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Abstract: Understanding the underlying mechanisms behind protein allostery and non-additivity
of substitution outcomes (i.e., epistasis) is critical when attempting to predict the functional impact
of mutations, particularly at non-conserved sites. In an effort to model these two biological
properties, we extend the framework of our metric to calculate dynamic coupling between
residues, the Dynamic Coupling Index (DCI) to two new metrics: (i) EpiScore, which quantifies the
difference between the residue fluctuation response of a functional site when two other positions
are perturbed with random Brownian kicks simultaneously versus individually to capture the
degree of cooperativity of these two other positions in modulating the dynamics of the functional
site and (ii) DClasym, which measures the degree of asymmetry between the residue fluctuation
response of two sites when one or the other is perturbed with a random force. Applied to four
independent systems, we successfully show that EpiScore and DClasym can capture important
biophysical properties in dual mutant substitution outcomes. We propose that allosteric regulation
and the mechanisms underlying non-additive amino acid substitution outcomes (i.e., epistasis) can
be understood as emergent properties of an anisotropic network of interactions where the inclusion
of the full network of interactions is critical for accurate modeling. Consequently, mutations which
drive towards a new function may require a fine balance between functional site asymmetry and
strength of dynamic coupling with the functional sites. These two tools will provide mechanistic
insight into both understanding and predicting the outcome of dual mutations.
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1. Introduction

A growing body of data on the human genome suggest that within the exome (the protein
coding region), one individual may possess 10,000 or more non-synonymous nucleotide variants,
many of which occur at positions which are not evolutionarily conserved [1-3]. Predicting the
functional outcome of mutations at non-conserved sites remains an extremely difficult challenge. In
particular, providing accurate predictions about the impact of these variations is difficult when only
considering single, independent point mutations without accounting for the background of other
positions and their chemical specificity (i.e., context dependence).

One reason why predicting the impact of mutations may fail is that extensive epistasis occurs
during evolution [4-6]. Epistasis is defined as a context-dependent functional outcome, where, the
alternative context could be just one single amino acid difference, or it could be a paralog with 25%
sequence identity. Experimentally, epistasis manifests as a non-additive outcome from two or more
amino acid changes within a protein. The effects can be dramatic. For example, a substitution may
only confer a beneficial effect upon fixation of a second-site, also known as a “permissive” change;
conversely, a neutral substitution might become deleterious in the presence of other “restrictive”
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substitutions [7-9]. Thus, epistasis plays a vital role in shaping trajectories of protein evolution [4-
10]. Furthermore, mounting evidence indicates that protein evolution, particularly evolution
towards new function, proceeds not only through mutations at functionally critical sites, but also
through sites which can have a subtle (or, occasionally, substantial) effect on function when mutated
without being immediately identifiable as positions with particular functional or structural
importance [11-13].

Epistatic relationships becomes crucial when comparing homologous protein families or
protein domains, which can exhibit significant sequence variation and biochemical properties that
may span orders of magnitude while still maintaining a similar three-dimensional (3-D) fold [14-19].
Thus, single or dual mutations on homologous proteins yield a wide range of functional outcomes
[20-24]. In fact, understanding the mechanics or predicting the results of dual mutations remains a
significant challenge in the presence of systems which experience large epistatic effects, even when
accurate experimental data are available for the single mutant systems [7-10,25].

On the other hand, when protein equilibrium dynamics and each individual position’s
contribution to these dynamics are taken into consideration, we can shed light onto the mechanism
of epistatic relations. This is because proteins sample many different conformations within the
native state, and these conformational dynamics, governed by the strength of the 3-D network of
interactions, underlie protein function. Within this dynamic view, we can simply treat a protein as a
biological signal processor where the 3-D interaction network mediates long-range communication
through amino acid fluctuations nascent to a given protein sequence. Therefore, the knowledge of
how mutations may fine-tune this sequence-function relationship necessitates evaluating the role of
each residue position in establishing a protein’s internal communication network through protein
dynamics [26,27]. Particularly, when two substitutional sites are considered together, the dynamic
coupling of these sites results in a joint effect (i.e., a cooperative response) leading to the modulation
of signal processing responsible for biophysical behavior and, ultimately, may give rise to a
non-additive functional outcome.

The non-additive, epistatic interactions therefore can use dynamic features of a protein to
modulate function. These dynamics features are similar to that found in allosteric modulation in
which a protein is able to control catalytic function or regulate on/off states through the binding of a
ligand to a site distal from a catalytic/active site. This distal binding has been shown to modulate
catalytic site dynamics, sometimes without association to distinct conformational states. This type of
allostery, which can impact function by manipulating the normal modes of the protein while
retaining the conformation, is known as dynamic allostery [28,29]. We now understand this form of
allosteric regulation to be a specific, and often more dramatic, emergent property of the unique
internal networking between amino acids within a protein. To this end, allosteric systems reduce the
enormous dimensionality associated with information transfer and communication pathways for
these complex, anisotropic networks by identifying important regulation sites a priori. Therefore, as
observed in allosteric regulations, the long-distance interactions through dynamic coupling between
different positions and active sites can be modulated and re-wired through substitutions, which
emerge as epistasis that drives the evolution of new function. Here, we aim to identify these epistatic
relations through the development of dynamics-based metrics which can measure the strength of
long-range dynamic interactions.

The modeling of protein conformational dynamics using force perturbations and elastic
networks has been previously used successfully in attempts to understand the role of long-range
interactions in protein evolution [30-33]. Here we attempt to model these effects through the use of
Perturbation Response Scanning (PRS) and the Elastic Network Model (ENM) to construct a
Dynamic Coupling Index (DCI) where we can capture the dynamic coupling between any given
residue pair or set of residues via a system’s response to random force perturbations. DCI captures
the strength of displacement response of a given position i upon perturbation to a single position (or
subset of positions) j, relative to the average fluctuation response of position i when all of the
positions within a structure are perturbed. Expanding upon the dynamic coupling concept, here we
develop a new metric called EpiScore. EpiScore measures the difference in the residue fluctuation
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response of an active site when two mutational sites are simultaneously perturbed by random forces
versus the response when individual force perturbations are exerted one at a time to the mutational
sites.

In order to determine whether EpiScore can identify the degree and strength of epistatic
relationships between position pairs, we first applied our analysis to the deep scanning database of
double mutations between all positions in the IgG-binding domain of protein GB1 [24]. These
modern, high-throughput screens (e.g., deep mutational scans) assay large numbers of mutants (up
to 108) [34-37], but the information is largely qualitative. Therefore, to further test whether our
approach can identify epistatic relations which specifically emerge during the evolution of new
function, we applied our methodology to two different protein systems where the traditional
biochemical quantifications of mutational effects (e.g., keat, Kv, ICs0) for a range of substrates are
available. These two systems, P. falciparum DHFR (pfDHFR) and a {-lactamase (TEM-1), naturally
confer resistance to drugs and the trajectories of these resistances as well as their epistatic
relationships have been explored [22,23]. Importantly, these two systems are also known to be
allosteric proteins.

We first observed that EpiScore can distinguish positive and negative epistasis in dual
mutations when analysis was performed over 1045 single mutants and 509,963 double mutants of
GB1. We also found that the average EpiScore value correlates well with experimental epistatic
measures calculated using pyrimethamine ICso values of pfDHFR dual mutants and the catalytic
turnover rates for cefotaxime of TEM-1 dual mutants. Furthermore, each pfDHFR amino acid pair
exhibits distinct distributions of EpiScore values showing the importance of how these two positions
communicate with the active site through the anisotropic interaction network.

Interestingly, DCI is usually not symmetric, i.e. the fluctuation response of position i upon
exerting random forces on j is not identical to the response of j when position i is perturbed; we
calculate this asymmetry with DClasym. We applied our DClasym analysis to the TEM-1 dual-mutant
sites and found that, indeed, a relationship exists between dynamic coupling asymmetry and
EpiScore when all active sites in the TEM-1 system are considered. Specifically, two of the three dual
mutant positions which exhibited the largest positive epistasis in cefotaxime keat/Km from the
wild-type had both EpiScore values <1 (indicating strong non-additivity) with respect to active site
570. Additionally, these dual mutants also exhibit asymmetry in dynamic coupling based on DClasym,
with consistent unidirectionality from active sites site to mutation sites in long range
communication. We propose that this communication directionality signature should be readily
apparent in known allosteric systems as mentioned above. Therefore, we applied a similar analysis
to a Pinl protein well-studied for its dynamic allostery and showed that the DClasym between the
catalytic binding sites and non-catalytic distal binding sites presents a unique directionality in long
distance dynamic coupling, leading to a cause-and-effect relationship between allosteric sites and
active sites also observed in epistatic interactions.

2. Methods

We previously designed a unique way to capture site-specific coupling between residue pairs
or groups of residues, the Dynamic Coupling Index (DCI). The underlying premise behind DCI is
the importance of a system’s response to a force perturbation, be that protein-solvent,
protein-protein, protein-ion or protein ligand interactions. Additionally, the point mutations here
are modeled by the response of a system to a perturbation at a specific site, a.k.a. a single amino acid.

DCl is a combination of the Elastic Network Model (ENM) and Linear Response Theory (LRT)
where the protein is modeled by representing the amino acids as nodes in a network connected by
Hookean springs (Figure 1). The interaction between two amino acids close in space due to their
3-dimensional structure is represented by a simple harmonic function. A random Brownian kick in
the form of a unit force perturbation is applied to an individual position which generates a response
propagating through the rest of the structure, causing other positions to respond to this perturbation
through the network of interactions. Using LRT, we can calculate the fluctuation response AR
(Equation (1)) of each position and create response vector that measures the magnitude and
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direction (x, y and z) of displacement of every residue from its mean. As mentioned above, this (to
the first order) mimics the effects of in vivo interactions of a protein. For example, a ligand binding
event will apply a force to residues in the binding pocket of a receptor protein. In our perturbation
residue scanning (PRS) approach, this is averaged over many unit force directions to simulate an
isotropic perturbation.

Figure 1. Elastic network model representation of protein Pin1 (PDB ID 3TCZ [7], ligands removed).
Here, each residue within the structure is represented as a single node at the Ca position, connected
to other nodes via Hookean springs. Using a combination of Perturbation Response
Scanning (PRS) and Linear Response Theory (LRT) [38,39], each residue is perturbed by a
Brownian kick applied as an isotropic external force which then generates a fluctuation
response in all other residues within the network. This figure was rendered in PyMol [40].

[AR]3nx1 = [Hl3Rxan [Flanxa 1)

H is the Hessian, a 3N x 3N matrix which can be constructed from 3-dimensional atomic
coordinate information where it is composed of the second order derivatives of the harmonic
potential energy with respect to the components of the position vector of length 3N. The Hessian
matrix can be extracted directly from molecular dynamics simulations as the inverse of the
covariance matrix. This method allows one to implicitly capture specific physiochemical properties
and more accurate residue-residue interactions via atomistic force fields and subsequent all-atom
simulation data. However, for the purposes of this paper, we wished to investigate only those
relationships which could be derived solely from inter-atomic distances of single protein structures
and thus we used the ENM version of our approach.

Repeating this process, each position in the structure is perturbed sequentially to generate a
perturbation response matrix A
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where |AR |i =,/((AR)?) is the magnitude of fluctuation response at position i due to the
perturbations at position j. From this perturbation response matrix, we can construct DCIL. DClIj,
then, represents the displacement response of position i upon perturbation to a single functionally
important position (or subset of positions) j, relative to the average fluctuation response of position i
when all of the positions within a structure are perturbed.
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As such, DCI can be considered a measure of the dynamic coupling between residue i and
residue(s) j upon perturbation to residue(s) j.
It is often more convenient to represent DCI as a percentile rank,

%DCl;; = Dsi 4)
N
where msiis the number of positions with a DCI value < DClIj for a system of N residues.

One of the most important aspects of DCI is that the entire network of interactions is explicitly
included in subsequent calculations without the need of dimensionality reduction such as Normal
Mode Analysis through principal component analysis. If one considers interactions such as allostery
as an emergent property of an anisotropic interaction network, it is critical to include the interactions
of the entire network to accurately model the effect one residue can have on another.

Here, we present two further extensions of DCI which allow us to uniquely model allosteric
interactions and epistatic effects; EpiScore and DClasym, respectively. EpiScore can identify or
describe potential non-additivity in substitution behavior between residue pairs. This metric can
capture the differences in a normalized perturbation response to a position k when a force is applied
at two residues i and j simultaneously versus the average additive perturbation response when each
residue i, j, is perturbed individually (Figure 2). EpiScore values < 1 (> 1) indicate that the additive
perturbations of positions i and j generates a greater (lesser) response at position k than the effect of a
simultaneous perturbation. This means that, when treated together with a simultaneous
perturbation at both sites 7 and j, the displacement response of k is lower (higher) as compared to the
average effect of individual perturbations to i and j, one at a time. As EpiScore is a linear scale, the
further the value from 1, the greater the effect described above.
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Figure 2. Schematic describing the calculation of EpiScore. The numerator is the %Dynamic
Coupling Index (%DCI) value at position k upon a simultaneous perturbation to positions i and j
divided by the average %DCI value at position k when positions i and j are perturbed individually.
Thus, an EpiScore value of 1 indicates a perfect coupling additivity with respect to a given position k
in individual versus simultaneous perturbations of two positions i and j. Figures rendered in PyMol
[40] using -lactamase (TEM-1) structure 1BTL [41].

Interestingly, through the use of DCI we can capture asymmetry between different residues
within a protein, as coupling in and of itself is asymmetric within an anisotropic network. That is,
each amino acid has a set of positions to which it is highly coupled, and this anisotropy in
connections gives rise to unique differences in coupling between a given 7 j pair of amino acids
which do not have direct interactions (Figure 3). DClasym, then, is simply DCl; (the normalized
displacement response of position j upon a perturbation to position i) - DCI;i (Equation (5)). Using
DClasym we can determine a cause-effect relationship between the i j pair in terms of force/signal
propagation between these two positions.

DCl,gym = DCI; — DCj )
%DClgym = %DCI; — %DCI; (6)
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Figure 3. Example of asymmetric coupling between residue R68 of the PPlase domain and A31 of the
WW domain in Pinl (PDB ID 3TCZ [7]). The differences in local contacts give rise to network
inhomogeneities which subsequently result in different %DCI values from R68 to A31 versus A31 to
R68 (left). The subtraction of these two values gives a measure of coupling directionality upon
external perturbations between these two sites (right). These figures were rendered in PyMol [40].

3. Results and Discussion

3.1. Epistasis and EpiScore

To investigate the relationship between internal networking and epistasis, we first apply our
analysis to protein G domain B1 (GB1, PDB ID 2QMT [42]), for which there exists a comprehensive
set of mutational data. Specifically, fitness effects of mutations were determined with high
confidence for 1045 single mutants and 509,963 double mutants, with data available for all 1485
possible position pairs [24]. In this work, experimental epistasis was calculated as In(Wab) — In(Wa) —
In(Ws), where Wab represents the fitness for the dual mutant and Waand W are the fitness values for
the single mutants. Here we investigate the relationship between the experimental epistasis and
EpiScore by comparing the average EpiScore for each position pair with instances of positive (blue)
or negative (red) epistasis using the skewness of the experimental epistasis distribution over the full
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mutational space available for a given pair (Figure 4). Skewness was chosen as it more accurately
represented the substitution behavior than position averages, which would often tend towards zero
without capturing the substitution behavior for a given position pair. EpiScore values were
calculated for all position pairs relative to every other position within the protein and averaged over,
generating one average EpiScore value for each pair. Interestingly, when we obtained the average
EpiScore distribution of experimental positive and negative epistatic pairs we found that EpiScore
values above and below one tend to distinctly divide positive from negative epistasis; positive
experimental epistasis was more frequently skewed towards EpiScore > 1, and likewise negative
cases are skewed towards EpiScore < 1.

|
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2 |
o} I
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- I
|
|
|
|

11 L15 12 125 13 135
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Figure 4. Distribution of the average EpiScore for protein GB1 protein pairs separated by positive
and negative experimental epistasis using experimental deep scanning data for every position pair
(excluding position 1). EpiScore values above and below one (dashed line) tend to distinctly divide
cases for which experimental epistasis was more frequently skewed towards the positive (below one)
and negative (above one)).

The full system analysis of GB1 showed the existence of a general trend between epistasis and
EpiScore; particularly, an inverse relationship between EpiScore above or below one and skewness
in experimental epistasis, indicating that positions with EpiScore less than 1 more often work
cooperatively towards beneficial protein function, whereas pairs yielding EpiScore values greater
than 1 usually result in antagonistic interactions which impair function. In an effort to elucidate
more specific mechanistic details or trends underlying epistatic interactions which may exist in other
systems, we broaden our application of EpiScore to other known epistatic proteins with a focus on
specific mutation pairs. As such, we next study DHFR, a protein involved in the development of
anti-malarial resistances in malarial parasites. Anti-malarial drugs commonly target the DHFR,
which catalyzes the reduction of dihydrofolate and is essential to cellular growth and proliferation.
Pyrimethamine is one such drug, used to treat malaria caused by one of the most common malarial
parasites, Plasmodium falciparum, by competitively inhibiting DHFR. While exhibiting a particularly
low sequence conservation between species, most differences in sequence are from flexible loop
regions [43], while the secondary structures between these loops are highly conserved across all
species [44]. However, widespread use of pyrimethamine has resulted in a prevalence of
pyrimethamine-resistant P. falciparum DHFR (pfDHFR) mutants as a result of four key amino acid
substitutions at positions N51, C59, S108 and 1164 which have also exhibited significant epistasis
between mutation combinations [22] (Figure 5A).
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Figure 5. (A) P. falciparum DHFR (pfDHFR) structure (PDB ID 3QGT [48]) with FG loop residues
(196-206) in yellow and mutation sites N51, C59, 5108 and 1164 colored in red. While not directly
involved in catalytic activity, widespread use of pyrimethamine has resulted in pervasive and
persistent mutations at these sites which confer pyrimethamine resistance. (B) Violin plot
(distribution and kernel density estimate) of EpiScore values and (C) average EpiScore values with
respect to FG loop residues for each pfDHFR dual mutant, in order of increasing pyrimethamine ICso
epistasis. A dashed line at EpiScore values of 1.0 has been added to aid in visual inspection. In (B)
any FG loop residue which was within 10 angstroms of either mutation site per dual mutant was
excluded from the averaging. The average EpiScore values have a strong, negative correlation (R =
-0.77) with ICso epistasis, where the stronger the positive epistasis, the lower the average EpiScore
value.

An EpiScore analysis applied collectively to the behavior of the functionally important FG loop
shows an immediate relationship between epistasis in pyrimethamine ICs values of the pairwise
mutants and their associated EpiScore values. Figure 5B shows the EpiScore violin plots (i.e.,
distributions and kernel density estimates) with respect to FG loop residues 196206 for each
pfDHFR mutant pair. These violin plots show that EpiScore distribution for different mutation pairs
yields a different distribution for different residue pairs. S108-1164 gives a narrow distribution with a
peak around 1, suggesting that force perturbations simultaneously exerted on these positions yields
the same fluctuation response profile of the FG loop positions as the average of individual
fluctuation responses of the FG loop when the forces are exerted individually at 5108 and 1164. This
distribution pattern was also observed for positions N51 and C59, although at completely different
positions within the protein. On the other hand, pairing the position 1164 with C59 rather than with
5108 results in a completely different EpiScore distribution, with diverse fluctuation responses of FG
loop positions. This suggests that 1164 and C59 are highly cooperative, leading to a non-additive
behavior when these two positions are perturbed simultaneously. As 1164 and C59 are located at
different regions of the protein (Figure 5A), one can expect to observe a wide range of EpiScore
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values associated with this pair. This pattern tends to hold with distally located positions in the
N51-5108 and C59-5108 distributions as well. Interestingly however, N51-C59 also exhibits EpiScore
values less than 1, despite the fact that they belong to the same helical region. The distributions
suggest that anisotropy in the network of interactions could modulate a wide range of fluctuation
responses via these position pairs, which result in different functional behavior upon mutation. To
determine whether the change in fluctuation response of the FG loop to simultaneous perturbations
at these mutational positions can capture functional substitution outcomes, we next investigate the
relationship between EpiScore and experimentally measured epistasis using pfDHFR
pyrimethamine ICso values.

Figure 5C presents the average EpiScore values with respect to the FG loop for each pfDHFR
pairwise mutant, in order of increasing pyrimethamine ICsoepistasis. A dashed line at an EpiScore
value of 1.0 has been added to aid in visual inspection. Here, ICso epistasis is reported as the ICso
ratio of the dual mutant to the ICso sum of the individual mutants. Any FG loop residue which was
within 10 angstroms of either mutation site per dual mutant was excluded from the averaging in
order to eliminate any strong dynamic coupling effects that arise as a result of direct contact
interactions. The average EpiScore values have a strong, negative correlation (R = —0.77) with ICso
epistasis, where the stronger the positive epistasis, the lower the average EpiScore value. For
example, an EpiScore value of ~0 means the pairwise dynamic coupling to FG loop positions of a
dual mutant pair is negligible as compared to the average individual dynamic coupling; that is, the
distal sites can individually impact position the FG loop residues allosterically. However, when
treated together with a simultaneous perturbation at both sites, the displacement response of the FG
loop residues are significantly lower, and, subsequently, their joint ability to allosterically regulate
these FG loop positions is effectively lost. Due to the interaction network between the two distal
positions with the FG loop, they may antagonistically compensate the amplitude and direction of the
response when the perturbations on these two sites are exerted at the same time. To the reverse, an
EpiScore value >> 1 suggests that, simultaneously, two positions may exhibit dynamic coupling to
the FG loop enough such that their pairwise mutational impact fundamentally alters the role the FG
loop plays within the pfDHEFR interaction network resulting in loss of function.

At first, this relationship may seem somewhat counterintuitive, as one could reasonably expect
that the higher the EpiScore value (i.e., the stronger the dual position dynamic coupling versus
individually averaged dynamic coupling), the higher the experimental epistasis. However, when
complexed with substrate, the functionally critical M20 loop [45] is stabilized in part through
interactions with amino acids in the FG loop [46]. It is possible that it is more favorable, in terms of
pyrimethamine resistance, to have mutations occur at position pairs that induce a smaller
fluctuation response of FG loop when perturbed simultaneously, (i.e., restricting the dynamics) than
the average fluctuation response of individual perturbations applied one at a time. This is in
agreement with previous work which showed that point mutations to two of the FG loop amino
acids in E.coli resulted in a > 30 fold decrease in the steady state hydride transfer rate constant as
compared to the wild-type [47]. This could additionally explain the pervasive and persistent nature
of these mutations appearing globally in pfDHFR proteins.

Expanding our study to another system important to the concept of antibiotic resistance, we
analyze TEM-1, a protein which possesses antibiotic resistance largely driven by its high
evolvability, with over 170 TEM-1 mutants discovered as clinical or hospital isolates [49]. TEM-1 is a
well-studied enzyme in experimental or laboratory-guided evolution, in an effort to both
understand the mechanisms associated with its antibiotic resistance as well as predict possible
resistance-conferring mutations [49-52].

Previous work has shown that the majority of the resistance-conferring mutations in TEM-1 are
both distal to (10 A or further) and highly coupled with the active site residues [53], indicating that
these mutations impact TEM-1 function by allosterically regulating active site behavior.
Additionally, it is now also understood that mutations resulting in the emergence of new enzymatic
function are generally destabilizing which suggests that the evolution of new function requires
additional, stabilizing mutations. As such, a more complete understanding of TEM-1 mutational
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behavior requires an investigation into the epistatic interplay of point mutation combinations. Thus,
it is an ideal system for exploration of long-range dynamic communication to understand epistatic
relationships in the emergence of resistance.

Here we focus on the specific epistatic relationship between four TEM-1 mutation sites (42, 104,
182 and 238) which have exhibited significant non-additive behavior [23]. Treating point mutations
as external perturbative forces to the internal network of a protein, we apply EpiScore analysis to the
main TEM-1 active site, residue 570, using a TEM-1 3-D structure obtained by an energy-minimized
and equilibrated version of PDB ID 1BTL [53] with mutation sites shown as blue spheres in Figure
6A, along with active site S70 in red and alternative control sites (43, 105, 181 and 237) in yellow.
Figure 6B (left) shows a plot of EpiScore versus experimental epistasis using cefotaxime turnover
rates and exhibits a relationship similar to that found in pfDHER, with a strong negative correlation
of R=-71. We also find that position pairs with EpiScore values > 1.0 (horizontal dashed line),
presenting a stronger pairwise dynamic coupling with position S70 compared to the average of the
individual dynamic coupling, also corresponds to two of the three TEM-1 dual mutants with
negative epistatic turnover rates (separated by vertical dashed line). Position pair 182-238 represents
a deviation from this behavior, and position pair 42-104 is a comparative outlier to the overall
correlation. The deviation of position pair 182-238 may be related to specific catalytic site
interactions associated with position 238, the only position in which mutation resulted in an increase
in turnover rate across all eight possible combinations of TEM-1 background. Interestingly, position
182, present in all position pairs with the three highest EpiScore values, was also the position in
which mutation resulted in a significantly beneficial effect in the fewest number of possible
backgrounds [23]. As a control, we also conducted this analysis using the alternative sites
representing positions immediately adjacent to the four mutation sites (Figure 6B (right)). These
positions result in a significantly worse correlation with cefotaxime turnover rate epistasis than the
mutation positions (R = —0.45 as compared to R = —0.71), showing the sensitivity in the EpiScore
metric to specific positions, regardless of separation distance.
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Figure 6. (A) TEM-1 structure showing mutation positions (blue spheres), alternative control
positions (yellow spheres) and active site S70 (red sphere). ((B) left) EpiScore to active site S70 versus
epistasis in In of turnover rate of cefotaxime for $-lactamase TEM-1 mutants [23]. Horizontal dashed
line divides EpiScore values above and below 1 while vertical dashed line divides positive and
negative epistasis. EpiScore and epistasis exhibit a strong negative correlation of R =-0.71. EpiScore
values > 1 (horizontal dashed line), indicating to a stronger pairwise dynamic coupling to position
S70, also corresponds to two of the three TEM-1 dual mutants with negative epistatic turnover rates
(separated by vertical dashed line). Position pair 182-238 represents a deviation from this behavior,
and position pair 42-104 is a comparative outlier to the overall correlation. ((B) right) EpiScore versus
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In of turnover rate using the alternative control positions. Although these positions are immediately
adjacent to the mutation positions, they generate different EpiScore values resulting in a significantly
worse correlation of R =-0.45.

3.2. Asymmetry and Epistasis

In TEM-1, mutational sites which confer incremental changes in biophysical activity are neither
locally distributed with respect to one another, nor at important functional sites. Furthermore, they
do not belong to an immediately identifiable allosteric inhibitor site, but they do, however, exhibit
unique pairwise epistatic behavior which indicates that they likely regulate the active sites
allosterically. In an effort to analyze whether the pairs having EpiScore less than 1 and associated
with positive epistasis (a beneficial, cooperative interaction) exhibit long-range communication that
is distinct from the pairs having EpiScore greater than 1 and associated with negative epistasis, we
explored the degree of asymmetry in long-range communication between the mutational positions
and the active site positions using DClasym. Thus, we calculated DClasym between each TEM-1
dual-mutant site and all main active sites for the relevant TEM-1 structure (70, 73, 130, 166, 234,
Figure 7), excluding the outliers 182-238 and 42-104 from Figure 6B. Here, positive %DClasym values
indicate active- site-dominant dynamic coupling, where mutational sites exhibit higher fluctuation
response when the active site is perturbed. On the other hand, negative %DClasym values indicate
mutation-dominant dynamic coupling where perturbations at those positions controls the active site
fluctuation response. Interestingly, we observe a relationship that provides some mechanical insight
relating the degree of asymmetry to EpiScore; the dual mutants with EpiScore > 1 to active site 570
and epistasis < 1 had more instances of mutational-dominant coupling asymmetry, while the reverse
was true for two of the three dual mutants with EpiScore <1 and epistasis > 1 (position pair 42-104,
an outlier in Figure 6B, does not hold to this pattern). This suggests that the epistatic effects captured
through EpiScore to active site 570 may be compensated via coupling asymmetry to all active sites,
with dynamic modification of the system ultimately including both effects. A position pair that more
strongly affects active site S70 via EpiScore also possesses active site-dominant coupling asymmetry
and vice versa. Taken together with Figure 6B, these data indicate that dual mutants which confer
less disruption to important active sites (indicated by EpiScore < 1) than their averaged individual
constituents, and those which are under active site regulation, (indicated by positive %DClasym) are
those which display the largest degree of positive epistasis.

Thus, as a test system, TEM-1 highlights the complex relationship between mutational
positions, allosteric relationships, and epistatic interplay. These emergent properties of the
anisotropic residue-residue interaction network within a protein must be accounted for when
attempting to fully understand or predict mutation outcomes.

3.3. Unidirectional Communication through DClasyn Creates Cause-Effect Relationships in Allosteric
Regulations

Using the dynamical picture presented above, the modulation of protein dynamics through
mutations (i.e., the fluctuation response to node perturbations within a network) is similar to the
modulation of dynamics through binding; this is the fundamental principle behind the concept of
dynamic allostery. With the TEM-1 dual mutation positions showing unique coupling asymmetry to
the active sites, it follows that there should be an obvious, unidirectional signature between
allosteric sites and active sites in known allosteric proteins. Here we explore the role dynamic
coupling directionality plays in allosteric regulations using an ideal model system, Pinl. Pinl is a
two-domain protein containing a catalytic PPlase domain and a distally-located WW domain,
connected by a flexible (and highly disordered) interdomain linker [54-56]. While strictly regulated
in both function and expression within healthy biological tissue [57], the up-regulation and
down-regulation of Pinl is associated with several forms of cancer and Alzheimer’s disease,
respectively [57-61]. Studies have shown that the activity of the PPlase domain is enhanced when a
ligand is bound at the non-catalytic WW domain [62,63] and communication between these two
domains is requisite for proper biological function [55,64-66].
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Figure 7. %DClasym distributions to all TEM-1 active sites (70, 73, 130, 166, 234) for each dual mutant
position pair along with three-dimensional (3-D) structural representation of mutation sites (blue)
and active sites (red) excluding the outliers 182-238 and 42-104 from Figure 6B. The first dual mutant
(104-182, top left) has arrows drawn to indicate the coupling asymmetry, where red is active
site-dominant and blue is mutation site-dominant. Both dual mutants with negative epistasis in
turnover rate and EpiScore to position S70 <1 also had %DClasym distributions which were, overall,
mutation site-dominant and, conversely, those with positive epistasis in turnover rate and EpiScore
to position S70 > 1 exhibited active site-dominant %DClasym.

Previous works propose the existence of communication networks between the WW domain
and the PPlase domain, including a unique allosteric pathway which only becomes active when a
substrate is bound to the WW domain [62]. A further computational study indicated that pathways
of communication via force propagation from the PPlase domain to the WW domain changed when
a ligand was WW domain-bound [67].

Applying our asymmetry analysis to binding pocket residues in the catalytic PPlase (%DCls)
and non-catalytic WW domains (%DClj) of Pinl (PDB ID 3TCZ [7], ligands removed), we calculate
“%DClasym” (%DCly — %DClji) the coupling asymmetry between PPlase domain binding positions
(63, 68, 129, 130, 131, 154) and WW domain binding positions (23, 31, 32, 34) (Figure 8). Hence,
negative values indicate the WW domain position is dominant (blue arrows) whereas positive
values indicate the PPlase domain position is dominant (red arrows). We see that each of the four
positions in the WW domain exhibit unique asymmetric coupling with the PPlase domain positions,
even when the WW domain positions are close to one another. However, with the exception of
coupling between position 63 and 31, the behavior of the PPlase domain positions is unique to their
catalytic loop grouping (e.g., {63,68}, {129,130,131}), where each position within a group has the same
asymmetry directionality to a given WW domain position. Overall, however, the full %DClasym
distribution indicates that there is a clear bias toward unidirectionality from the WW domain to the
PPlase domain; the WW domain is dynamic coupling-dominant over the PPlase domain, with twice
as many residue pairs exhibiting WW-dominant coupling than the reverse (16/24 vs. 8/24, Figure
8C).

This suggests a cause-and-effect relationship exists between the two domains. Using this
framework, a ligand binding event is modeled as a force perturbation to the binding positions in
each domain. Upon these random force perturbations, we find that, overall, the WW domain is able
to induce a stronger perturbation response in the PPlase domain than the reverse. This is largely the
expected relationship between an allosteric site and a catalytic site; communication between these
sites should predominantly involve information transfer from the allosteric site to the catalytic site,
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indicating that %DClasym can capture communication directionality in allosteric systems from
structural dynamics encoded within a given set of atomic coordinates.
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Figure 8. (A) Graphical representation of coupling asymmetry between PPlase domain binding
positions (63, 68, 129, 130, 131, 154) and WW domain binding positions (23, 31, 32, 34) where blue
arrows indicate the WW domain position is dominant and red arrows indicate the PPlase domain
position is dominant. (B) Explicit values of %DClasym versus position combinations for position 31 in
the WW binding domain where values above and below 0 correspond to PPlase or WW domain
dominating, respectively (a value of 0 corresponds to perfect symmetry). (C) Full distribution of
%DClasym values for all four WW domain binding positions and all six PPlase domain binding
positions where 16 total residue pairs are dominated by the WW domain whereas only eight pairs

are PPlase domain-dominant.

4. Conclusions

In this work we showed how the anisotropic interaction network within a protein captures two
essential emergent properties of protein evolution—epistasis and communication
directionality —using the information stored in structural dynamics alone. Additionally, EpiScore
can capture the behavior of dual-mutation epistatic outcomes with some consistent trends across
different protein systems. As seen in pfDHFR, mutation pairs with a lower pairwise dynamic
coupling versus average of individual couplings (EpiScore < 1) to FG loop positions are favorable, as
dual mutations at these positions may be less likely to disrupt the FG loop’s interaction with the
functionally critical M20 loop. A similar trend was also observed in the EpiScore analysis of TEM-1
dual mutants, where lower EpiScore to active site S70 was generally associated with higher positive
experimental epistasis (R = —0.71) Further, the system-wide EpiScore analysis of GB1 dual mutants
has shown that the position pairs with average EpiScore values > 1 were associated more frequently
with negative epistasis, indicating that these positions might ultimately be more disruptive to the
entire protein when mutated together. Furthermore, when dynamic coupling asymmetry analysis
was applied via %DClasym to TEM-1, we found that EpiScore and epistasis both relate to dynamic
coupling asymmetry, where position pairs which exhibited high EpiScores associated with negative
epistasis also exhibited mutation-dominant coupling asymmetry. This suggests that %DClasym and
EpiScore may both capture factors which contribute towards the biochemical outcome of dual
mutations. If both mutational sites dominate the dynamics coupling with the active site (i.e., the
active site responds more to mutational site perturbations), then dual mutations on both sites lead to
negative epistasis.
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As modulation of normal modes and protein dynamics is not only a tool used in evolution but
also a principle exploited via allostery, we used an “ideal” allosteric system, Pinl, and observed the
dynamic coupling asymmetry between a well-identified allosteric domain and an enzymatically
active domain exhibits behavior that, as expected, showed the allosteric WW domain to dominate
communication to the PPlase domain. Overall, these two novel protein dynamics-based metrics
provide steps to mechanistically describe these complicated interactions, and also shed light on the
complex anisotropic interaction network which ultimately gives rise to epistasis and allosteric
regulation. They can be useful to predict mutational outcomes, particularly for those sites distal from
the active site that can modulate function [68].
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