1	Lieceng Zhu
2	Department of Biological and Forensic Sciences
3	Fayetteville State University
4	1200 Murchison Road
5	Fayetteville, NC 28301
6	Phone: 910-672-1655
7	Fax: 910-672-1159
8	Email: lzhu@uncfsu.edu
9	
10	
11	Lieceng Zhu et al: Heat-Induced Loss of Wheat Resistance to Hessian Fly
12	
13	Analyzing Molecular Basis of Heat-Induced Loss of Wheat Resistance to Hessian Fly
14	(Diptera: Cecidomyiidae) Infestation Using RNA-Sequencing
15	
16	Lieceng Zhu ¹ , Jiazheng (John) Yuan ¹ , Jordan O'Neal ¹ , Daria Brown ¹ , Ming-Shun Chen ²
17	
18	¹ Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC
19	28301
20	² USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS 66506
21	
22	
23	

ABSTRACT

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

Heat stress compromises wheat resistance to Hessian fly (HF, Mayetiola destructor) infestation. The objective of this research is to analyze the molecular basis of heat-induced loss of wheat resistance to HF infestation using RNA Sequencing (RNA-seq). To this end, two resistant wheat cultivars 'Molly' and 'Caldwell' containing the resistance genes H13 and H6, respectively were infested with an avirulent HF biotype GP and treated with different temperatures to examine the impact of heat stress on their resistance phenotypes. Tissue samples collected from HF feeding sites in Molly plants were subjected to RNA-seq analysis to determine the effect of heat stress on transcript expression of genes in wheat plants. Our results indicate that resistance to HF infestation in Caldwell is more sensitive to heat stress than that in Molly, and that heat stress down-regulates most genes involved in primary metabolism and biosynthesis of lignin and cuticular wax, but up-regulate most or all genes involved in auxin and 12-oxo-phytodienoic acid (OPDA) signaling pathways. Our results and previous reports suggest that heat stress may impair the processes in wheat plants that produce and mobilize chemical resources needed for synthesizing defensive compounds, weaken cell wall and cuticle defense, decrease OPDA signaling, but increase auxin signaling, leading to the suppressed resistance and activation of susceptibility.

42 **KEYWORDS** Wheat, Hessian fly, RNA-Sequencing, transcript expression

Elevated temperature (heat stress) is one of the most important environmental factors that affect the resistance of plants to parasites. In many plant-parasite interactions, heat stress compromises plants defenses mediated by *R* proteins (Tyler and Hatchett 1983, Buntin et al. 1990, Wang et al. 2009a, Chen et al. 2014, Tang et al. 2018). For example, *R* gene mediated resistance to bacterial pathogen *Pseudomonas syringae* in *Arabidopsis thaliana* and *Nicotiana benthamiana* was inhibited under a moderately high temperature (Wang et al. 2009a), and the resistance efficiency of wheat plants to Hessian fly (HF, *Mayetiola destructor*) was reduced at 'higher than normal' temperatures (Tyler and Hatchett 1983, Buntin et al. 1990, Chen et al. 2014, Currie et al. 2014a, Tang et al. 2018).

HF is one of the most destructive pests of wheat (*Triticum aestivum*) in North America and North Africa (Berzonsky et al. 2003). The battle between wheat to HF is a matter of life and death. In corresponding to avirulence or virulence of a HF biotype, a single wheat plant can be either resistant or susceptible. In an incompatible interaction, a resistant plant containing an effective *R* gene will kill the invading avirulent HF larvae and develop normally after some initial growth deficits (Shukle et al. 1990), while in a compatible interaction, HF larvae will induce nutritive tissues at their feeding sites in plants, resulting in eventual death of the plants (Harris et al. 2006). Higher temperature, however, can make a resistant plant with an effective *R* gene susceptible to the otherwise avirulent HF larvae (Tyler and Hatchett 1983, Buntin et al. 1990, Liu et al. 2013, Chen et al. 2014, Currie et al. 2014a, Cheng et al. 2018). The dramatic switch of wheat resistance to susceptibility under heat stress makes wheat-HF interaction an excellent system for investigating the impact of heat stress on plant resistance and the molecular basis of heat-induced loss of host plant resistance to parasites.

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

Logically, the loss of wheat resistance to HF infestation caused by heat stress can be attributed to the disruptive effect of heat stress on wheat plants, HF, and the dynamics of wheat-HF interaction. Heat stress may suppress resistance responses and/or activate susceptible responses of wheat plants to HF infestation (Liu et al. 2013). Regardless, both resistance and susceptible responses of wheat plants involve significant changes in primary, secondary, and phytohormone metabolisms (Liu et al. 2007, Zhu et al. 2008, Zhu et al. 2012). Based on previous studies, resistance responses of wheat to HF in the incompatible interaction relies on rapid mobilization of plants' chemical and energy resources including increase in degradation of lipid, sugar, and amino acid to provide substances and energy needed for synthesizing defense compounds, which leads to increased synthesis and accumulation of defensive compounds such as phenylpropanoids, flavonoids, and wax (Kosma et al. 2010, Zhu et al. 2012, Khajuria et al. 2013). In the susceptible plants, however, the expression level of genes related to resource mobilization and synthesis of defensive secondary metabolisms were reduced, especially at early time points of wheat-HF interaction (Khajuria et al. 2013). Phytohormone accumulation is also distinctively different between resistant and susceptible plants. High levels of 12-oxophytodienoic acid (OPDA) accumulation have been revealed in HF feeding tissues of resistant wheat plants during the incompatible interaction, but high levels of auxin (IAA) have been found in susceptible plants during the compatible interaction (Zhu et al. 2010a). While extensive studies have been conducted to disclose the molecular responses associated with wheat resistance and susceptibility to HF infestation (Williams et al. 2002, Giovanini et al. 2007, Liu et al. 2007, Zhu et al. 2008), little is known, at molecular level, about how heat stress causes the loss of wheat resistance to HF.

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

Previously, we analyzed the changes in profiles of polar lipids and phytohormones at HF feeding sites of wheat plants under heat stress to investigate the molecular processes underlying heatinduced loss of wheat resistance to HF infestation (Currie et al. 2014a, Currie et al. 2014b). Differential accumulation of polar lipids and phytohormones were found between resistant and susceptible wheat plants and between wheat plants with and without heat treatment (Currie et al. 2014a, Currie et al. 2014b), suggesting that the impact of heat stress on metabolism of polar lipids and phytohormones may contribute to the compromised wheat resistance to HF infestation under heat conditions. The objective of the current study was to determine the impact of heat stress on primary, secondary, and phytohormone metabolisms of wheat plants to reveal the molecular basis of heat-induced loss of wheat resistance to HF infestation. To this end, we infested two resistant wheat cultivars, Molly and Caldwell which contain H13 and H6 R genes, respectively, with an avirulent HF biotype GP, and investigated the changes in their resistance phenotype under temperature treatment of different degrees and durations. Furthermore, we analyzed transcript expression of genes in Molly plants treated with heat stress at 35°C for six hours (6-h) using RNA-Sequencing (RNA-Seq). Our results suggest that the sensitivity of Molly and Caldwell to heat stress in their resistance to HF are different, and that the impact of heat stress on primary, secondary, and phytohormone metabolisms may contribute to the heat-induced loss of wheat resistance to HF. The findings from this study will improve our understanding of plant resistance to parasites under stressed environmental conditions.

110

111

112

Materials and Methods

Plant preparation and infestation

Two wheat cultivars Molly and Caldwell and a HF population named 'White eyes' were used in this study. Molly possesses the R gene H13, and Caldwell possesses the R gene H6 (Patterson et al. 1994, Tang et al. 2018). The HF population White eyes consists chiefly of avirulent biotype GP. Molly and Caldwell are resistant to the biotype GP HF at room temperature or below (Ratcliffe et al. 1997, Cheng et al. 2018). To prepare the plants, 20 germinated seeds were planted in each pot of 10-cm in diameter filled with Potting mix (Scotts Miracle-Gro Company, Marysville, OH). The plants were placed in a growth chamber set at 18°C and 14:10 (day: night) photoperiod until most plants grew into seedlings at 1.5 leaf stage. To infest, eight newly emerged female flies and two male flies were released onto plants confined within a cage covered with a piece of cheese cloth on the top. Female HFs laid eggs on leaves of wheat seedlings. The eggs developed into larvae, which crawled down to the base of plants, living between leaf sheaths and attacking the inner leaf sheath. To determine the time when larvae began to attack plants, some infested plants were dissected and observed hourly under a dissection microscope beginning at 96 h following the release of adult HF onto plants. The time when HF larvae were first seen at the base of a plant was taken as the time for initial HF larval attack (time 0).

129

130

131

132

133

134

135

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

Experimental design, treatments, and statistical analysis for phenotyping

Molly and Caldwell wheat seedlings infested with Hessian fly biotype GP were subjected to different temperature treatments at 23, 25, 27, 30, and 35°C for 24 h, respectively, starting at time 0 (initial larval attack time). To execute the experiment, wheat plants were grown and infested in a growth chamber set at 18°C with 14/10 h (L:D) cycle. At time 0, plants designated for higher temperature treatment were moved to a second growth chamber set at 23, 25, 27, 30,

or 35°C, respectively, and returned to 18°C after the treatments. Control plants were maintained at 18°C until the end of each experiment. The experiments were designed as Randomized Complete Block Design (RCBD) with three biological replicates (one pot for each replicate of each treatment). Resistance and susceptibility of each plant was determined 7 d after time 0 as described previously (Currie et al. 2014b). A plant was rated as resistant if it contained only dead larvae and susceptible if it contained at least one live larva. For each replicate of each treatment, the numbers of resistant and susceptible plants were counted, and the percentage of susceptible plants was calculated. Mean percentages of susceptible plants of each treatment and their standard deviation were calculated using Excel 2016, and the significance of differences among treatments of each cultivar was determined by least significant difference (LSD; $\alpha = 0.01$) using PROC GLM (SAS 1999).

RNA-seq analysis

Molly was used for RNA-seq analysis. Four treatments were applied in this experiment:1) control plants without heat treatment and HF infestation (CK), 2) plants heat-stressed at 35°C for 6 h without infestation (Heat), 3) HF-infested plants under normal temperature (Infest), and 4) HF-infested plants under heat stress at 35°C for 6 h (Heat+Infest). The experiment was conducted in two Percival growth chambers (Perry, IA 50220) following Randomized Complete Block Design (RCBD) with three biological replicates. Plants without heat treatment grew at 18°C. The plants receiving heat treatment grew at 18°C before and after the heat treatment. The heat stress was applied as described in the above section. Sampling began right after the completion of the heat treatment. At the time of sampling, 2-5 HF larvae were found at the feeding site of each infested plant. To collect samples, each wheat seedling was cut from its base.

The second leaf sheath was carefully peeled off, and a10-mm section of each second leaf sheath was collected into a 2-ml Eppendorf tube filled with RNAlater (Thermal Fisher Scientific, Waltham, MA). For plants infested with HF, the second leaf sheath were rinsed in water to remove larvae from infested plants and dried on paper towel to remove excessive water before collecting the sample. These rinse and dry steps were also applied to samples collected from plants without infestation to maintain consistency in sampling. Samples were stored at -20° C before shipping to a commercial sequencing facility for RNA extraction, library construction, and sequencing.

RNA extraction, library construction, and sequencing

RNA was extracted using Trizol Reagent (Thermo Fisher Scientific, Waltham, MA) following the manufacture's instruction. Libraries were generated using NEBNext® UltraTM RNA Library Prep Kit for Illumina® (New England Biolabs, Ipswich, MA) following manufacturer's recommendations. Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cations under elevated temperature in NEBNext First Strand Synthesis Reaction Buffer 5X. First strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse Transcriptase (RNase H-). Second strand cDNA synthesis was performed using DNA Polymerase I and RNase H followed by a round of purification, terminal repair, A-tailing, ligation of sequencing adapters, size selection and PCR enrichment. Library concentration was first quantified using a Qubit 2.0 fluorometer (Life Technologies, Carlsbad, CA) and then diluted to 1 ng/µl before checking insert size on an Agilent 2100 system (Agilent Technologies, Santa Clara, CA). Libraries were sequenced using an Illumina HiSeq-PE150 sequencing platform (Illumina, San Diego, CA, USA).

Quality control, sequencing alignment, and quantification of transcript abundance

Raw reads in fastq format were filtered to remove the reads containing adapters or reads of low quality to produce clean reads. Paired-end clean reads were then mapped to the *Triticum aestivum* genome sequence (ftp://ftp.ensemblgenomes.org/pub/plants/release-39/gtf/triticum_aestivum/) using HISTAT (Wang et al. 2009b). Only uniquely mapped reads were used for further read counting per gene, normalization of read counts and gene expression analyses. HTSeq v0.6.1 was used to count the reads numbers mapped to each gene (Anders et al. 2015). And then FPKM, expected number of Fragments Per Kilobase of transcript sequence per Millions base pairs sequenced of each gene, was calculated based on the length of the gene and reads count mapped to the gene (Trapnell et al. 2009). Fold change in transcript abundance of a gene between a treatment and control or two different treatments were expressed as normalized read count of the gene.

Differential expression analysis

Differential expression analyses were performed on normalized read counts using DESeq R package (Anders and Huber 2010). The resulting p-values were adjusted using the Benjamini and Hochberg's approach for controlling the false discovery rate (Benjamini and Hochberg 1995). Genes with an adjusted p-value (q value) < 0.05 were considered differentially expressed. All treatments were normalized to the control, however, for the pairwise comparison of transcript abundance between treatments Heat+Infest and Infest, Heat+Infest was normalized to Infest so that the comparison would reveal the effect of heat stress on HF infested plants. Cluster analysis

of gene expression was based on the log10 FPKM value of all 12 samples pertaining to four experimental treatments.

MapMan analysis

MapMan was specifically designed to cover plant-specific pathways and processes (https://mapman.gabipd.org/mapman). MapMan pathway analyses were performed on the Log2 fold change of differentially expressed genes (DEGs) between the treatments 'Heat+Infest' and 'Infest' (Usadel et al. 2009) to determine the effect of heat stress on transcript expression of genes in the HF infested plants. Custom specific mapping file for the MapMan based on the wheat sequencing output was created using the Mercator pipeline (Lohse et al. 2014) (http://mapman.gabipd.org/web/guest/mercator) in which TAIR, PPAP, KOG, CDD, ORYZA, and IPR, BLAST CUTOFF of 80, and ANNOTATE options were selected as parameters for the transcript annotation to obtain the hierarchical BIN (functional) categories. The functions or putative functions of the sequences were assigned by the BLAST-based search function of Mercator based on the reference proteins and functional domains of the sequences.

220 Results

Effect of higher temperature treatment on resistance phenotypes of Molly and Caldwell to

HF infestation

Our results indicate that Molly and Caldwell, which contain *H13* and *H6*, respectively, respond to higher temperature treatment differently (Fig.1). Molly plants remained resistant in the control plants and plants subjected to 24 h higher temperature treatment at 23, 25, and 27°C,

respectively, and became susceptible or mostly susceptible when the temperature was increased to 30 and 35°C (Fig. 1a), respectively. The percentage of susceptible Molly plants was greater at 30°C than that at 35°C (Fig. 1a). Caldwell, however, is more sensitive to heat stress. 14.3% of Caldwell plants were susceptible in the control plants, and the mean percentage of susceptible plants increased significantly to 65.6-97.3% under higher temperature treatments at 23, 25, 27, 30, or 35 °C, respectively (Fig. 1b).

Effect of heat stress on transcript expression of genes in the HF infested plants

Overview of RNA-Seq analysis

A total of 12 cDNA libraries were sequenced. An average of 82.2 million of 2 x 150 paired-end raw reads per sample, ranging from 69.4 to 89.1 million, were obtained (Table S1). The data have been deposited with links to BioProject accession number PRJNA589693 in the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/). Read counts between the replicates are highly correlated (R²≥92.9%; Table S2), indicating the high repeatability of the sequencing data. An average of 79.1 million (95.9%) clean reads were obtained after quality trimming. Overall, 90.0% clean reads were mapped to the *Triticum aestivum* genome sequence, and 84.2% were uniquely mapped (Table S1), from which 14,353 informative genes were identified. Based on the Log₁₀(FPKM+1) value of all informative genes, a cluster heat map was generated, showing a distinctive transcript expression patterns among four treatments. The heat stress, alone or in combination with HF infestation, resulted in distinctly different patterns of transcript levels between control plants and plants infested by HF (Fig. 2). Differential Expression Analysis of transcript abundance between the treatments 'Heat+Infest' and 'Infest' identified 11, 675 genes that were regulated by heat stress in the HF-infested plants. Among

them, 7476 were functionally annotated and assigned to 34 functional categories using MapMan platform (Table S3).

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

250

251

Heat stress on genes involved in primary metabolism

To understand the impact of heat stress on primary metabolism at HF feeding sites of wheat plants, we examined the regulation of genes involved in eight major primary metabolic pathways including photosynthesis (171 genes), lipid metabolism (293 genes), amino acid metabolism (177 genes), major carbohydrate metabolism (102 genes), nucleotide metabolism (99 genes), glycolysis (96 genes), tricarboxylic acid cycle (TCA) (45 genes) and cell wall metabolism (188 genes) (Tables 1). Our results indicated that heat stress downregulated most genes involved in these primary metabolic pathways (Tables 1 and S4). The top four pathways with the highest percentage of downregulated genes are TCA cycle (95.9%), photosynthesis (90.1%), nucleotide metabolism (88.9%), and glycolysis (88.5%). 77.5, 74, and 72.5% genes involved in the metabolisms of lipids, amino acids, and major carbohydrates were downregulated, respectively, and the percentages of downregulated genes involved in biosynthesis of these metabolites are considerably greater than the percentages of downregulated genes involved their degradation (Tables 1 and S4), 58% of genes involved in cell wall metabolism were downregulated, among which most genes involved in biosynthesis of cell wall components were downregulated, but most genes involved in degradation of cell wall were upregulated (Tables 1 and S4).

269

270

271

272

Heat stress on genes involved in secondary metabolism

A total of 330 genes involved in secondary metabolism were impacted by heat stress, including 138 (41.8%) upregulated genes and 192 (58.2%) downregulated genes. These genes encode

enzymes functioning/putatively functioning in metabolism of seven types of secondary compounds including isoprenoids (85 genes), phenylpropanoids (81 genes), alkaloids-like compounds (14 genes), sulfur-containing compounds (44 genes), wax (22 genes), flavonoids (90 genes) and simple phenols (2 genes) (Table 2). We further examined the regulation of genes involved in the metabolism of phenylpropanoids and wax because of their significance in wheat resistance to HF (Kosma et al. 2010, Khajuria et al. 2013). Forty-two genes involved in metabolism of phenylpropanoids encode enzymes catalyzing biosynthesis of lignin (Table 3), and 71.4% of these genes were downregulated by the heat stress (Table 3). Those downregulated genes include all or majority of genes encoding phenylalanine ammonia-lyases (PAL), caffeic acid O-methyltransferase (COMT), cinnamyl alcohol dehydrogenase (CAD), 4coumarate: CoA ligase (4CL), p-hydroxycinnamoyl-CoA:quinate/shikimate phydroxycinnamoyltransferase (HCT), and caffeoyl-CoA O-methyltransferase (CCoAOMT) (Tables 3 and S5). Such results suggest that heat stress downregulates biosynthesis of lignin in the HF infested plants. Twenty-two genes involved in wax synthesis were impacted by heat stress, of which most genes involved in biosynthesis of very long chain fatty acid (VLCFA) were downregulated, but all genes encoding wax synthase were upregulated by heat stress (Tables 3 and S5).

290

291

292

293

294

295

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

Heat stress on genes involved in phytohormone metabolism

Among 234 genes involved in phytohormone metabolism that were impacted by heat stress, 34, 51, 50, 42, 38, 20, 21, and 11 of the genes are involved in the metabolism of abscisic acid (ABA), auxin (IAA), brassinosteroid (BA), ethylene (ET), cytokinin (CK), JA, salicylic acid (SA), gibberellin (GA), respectively (Table 4). Our results indicate that the majority of those

genes involved in the metabolism of IAA (72.5%), ET (61.9%), SA (71.4%), and JA (65%) were upregulated, while the majority of those genes involved in the metabolism of BA (74%) were downregulated under heat stress. Of these phytohormones, IAA and OPDA in the JA pathway were found playing important roles in wheat's susceptibility and resistance to HF infestation, respectively (Zhu et al. 2010b, Zhu et al. 2012, Cheng et al. 2018). Therefore, we further examined the transcript levels of genes involved in IAA and JA metabolisms. Forty-two of those genes involved in auxin metabolism are either auxin responsive or encode proteins with a function in auxin signaling. The vast majority (76.2%) of these genes in auxin signaling and/or responsive to auxin treatments were upregulated under heat stress (Tables 4 and S6). Eight of those genes involved in JA metabolism encode enzymes with functions in the JA pathway (Table 4), including genes encoding five lipoxygenases (LOX), an allene oxidase synthase (AOS), and two 12-oxophytodienoic acid reductases (OPR) (Fig. 3). All these eight JA-related genes were up-regulated under heat stress, but the increases in the transcript abundance of the OPR genes (9.1 and 3.1-fold, respectively) were much greater in magnitude than that of the LOX genes (2.7, 3.3, 2.9, 1.8, and 2.5-fold, respectively) and the AOS gene (1.7-fold) (Fig 3 and table S6).

311

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

312 Discussion

313

314

315

316

317

318

Heat stress compromises wheat resistance to HF infestation (Tyler and Hatchett 1983, Buntin et al. 1990). In this study, we analyzed effect of higher temperature treatment on resistance phenotypes of wheat cultivar Molly and Caldwell, whose resistance to HF is conveyed by *R* genes *H13* and *H6*, respectively. We found that the resistance of Caldwell is more sensitive to higher temperature than that of Molly (Fig. 1). Difference in temperature sensitivity of wheat

resistance to HF between Caldwell and Molly is expected because these two cultivars carry different R genes in different genetic backgrounds (Tang et al. 2018). Previous study has indicated that higher temperature exerts more significant impact on wheat resistance to HF infestation, causing more susceptible plants (Cheng et al. 2018, Tang et al. 2018), however, in the current study, the percentage of susceptible Molly plants heat stressed at 30°C is significantly higher than that at 35 °C. The lower percentage of susceptible plants at 35 °C observed in this study is likely caused by the lower number of attacking larvae in the plants. RNA-seq analyses revealed that heat stress downregulated the majority of genes involved in primary metabolism (Table 1, S3, S4) and the biosynthesis of lignin and very-long-chain fatty acids (Table 3, S5), but upregulated the vast majority of genes involved in auxin signaling and genes responsive to auxin as well as all genes involved in JA biosynthesis (Fig. 3, Tables 4 and S6). Further analyses of our current results and previous findings suggest that heat stress impair the processes that produce and mobilize chemical resources and energy needed for synthesizing defensive compounds, leading to weakened cell wall and cuticle defense in wheat plants. Additionally, disrupting phytohormone metabolism by heat stress may also help HF overcome wheat resistance, resulting in heat induced susceptibility.

335

336

337

338

339

340

341

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

<u>Down-regulation of primary metabolism by heat stress may lead to insufficient resources</u> and impaired mobilization of resources for defense

To launch an effective defense against invading parasites, plants need to rapidly mobilize sufficient chemical and energy resources to provide building blocks for the production of defensive molecules such as oxylipins, toxic proteins, lectins, phenolics, and antifeedant cell wall components (Zhu et al. 2012, Khajuria et al. 2013, Schultz et al. 2013, Zhou et al. 2015).

Generally speaking, production of resources involves photosynthesis and biosynthesis of large molecules, such as lipid, carbohydrate, protein and amino acid etc., and mobilization and reutilization of resources involves degradation of those aforementioned molecules (Schultz et al. 2013, Zhou et al. 2015). In wheat-HF interaction, the mobilization and re-utilization of resources for defense purpose are represented by the strong upregulation of genes encoding enzymes responsible for degradation of lipids, catabolism of sugars, and degradation of amino acids in resistant plants during incompatible interactions (Zhu et al. 2012, Khajuria et al. 2013). Our results indicate that heat stress downregulated most genes involved in degradation of carbohydrates, amino acids, nucleotides, and genes involved in the central catabolic pathways glycolysis and TCA cycle (Table 1, S4). The down-regulation of these genes suggests that the degradation of sugars, amino acid, nucleotides and other compounds, which are often elevated in plants during incompatible interaction between wheat and HF (Zhu et al. 2012, Khajuria et al. 2013), was decelerated in heat-stressed plants. The decelerated degradation of those compounds will likely lead to less production of the chemical and energy resources needed to synthesize defensive compounds. Moreover, our results demonstrated that greater than 80% of those genes involved in photosynthesis and synthesis of lipids and fatty acids, carbohydrates, amino acids, and nucleotides were down-regulated, which could result in decreased production and accumulation of available molecular resources that can be mobilized for defense in plants under heat stress (Table 1, S4). With less resources available for mobilization and suppressed ability to mobilize molecular resources, heat-stressed plants are likely unable to produce enough molecular intermediates and energy to synthesize adequate defensive compounds for effective defense against HF infestation.

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

Weakened cell wall and cuticle defense in the heat-stressed wheat plants

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

Fortification of cell wall and cuticle provide both physical barriers and chemical defense against HF infestation in wheat plants and is, therefore, crucial to wheat resistance to HF (Kosma et al. 2010, Khajuria et al. 2013). Our results provided two pieces of evidence to suggest that heat stress may weaken cell wall fortification. First, heat stress upregulated most of the genes involved in cell wall degradation, but downregulated most of the genes involved in synthesis of cell wall precursors and components (Table 1 and S4), suggesting the accelerated process for cell wall destruction but decelerated process for cell wall generation. Second, heat stress downregulated most of the genes involved in lignin synthesis (Table 3 and S5). Lignin, a phenolic heteropolymer, is one of the major components of plant cell wall. Lignin can be antinutritional because their role in strengthening cell walls against digestion of insects (Brodeur-Campbell et al. 2006). Studies have suggested that enhanced expression of genes responsible for lignin biosynthesis and high lignin accumulation in plants limited the invasion of piercing sucking insects (Santiago et al. 2013, An et al. 2019). In wheat-HF interactions, strong upregulation of genes encoding enzymes for lignin biosynthesis including phenylalanine ammonia-lyases (PAL), cinnamate 4-hydroxylases (C4H), cinnamyl alcohol dehydrogenases (CAD), and cinnamoyl-CoA reductases (CCR) was observed in the resistant plants after HF larval attack during incompatible interactions (Khajuria et al. 2013). That said, the downregulation of most genes involved in lignin synthesis by heat stress (Table 3) suggests that lignin biosynthesis was hindered and lignin accumulation was reduced at HF feeding site under heat stress, which will likely lead to the reduced level of cell wall fortification. Plant cuticles comprise a hydrophobic layer of waxes and cutins, which covers the outermost epidermal cell walls (Nawrath 2006, Samuels et al. 2008, Kosma et al. 2010). Cuticular wax is largely

composed of very-long-chain fatty acids (VLCFAs) and compounds derived from VLCFAs which include aldehydes, alcohols, alkanes, ketones, and esters (Jetter et al. 2008). Changes in cuticle wax coverage and composition are associated with increased epidermal permeability and susceptibility of wheat plants to HF infestation (Kosma et al. 2010). Our result revealed that heat stress downregulated most of the genes involved in synthesis of VLCFAs (Table 3 and S5). The downregulation of these VLCFA synthesis genes suggests the decreased production and accumulation of VLCFA at HF feeding sites in heat-stressed wheat plants. Because VLCFAs are the basic components of plant cuticular wax, the decreased production and accumulation of VLCFAs will likely lead to decreased production and changed composition of cuticular wax, resulting in decreased level of cuticle fortification and increased permeability of cell wall that may benefit HF feeding. Taken together, our results suggest that heat-induced changes in expression of genes involved in the metabolism of cell wall and biosynthesis of lignin and VLCFAs may lead to weakened cell wall and cuticle fortification that benefit HF survival in the heat-stressed wheat plants.

Alteration in OPDA and auxin signaling and heat-induced susceptibility

Phytohormones play crucial roles in defense signaling. Different types of phytohormones interact antagonistically or synergistically to regulate plants' responses to biotic and abiotic stress factors (Takatsuji and Jiang 2014). Our study revealed that heat stress affected transcript levels of 234 genes involved in metabolism of eight major phytohormones (Table 4 and S3). The changed transcript abundance of these genes will likely result in changed accumulation of phytohormones and intensity of phytohormone signaling, shaping the outcome of wheat-HF interaction. OPDA, as an intermediate in JA synthesis, is a key defense signaling molecule against insect in its own

right (Stintzi et al. 2001, Varsani et al. 2019). Our previous studies have found that high level accumulation of OPDA may contribute to the expression of wheat resistance to HF during incompatible interactions (Zhu et al. 2010b, Zhu et al. 2010a, Zhu et al. 2012, Cheng et al. 2018), and that the reduction in OPDA accumulation caused by heat stress in wheat plants likely contributed to reduced wheat resistance to HF (Currie et al. 2014b). Our current results indicate that heat stress upregulated genes encoding three important rate-limiting enzymes (AOS, LOX, and OPR) involved in OPDA metabolism in the JA pathway, but the magnitude of upregulation of OPR genes are greater than that of LOX and AOS genes (Fig. 3). Because LOX and AOS catalyze the synthesis of OPDA from linolenic acid, and OPRs catalyze the conversion of OPDA to a cyclopentenone ring, which undergoes three cycles of oxidation in the peroxisome to generate JA (Turner et al. 2002), the greater upregulation of OPR genes suggests that OPDA degradation was accelerated and that OPDA accumulation might have been reduced in the heatstressed wheat plants. The upregulation of OPR genes observed in the current study is consistent with our previous finding that heat stress causes decreased accumulation of OPDA at feeding site tissue of Molly wheat (Currie et al. 2014b), suggesting that the decreased OPDA accumulation in wheat plants under heat stress may be, at least in part, attributed to the upregulation of OPR genes.

428

429

430

431

432

433

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

Our results also revealed that most auxin-signaling and/or -responsive genes are upregulated by heat stress (Tables 4 and S6), which suggest the increased accumulation of auxin and auxin signaling at the feeding sites of the heat-stressed wheat plants. Auxin is a phytohormone associated with susceptibility of many plant species to pathogens and insects (Wang et al. 2007, Zhu et al. 2010b, Tooker and De Moraes 2011, Kunkel and Harper 2017). Auxin stimulates

formation of galls in plants where gall-inducing pathogens and insects can manipulate physiology and biochemistry of plants to obtain nutrition (Liu et al. 1982, Tooker and De Moraes 2011, Tokuda et al. 2013). HF is a plant-feeding gall midge because a virulent HF larva can manipulate susceptible plants to create nutritive tissue, establish feeding sites, and complete its life cycle (Harris et al. 2006). Given the importance of auxin in gall formation and the high accumulation of auxin in susceptible wheat plants (Zhu et al. 2010a), coupled with the findings that high temperature increases auxin accumulation in plants (Gray et al. 1998, Sun et al. 2012), it is reasonable to speculate that the upregulation of auxin signaling and responsive genes observed in our current study may be a result of increased auxin accumulation caused by the heat stress, and that the heat-induced auxin accumulation is likely to stimulate the formation of nutritive tissues in the heat-stressed wheat plants, activating the susceptibility of wheat plants to HF infestation.

448 Conclusion

The results of our current study indicate that resistance of wheat cultivar Caldwell is more sensitive to heat stress than that of Molly. Our RNA-seq data together with previous findings suggest that heat stress may impair the processes in wheat plants that produce and mobilize chemical resources needed for synthesizing defensive compounds, weaken cell wall and cuticle defense, decrease OPDA signaling, but increase auxin signaling, leading to the suppressed resistance and activation of susceptibility.

457	Acknowledgement
458	
459	The authors thank Dr. Fred Gould in the Department of Entomology and Plant Pathology at
460	North Carolina State University for his insights and discussion regarding the implementation of
461	this project. This research was supported by the US National Science Foundation Historically
462	Black Colleges and Universities-Undergraduate Program (HBCU-UP) Research Initiation Award
463	(RIA) (Award Id: 1664409).
464	
465	References
466	An, C., L. Sheng, X. Du, Y. Wang, Y. Zhang, A. Song, J. Jiang, Z. Guan, W. Fang, and F.
467	Chen. 2019. Overexpression of CmMYB15 provides chrysanthemum resistance to
468	aphids by regulating the biosynthesis of lignin. Horticulture Research 6: 84.
469	Anders, S., and W. Huber. 2010. Differential expression analysis for sequence count data.
470	Genome biology 11: R106.
471	Anders, S., P. T. Pyl, and W. Huber. 2015. HTSeq—a Python framework to work with high-
472	throughput sequencing data. Bioinformatics 31: 166-169.
473	Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and
474	powerful approach to multiple testing. Journal of the Royal statistical society: series B
475	(Methodological) 57: 289-300.
476	Berzonsky, W. A., H. Ding, S. D. Haley, M. O. Harris, R. J. Lamb, R. McKenzie, H. W.
477	Ohm, F. Patterson, F. Peairs, and D. R. Porter. 2003. Breeding wheat for resistance to
478	insects. Plant Breeding Reviews 22: 221-296.

4/9	Brodeur-Campbell, S. E., J. A. Vucetich, D. L. Richter, T. A. Waite, J. N. Rosemier, and
480	CJ. Tsai. 2006. Insect herbivory on low-lignin transgenic aspen. Environmental
481	Entomology 35: 1696-1701.
482	Buntin, G., P. Bruckner, J. Johnson, and J. Foster. 1990. Effectiveness of selected genes for
483	Hessian fly resistance in wheat. Journal of Agricultural Entomology 7: 283-291.
484	Chen, MS., S. Wheeler, H. Wang, and R. J. Whitworth. 2014. Impact of temperatures on
485	Hessian fly (Diptera: Cecidomyiidae) resistance in selected wheat cultivars (Poales:
486	Poaceae) in the Great Plains region. Journal of economic entomology 107: 1266-1273.
487	Cheng, G., MS. Chen, and L. Zhu. 2018. 12-Oxo-phytodienoic acid enhances wheat
488	resistance to hessian fly (Diptera: Cecidomyiidae) under heat stress. Journal of economic
489	entomology 111: 917-922.
490	Currie, Y., MS. Chen, R. Nickolov, G. Bai, and L. Zhu. 2014a. Impact of Transient Heat
491	Stress on Polar Lipid Metabolism in Seedlings of Wheat Near-Isogenic Lines Contrasting
492	in Resistance to Hessian Fly (Cecidomyiidae) Infestation. Journal of economic
493	entomology 107: 2196-2203.
494	Currie, Y., J. Moch, J. Underwood, H. Kharabsheh, A. Quesenberry, R. Miyagi, C.
495	Thomas, M. Boney, S. Woods, and MS. Chen. 2014b. Transient heat stress
496	compromises the resistance of wheat (Poales: Poaceae) seedlings to Hessian fly (Diptera:
497	Cecidomyiidae) Infestation. Journal of economic entomology 107: 389-395.
498	Giovanini, M. P., K. D. Saltzmann, D. P. Puthoff, M. Gonzalo, H. W. Ohm, and C. E.
499	Williams. 2007. A novel wheat gene encoding a putative chitin-binding lectin is
500	associated with resistance against Hessian fly. Molecular plant pathology 8: 69-82.

501	Gray, W. M., A. Östin, G. Sandberg, C. P. Romano, and M. Estelle. 1998. High temperature
502	promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proceedings of the
503	National Academy of Sciences 95: 7197-7202.
504	Harris, M., T. Freeman, O. Rohfritsch, K. Anderson, S. Payne, and J. Moore. 2006. Virulent
505	Hessian fly (Diptera: Cecidomyiidae) larvae induce a nutritive tissue during compatible
506	interactions with wheat. Annals of the Entomological Society of America 99: 305-316.
507	Jetter, R., L. Kunst, and A. L. Samuels. 2008. Composition of plant cuticular waxes. Biology
508	of the plant cuticle 23: 145-181.
509	Khajuria, C., H. Wang, X. Liu, S. Wheeler, J. C. Reese, M. El Bouhssini, R. J. Whitworth,
510	and MS. Chen. 2013. Mobilization of lipids and fortification of cell wall and cuticle are
511	important in host defense against Hessian fly. BMC genomics 14: 423.
512	Kosma, D. K., J. A. Nemacheck, M. A. Jenks, and C. E. Williams. 2010. Changes in
513	properties of wheat leaf cuticle during interactions with Hessian fly. The plant journal 63:
514	31-43.
515	Kunkel, B. N., and C. P. Harper. 2017. The roles of auxin during interactions between
516	bacterial plant pathogens and their hosts. Journal of experimental botany 69: 245-254.
517	Liu, ST., K. Perry, C. Schardl, and C. Kado. 1982. Agrobacterium Ti plasmid indoleacetic
518	acid gene is required for crown gall oncogenesis. Proceedings of the National Academy
519	of Sciences 79: 2812-2816.
520	Liu, X., J. Bai, L. Huang, L. Zhu, X. Liu, N. Weng, J. C. Reese, M. Harris, J. J. Stuart, and
521	MS. Chen. 2007. Gene expression of different wheat genotypes during attack by
522	virulent and avirulent Hessian fly (Mayetiola destructor) larvae. Journal of Chemical
523	Ecology 33: 2171-2194.

524	Liu, X., C. Khajuria, J. Li, H. N. Trick, L. Huang, B. S. Gill, G. R. Reeck, G. Antony, F. F.		
525	White, and MS. Chen. 2013. Wheat Mds-1 encodes a heat-shock protein and governs		
526	susceptibility towards the Hessian fly gall midge. Nature communications 4: 2070.		
527	Lohse, M., A. Nagel, T. Herter, P. May, M. Schroda, R. Zrenner, T. Tohge, A. R. Fernie,		
528	M. Stitt, and B. Usadel. 2014. M ercator: a fast and simple web server for genome scale		
529	functional annotation of plant sequence data. Plant, cell & environment 37: 1250-1258.		
530	Nawrath, C. 2006. Unraveling the complex network of cuticular structure and function. Current		
531	opinion in plant biology 9: 281-287.		
532	Patterson, F., F. Maas, J. Foster, R. Ratcliffe, S. Cambron, G. Safranski, P. Taylor, and H.		
533	Ohm. 1994. Registration of eight Hessian fly resistant common winter wheat germplasm		
534	lines (Carol, Erin, Flynn, Iris, Joy, Karen, Lola, and Molly). Crop Sci 34: 315-316.		
535	Ratcliffe, R., J. Hatchett, and K. Bondari. 1997. New Developments in Entomology, pp. 47-		
536	56. Resarch Signpost, Scientific information guild Trivandurm, India.		
537	Samuels, L., L. Kunst, and R. Jetter. 2008. Sealing plant surfaces: cuticular wax formation by		
538	epidermal cells. Annu. Rev. Plant Biol. 59: 683-707.		
539	Santiago, R., J. Barros-Rios, and R. A. Malvar. 2013. Impact of cell wall composition on		
540	maize resistance to pests and diseases. International journal of molecular sciences 14:		
541	6960-6980.		
542	SAS, I. 1999. SAS/STAT User's Guide, Version 9.2. SAS Cary, NC.		
543	Schultz, J. C., H. M. Appel, A. Ferrieri, and T. M. Arnold. 2013. Flexible resource allocation		
544	during plant defense responses. Frontiers in plant science 4: 324.		
545	Shukle, R., P. Grover, and J. Foster. 1990. Feeding of Hessian fly (Diptera: Cecidomyiidae)		
546	larvae on resistant and susceptible wheat. Environmental Entomology 19: 494-500.		

547	Stintzi, A., H. Weber, P. Reymond, and E. E. Farmer. 2001. Plant defense in the absence of			
548	jasmonic acid: the role of cyclopentenones. Proceedings of the National Academy of			
549	Sciences 98: 12837-12842.			
550	Sun, J., L. Qi, Y. Li, J. Chu, and C. Li. 2012. PIF4-mediated activation of YUCCA8			
551	expression integrates temperature into the auxin pathway in regulating Arabidopsis			
552	hypocotyl growth. PLoS genetics 8: e1002594.			
553	Takatsuji, H., and CJ. Jiang. 2014. Plant hormone crosstalks under biotic stresses, pp. 323-			
554	350, Phytohormones: a window to metabolism, signaling and biotechnological			
555	applications. Springer.			
556	Tang, G., X. Liu, GH. Chen, R. J. Witworth, and MS. Chen. 2018. Increasing temperature			
557	reduces wheat resistance mediated by major resistance genes to Mayetiola destructor			
558	(Diptera: Cecidomyiidae). Journal of economic entomology 111: 1433-1438.			
559	Tokuda, M., Y. Jikumaru, K. Matsukura, Y. Takebayashi, S. Kumashiro, M. Matsumura,			
560	and Y. Kamiya. 2013. Phytohormones related to host plant manipulation by a gall-			
561	inducing leafhopper. PloS one 8: e62350.			
562	Tooker, J. F., and C. M. De Moraes. 2011. Feeding by a gall-inducing caterpillar species alters			
563	levels of indole-3-acetic and abscisic acid in Solidagoaltissima (Asteraceae) stems.			
564	Arthropod-Plant Interactions 5: 115-124.			
565	Trapnell, C., L. Pachter, and S. L. Salzberg. 2009. TopHat: discovering splice junctions with			
566	RNA-Seq. Bioinformatics 25: 1105-1111.			
567	Turner, J. G., C. Ellis, and A. Devoto. 2002. The jasmonate signal pathway. The Plant cell 14:			
568	S153-S164.			

569	Tyler, J., and J. Hatchett. 1983. Temperature influence on expression of resistance to Hessian
570	fly (Diptera: Cecidomyiidae) in wheat derived from Triticum tauschii. Journal of
571	economic entomology 76: 323-326.
572	Usadel, B., F. Poree, A. Nagel, M. Lohse, A. CZEDIK-EYSENBERG, and M. Stitt. 2009. A
573	guide to using MapMan to visualize and compare Omics data in plants: a case study in
574	the crop species, Maize. Plant, cell & environment 32: 1211-1229.
575	Varsani, S., S. Grover, S. Zhou, K. G. Koch, PC. Huang, M. V. Kolomiets, W. P.
576	Williams, T. Heng-Moss, G. Sarath, and D. S. Luthe. 2019. 12-Oxo-phytodienoic acid
577	acts as a regulator of maize defense against corn leaf aphid. Plant physiology 179: 1402-
578	1415.
579	Wang, L., R. Halitschke, JH. Kang, A. Berg, F. Harnisch, and I. T. Baldwin. 2007.
580	Independently silencing two JAR family members impairs levels of trypsin proteinase
581	inhibitors but not nicotine. Planta 226: 159-167.
582	Wang, Y., Z. Bao, Y. Zhu, and J. Hua. 2009a. Analysis of temperature modulation of plant
583	defense against biotrophic microbes. Molecular Plant-Microbe Interactions 22: 498-506.
584	Wang, Z., M. Gerstein, and M. Snyder. 2009b. RNA-Seq: a revolutionary tool for
585	transcriptomics. Nature reviews genetics 10: 57.
586	Williams, C. E., C. C. Collier, J. A. Nemacheck, C. Liang, and S. E. Cambron. 2002. A
587	lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar
588	Hessian fly larvae. Journal of chemical ecology 28: 1411-1428.
589	Zhou, S., YR. Lou, V. Tzin, and G. Jander. 2015. Alteration of plant primary metabolism in
590	response to insect herbivory. Plant physiology 169: 1488-1498.

591	Zhu, L., X. Liu, and M. S. Chen. 2010a. Differential accumulation of phytohormones in wheat
592	seedlings attacked by avirulent and virulent Hessian fly (Diptera: Cecidomyiidae) larvae.
593	Journal of economic entomology 103: 178-185.
594	Zhu, L., X. Liu, and MS. Chen. 2010b. Differential accumulation of phytohormones in wheat
595	seedlings attacked by avirulent and virulent Hessian fly (Diptera: Cecidomyiidae) larvae.
596	Journal of economic entomology 103: 178-185.
597	Zhu, L., X. Liu, X. Liu, R. Jeannotte, J. C. Reese, M. Harris, J. J. Stuart, and MS. Chen.
598	2008. Hessian fly (Mayetiola destructor) attack causes a dramatic shift in carbon and
599	nitrogen metabolism in wheat. Molecular Plant-Microbe Interactions 21: 70-78.
600	Zhu, L., X. Liu, H. Wang, C. Khajuria, J. C. Reese, R. J. Whitworth, R. Welti, and M. S.
601	Chen. 2012. Rapid mobilization of membrane lipids in wheat leaf sheaths during
602	incompatible interactions with Hessian fly. Molecular plant-microbe interactions : MPMI
603	25: 920-930.
604	
605	

607

608

	Total	No. (%) of	No. (%) of
Pathways of primary metabolism	No.	upregulated genes	downregulated genes
Photosynthesis	171	17 (9.9)	154 (90.1)
Light reaction	126	8 (6.3)	118 (93.7)
Calvin cycle	27	6 (22.2)	21 (77.8)
Photorespiration	15	3 (20.0)	12 (80.0)
Lipid metabolism	293	66 (22.5)	227 (77.5)
Fatty acid synthesis elongation	114	15 (13.2)	99 (86.8)
Phospholipid synthesis	36	1 (2.8)	35 (97.2)
glycolipid synthesis	8	1 (12.5)	7 (87.5)
Lipid and fatty acid degradation	76	34 (44.7)	42 (55.3)
Amino acid metabolism	177	46 (26)	131 (74.0)
Amino acid synthesis	114	24 (21.1)	90 (78.9)
Amino acid degradation	62	22 (35.5)	40 (64.5)
Major carbohydrate metabolism	102	28 (27.5)	74 (72.5)
Starch synthesis	24	1 (4.2)	23 (95.8)
Starch degradation	25	7 (28)	18 (72)
Sucrose degradation	53	20 (37.7)	33 (62.3)

99	11 (11.1)	88 (88.9)
17	3 (17.6)	14 (82.4)
26	4 (15.4)	22 (84.6)
28	5 (17.9)	23 (82.1)
96	11 (11.5)	85 (88.5)
45	1 (4.1)	44 (95.9)
188	79 (42)	109 (58)
87	21 (24.1)	66 (75.9)
39	28 (71.8)	11 (28.2)
	17 26 28 96 45 188 87	17 3 (17.6) 26 4 (15.4) 28 5 (17.9) 96 11 (11.5) 45 1 (4.1) 188 79 (42) 87 21 (24.1)

Table 2. Regulation of genes involved in secondary metabolism by heat stress in Molly plants.

All genes are differentially expressed between treatments "Heat+Infest" and "Infest". Infest: The HF infested, normal temperature plants; **Heat+Infest:** The plants under the combination of HF infestation and heat treatment at 35°C for 6 h.

	Total	No. (%)	No. (%) of
Pathways of secondary metabolism	No.	upregulated genes	downregulated genes
Isoprenoids	85	14 (16.5)	71 (83.5)
Phenylpropanoids	81	37 (45.7)	44 (54.3)
Alkaloid like compounds	14	8 (57.1)	6 (42.9)
Sulfur-containing metabolites	44	25 (56.8)	19 (43.2)
Wax	22	10 (45.5)	12 (54.5)
Flavonoids	90	46 (51.1)	44 (48.9)
Simple phenols	2	2 (100)	0 (0.0)

Dathway/Come name 8	Total No	No. (%) gene	No. (%) gene	
Pathway/Gene name ^a	Total No.	upregulated		
Lignin synthesis	42	12 (28.6)	30 (71.4)	
PAL	2	0 (0)	2 (100)	
4CL	5	1 (20)	4 (80)	
НСТ	4	1 (25)	3 (75)	
CCoAOMT	10	4 (40)	6 (60)	
CCR	7	4 (57.1)	3 (42.9)	
COMT	3	0 (0)	3 (100)	
CAD	11	2 (18.2)	9 (81.8)	
Wax metabolism	22	10 (45.5)	12 (54.5)	
VLCFA synthesis	13	3 (23.1)	10 (76.9)	
Wax synthase	6	6 (100)	0 (0)	

^{a:} PAL: Phenylalanine ammonia-lyases, 4CL: 4-coumarate:CoA ligase), HCT: p-hydroxycinnamoyl-CoA:quinate/shikimate p-hydroxycinnamoyltransferase, CCoAOMT: caffeoyl-CoA O-methyltransferase, CCR: cinnamoyl-CoA reductase, COMT: caffeic acid O-methyltransferase, CAD: cinnamyl alcohol dehydrogenase, VLCFA: Very long chain fatty aci

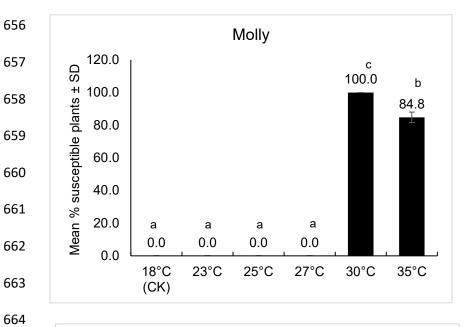
Table 4. Regulation of genes involved in phytohormone metabolism by heat stress in Molly plants. All genes are differentially expressed between treatments "Heat+Infest" and "Infest". **Infest:** The HF infested, normal temperature plants; **Heat+Infest:** The plants under the combination of HF infestation and heat treatment at 35°C for 6 h.

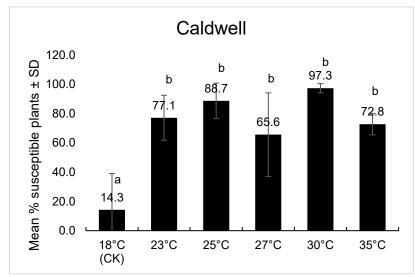
	Total No.	No. (%) upregulated genes	No. (%) of downregulated genes
Abscisic acid (ABA)	34	17 (50.0)	17 (50.0)
Auxin (IAA)	51	37 (72.5)	14 (27.5)
Auxin signaling/responsive genes	42	32 (76.2)	10 (23.8)
Brassinosteroid (BA)	50	13 (26.0)	37 (74.0)
Ethylene (ET)	42	26 (61.9)	16 (38.1)
Cytokinin (CK)	38	20 (52.6)	18 (47.4)
Jasmonic acid (JA)	20	13 (65.0)	7 (35.0)
JA pathway	8	8 (100)	0 (0)
Salicylic acid (SA)	21	15 (71.4)	6 (28.6)
Gibberellic acid (GA)	11	5 (45.5)	6 (54.5)

Figure legends 632 Fig. 1. Impact of 24 h temperature treatment on resistance phenotypes of wheat cultivar Molly 633 and Caldwell, which contains the R genes H13 and H6, respectively. All plants were infested 634 with a HF population named 'white eye' that consists chiefly of the avirulent biotype GP. X-axis 635 indicates degrees of temperatures. Y-axis indicates mean percentage of susceptible plants of all 636 replicates in each treatment. For each replicate, percentage of susceptible plants was calculated 637 as "No. susceptible plants x 100/No. infested plants). Higher percentage of susceptible plants 638 indicates severer loss of plant resistance. Fig. 1a: Molly; Fig. 1b: Caldwell. Scale bars marked 639 640 with different letters are significantly different in values at $\alpha = 0.01$. 641 Fig. 2. Hierarchical cluster of differentially expressed genes based on log10 (FPKM+1) value. 642 Red denotes genes with high expression level, and blue denotes genes with low expression level. 643 644 CK: the control plants without Hessian fly infestation growing at 18°C. Infest: HF infested plants growing at 18°C. Heat: Plants heat treated for 6-h at 35°C. Heat+Infest: Plants under the 645 combination of HF infestation and heat stress. 646 647 Fig. 3. Gene ID and fold change of transcript abundance of genes involved in JA pathway that 648

are regulated by heat stress in the HF infested plants.

LOX: Lipoxygenase; AOS: Allene oxidase synthase; OPR:2-Oxo-PDA-reductase.


651


650

652

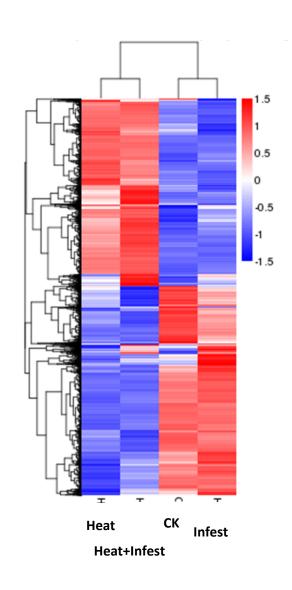

653

Fig. 1

