Piecewise Stationary Modeling of Random
Processes Over Graphs With an Application to
Traffic Prediction

Arman Hasanzadeh, Xi Liu, Nick Duffield and Krishna R. Narayanan
Department of Electrical and Computer Engineering
Texas A&M University
College Station, Texas 77840
Email: {armanihm, duffieldng, krn} @tamu.edu, xiliu.tamu@ gmail.com

Abstract—Stationarity is a key assumption in many statistical
models for random processes. With recent developments in the
field of graph signal processing, the conventional notion of wide-
sense stationarity has been extended to random processes defined
on the vertices of graphs. It has been shown that well-known spec-
tral graph kernel methods assume that the underlying random
process over a graph is stationary. While many approaches have
been proposed, both in machine learning and signal processing
literature, to model stationary random processes over graphs,
they are too restrictive to characterize real-world datasets as
most of them are non-stationary processes. In this paper, to well-
characterize a non-stationary process over graph, we propose
a novel model and a computationally efficient algorithm that
partitions a large graph into disjoint clusters such that the
process is stationary on each of the clusters but independent
across clusters. We evaluate our model for traffic prediction on
a large-scale dataset of fine-grained highway travel times in the
Dallas-Fort Worth area. The accuracy of our method is very
close to the state-of-the-art graph based deep learning methods
while the computational complexity of our model is substantially
smaller.

Index Terms—Piecewise Stationary, Graph Clustering, Graph
Signal Processing, Traffic Prediction

I. INTRODUCTION

Stationarity is a well-known hypothesis in statistics and
signal processing which assumes that the statistical charac-
teristics of random process do not change with time [1].
Stationarity is an important underlying assumption for many of
the common time series analysis methods [2]-[4]. With recent
developments in the field of graph signal processing [5]-
[7], the concept of stationarity has been extended to random
processes defined over vertices of graphs [8]-[11]. A random
process over a graph is said to be graph wide-sense stationary
(GWSS) if the covariance matrix of the process and the shift
operator of the graph, which is a matrix representation of the
graph (see Section II-B), have the same set of eigenvectors.

Incidentally, GWSS is the underlying assumption of spectral
graph kernel methods which have been widely used in machine
learning literature to model random processes over graphs
[12]-[16]. The core element in spectral kernel methods is

978-1-7281-0858-2/19/$31.00 © 2019 IEEE

the kernel matrix that measures similarity between random
variables defined over vertices. This kernel matrix has the
same set of eigenvectors as the Laplacian matrix (or adjacency
matrix) while its eigenvalues are chosen to be a function of
eigenvalues of the Laplacian matrix (or adjacency matrix).
Therefore, the kernel matrix and the shift operator of the graph
share eigenvectors which is the exact definition of GWSS.

While the stationarity assumption has certain theoretical and
computational advantages, it is too restrictive for modeling
real-world big datasets which are mostly non-stationary. In this
paper, we propose a model that can deal with non-stationary
covariance structure in random processes defined over graphs.
The method we deploy is a novel and computationally efficient
graph clustering algorithm in which a large graph is partitioned
into smaller disjoint clusters. The process defined over each
cluster is stationary and assumed to be independent from other
clusters. To the best of our knowledge, our proposed clustering
algorithm, stationary connected subgraph clustering (SCSC),
is the first method to address this problem. Our model renders
it possible to use highly-effective prediction techniques based
on stationary graph signal processing for each cluster [17].
An overview of our proposed clustering algorithm is shown in
Fig. 1.

Our work is analogous to piecewise stationary modeling of
random processes in continuous space, which has been studied
in the statistics literature. However, these methods cannot be
extended to graphs due to discrete nature of graphs or the
fact that the definition of GWSS is not inclusive (Section
III-A). For instance, to model a non-stationary spatial process,
Kim et al. [18] proposed a Bayesian hierarchical model for
learning optimal Voronoi tessellation while Gramacy [19] pro-
posed an iterative binary splitting of space (treed partitioning).
Piecewise stationary modeling has also been explored in time
series analysis which is mainly achieved by detecting change
points [20], [21]. Recently, there has been an effort in graph
signal processing literature to detect non-stationary vertices
(change points) in a random process over graph [22], [23],
however, to achieve that, authors introduce another definition
for stationarity, called local stationarity, which is different from
the widely-used definition of GWSS.



Active Component N Stationary Connected
Extraction Subgraph Clustering
> >
~
DN
Active Stationary
Dataset
Components Clusters

Fig. 1: An overview of our proposed stationary clustering algorithm. Given historical observation, i.e. time-series defined over nodes of a
graph, first we extract active components. Next, our proposed stationary connected subgraph clustering (SCSC) tries to merge adjacent active

components to form stationary subgraphs.

We evaluate our proposed model for traffic prediction on
a large-scale real-world traffic dataset consisting of 4764
road segments and time-series of average travel times on
each segment at a two-minute granularity over January—March
2013. We use simple piecewise linear prediction models within
each cluster. The accuracy of our method is very close to
the state-of-the-art deep learning method, i.e. only 0.41%
difference in the mean absolute percentage error for 10 minute
predictions, rising to 0.66% over 20 minutes. However, the
learning time of our proposed method is substantially smaller,
being roughly 3 hours on a personal computer while the deep
learning method takes 22 hours on a server with 2 GPUs. Our
contribution can be summarized as follows:

o For the first time, we propose to model non-stationary
random processes over graphs with piecewise stationary
random processes. To that end, we propose a novel
hierarchical clustering algorithm, i.e. stationary connected
subgraph clustering, to extract stationary subgraphs in
graph datasets.

o We theoretically prove that the definition of GWSS is not
inclusive. Hence, unlike many of the well-known graph
clustering algorithms, adding one vertex at each training
step to clusters in an stationary clustering algorithm is
bound to diverge. To address this issue, we propose to
use active components as input to stationary clustering
algorithm instead of vertices.

o We evaluate our proposed model for traffic prediction in
road networks on a large-scale real-world traffic dataset.
We deploy an off-the-shelf piecewise linear prediction
model for each subgraph, independently. Our method
shows a very close performance to the state-of-the-art
graph based deep learning methods while the computa-
tional complexity of our model is substantially smaller.

II. BACKGROUND
A. Spectral Graph Kernels

Kernel methods, such as Gaussian process and support
vector machine, are a powerful and efficient class of algorithms

that have been widely used in machine learning [12]. The core
element in these methods is a positive semi-definite kernel
function that measures the similarity between data points. For
the data defined over vertices of a graph, spectral kernels are
defined as a function of the Laplacian matrix of the graph [12].
More specifically, given a graph G with Laplacian matrix L,
the kernel matrix K is defined as

N

K:ZT()\i)ﬁﬂT~ (D

i=1

Here, N is the number of vertices of the graph, A\; and u; are
the ¢-th eigenvalue and eigenvector of L, respectively, and the
spectral transfer function r : RT™ — R™ is a non-negative and
decreasing function. Non-negativeness of r assures that K is
positive semi-definite and its decreasing property guarantees
that the kernel function penalizes functions that are not smooth
over graph. Many of the common graph kernels can be derived
by choosing a parametric family for 7. For example, r(\;) =
exp(—\;/20?) result in the well-known heat diffusion kernel.

Although in the majority of the previous works, spectral
graph kernels are derived from the Laplacian matrix, they can
also be defined as a function of the adjacency matrix of the
graph [16]. Adjacency based spectral kernels have the same
form as (1) except that the transfer function r is a non-negative
and “increasing” function since eigenvectors of adjacency with
large eigenvalues have smoother transitions over graph [24].
We note that unlike Laplacian matrix, eigenvalues of the
adjacency matrix could be negative, therefore the domain of
transfer function is R for adjacency based kernels.

Spectral graph kernels have been widely used for semi-
supervised learning [14], link prediction [25] and Gaussian
process regression on graphs [13], [15]. In the next subsection,
we show the connection between spectral graph kernels and
stationary stochastic processes over graphs.

B. Stationary Graph Signal Processing

Graph signal processing (GSP) is a generalization of clas-
sical discrete signal processing (DSP) to signals defined over



vertices of a graph (also known as graph signals). Consider
a graph G with NV vertices and a graph signal defined over it
denoted by a N-dimensional vector x. The graph frequency
domain is determined by selecting a shift operator S, i.e.
a N x N matrix that respects the connectivity of vertices.
Applying the shift operator to a graph signal, i.e. Sz, is
analogous to a circular shift in classical signal processing.
The Laplacian matrix L and the adjacency matrix A are two
examples of the shift operator. Let us denote the eigenvalues
of S by {\;}¥, and its eigenvectors by {u;} ¥ ;. Also, assume
that A = diag({\;}¥.;) and U is a matrix whose columns are
;8. The graph Fourier transform (GFT) [5], [6] is defined as
follows:

Definition 1 (Graph Fourier transform [9]). Given graph G
with shift operator S and a graph signal x defined over G, the
Graph Fourier Transform (GFT) of z, denoted by z, is defined
as

=U" 1. 2

&>

The inverse GFT of a vector in the graph frequency domain
is given by
z=U3. 3)

It can be shown that when the Laplacian matrix is used as
the shift operator, smoothness of eigenvectors over the graph
is proportional to their corresponding eigenvalue [5], and if the
adjacency matrix is used as the shift operator, smoothness of
eigenvectors over the graph is inversely proportional to their
corresponding eigenvalues [24]. This ordering of eigenvectors
provides the notion low-pass, band-pass and high-pass filters
for graphs. More specifically, filtering graph signals is defined
as shaping their spectrum with a function [26]-[28].

Definition 2 (Graph filters [9]). Given a graph G with shift
operator S, any function i : C — R defines a graph filter such
that

H=UhA)U". 4)

The filtered version of a graph signal x defined over G is given
by Hz.

An example of graph filter is the low pass diffusion filter.
Assuming the Laplacian matrix is the shift operator, low pass
diffusion filter / is defined as h(\;) = exp(—\;/20?).

An important notion in classical DSP is stationarity of
stochastic processes which is the underlying assumption for
many of the well known time series analysis methods. Sta-
tionarity of a time series means that the statistical properties
of the process do not change over time. More specifically,
a stochastic process is wide-sense stationary (WSS) in time
if and only if its first and second moment are shift invariant
in time. An equivalent definition of WSS process is that the
eigenvectors of covariance matrix of a WSS process are the
same as columns of discrete Fourier transform (DFT) matrix.
By generalizing the definition of WSS to stochastic processes
defined on graphs, graph wide-sense stationary (GWSS) [9],
[11] is defined as follows:

Definition 3 (Graph wide-sense stationary [9]). A stochastic
process x with covariance matrix C defined over vertices of
a graph G with shift operator S is GWSS if and only if C
is jointly diagonalizable with S, i.e. C and S have the same
set of eigenvectors. Equivalently, the stochastic process z is
GWSS if and only if it can be produced by filtering white
noise using a graph filter.

Spectral graph kernel methods, discussed in the previous
subsection, model the covariance matrix of the process over
graph with the kernel matrix. The kernel matrix have the same
set of eigenvectors as shift operator; hence, these methods
assume that the random process they are operating on is
GWSS. It is also worth noting that GWSS reduces to WSS in
case of time series. Assume that time series is a graph signal
defined over a directed ring graph with adjacency matrix as
the shift operator. Multiplying the adjacency matrix with the
vector of time series (applying shift operator) results in the
circular shifted version of the time series by one. Therefore,
definition of graph filters reduces to discrete filters in classical
DSP. Moreover, the adjacency matrix of the directed ring graph
is a circulant matrix whose eigenvectors are the same as the
vectors that define the discrete Fourier transform. Hence, both
definitions of GWSS reduce to classical definitions of WSS
time series.

While GWSS is defined for random processes over graphs,
in many practical scenarios, the signal on each vertex is a
time series itself (time-varying graph signals). Stationarity
can be further extended to time varying random processes
over graphs. More specifically, a jointly wide-sense stationary
(JWSS) process [8] is defined as follows:

Definition 4 (Joint wide-sense stationarity [8]). A time-
varying random process X = [z ... z(T)] defined over
graph G with shift operator S is JWSS if and only if the
following conditions hold:
o X is multivariate wide-sense stationary process in time;
o cross covariance matrix of z(**) and z(*2) for every pair
of ¢ and t5 is jointly diagonalizable with S.

An example of JWSS process is the joint causal model
which is analogous to auto-regressive moving average
(ARMA) models for multivariate WSS time-series. The joint
causal model is defined as follows:

m q
a® =" A+ B 0, 5)

i=1 §=0
where A; and B; are graph filters and £ is the vector of zero
mean white noise. This model can be used to predict time-
varying graph signals. Given a time-varying graph signal, the
parameters of the joint causal model, i.e. A;s and Bjs, can be
learned by minimizing the prediction error residuals which is
the subject to the following nonlinear optimization problem:

e — 20 (A B o)l (©)

arg min
{Ad2 1, {B5}
where x is the true signal and Z is the output of the model.
Generally, this is a computationally expensive optimization



problem especially for large graphs. Loukas et al. [17] pro-
posed an efficient way for finding the optimal filters. They
proved that because graph frequency components of a JWSS
process are uncorrelated, learning independent univariate pre-
diction models along each graph frequency result in optimal
filters for prediction.

While both Gaussian process regression with spectral graph
kernels and joint causal model showed promising results in
predicting graph signals, they suffer from two major issues.
First, in a typical real-world traffic dataset with a very large
graph, the process defined over the graph is often not GWSS,
which invalidates their underlying assumption. Secondly, the
computational complexity of learning prediction model pa-
rameters for a large graph is formidable. To overcome afore-
mentioned issues, we propose to split the whole graph into
multiple connected disjoint subgraphs such that the process is
stationary in each of them and then fitting prediction model
to each individual subgraph. In the next section, first we show
that this clustering is a very complex and difficult task and then
we discuss our proposed computationally-efficient clustering
method.

III. METHODOLOGY

Here, first in section III-A, we show that the definition of
GWSS is not inclusive, i.e. if a random process defined over
a graph is GWSS, the subprocess defined over a subgraph is
not necessarily GWSS. This shows the difficulty of clustering
a large graph into stationary subgraphs. Then, in section
III-B we propose a heuristic graph clustering algorithm to
find stationary subgraphs. In our analysis, without loss of
generality, we assume that each of the time series defined on
the vertices of the graph is WSS in time. Therefore we analyze
random process over graphs which are not time-varying. Our
analysis and proposed algorithm can simply be extended to
time varying processes. Due to lack of space we ignore some
of the proofs as they can be found in the references.

A. The Challenge of Identifying Stationary Subgraphs

Many graph clustering algorithms start with some initial
clusters, like random clusters or every vertex as a cluster,
and then they try to move vertices between clusters with
the objective of maximizing a cost function. We first analyze
how stationarity changes as a cluster grows or shrinks. This
problem can be simplified to analyzing the stationarity of
subprocesses defined over subgraphs. Assume a case where a
process x with covariance matrix C defined over graph G with
adjacency matrix A as shift operator is GWSS. The question
we want to answer is that if we choose any subgraph of G, does
the subprocess defined over it is GWSS too? The ideal case is
that the subprocesses defined over all of the possible subgraphs
of G are also GWSS. We call such a process, superstationary.
More specifically, a superstatioanry random process over graph
is defined as follows:

Definition 5 (Superstationary). A random process x defined
over graph G is graph wide-sense superstatioanary (or super-

stationary for short) if and only if the following conditions
hold:

o x is graph wide-sense stationary over G;
« the subprocesses defined over all of the possible sub-
graphs of G are also graph wide-sense stationary.

To analyze the necessary conditions for a random process
over graph to be superstationary, first we derive an equivalent
definition for GWSS.

Theorem 1. Two square matrices are jointly diagonalizable
if and only if they commute [29].

Combining the above theorem with definition of GWSS
(Definition 3), it is straightforward to show that a random
process z with covariance matrix C defined over G is GWSS
if and only if AC = CA. To find a similar condition
for superstationary random processes, first we review the
definition of supercommuting matrices from linear algebra
literature.

Definition 6 (Supercommuting matrices [30]). Two square
matrices, B; and Bs, supercommute if and only if the
following conditions hold:

e B; and B5 commute;
o cach of the principal submatrices of B; and their corre-
sponding submatrices of Bo commute.

Knowing the definitions of superstationary random process
and supercommuting matrices, in the following theorem, we
derive the necessary and sufficient condition for a process to
be superstationary.

Theorem 2. A random process x with covariance matrix
C defined over a graph with adjacency matrix A as the
shift operator is superstationary if and only if A and C
supercommute.

Proof. The adjacency matrix of a subgraph is a submatrix of
A. Also, covariance matrix of a subprocess is a submatrix
of C. By definition of superstationarity, subprocesses defined
over all of the possible subgraphs of G are GWSS, hence all
of the corresponding submatrices of A and C commute. [

While the theorem above shows the necessary and sufficient
condition for superstationarity, directly checking it is compu-
tationally expensive specially for large graphs. To that end, we
show that given an adjacency matrix, only a class of covariance
matrices are superstationary. To continue our analysis, first we
review the definition of irreducible matrix and then we study
the matrices that supercommute with irreducible matrices.

Definition 7 (Irreducible matrix [31]). A matrix B is irre-
ducible if and only if the directed graph whose weighted
adjacency matrix is B, is strongly connected.

Theorem 3. Any matrix that supercommutes with irreducible
square matrix B« v is a linear combination of B and identity
matrix Iy [30].



Fig. 2: The simulated Erdos-Renyi graph.

Next, we derive the sufficient and necessary condition for
a process defined over a strongly connected graph to be
superstationary.

Theorem 4. A random process x with covariance matrix C
defined over a strongly connected graph of order N with
adjacency matrix A as the shift operator is superstationary
if and only if C is a linear combination of A and identity
matrix 1.

Proof. The adjacency matrix of a strongly connected graph is
an irreducible matrix. Therefore, given Theorem 2, Definition
7 and Theorem 3, the proof is straightforward. O

Assuming that the desired graph G is strongly connected',
which is a realistic assumption in many of the real-world
networks, unless C is a linear combination of A and identity
matrix, there is at least a subgraph such that the subprocess
defined over it is non-stationary. This is a major challenge for
identifying stationary subgraphs. Suppose that we start with
a subgraph containing only one vertex and add one vertex at
a time until we cover the whole graph and at each step we
check whether the subprocess is stationary or not. We know
that at some step the subprocess is non-stationary. But being
non-stationary at a step does not necessarily mean that the
subprocess is non-stationary in the next steps as we know
that the process in the last step is stationary. This means that
moving one vertex at a time between clusters is not optimal
and the algorithm may not converge at all. Next, we show
the difference of a stationary process and a superstationary
process with an example.

We generate a random Erdos-Renyi graph with 64 nodes
with edge probability of 0.06 (shown in Fig. 2). We form
two covariance matrices, a stationary and a superstationary, as
follows:

1) We eigendecompose the adjacency matrix and assume
that the covariance matrices of stationary and supersta-
tionary processes have the same set of eigenvectors as
adjacency matrix. Let us denote the eigenvalues of the
adjacency matrix by {\;}Y ;.

2) We choose the eigenvalues of the stationary covariance
matrix to be quadratic function (shown in Fig. 3). More

Undirected graphs are strongly connected as long as they are connected.

gl ™ Superstationary covariance
Stationary covariance
64 —*— Adjacency matrix
Q
= 49
<
=
m
0 4
_2 4
—4 T - r r - T
0 10 20 30 40 50 60
Index

Fig. 3: Eigenvalues of the simulated processes and the adjacecny
matrix of the graph.

specifically, A\{ = 2.146 x 1073 i? + 1.073 x 105 for
ie{l,...,64}.

3) We choose the the eigenvalues of the superstationary
covariance matrix to be linear function of eigenvalues
of the adjacency matrix (shown in Fig. 3). More specif-
ically, A\f* = 0.5 \; +2 for i € {1,...,64}.

We start with a subgraph consisting of a randomly chosen
node (the yellow node in Fig. 2) and its immediate neighbors
and compute the stationarity ratio of the processes over this
subgraph. We keep increasing the size of the subgraph by
adding one-hop neighbors of the nodes in the subgraph (at
the current step) to it and compute the stationarity ratio at
each step. The results are shown in Fig. 4. As we expected,
the superstationary process is completely stationary on all of
subgraphs while the stationary ratio of the stationary process
could decrease to less than 0.7 for some of the subgraphs. This,
indeed, shows the challenge of stationary graph clustering and
proves that moving one vertex at a time between clusters could
cause the algorithm to diverge from the optimal solution. In the
next subsection we propose a heuristic approach to overcome
this problem.

1.00 4

I

o

Y
|

e

o

S
L

0.80 1

Stationarity ratio (y)
Z

0.75 1

—4— Superstationary process

0.701 Stationary process
0 10 20 30 40 50 60
Order of the subgraph

Fig. 4: Stationary ratio of the simulated processes over subgraphs.



()—@—) D0

Time

Fig. 5: Visualization of an active component of a graph. At the fist snapshot, node 4 becomes active and as time goes by the activity spreads
in the network. The red nodes at each snapshot represents active nodes. The subgraph containing nodes 1, 3, 4, 5, 6 and 7 is an active

component of the network.

B. Stationary Connected Subgraph Clustering

We are interested in modeling a non-stationary random
process over a graph using a piecewise stationary process over
the same graph. Therefore, the stationary graph clustering
problem is defined as follows:

Problem 1. Given a graph G and a non-stationary stochastic
process z defined over G, partition the graph into % disjoint
connected subgraphs {G1,Ga,...,G;} such that each of the
subprocesses {Zy,Zs,...,2;} defined over subgraphs are
GWSS.

We propose a heuristic algorithm, stationary connected
subgraph clustering (SCSC), to solve the problem above. To
the best of our knowledge, we address this problem for the
first time.

As we discussed in the previous subsection, adding one
vertex at a time to identify stationary subgraphs is problematic.
Therefore, we propose a clustering algorithm whose inputs
are active components rather than vertices. Active components
(ACs) are spatial localization of activity patterns made by
the process over the graph (see Fig. 5). Spatial spreading of
congestion in transportation networks and spreading pattern
of rumor in social networks are two examples of active
components. First, we clarify the mathematical definition of a
vertex being active. If magnitude of the signal defined over a
vertex exceeds a threshold, i.e. z[i] > «, we say that the vertex
is active. For example, if the travel time of a road exceeds a
threshold it means that it is congested or active. Knowing the
mathematical definition of active vertex, active component is
defined as follows:

Definition 8 (Active component). We say that the vertex ¢ and
vertex j are in the same active component if and only if at
some time ¢ both of the following conditions hold:

e (i,7) or (j,i) is an edge of the graph;
e vertex ¢ is active at time ¢ and vertex j is active at time
t or t — 1 or vice versa.

ACs can be viewed as subgraphs on which a diffusion
process takes place. We already know that diffusion processes
are stationary processes. Therefore, we expect that the subpro-
cesses defined over ACs to be stationary. To obtain ACs from

Algorithm 1 Active Components Extraction

1: Input: G, o, Y € RVXT
2: Notations:

G = network graph

4 a = threshold on signal determining active vertices
5 Y = historical observation matrix

6: Initialize:
7
8
9

[95]

AC « {},AC; + {},AC,_1 «+ {}

:fori=1:T do
: R <+ argwhere(Y (:,1) < )
10: Gsup < remove R and connected edges from G
11: AC; < connected components of Ggyp
12: for j =1 :len(AC;_1) do
13: indicator < False
14: for k =1: len(AC;) do
15: AC, (k) < one hop expansion of AC, (k)
16: if (AC,(k) N AC:_1(j)) # @ then
17: ACy(k) < (ACy(k) U ACi-1(j))
18: indicator < True
19: if indicator == False then
20: append AC,_,(j) to AC

21: return AC

historical observations, we propose the active components
extraction iterative algorithm.

The overview of Algorithm 1 is that at each time step, first
we create the active graph by removing the inactive nodes and
all the edges connected to these nodes from the whole network
graph. Then we go through time and if activity patterns at
time ¢ —1 are propagating to time ¢, the active components are
merged into one. In fact, the algorithm finds weakly connected
components of the strong product of spatial graph and time-
series graph when spatio-temporal nodes with signal amplitude
less than « and all of connected edges to them are removed.

Before we describe the second part of the algorithm in
which the adjacent ACs are merged and form clusters, we
review the measure of stationarity defined in [8]. First, we
form the following matrix

P=UTCU, @)

where U is the matrix of eigenvectors of the shift operator and



Algorithm 2 Stationary Connected Subgraph Clustering

1: Input: G, v, C, AC, 6, D

2: Notations:

3 G = network graph

4 ¢, = threshold on stationarity ratio
5: C = covariance matrix
6
7
8:
9:

AC = set of active components
6 = number of clusters
D = matrix of distances between active components
Initialize:
10  CLS «+ AC, NL + {}, n « |AC|
11: while n > 6 do
12: dpmin < min (D)

13: [i, j] < argmin (D)

14: if d,in < 2 and [z, j] ¢ NL then

15: CT «+ (AC(>i) U AC(y))

16: Gsup + induced subgraph of G for nodes in CT
17: C.up < C|[CT, CT]

18: ~ <+~ compute stationarity ratio using Cgyp & Gsup
19: if v > 4, then

20: remove AC(i) and AC(j) from CLS

21: insert CT to CLS

22: update D in single linkage manner

23: n<n-—1

24: else append [i, j] to NL

25: if INL| == |CLS]| then

26: break

27: return CLS

C is the covariance matrix of the random process. Stationarity
ratio, 7y, of a random process over graph is defined as follows:

_ || diag(P)]
P[lr

where ||.||F represents the Frobenius norm and diag(.) denotes
the vector of diagonal elements of the matrix. In fact, v is a
measure of diagonality of matrix P. If a process is GWSS
then eigenvectors of covariance matrix and shift operator of
the graph are the same hence P is diagonal and vy equals to
one. Diagonal elements of P form the power spectral density
of the GWSS process.

Another definition that we need to move forward to the next
step is the distance between two ACs. The distance between
two ACs is the minimum of the shortest path distances between
all pairs of nodes (v1,vs) where v; € AC; and vy € ACs.
We note that two ACs could have a common node, hence
the distance between two ACs could be zero. Knowing all
necessary definitions, the psudocode for SCSC algorithm is
described in Algorithm 2.

The intuition behind SCSC is that it is most likely that
adjacent ACs belong to the same diffusion process. SCSC
merges adjacent ACs if after merger the stationarity ratio is
larger than some threshold. This definition makes sense since it
is repeatedly observed that activity on one vertex easily causes
or serves as a result of activity in the adjacent vertex with some

; ®)

time difference. Therefore, we expect that the process defined
over the output clusters of SCSC to be stationary. SCSC is a
hierarchical clustering algorithm with some extra conditions.
The overload caused by these conditions are small compared
the complexity of hierarchical clustering. The conditions only
needs eigendecomposition of small matrices (usually less than
50 x 50) which is negligible.

While SCSC algorithm, as defined in Algorithm 2, extracts
subgraphs that are GWSS, with a simple modification to the
algorithm, we can identify subgraphs that are JWSS. Assuming
that a time varying random process X is WSS in time, the
necessary condition for X to be JWSS is that all of the lagged
auto-covariance matrices are jointly diagonalizable with S.
Hence, lines 17 to 19 in Algortihm 2 (the merger condition of
clusters in SCSC) are replaced by the following lines:

for [=0:q do

c « cOcr, cT]

7 < compute stationarity ratio using Cgb & Goup
if vy > yp for [ =0: g then

where C is the cross covariane between z(¥) and z(*=9 and
q is a hyper-parameter denoting maximum lag. Note that both
C® and ¢ are inputs of the algorithm.

C. Application to Traffic Prediction

To examine our model, we use our proposed approach for
travel time prediction in road networks. First, we use line
graph of transportation network to map roads into vertices
of a directed graph. Then, we use travel time index (TTI) [32]
to extract active components from historical data. TTI of a
road segment is defined as its current travel time divided by
the free flow travel time of the road segment or, equivalently,
the free flow speed divided by the current average speed. TTI
can be interpreted as a measure of severity of congestion in a
road segment.

We also propose using the joint causal model (5) for each
cluster separately. To capture the dynamic and non-linear
behavior of traffic, we propose using a piecewise linear model
as prediction model for time series along each graph frequency.
More specifically, threshold auto-regressive (TAR) [33], [34]
models are piece-wise linear extension of linear AR models.
The TAR model assumes that a time-series can have several
regimes and its behavior is different in each regime. The
regime change could be triggered either by past values of the
time-series itself (self exciting TAR [35]) or some exogenous
variable. This model is a good candidate to model the traffic
behavior; once a congestion happens, the dynamics of time-
series changes. A TAR model with [ regimes is defined as
follows:

iy ag )y(tfi) +0Wey, o<z <P
i af )y(t—i) +bPe;, Br <z < Bo
Yt = .

s a(l)y(t 0 +bWe Bi—1 <z < B



2750879
286252865
239641502

128
1594
1807
21139 346057103 (|

2997/.'2112Y20 sealysa 2729),23%23238 90
34443 o
£002 5 "046fi441 3238 3245

1414!3724
2809f77
2831812

¢
2978 1552

1562
208\ £482 T

= \2975 2715

2234§188 1376

-.‘355 o= 1263
1256100991982 ¢
§ o aa

14¢
814 754
2600 1431275;’2.-\ 375 L
0 e 22
2%, e 1E0 1801 e A\ 1334 402
3680° 14267 48 G
#2790 3778
2

382989721098 2272 1275
- 3
(28 1756} 55§

327793272 3366\, , 315
2 Ko

7 2089
327243267 4077 42549,
0% o 1876 223‘1
3267 Y1468 5524082 166y 883
3261% 4038 A

254 "
B 31528 6 +126 3168 41319

31488143 132008 1667

‘ 18784 3124\ 1605
a20 f4054
4 33043208

- 3205
2502424 16974,

Fig. 6: The map of the road network in Dallas.

where z is the exogenous variable. A natural choice of
exogenous variable for traffic is TTI, because it shows severity
of congestion.

IV. NUMERICAL RESULTS AND DISCUSSION
A. Dataset

The traffic data used in this study originated from the
Dallas-Forth Worth area, with a graph comprising 4764 road
segments in the highway network. The data represented time-
series of average travel times as well as average speed on
each segment at a two-minute granularity over January—March
2013. The data was used under licence from commercial
data provider, which produces this data applying proprietary
methods to a number of primary sources including location
data supplied by mobile device applications. Fig. 6 shows the
map of the road network. Missing values form dataset were
imputed by moving average filters. In all experiments, we used
70% of data for training, 10% for validation and 20% for
testing.

B. Experimental Setup

1) Our Proposed Method: After removing daily seasonality
from time series, difference transformation was used to make
the time series along each vertex WSS. Augmented Dicky-
Fuller test was used to check for stationarity in time. We used
1.7 as threshold (o« = 1.7) for TTI to detect congestion in
a road. 117621 active components were extracted from the
training data using Algorithm 1. We eliminated ACs with less
than 5 vertices which reduced the number of ACs to 52494.

In our clustering algorithm, we used combinatorial Lapla-
cian matrix of directed graphs [36], which is defined as follows

1
L= -(Doy+Di — A — AT),

2
as the shift operator. In the equation above, D,y and Dy,
represent the out-degree and in-degree matrices, respectively.
The in-degree (out-degree) matrix is a diagonal matrix whose
i-th diagonal element is equal to the sum of the weights of all
the edges entering (leaving) vertex i.

— [S) [ ) w w
w S [ S a

Probability density

o

05 0.6 0.7 08 0.9 10
Stationarity ratio

Fig. 7: The histogram of stationarity ratio of subprocesses defined
over active components.

We initiated the SCSC algorithm (Algorithm 2) by setting
minimum stationarity ratio to 0.9 and number of clusters to
150. The number of vertices in clusters are between 24 to 61.
Prediction models were learned for each cluster independently
in the graph frequency domain. TAR models consist of three
different regimes. The exogenous threshold variable for our
proposed prediction models, joint causal model with TAR
(JCM-TAR), is the sum of TTI values of all nodes in a cluster
at each time step. This value shows how congested the whole
cluster is. We implemented our clustering algorithm in Python
and used tsDyn package [37] in R to learn the parameters of
(threshold) auto-regressive models.

2) Baselines: To establish accuracy benchmarks, we con-
sider four other prediction models. The first scheme is to
build independent auto-regressive integrated moving average
(ARIMA) [38] models for time series associated with each
road. After removing daily seasonality form data, ARIMA
models with five moving average lags and one auto-regressive
lag were learned. This naive scheme ignores the spatial corre-
lation of adjacent roads. The second benchmark scheme is
a joint causal model with non-adaptive AR models (JCM-
AR) in graph frequency domain of each cluster. We used the
same clusters as our proposed method discussed in previous
subsection.

The third scheme is the diffusion convolutional recurrent
neural network (DCRNN) [39]. This deep learning method
uses long short-term memory (LSTM) cells on top of diffusion
convolutional neural network for traffic prediction. The archi-
tecture of DCRNN includes 2 hidden RNN layers, each layer
includes 32 hidden units. Spatial dependencies are captured
by dual random walk filters with 2-hop localization. The
last baseline is the spatio-temporal graph convolutional neural
network (STGCN) [40]. This method uses graph convolutional
layers to extract spatial features and deploys one dimensional
convolutional layers to model temporal behavior of the traffic.
We used two graph convolutional layers with 32 Chebyshev



TABLE I: Traffic prediction performance of our proposed method (JCM-TAR) and baselines.

T | Metric | ARIMA DCRNN STGCN JCM-AR JCM-TAR
MAE 2.7601 1.1764 1.0437 2.0520 1.2732
10 min | RMSE | 5.3204 2.7553 2.6370 4.8620 2.9993
MAPE 5.10% 2.68% 2.44% 4.28% 2.85%
MAE 3.3427 1.3837 1.1586 3.1187 1.7415
14 min | RMSE | 6.5432 3.1186 2.8682 5.3481 3.5231
MAPE 8.32% 3.22% 3.11% 7.84% 3.51%
MAE 4.9971 1.5948 1.3911 4.3873 1.9926
20 min | RMSE | 10.8734 3.5287 3.3406 10.0381 4.0154
MAPE | 13.65% 3.83% 3.67% 12.75% 4.33%

filters. We also used two temporal gated convolution layers
with 64 filters each. We used the Python implementations of
DCRNN and STGCN provided by the authors.

C. Discussion

To check our hypothesis that active components are station-
ary, we look at the probability density of stationarity ratios
of data defined over of active components (showed in Fig. 7).
We note that most of the ACs have stationarity ratio of more
than 0.8 which approves our hypothesis.

We also compare our proposed SCSC with spectral cluster-
ing [41] and normalized cut clustering [42] algorithms. The
average stationarity ratio of clusters for spectral clustering and
normalized cut clustering are 0.4719 and 0.3846, respectively,
while our SCSC algorithm produces clusters with stationarity
ratio of more than 0.9. SCSC shows superior performance in
finding stationary clusters as other clustering algorithms have
different objectives.

Table I shows the prediction accuracy of the proposed
method and baselines for 10 minutes, 14 minutes and 20
minutes ahead traffic forecasting. The metrics used to evaluate
the accuracy are mean absolute error (MAE), mean abso-
lute percentage error (MAPE) and root mean squared error
(RMSE); see [39].

ARIMA shows the worst accuracy because it does not
capture spatial correlation between neighboring roads and it
cannot capture dynamic temporal behavior of traffic using
a linear model. JCM-AR improves the the performance of
ARIMA because it uses spatial correlation implicitly. The
difference between these two models shows the importance
of spatial dependencies. The improvement is more substantial
for long term predictions. JCM-TAR model with three regimes
shows the second best performance. This shows that temporal
dynamic behavior of traffic is changing once a congestion
happens in the network because a congestion can change the
statistics of the process drastically. We note that the perfor-
mance of JCM-TAR is very close to DCRNN especially for
short term traffic prediction. However, the small enhancement
of DCRNN comes with a huge increase in model complexity
and scalability.

To learn the parameters of DCRNN and STGCN, we used a
server with 2 GeForce GTX 1080 Ti GPUs which took more
than 22 and 11 hours to converge, respectively. Doubling the

number of hidden units in the RNN layers of DCRNN to 64
units, the server ran out of memory. However, it took less
than 3 hours for our method to converge using a computer
with 2.8GHz Intel Corei7 CPU and 16GB of RAM to simulate
our method. The active components extraction took less than
an hour and the SCSC algorithm converged in less than 2
hours. Estimation of our proposed prediction models are very
fast because we used univariate piecewise linear models both
in time and space which can be implemented completely in
parallel.

Another advantage of our method is the complexity of
parameter tuning. While the parameters in our model are inter-
pretive and most of them do not need any tuning, deep method
could be very sensitive to network architecture. Extensive
search over different parameters is the common way in deep
learning to find the best architecture. It took us days to tune the
parameters of DCRNN. Deep learning models can predict the
traffic with very high accuracy [39], [40], [43]-[46] but most
of them ignore complexity and scalability of the model to real
world big datasets. However, a carefully designed prediction
model, for short term traffic prediction, can perform as well
as deep learning with less complexity and better scalability.

V. CONCLUSION

In this work, we introduced a new method for modeling
non-stationary random processes over graphs. We proposed
a novel graph clustering algorithm, called SCSC, in which a
large graph is partitioned into smaller disjoint clusters such
that the process defined over each cluster is assumed to be
stationary and independent from other clusters. Independent
prediction models for each cluster can be deployed to predict
the process. Numerical results showed that combining our
piecewise stationary model with a simple piecewise linear
prediction model shows comparable accuracy to graph based
deep learning methods for traffic prediction task. More specif-
ically, the accuracy of our method is only 0.41 lower in mean
absolute percentage error to the state-of-the-art graph based
deep learning method, while the computational complexity of
our model is substantially smaller, with computation times of
3 hours on a commodity laptop, compared with 22 hours on
a 2-GPU array for deep learning methods.



VI. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant ENG-1839816.

[1]
[2]

[3]
[4]
[5]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

A. Papoulis, Probability, random variables, and stochastic processes,
ser. McGraw-Hill series in systems science. McGraw-Hill, 1965.

D. A. Dickey and W. A. Fuller, “Distribution of the estimators for
autoregressive time series with a unit root,” Journal of the American
Statistical Association, vol. 74, no. 366a, pp. 427-431, 1979.

P. J. Brockwell and R. A. Davis, Stationary Processes. Cham: Springer
International Publishing, 2016, pp. 39-71.

J. D. Cryer and N. Kellet, Models For Stationary Time Series.
York, NY: Springer New York, 2008, pp. 55-85.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98,
2013.

A. Sandryhaila and J. M. F. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure,” IEEE Signal Processing Magazine, vol. 31,
no. 5, pp. 80-90, Sept 2014.

A. Ortega, P. Frossard, J. Kovacevi¢, J. M. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Pro-
ceedings of the IEEE, vol. 106, no. 5, pp. 808-828, 2018.

A. Loukas and N. Perraudin, “Stationary time-vertex signal processing,”
arXiv preprint arXiv:1611.00255, 2016.

A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph
processes and spectral estimation,” vol. 65, no. 22, Nov 2017, pp. 5911-
5926.

N. Perraudin, A. Loukas, F. Grassi, and P. Vandergheynst, “Towards
stationary time-vertex signal processing,” in 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
March 2017, pp. 3914-3918.

N. Perraudin and P. Vandergheynst, “Stationary signal processing on
graphs,” IEEE Transactions on Signal Processing, vol. 65, no. 13, pp.
3462-3477, July 2017.

A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in
Learning theory and kernel machines. Springer, 2003, pp. 144—158.
P. Sollich, M. Urry, and C. Coti, “Kernels and learning curves for
gaussian process regression on random graphs,” in Advances in Neural
Information Processing Systems 22, Y. Bengio, D. Schuurmans, J. D.
Lafferty, C. K. I. Williams, and A. Culotta, Eds. Curran Associates,
Inc., 2009, pp. 1723-1731.

J. Zhu, J. Kandola, Z. Ghahramani, and J. D. Lafferty, “Nonparametric
transforms of graph kernels for semi-supervised learning,” in Advances
in neural information processing systems, 2005, pp. 1641-1648.

M. J. Urry and P. Sollich, “Random walk kernels and learning curves for
gaussian process regression on random graphs,” The Journal of Machine
Learning Research, vol. 14, no. 1, pp. 1801-1835, 2013.

K. Avrachenkov, P. Chebotarev, and D. Rubanov, “Similarities on graphs:
Kernels versus proximity measures,” European Journal of Combina-
torics, 2018.

A. Loukas, E. Isufi, and N. Perraudin, “Predicting the evolution of
stationary graph signals,” in 2017 51st Asilomar Conference on Signals,
Systems, and Computers, Oct 2017, pp. 60-64.

H.-M. Kim, B. K. Mallick, and C. C. Holmes, “Analyzing nonstationary
spatial data using piecewise gaussian processes,” Journal of the Ameri-
can Statistical Association, vol. 100, no. 470, pp. 653—-668, 2005.

R. B. Gramacy, “Bayesian treed gaussian process models,” Ph.D. dis-
sertation, University of California, Santa Cruz, 2005.

U. Appel and A. V. Brandt, “Adaptive sequential segmentation of
piecewise stationary time series,” Information sciences, vol. 29, no. 1,
pp. 27-56, 1983.

M. Last and R. Shumway, “Detecting abrupt changes in a piecewise
locally stationary time series,” Journal of multivariate analysis, vol. 99,
no. 2, pp. 191-214, 2008.

B. Girault, S. S. Narayanan, and A. Ortega, “Local stationarity of
graph signals: insights and experiments,” in Wavelets and Sparsity XVII,
vol. 10394. International Society for Optics and Photonics, 2017, p.
103941P.

New

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
(33]

[34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

A. Serrano, B. Girault, and A. Ortega, “Graph variogram: A novel tool to
measure spatial stationarity,” in 2018 IEEE Global Conference on Signal
and Information Processing (GlobalSIP). 1EEE, 2018, pp. 753-757.
A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs: Frequency analysis,” IEEE Transactions on Signal Processing,
vol. 62, no. 12, pp. 3042-3054, June 2014.

J. Kunegis and A. Lommatzsch, “Learning spectral graph transforma-
tions for link prediction,” in Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning. ACM, 2009, pp. 561-568.
N. Tremblay, P. Gongalves, and P. Borgnat, “Design of graph filters and
filterbanks,” in Cooperative and Graph Signal Processing. Elsevier,
2018, pp. 299-324.

A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs:
Graph filters,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing. 1EEE, 2013, pp. 6163-6166.

J. Liu, E. Isufi, and G. Leus, “Filter design for autoregressive moving
average graph filters,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 5, no. 1, pp. 47-60, 2018.
R. Horn, R. Horn, and C. Johnson, Matrix Analysis.
University Press, 1990.

C. C. Haulk, J. Drew, C. R. Johnson, and J. H. Tart, “Characterization
of supercommuting matrices,” Linear and Multilinear Algebra, vol. 43,
no. 1-3, pp. 35-51, 1997.

A. Jeffrey and D. Zwillinger, “13 - matrices and related results,” in Table
of Integrals, Series, and Products (Sixth Edition), sixth edition ed. San
Diego: Academic Press, 2000, pp. 1059 — 1064.

W. Pu, “Analytic relationships between travel time reliability measures,”
Transportation Research Record, vol. 2254, no. 1, pp. 122-130, 2011.
K.-S. Chan et al., “Testing for threshold autoregression,” The Annals of
Statistics, vol. 18, no. 4, pp. 1886-1894, 1990.

K. S. Chan and H. Tong, “On estimating thresholds in autoregressive
models,” Journal of time series analysis, vol. 7, no. 3, pp. 179-190,
1986.

J. Petruccelli and N. Davies, “A portmanteau test for self-exciting
threshold autoregressive-type nonlinearity in time series,” Biometrika,
vol. 73, no. 3, pp. 687-694, 1986.

F. Chung, “Laplacians and the Cheeger inequality for directed graphs,”
Annals of Combinatorics, vol. 9, no. 1, pp. 1-19, 2005.

A. F. Di Narzo, J. L. Aznarte, and M. Stigler, dplyr: Nonlinear Time
Series Models with Regime Switching, 2019, r package version 0.9-48.1.
[Online]. Available: https://CRAN.R-project.org/package=tsdyn

R. McCleary, R. A. Hay, E. E. Meidinger, and D. McDowall, Applied
time series analysis for the social sciences. Sage Publications Beverly
Hills, CA, 1980.

Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in International Con-
ference on Learning Representations, 2018.

B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting,” in Proceed-
ings of the 27th International Joint Conference on Artificial Intelligence,
ser. IICAI'18. AAAI Press, 2018, pp. 3634-3640.

A. Y. Ng, M. L. Jordan, and Y. Weiss, “On spectral clustering: Anal-
ysis and an algorithm,” in Advances in neural information processing
systems, 2002, pp. 849-856.

1. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: spectral clustering
and normalized cuts,” in Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2004, pp. 551-556.

Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang, “Traffic flow prediction
with big data: A deep learning approach,” IEEE Transactions on
Intelligent Transportation Systems, vol. 16, no. 2, pp. 865-873, April
2015.

R. Yu, Y. Li, C. Shahabi, U. Demiryurek, and Y. Liu, “Deep learning:
A generic approach for extreme condition traffic forecasting,” in Pro-
ceedings of the 2017 SIAM International Conference on Data Mining.
SIAM, 2017, pp. 777-785.

Y. Wu and H. Tan, “Short-term traffic flow forecasting with spatial-
temporal correlation in a hybrid deep learning framework,” arXiv
preprint arXiv:1612.01022, 2016.

X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning
traffic as images: a deep convolutional neural network for large-scale
transportation network speed prediction,” Sensors, vol. 17, no. 4, p. 818,
2017.

Cambridge


https://CRAN.R-project.org/package=tsdyn

