDi ,request>
6: end for
7: end while
8: Synchronous data communications
9: while Underwater MARL mission until convergence do
10: for i : 1 : V AND t : 1 : T do
11: Surfacing each t second when a cell is finished being explored.
12: ID-based Token; Broadcast <IDi ,data>; All submerge
13: end for
14: end while

the updates to the vehicles. Once the map of the environment is
constructed, regions of interest are defined to search further. The
definition of these regions varies based on the applications. For
example, it could be regions with relatively high values or rela-
tively low values of temperature. MARL framework will rerun for
those regions to adaptively sample the field given the constraints
occurred in phase 1 as its inputs. We assume the measured values
in the environment changes slowly so that the field between two
consecutive rounds of MARL does not experience a considerable
change in time and space. Algorithm 1 explains the procedure for
two phases of map reconstruction using the MARL framework. Af-
ter performing the MARL in phase 1, regions of interest are sorted
based on a priority index (Λ). This index is a scaled combination
of the area of the region and its data variation explored in phase 1
based on weighting coefficients µ and β . Then, given the constraints
in distance between the vehicles and RoIs, and the remaining energy
of each vehicle, the decision is made and an appropriate number of
vehicles is assigned to the prioritized RoIs, in which MARL is con-
ducted for a fine reconstruction. The proposed solution is scalable
to more number of vehicles.

Communications Protocol: The communications protocol is dis-
cussed in details in Algorithm 2. As shown here, two different
missions are defined: asynchronous surface and synchronous under-
water MARL missions. Surface MARL missions use a handshaking,
i.e., request to send, when a vehicle is ready to send and to notify
others. Since the wireless communications does not work when
the vehicles submerge, we define a slotted time window, equal to
the maximum required time to surf a grid. Afterwards, the vehicles
surface periodically to communicate given an ID-based token.

3 PERFORMANCE EVALUATION
We first provide a description of the testbed and experimental setup;
then, we provide simulation results using the experimental data.

TestbedDescription:The robotwhichwe exploit is a BlueROV2
(Fig. 2(a)) and is outfitted with 4 horizontal and 4 vertical motors.
The motor controller is connected to a Raspberry Pi, which is the
main computational processor on the BlueROV. We control the mo-
tors and receive data through a protocol known as MAVLink. Sen-
sors interface directly with the Raspberry Pi. We use two BlueROVs
with one agent connected to the central server through wired eth-
ernet connection. The other BlueROV is connected through Wi-Fi
to the central server and it stays on and scans the surface.

Experimental Setup and Data Collection:We conducted the
data collection procedure in two locations in order to show the
varied usability of our approach. The first location was the Raritan
River in Somerset, NJ. Here, there were light currents and a mix of
shaded areas and exposed areas, which resulted in more variance
in the temperature. The second location was Carnegie Lake in
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Figure 4: (a) ConvergedQ-valueswith actual variance data; (b) ConvergedQ-valueswith expanded variance data—observe convergence in fewer iterations compared
to (a); (c) Number of steps needed for policy convergence for single agent vs. Boltzmann temperature half time (tHalf) as learning rate half life (aHalf) is varied.

Princeton, NJ. Compared to the Raritan, Carnegie Lake had higher
currents. The water was completely exposed to the sun. Fig. 2 shows
the environments of testing. First, we confirm the functionality of
the robot in the water as an autonomous vehicle at Rutgers Sonny
Werblin Recreation Center as a controlled environment, as shown
in Fig. 2(a). Two different test locations, as mentioned above, are
shown in Figs. 2(b)-(c). We split the region into a 4 × 4 grid and
found the rewards for each grid using our data with dimensions of
the region being 8 m × 8 m. Then, we ran a simulation using the
obtained data. The geographical location of the test locations are
specified with a red line and shown in Figs. 2(d).

Experimental Results: Fig. 3(a) shows the heatmap of the ex-
panded variance data (rewards) collected from Raritan River/Canal.
The original variance data had not much difference among the
values of different cells. Hence, we expanded the variation by us-
ing the following transformation, 100

√
x . These values are shown

in Fig. 3(a). The same heatmap overlaid on the actual experiment
location site is shown in Fig. 3(b). The data collected varied from
28.3 degrees Celsius to 29.4 degrees Celsius. Experimentally, each
iteration takes about 6 seconds to search a grid and to navigate
to another grid. Based on Fig. 4(c), we require about one hour to
search an area effectively for low aHalf and tHalf values for a single
agent. Using multiple agents will reduce the time necessary.

Exploration and Convergence: We have applied MARL with dis-
tributed Q-learning to the variance data explained above. We used
a desktop computer with the MARL algorithm coded in Python to
produce these results. We have set Tmin = 0.01 and Tmax = 1000;
αmin = 0.001 and αmax = 1 Fig. 4 shows snapshots of the explo-
ration for one agent. A lighter green indicates a high Q-value, while
a darker (close to black) indicates a lower Q-value. The parameters
at the bottom are explained as follows. N indicates the current iter-
ation number; T current Boltzmann temperature which is varied
depending on tHal f ; A denotes current learning rate, which is var-
ied depending on aHal f . Fig. 4(a) shows the converged Q-values
(value convergence) on the original variance data, while Fig. 4(b)
shows the same on the expanded variance data. We can notice that
convergence happens faster on expanded variance data. Hence for
the below results, we have used expanded variance data.

Variation with number of agents, aHalf, and tHalf: We have stud-
ied the policy convergence behavior by varying the number of
agents, aHalf, tHalf. Fig. 4(c) shows the number of steps required
for policy convergence for a single agent when tHalf is varied for
different values of aHalf. We can notice, a lower tHalf is preferred,
while there is no much variation with higher tHalf values. Also we
can observe a lower aHalf is preferred. Fig. 5(a) shows the same
result when the variation with aHalf and tHalf is interchanged. We
can again observe a similar behavior that a lower aHalf and a lower

tHalf is preferred. However, we notice that as the number of agents
increases, this behavior is no longer observed. Fig. 5(b) and (c) show
the number of steps needed for policy convergence as the number
of agents is varied for different values of aHalf and tHalf. These fig-
ures show that the values of aHalf and tHalf effect less with increase
in number of agents. This is due to the fact that the exploration
is greatly sped up with more number of agents; hence number of
agents plays a major role in steps needed for convergence compared
to aHalf/tHalf. On the other hand, we observe an interesting trend
with the number of agents. We can observe from both figures that
the number of steps needed for convergence greatly reduces as the
number of agents increases. While this behavior is predominantly
seen for number of agents increasing from 1 to 20, it diminishes
after that. Hence for the given grid size and data, there is no much
benefit in having number of agents more than 20.

Percentage of visits for each state: While running the MARL algo-
rithm, we have kept a record of the number of visits for each state
(by all agents) to understand where the agents spend most of the
time. It is expected that the agents generally spend more time in
states with high variance and vice-versa. Hence, a heatmap of these
values should ideally be more close to the heatmap in Fig. 3(a). We
have plotted these heatmap values with aHal f = tHal f = 100 for
one agent and five agents in Fig. 6(a) - (b) for comparison purpose.
These two cases indicate a small and medium number of agents
respectively. We can notice that Fig. 6(a) closely resembles the ref-
erence heatmap, which indicates that a less number of agents is pre-
ferred. We have plotted similar heatmap (percentage of state visits),
with one agent, tHal f = 100 for variation in aHalf (low, medium)
in Fig. 6(c) - (d). From these results, we can observe that Fig. 6(d)
closely resembles the reference heatmap and hence a medium value
for aHal f is preferred. Similar result for variation in tHalf (one
agent, aHal f = 100) tells that a medium value for tHal f (=300) is
preferred. In particular, we observed a low tHal f = 50 fares badly
in that the most visited state is not the state with highest variance
(lower left). Analyzing all these results (number of steps needed for
policy convergence and percentage of state visits), we can conclude
that the following parameters are optimum for our setting: number
of agents less than 10, aHalf and tHalf around 200. Although the
algorithm is scalable, all agents must be able to communicate with
the server and thus must be in range of the control station; this
issue imposes limitation on the optimal number of agents.

4 CONCLUSION AND FUTUREWORK
We proposed a Multi-Agent Reinforcement Learning (MARL) frame-
work to make efficient sequence of decisions for underwater adap-
tive sampling using autonomous vehicles. The solution was evalu-
ated via computer simulations (to find optimal values for different
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Figure 5: (a) No. of steps needed for policy convergence for single agent vs. learning rate half time (aHalf) as Boltzmann temperature half life (tHalf) is varied;
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Figure 6: Heatmap showing the percentage of state visits by the agents (aHalf=tHalf=100) for (a) 1 agent; (b) 5 agents; Heatmap showing the percentage of state
visits by one agent (tHalf=100) for (c) aHalf=50; (d) aHalf=300. Compare these heatmaps with the data variance heatmap in Fig. 3(a).

design parameters) as well as field experiments, and was shown
to achieve the desired performance. As future work, we plan to
increase the precision in terms of accounting for the currents and
drifts. We will also consider dynamic aspects of the environment,
in which the measurements from the sensors may be noisy.
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