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ABSTRACT

Classic vision-based navigation solutions, which are utilized in al-
gorithms such as Simultaneous Localization and Mapping (SLAM),
usually fail to work underwater when the water is murky and
the quality of the recorded images is low. That is because most
SLAM algorithms are feature-based techniques and often it is im-
possible to extract the matched features from blurry underwater
images. To get more useful features, image processing techniques
can be used to dehaze the images before they are used in a naviga-
tion/localization algorithm. There are many well-developed meth-
ods for image restoration, but the degree of enhancement and the
resource cost of the methods are different. In this paper, we pro-
pose a new visual SLAM, specifically-designed for the underwater
environment, using Generative Adversarial Networks (GANs) to
enhance the quality of underwater images with underwater image
quality evaluation metrics. This procedure increases the efficiency
of SLAM and gets a better navigation and localization accuracy. We
evaluate the proposed GANs-SLAM combination by using different
images with various levels of turbidity in the water. Experiments
were conducted and the data was extracted from the Carnegie Lake
in Princeton, and the Raritan river both in New Jersey, USA.
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1 INTRODUCTION

Overview: In recent years, a wide range of underwater applications—
such as multimedia coastal and tactical surveillance, offshore explo-
ration, seafloor mapping, submarine volcanism, and hydro-thermal
vent studies—have been developed that require multimedia data to
be captured, retrieved, and processed reliably in real time [17]. In
many of these applications, Unmanned or Autonomous Underwater
Vehicles (UUVs, AUVs), equipped with the camera and multiple on-
board sensors, are used in the exploration of undersea resources and
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for gathering scientific data in autonomous or semi-autonomous
monitoring missions [18].

Camera-equipped underwater vehicles, which are able to use
computer vision algorithms [15], are an important group of un-
derwater vehicles, since Global Position System (GPS) signal is
not available underwater and hence some of AUVs try to navigate
by using the camera via visual positioning techniques such as Si-
multaneous Localization and Mapping (SLAM) [16]. In general, the
navigation for AUVs can be divided into three popular types: inertial
navigation, acoustic transponders and modems, and Geophysical
navigation. The inertial navigation uses the information from the
accelerometers and gyroscopes to estimate the current state based
on algorithms such as Dead Reckoning (DR). The main problem
of this method is that the position error is cumulative and grows
unbounded. Therefore, there will be a huge deviation between the
real position and the estimated results after a few minutes. The
method uses acoustic transponders and modems to measures the
travel-time of signals that are transmitted from acoustic beacons
to estimate the current position. These methods take advantage of
additional objects with exact locations to estimate the movement
of AUVs. Geophysical navigation uses sensors such as sonars and
cameras to get the external environmental information. This type of
navigation should be capable of detecting, identifying and classify-
ing environmental features [22]. GPS signal will be lost underwater
even though certain expensive GPS equipment can work with a
limited range [23].

Moreover, we want the algorithm to be used for unknown en-
vironments [20, 21] so that there is no need to use pre-deployed
transponders and modems. In such conditions, a vision-based al-
gorithm is a good solution to explore the environments including
seabed and the bottom of the rivers, in which SLAM is used for navi-
gation and localization purposes. Early research on SLAM uses laser
or ultrasonic sensors as inputs. With the development of computer
vision, the visual SLAM has gained attraction for robot localization
and mapping needs. Compared with laser or ultrasonic sensors,
robots can obtain more useful information from low-cost video
cameras. Powerful feature detectors and descriptors like ORB [19]
can be used for SLAM.

Motivation: Generally, the water in the rivers is muddy, espe-
cially after rain or flood, as the particles from the surrounding land
are washed into the river. This makes the water to have a higher tur-
bidity value. If we directly use the images from the camera for the
navigation, the system will fail. Moreover, underwater images usu-
ally face the problem of the distortion due to the light scattering and
absorption, which leads to the lack of contrast, blurry appearance,
and inaccurate color detection. The red and orange wavelengths
of lights are absorbed by the water more quickly than the blue
and green light, hence the image is often in a bluish-green tone.
While the absorption and the scattering are not the only factors
that affect the quality of the images, water pollution and floating
particles also will increase the complexity of the image recovery.
The main challenge—before using underwater images in SLAM—is
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to remove the turbidity and restore the color as per the underwater
environment. Therefore, the processing of underwater images is
divided into two main categories: underwater image enhancement
and underwater image restoration. Image enhancement methods
focus on improving the image features and RGB values to improve
the quality of the image, while image restoration aims at reducing
the distortion effect caused by the underwater environments. There
are some early works that rely on using additional information such
as polarization-based method [10], which uses different degrees of
polarization to remove the haze. However, requiring many physical
parameters makes it inflexible and hence it is not recommended.
A method called Dark Channel Prior (DCP), proposed by He [6],
has a great improvement for haze removal in the air. On the ac-
count of the similarities of image processing, DCP has been widely
used in the field of underwater images restoration. Based on the
good results obtained by DCP, a new method is proposed called
UDCP [4] that only considers the blue and green channels instead
of all channels in DCP.

Because of the success of deep learning methods in computer vi-
sion, there are some research that try to use deep learning in under-
water image processing. Generative Adversarial Networks (GANSs)
have been a topic of recent interest in deep learning that are shown
to be good at the image to image translation. To solve the prob-
lems related to underwater image degradation, WaterGAN [9] is
proposed that creates realistic underwater images from the in-air
image and depth pairings in an unsupervised pipeline for color
correction of monocular underwater images. This method requires
a large paired image datasets. Moreover, there is another GAN-
based work, Multi-scale Adversarial Network [11], which is based
on CycleGAN [28] with adaptive size window for Structural SIMi-
larity (SSIM) loss.

Our Approach: Due to the limited energy of AUVs, there is a
need to find the trade-off between the energy cost and the perfor-
mance for different methods. Moreover, the degree of the image
enhancement using different methods is not the same. Therefore,
different methods can be used to improve underwater images with
different clarity levels. We propose a new method based on image
quality evaluation metrics that combines the advantages of different
methods and overcomes their drawbacks. First, we present different
methods to recover images and compare their performance. Second,
we find a proper parameter that will be used to determine the level
of enhancement of images. Finally, we find the critical point of
parameter values and use the proper method to improve different
images with different clarity levels.

Our Contribution: There are many datasets for the marine en-
vironment; but a few datasets for rivers/lakes are available. Hence,
in this research, first, we create an underwater image dataset for
the Carnegie Lake, Princeton, New Jersey and the Raritan River,
Somerset, New Jersey. This dataset contains multiple varieties of
under river/lakes situations that includes both blurry and corre-
sponding clear images, which can be used for future underwater
research. Second, we propose a new method to enhance underwa-
ter images especially blurry images (tainted by the murky water).
Using underwater image quality evaluation metrics, we come up
with a critical value for each image and get better results with
an acceptable efficiency and a low power consumption. Using our
enhanced images, we improve the accuracy of the SLAM algorithm.

Paper Outline: In Sect. 2, we discuss the related work and po-
sition our solution w.r.t. the literature. In Sect. 3, we introduce our
haze-removal real-time strategies aimed at enhancing images for
vision-based autonomous underwater vehicle navigation in murky

waters. Then, in Sect. 4, we discuss the simulation and experiment
setup, and present the performance evaluation results. Finally, in
Sect. 5, we draw the main conclusions and discuss future work.

2 RELATED WORK

In this section, we present first various existing underwater image
enhancement methods (Sect. 2.1); then, we provide some back-
ground on different underwater image-quality metrics that are
used to evaluate image-enhancement solutions (Sect. 2.2). Finally,
we discuss state-of-the-art SLAM-based algorithms (Sect. 2.3).

2.1 Underwater Image Enhancement Methods

Exploring underwater environment has seen great development re-
cently, and the use of underwater image enhancement solutions has
been a key technique towards this goal. There are many methods
in the literature that can be divided into the following groups.

Supplementary information-based methods: In these methods,
the supplementary information from multiple images is used to
improve the quality of underwater images including polarization
filtering [24] and range-gated imaging [8]. It is necessary to take
multiple images to get sufficient information, which makes it more
complicated than a single image method.

Non-physical model-based methods: This method adjusts the im-
age pixel values to improve the quality of images. Authors in [7]
improve the contrast and the saturation of a single image by chang-
ing the pixel range in Red Green Blue (RGB) and Hue Saturation
Value (HSV) color spaces.

Physical model-based methods: This method collects the parame-
ters of an image model from an input image and applies the model
to the image to improve the quality. One direction is based on the
Dark Channel Prior (DCP) [6]. Chiang et al. [3] propose a method
that combines the DCP and the wavelength-dependent compensa-
tion to restore images. Drews et al. [4] propose Underwater DCP by
only ignoring the information of red channel. Peng et al. [14] pro-
pose a Generalized DCP by incorporating adaptive color correction
into an image formation model. Another direction is to use optical
properties of underwater images. Berman et al. [2] estimate two
additional global parameters to reduce the problem of underwater
image restoration to single image dehazing. Zhao et al. [27] pro-
pose a method that uses inherent optical properties of water from
background color to enhance the degraded underwater images.

Data-driven methods: This method usually utilizes a Convolu-
tional Neural Network (CNN) to train the model by collecting a
huge amount of data. The main motivation behind such huge data
is to obtain the ground truth images. Therefore, the WaterGAN,
proposed in [9], can simulate the realistic underwater images from
in-air images and depth pairing in an unsupervised pipeline. How-
ever, for this method to be effective, the dataset should contain and
represent information pertaining to variety of situations.

2.2 Underwater Image Quality Evaluation

To compare different image enhancement solutions, the image qual-
ity evaluation metric will be used in this paper. Specifically, we dis-
cuss two categories of metrics, i.e., full-reference and non-reference.

Full-reference Metrics: This method calculates natural visual char-
acteristics — such as Mean Square Error (MSE), Peak Signal-to-Noise
Ratio (PSNR), and SSIM—from images and compares the value with
the ground truth. Although a disk with different colors can be cho-
sen as ground truth, it is not easy to get it done for underwater



images. Moreover, sometimes, the result will be different from the
human visual observation.

Non-reference Metrics: Generally, the ground truth cannot be
obtained in a real world underwater environment. In such cases,
the non-reference image quality evaluation metrics, such as image
contrast, can be used. For different applications, researchers use
image sharpness, slope of edges, the gradient magnitude histogram
from images, and image entropy to directly measure the image
quality without knowing the type of image distortion. Moreover,
the result of image enhancement will finally be evaluated by human
observation, i.e., Human Visual System (HVS). The HVS is sensitive
to the difference of color, edge structure, and relative contrast so
that colorfulness, sharpness, and contrast can be used as the basic
attributes based on human observations to propose new metrics
such as Underwater Image Quality Measure (UIQM) and Underwa-
ter Image Sharpness Measure (UISM). Sometimes, image quality
should be measured by all parameters, as in [13], in which the au-
thors propose a new UIQM metric to find a linear combination of
colorfulness, sharpness, and contrast.

2.3 SLAM Algorithms

There are several types of visual SLAM methods in use currently.
The common methods for implementing the SLAM are filters,
graphs, and bundle adjustment methods. In filter-based methods,
Kalman filter [1] based techniques are widely used, which have
good performance for estimating the state of nonlinear systems
and integrating different outputs of several sensors. Particle fil-
ter is another useful method which can deal with a large number
of features, but its run time increases as the map size increases.
Graph-based SLAM builds the graph and finds a node configura-
tion that minimizes the error introduced by the constraints. The
main disadvantage of this method is that it consumes large amount
of memory for computations. The ORB-SLAM [12] is one of the
impressive feature-based techniques, which is a complete SLAM
system for monocular, stereo and RGB-D cameras. The test results
show ORB-SLAM to be the most accurate SLAM solution com-
pared with other visual SLAM systems. For ORB-SLAM, one of the
main design requirements is its feature design. It uses ORB features,
which are oriented multi-scale FAST corners with an associated 256
bits descriptor. Though it is fast to match, ORB-SLAM still cannot
work efficiently as it is difficult to find the matching features.

3 OUR PROPOSED SOLUTION

The physical model-based methods and the data-driven methods are
used widely for underwater image enhancement. The first method
(Sect. 3.1) builds a physical model of degradation and estimates the
latent parameters of an underwater image from the input, and then
reverses the process, like methods based on DCP. The second one
(Sect. 3.2) leverages huge amount of dataset and takes advantage
of deep learning methods to solve enhancement problem like im-
age dehazing. Each method will produce different results of the
enhancement and have different power consumption levels. We
want to propose a new method that combines advantages of these
methods by using the image quality evaluation metrics (Sect. 3.3).
We will split methods into different categories according to the
results. For algorithm described in Fig. 1, we identify the quality of
the underwater images and set up a metrics value as a threshold
for clear images. If it is determined as a clear image, we can send
it to next step of ORB-SLAM. If not, we apply the enhancement of
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Figure 1: High-level block diagram of our solution.

the first level repeatedly until the enhancement reaches that of a
clear image.

3.1 Underwater Dark Channel Prior

As we know, the interaction between the light, the medium, and the
scene will affect the quality of the underwater images. The absorp-
tion of light is related to the forward scattering and backscattering
that are responsible for contrast degradation and color change in
images. As the main factor is backscattering, the forward scattering
can be ignored. There is a common analysis model based on under-
water attenuation light modeling that uses a linear combination
of the direct light and backscattering. The original Dark Channel
Prior [6] is based on the statistics of outdoor haze-free images. They
propose that some pixels have very low intensity in at least one
color channel in the RGB representation. For random image J, the
dark channel is defined as follows,

J4k(x) = min  min J(y). (1)

yeQ(x) cer,g,b

Here, J€ is a color channel of J and Q(x) is alocal patch centered at x.
There are two commutative minimum operations: one is performed
on each pixel and the other is a minimum filter. The observation
Jark _ 0 is the Dark Channel Prior DCP. The shadows in images,
colorful objects, or surface will cause a low intensity in dark channel.
Also, the image model to describe the information of a haze images
is shown in the following equation,

I=]Jxt+Ax(1-1), (2)

where I is the observed intensity corresponding to the image cap-
tured from the camera, J is the scene radiance of the clear image
we need, t is the medium transmission, and A is the ambient light.

When applying the DCP for underwater images, it is not easy
to obtain real images of underwater views in the air environment.
However, the assumption that there are some pixels with very low
intensity in at least one color channel also works for underwater
images. For underwater images, the red channel is almost dark
because of the absorption of the medium hence we can ignore the
red channel information. Therefore, the underwater dark channel
prior [4] considers the green and blue color channels. The medium
transmission and the backscattering light can help restore under-
water images.

3.2 CycleGAN with SSIM Loss

This method extends WaterGAN [5, 9] based on CycleGAN [28]
and the SSIM loss [26]. It maps the color of underwater scenes
to the color of air scenes without any explicit labels. The input is
the underwater images, and the output is the image “in air" that



has the same content and structure. Firstly, it attempts to build a
supervised model for underwater images color correction, which
needs paired underwater images for the training. Secondly, it learns
a cross domain mapping function between underwater images and
air images. Lastly, the final model can capture context and semantic
information which is the same as that of input images. To achieve
this goal, the author [28] uses the unpaired image-image translation
network that can use unpaired images dataset to collect special
characteristics of one class and try to translate into the other class.

The input image samples are x € X (underwater) and y € Y (air).
There are two adversarial discriminators Dx and Dy. The purpose
of Dx is to identify the image x from the translated images y, while
that of Dy is the opposite. The loss functions are general adversarial
loss, cycle consistency loss, and SSIM loss. The adversarial loss
which includes the mapping function G : X — Y and the Dy, can
be defined as below,

Loan(G. Dy, X, Y) =Eyp,,,,(y)[log Dy (y)]
+ By pgaa(x) [10g(1 = Dy (G()))].  (3)

Cycle consistency loss, on the other hand, aims to constrain
the space of possible mapping functions, which will bring x from
domain X back to the original images and bring y from domain
Y back to the target image. The corresponding equation for cycle
consistency loss is as below,

LCYC(G’ F) =Ex~pdata(x)[”F(G(x)) - x”l]
+ By pia(p IGE®) = ylh]. )

SSIM keeps the content and structure of the input images. The
definition of SSIM between input x and the translated image G(x)
for pixel p is defined as below,

2pxpy +C1
,ui+,u§+C1 6,25+0'§+C2’

20y + C
SSIM(p) = Xy T2

®)

The p is the center pixel of an image patch. Then, the SSIM loss is
expressed as below,

Lssiu(x, G(x)) = 1= L3 (SSIM(p)). ©)

Then the total loss is the linear combination of these three losses.

Moreover, there is another advanced method that follows a sim-
ilar strategy except for the adaptive scale of the SSIM windows
based on the depth map. The distances between different scenes
and camera lens are different for underwater images, which will
result in different levels of clarity after image restoration. To solve
this problem, the authors propose a multi-scale cycle generative
adversarial network [11]. They first use DCP to get the depth infor-
mation of underwater images and then apply the depth information
into adversarial network training.

3.3 Image Quality Evaluation Metrics

Below we present three underwater image quality evaluation metrics—
Underwater Color Image Quality Evaluation (UCIQE), Structural
Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR).
UCIQE value: Finding a parameter to evaluate the underwater im-
age quality is a key step of dividing the images into different groups
using different image processing techniques. Metrics corresponding
to the special absorption and scattering in the underwater envi-
ronment and the direct application of natural color images quality
do not work. The metrics for underwater images should be related
with human perception correctly, should measure different distor-
tions of images, and be used for enhancement processing. A new
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Figure 2: Model result for predicted and test data: X-axis
is the value of the test data, and Y-axis is the value of the
predicted data. The red line represents that the value of test
data is equal to the predicted data.

UCIQE metric as a linear combination of chroma, saturation, and
contrast is used in [25] to quantify blurring, low-contrast, and the
nonuniform color cast. The UCIQE for an image is defined as,

UCIQE = ¢1 X 0¢ + ¢c2 X cony + ¢3 X [is, (7)

where, o, is the standard deviation of chroma, cony is the contrast
of luminance, and y; is the average of saturation, and ¢y, ¢z, c3 are
weighted coefficients. These coefficients can be found via Multiple
Linear Regression (MLR) on training images. Firstly, 155 images are
obtained from different underwater environments at different depth
and turbidity levels. These images were presented to human ob-
serves who rate the images using a scale from 1 to 5—1 is the worst
image (low clarity) and 5 is the best one (best clarity). To decrease
the error by human subjective factor, these images will be evaluated
5 times by different human observers and the mean score will be
used. After calculating the standard deviation of chroma, contrast,
and the mean value of saturation, MLR training is performed to
find the coefficients as ¢; = 0.1654,c5 = 0.0324,c¢3 = —0.1365.
Then, we can get a proper response variable (UCIQE) according to
three independent variables as per the linear function—UCIQE =
0.1654 X ¢ + 0.0324 X conj — 0.1365 X ys. In Fig. 2, we show the
comparison of UCIQE values of test data and predicted data (a red
line is drawn to represent the best result that the predicted data is
equal to the test data, for convenience). We can notice that most
black points are around the red line except for few points. We can
increase the size of dataset to get more accurate parameters.

SSIM metric: SSIM is a perception-based metric that considers
image degradation in structural information. The structural in-
formation is the idea that there exists strong inter-dependencies
when pixels are spatially close. Usually, these dependencies store
important information about the structure of the objects.

PSNR metric: PSNR is a common metric that is used to measure
the quality of reconstruction of lossy compression. This ratio is
defined as the maximum possible power of a signal to the noise. Log-
arithmic decibel scale is used to represent the value. The calculation



Original Images DCP UDCP GAN

Figure 3: Original images (on the left) and their enhanced versions using different competing methods (DCP, UDCP, and GAN).
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Figure 4: (a) UCIQE value; (b) PSNR value; (c) SSIM value. We choose 150 images, using three methods to do image enhancement
and calculating these three values of results. The x axis represents the UCIQE value of original images;The y axis represents

UCIQE, PSNR, and SSIM value of the enhanced images.

based on the Mean Square Error (MSE) is shown below,

PSNR = 101 MAX] 3

=1 —_—,
9810 “\rSE ®
> [Ui(m, n) — Ix(m, n)]?

M,N
MSE = . O]
MXN

In (8), MAXT is the maximum possible pixel value of the image; for
the above mentioned dataset, it is 255. In (9), I; and I, are M X N
images, and m, n are pixel indexes.

4 EXPERIMENT RESULTS

In this section, we first present image enhancement results using
our approach (Sect. 4.1) and then study the performance of ORB-
SLAM algorithm with our enhanced images (Sect. 4.2).

4.1 Image Enhancement

We present experimental results corresponding to multiple rounds
of experiments in the field. In the experiment—which was con-
ducted at the Carnegie Lake and the Raritan river in New Jersey
during November and December 2018—we apply the three methods
to improve the quality of underwater images: the original DCP,
underwater DCP, and the CycleGAN. We choose five images with
different clarity levels and the results are presented in Fig. 3. The
first column is the original images, the second column shows the
results using DCP, the third column represents the outputs using
UDCP, and the last column is the result of using CycleGAN. Com-
pared with each result, there is no method that can work very well
for all the circumstances.

For UDCP and DCP methods, they have almost similar results.
In the first enhanced image, most areas are dark except for the right
corner part that has excessive exposure. That is because the global
dark point in original images, found by DCP and UDCP, is not
suited for the whole images and the local patch is big. Therefore,
There is no feature that can be captured. For UDCP method, it
performs better for the water part because it only considers the
blue and green color channels. At the same time, it causes more
serious color distortion problem. We can see that the object’s color
in the enhanced images lost reality compared to the original images.
For both methods, they do not work well for the first and the second

Table 1: Mean UCIQE difference in three methods.

DCP UDCP Cycle GAN
Mean UCIQE Difference 2.9265 3.1279 2.3192

images with higher turbidity so that we may need more powerful
method such as GANSs to improve the images.

Among them, the CycleGAN has better image enhancement
performance. When the image is very blurry such as the first image,
more features can be captured when we use CycleGAN. However,
the images are clear enough that using CycleGAN is too much for
the whole system. For example, the last image is very clear that we
can directly use in the SLAM system, although we use CycleGAN
to recover it. There is no good enhancement in the results, while it
adds some fake features into the images. But, this kind of situation
rarely happens in rivers or lakes. Because of particles, underwater
environment situations are similar to the first and second images.

Evaluating the image quality improvement cannot only depend
on the human perception, and also the quality should be measured
by some evaluation metrics. We select 150 images from datasets,
and calculate the PSNR, SSIM, and UCIQE values.

Fig. 4(a) shows the UCIQE values of original images and images
enhanced by DCP, UDCP, and CycleGAN. The x axis shows the
values of original images, the blue line with x marker represents
the values of images by UDCP, the red line with dot marker stands
for the values of DCP, the black line with circle marker belongs
to CycleGAN. DCP and UDCP have similar values and UDCP’s
results are a bit better than DCP’s. Images in Fig. 3 also show that
both methods have advantages and disadvantages. For CycleGAN
results, it keeps a stable values because this method transforms
the image into one kind of image’s style. Hence, UCIQE values
will stay similar. Also, we calculate the mean difference UCIQE
values between original images and enhanced images in Table 1.
The highest increase in the performance is happened when we use
UDCP method. CycleGAN may have a little overhead for images
with few blur, but it shows a very good improvement for every blur
image. Even UDCP shows better performance, but we choose the
CycleGAN. Because the most images in test set are not under ex-
tremely environment, CycleGAN was able to handle more difficult
situation.
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Figure 5: Result of feature matching: (a) Before image enhancement on the original image: no feature can be matched; (b) After

image enhancement using GAN: there are 31 features matching.

(b)
Figure 6: Image-enhancement results using CycleGAN from
different locations: (a) Bottom of the Raritan river, Somerset-
New Jersey; (b) Bottom of the Carnegie Lake, Princeton-N]J.

In Figs. 4(b-c), we show the PSNR and SSIM values between
original images and enhanced images. For PSNR value, usually,
the higher PSNR values show the better image qualities. Using
CycleGAN leads to better results, although PSNR is a full-reference
metric and performs poorly when it is compared with the UCIQE
with human perception. For SSIM values, it performs well for in-air
images, but for underwater images, it does not work better than
other evaluation metrics, since there are more factors that will affect
the quality of images.

We also test the algorithm for different locations, i.e., Carnegie
Lake in Princeton, NJ, and the Raritan river in Somerset, NJ. Fig. 6
shows the comparisons between these two environments. As shown

Table 2: The mean enhancement time for every image on
different platforms

Linux Raspberry Pi | Xavier
Mean_time(sec) | 0.031761 | 0.077947 0.04984
STD 0.002903 | 0.005827 0.006043

in the figure, the situation in river is worse than the Lake, since
there are some unique stones in the lake, which are static. These
kinds of features are useful for SLAM algorithms. On the contrary,
for the river, there are more moving plants which will become the
barriers. Therefore, the GAN can work better for river’s images
than lake’s images.

Figure 7: Graph created by ORB-SLAM.

As we know, the cost of GAN networks is another core part
that we should focus on. To show the strength of this algorithms,
we choose a 30 s video to do the enhancement on three different
platforms: Raspberry Pi 3B+, Nvidia Xavier, and a personal laptop
with a Central Processing Unit (CPU). We record the runtime of



every image and calculate the mean values and standard deviation
values (std). The details are shown in Table 2. We can observe the
mean time is very small and the std of the values are stable and,
even on Raspberry Pi, it costs 0.032 seconds. Therefore, we can
apply this algorithm to SLAM on robots which are equipped with
the Raspberry Pi as the main processor.

4.2 The ORB-SLAM Application

The features matching is the important part of the SLAM algo-
rithms. We compare the features matching of original images and
enhanced images, as shown in Fig. 5, with the ORB-SLAM. We use
an underwater robot to record a video from the Raritan river, NJ.
Afterwards, we test this video on ORB-SLAM without image en-
hancement. This images from the river is blur, therefore, the SLAM
cannot extract useful features to create the map and so ORB-SLAM
fails to work. We use GAN to enhance the video and test the ORB-
SLAM in the next step. The result is shown in Fig. 7, where the
blue squares with x mark present the key frames from the video,
the green lines square present the graph, the red points show the
feature and points. The robot just moves forward and the graph
shows the correct direction. As it is observed in the graph, the
performance of SLAM is considerably improved using the proposed
solution.

5 CONCLUSION AND FUTURE WORK

Firstly, we tested multiple image-enhancement methods including a
cycle generative adversarial network and dark channel prior meth-
ods. According to the experiment results, the performance of the
physical model like UDCP and DCP is limited. When the image
is very blurry, the results of UDCP and DCP are bellow average.
However, for some light blurred images, these two methods show
better results than GAN networks, while the power consumption
of GAN network is huge. Furthermore, for the GAN network, the
representation data is very important for the success of the model.
In our proposed model, the ground truth images have similar struc-
ture and contents so that the result will have few fake features
when improving images with the light blur.

In the future, we plan to collect more images with different
clarity. Moreover, given the limits we face in the underwater en-
vironment, the color of images are distorted, which is a common
problem for these three methods. This leads to errors in the ro-
bot’s data classification. Secondly, we have already exploited some
parameters to evaluate the quality of underwater images such as
UCIQE. However, the UCIQE does not always work well. Also, we
will consider multiple parameters. Moreover, in the experiment
section, the CycleGAN, which is a costly method, does not enhance
images considerably when the images are not too blurry. We will
investigate how to divide the images into different groups based
on these parameters so as to decrease the cost of CycleGAN and
increase the efficiency of SLAM. It is important to be able to run
the algorithm on a power-limited device such as a Raspberry Pi
(the main processor of many robotic platforms).
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