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Abstract: Understanding the underlying mechanisms behind protein allostery and non-additivity 

of substitution outcomes (i.e., epistasis) is critical when attempting to predict the functional impact 

of mutations, particularly at non-conserved sites. In an effort to model these two biological 

properties, we extend the framework of our metric to calculate dynamic coupling between 

residues, the Dynamic Coupling Index (DCI) to two new metrics: (i) EpiScore, which quantifies the 

difference between the residue fluctuation response of a functional site when  two other positions 

are perturbed with random Brownian kicks simultaneously versus individually to capture the 

degree of cooperativity of these two other positions in modulating the dynamics of the functional 

site and (ii) DCIasym, which measures the degree of asymmetry between the residue fluctuation 

response of two sites when one or the other is perturbed with a random force. Applied to four 

independent systems, we successfully show that EpiScore and DCIasym can capture important 

biophysical properties in dual mutant substitution outcomes. We propose that allosteric regulation 

and the mechanisms underlying non-additive amino acid substitution outcomes (i.e., epistasis) can 

be understood as emergent properties of an anisotropic network of interactions where the inclusion 

of the full network of interactions is critical for accurate modeling. Consequently, mutations which 

drive towards a new function may require a fine balance between functional site asymmetry and 

strength of dynamic coupling with the functional sites. These two tools will provide mechanistic 

insight into both understanding and predicting the outcome of dual mutations. 
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1. Introduction 

A growing body of data on the human genome suggest that within the exome (the protein 

coding region), one individual may possess 10,000 or more non-synonymous nucleotide variants, 

many of which occur at positions which are not evolutionarily conserved [1–3]. Predicting the 

functional outcome of mutations at non-conserved sites remains an extremely difficult challenge. In 

particular, providing accurate predictions about the impact of these variations is difficult when only 

considering single, independent point mutations without accounting for the background of other 

positions and their chemical specificity (i.e., context dependence). 

One reason why predicting the impact of mutations may fail is that extensive epistasis occurs 

during evolution [4–6]. Epistasis is defined as a context-dependent functional outcome, where, the 

alternative context could be just one single amino acid difference, or it could be a paralog with 25% 

sequence identity. Experimentally, epistasis manifests as a non-additive outcome from two or more 

amino acid changes within a protein. The effects can be dramatic. For example, a substitution may 

only confer a beneficial effect upon fixation of a second-site, also known as a “permissive” change; 

conversely, a neutral substitution might become deleterious in the presence of other “restrictive” 
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substitutions [7–9]. Thus, epistasis plays a vital role in shaping trajectories of protein evolution [4–

10]. Furthermore, mounting evidence indicates that protein evolution, particularly evolution 

towards new function, proceeds not only through mutations at functionally critical sites, but also 

through sites which can have a subtle (or, occasionally, substantial) effect on function when mutated 

without being immediately identifiable as positions with particular functional or structural 

importance [11–13]. 

Epistatic relationships becomes crucial when comparing homologous protein families or 

protein domains, which can exhibit significant sequence variation and biochemical properties that 

may span orders of magnitude while still maintaining a similar three-dimensional (3-D) fold [14–19]. 

Thus, single or dual mutations on homologous proteins yield a wide range of functional outcomes 

[20–24]. In fact, understanding the mechanics or predicting the results of dual mutations remains a 

significant challenge in the presence of systems which experience large epistatic effects, even when 

accurate experimental data are available for the single mutant systems [7–10,25]. 

On the other hand, when protein equilibrium dynamics and each individual position’s 

contribution to these dynamics are taken into consideration, we can shed light onto the mechanism 

of epistatic relations. This is because proteins sample many different conformations within the 

native state, and these conformational dynamics, governed by the strength of the 3-D network of 

interactions, underlie protein function. Within this dynamic view, we can simply treat a protein as a 

biological signal processor where the 3-D interaction network mediates long-range communication 

through amino acid fluctuations nascent to a given protein sequence. Therefore, the knowledge of 

how mutations may fine-tune this sequence-function relationship necessitates evaluating the role of 

each residue position in establishing a protein’s internal communication network through protein 

dynamics [26,27]. Particularly, when two substitutional sites are considered together, the dynamic 

coupling of these sites results in a joint effect (i.e., a cooperative response) leading to the modulation 

of signal processing responsible for biophysical behavior and, ultimately, may give rise to a 

non-additive functional outcome. 

The non-additive, epistatic interactions therefore can use dynamic features of a protein to 

modulate function. These dynamics features are similar to that found in allosteric modulation in 

which a protein is able to control catalytic function or regulate on/off states through the binding of a 

ligand to a site distal from a catalytic/active site. This distal binding has been shown to modulate 

catalytic site dynamics, sometimes without association to distinct conformational states. This type of 

allostery, which can impact function by manipulating the normal modes of the protein while 

retaining the conformation, is known as dynamic allostery [28,29]. We now understand this form of 

allosteric regulation to be a specific, and often more dramatic, emergent property of the unique 

internal networking between amino acids within a protein. To this end, allosteric systems reduce the 

enormous dimensionality associated with information transfer and communication pathways for 

these complex, anisotropic networks by identifying important regulation sites a priori. Therefore, as 

observed in allosteric regulations, the long-distance interactions through dynamic coupling between 

different positions and active sites can be modulated and re-wired through substitutions, which 

emerge as epistasis that drives the evolution of new function. Here, we aim to identify these epistatic 

relations through the development of dynamics-based metrics which can measure the strength of 

long-range dynamic interactions. 

The modeling of protein conformational dynamics using force perturbations and elastic 

networks has been previously used successfully in attempts to understand the role of long-range 

interactions in protein evolution [30–33]. Here we attempt to model these effects through the use of 

Perturbation Response Scanning (PRS) and the Elastic Network Model (ENM) to construct a 

Dynamic Coupling Index (DCI) where we can capture the dynamic coupling between any given 

residue pair or set of residues via a system’s response to random force perturbations. DCI captures 

the strength of displacement response of a given position i upon perturbation to a single position (or 

subset of positions) j, relative to the average fluctuation response of position i when all of the 

positions within a structure are perturbed. Expanding upon the dynamic coupling concept, here we 

develop a new metric called EpiScore. EpiScore measures the difference in the residue fluctuation 
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response of an active site when two mutational sites are simultaneously perturbed by random forces 

versus the response when individual force perturbations are exerted one at a time to the mutational 

sites. 

In order to determine whether EpiScore can identify the degree and strength of epistatic 

relationships between position pairs, we first applied our analysis to the deep scanning database of 

double mutations between all positions in the IgG-binding domain of protein GB1 [24]. These 

modern, high-throughput screens (e.g., deep mutational scans) assay large numbers of mutants (up 

to 108) [34–37], but the information is largely qualitative. Therefore, to further test whether our 

approach can identify epistatic relations which specifically emerge during the evolution of new 

function, we applied our methodology to two different protein systems where the traditional 

biochemical quantifications of mutational effects (e.g., kcat, KM, IC50) for a range of substrates are 

available. These two systems, P. falciparum DHFR (pfDHFR) and a β-lactamase (TEM-1), naturally 

confer resistance to drugs and the trajectories of these resistances as well as their epistatic 

relationships have been explored [22,23]. Importantly, these two systems are also known to be 

allosteric proteins. 

We first observed that EpiScore can distinguish positive and negative epistasis in dual 

mutations when analysis was performed over 1045 single mutants and 509,963 double mutants of 

GB1. We also found that the average EpiScore value correlates well with experimental epistatic 

measures calculated using pyrimethamine IC50 values of pfDHFR dual mutants and the catalytic 

turnover rates for cefotaxime of TEM-1 dual mutants. Furthermore, each pfDHFR amino acid pair 

exhibits distinct distributions of EpiScore values showing the importance of how these two positions 

communicate with the active site through the anisotropic interaction network. 

Interestingly, DCI is usually not symmetric, i.e. the fluctuation response of position i upon 

exerting random forces on j is not identical to the response of j when position i is perturbed; we 

calculate this asymmetry with DCIasym. We applied our DCIasym analysis to the TEM-1 dual-mutant 

sites and found that, indeed, a relationship exists between dynamic coupling asymmetry and 

EpiScore when all active sites in the TEM-1 system are considered. Specifically, two of the three dual 

mutant positions which exhibited the largest positive epistasis in cefotaxime kcat/KM from the 

wild-type had both EpiScore values < 1 (indicating strong non-additivity) with respect to active site 

S70. Additionally, these dual mutants also exhibit asymmetry in dynamic coupling based on DCIasym, 

with consistent unidirectionality from active sites site to mutation sites in long range 

communication. We propose that this communication directionality signature should be readily 

apparent in known allosteric systems as mentioned above. Therefore, we applied a similar analysis 

to a Pin1 protein well-studied for its dynamic allostery and showed that the DCIasym between the 

catalytic binding sites and non-catalytic distal binding sites presents a unique directionality in long 

distance dynamic coupling, leading to a cause-and-effect relationship between allosteric sites and 

active sites  also observed in epistatic interactions. 

2. Methods 

We previously designed a unique way to capture site-specific coupling between residue pairs 

or groups of residues, the Dynamic Coupling Index (DCI). The underlying premise behind DCI is 

the importance of a system’s response to a force perturbation, be that protein-solvent, 

protein-protein, protein-ion or protein ligand interactions. Additionally, the point mutations here 

are modeled by the response of a system to a perturbation at a specific site, a.k.a. a single amino acid. 

DCI is a combination of the Elastic Network Model (ENM) and Linear Response Theory (LRT) 

where the protein is modeled by representing the amino acids as nodes in a network connected by 

Hookean springs (Figure 1). The interaction between two amino acids close in space due to their 

3-dimensional structure is represented by a simple harmonic function. A random Brownian kick in 

the form of a unit force perturbation is applied to an individual position which generates a response 

propagating through the rest of the structure, causing other positions to respond to this perturbation 

through the network of interactions. Using LRT, we can calculate the fluctuation response ∆R 

(Equation (1)) of each position and create response vector that measures the magnitude and 
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direction (x, y and z) of displacement of every residue from its mean. As mentioned above, this (to 

the first order) mimics the effects of in vivo interactions of a protein. For example, a ligand binding 

event will apply a force to residues in the binding pocket of a receptor protein. In our perturbation 

residue scanning (PRS) approach, this is averaged over many unit force directions to simulate an 

isotropic perturbation. 

 

Figure 1. Elastic network model representation of protein Pin1 (PDB ID 3TCZ [7], ligands removed). 

Here, each residue within the structure is represented as a single node at the Cα position, connected 

to other nodes via Hookean springs. Using a combination of Perturbation Response 

Scanning (PRS) and Linear Response Theory (LRT) [38,39], each residue is perturbed by a 

Brownian kick applied as an isotropic external force which then generates a fluctuation 

response in all other residues within the network. This figure was rendered in PyMol [40]. 

[  ]     [ ]     
   [ ]     (1) 

H is the Hessian, a 3N × 3N matrix which can be constructed from 3-dimensional atomic 

coordinate information where it is composed of the second order derivatives of the harmonic 

potential energy with respect to the components of the position vector of length 3N. The Hessian 

matrix can be extracted directly from molecular dynamics simulations as the inverse of the 

covariance matrix. This method allows one to implicitly capture specific physiochemical properties 

and more accurate residue-residue interactions via atomistic force fields and subsequent all-atom 

simulation data. However, for the purposes of this paper, we wished to investigate only those 

relationships which could be derived solely from inter-atomic distances of single protein structures 

and thus we used the ENM version of our approach. 

Repeating this process, each position in the structure is perturbed sequentially to generate a 

perturbation response matrix A 
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 √⟨(  ) ⟩  is the magnitude of fluctuation response at position i due to the 

perturbations at position j. From this perturbation response matrix, we can construct DCI. DCIij, 

then, represents the displacement response of position i upon perturbation to a single functionally 

important position (or subset of positions) j, relative to the average fluctuation response of position i 

when all of the positions within a structure are perturbed. 
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As such, DCI can be considered a measure of the dynamic coupling between residue i and 

residue(s) j upon perturbation to residue(s) j. 

It is often more convenient to represent DCI as a percentile rank, 

       
   
 

 (4) 

where m≤i is the number of positions with a DCI value ≤ DCIij for a system of N residues. 

One of the most important aspects of DCI is that the entire network of interactions is explicitly 

included in subsequent calculations without the need of dimensionality reduction such as Normal 

Mode Analysis through principal component analysis. If one considers interactions such as allostery 

as an emergent property of an anisotropic interaction network, it is critical to include the interactions 

of the entire network to accurately model the effect one residue can have on another. 

Here, we present two further extensions of DCI which allow us to uniquely model allosteric 

interactions and epistatic effects; EpiScore and DCIasym, respectively. EpiScore can identify or 

describe potential non-additivity in substitution behavior between residue pairs. This metric can 

capture the differences in a normalized perturbation response to a position k when a force is applied 

at two residues i and j simultaneously versus the average additive perturbation response when each 

residue i, j, is perturbed individually (Figure 2). EpiScore values < 1 (> 1) indicate that the additive 

perturbations of positions i and j generates a greater (lesser) response at position k than the effect of a 

simultaneous perturbation. This means that, when treated together with a simultaneous 

perturbation at both sites i and j, the displacement response of k is lower (higher) as compared to the 

average effect of individual perturbations to i and j, one at a time. As EpiScore is a linear scale, the 

further the value from 1, the greater the effect described above. 
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Figure 2. Schematic describing the calculation of EpiScore. The numerator is the %Dynamic 

Coupling Index (%DCI) value at position k upon a simultaneous perturbation to positions i and j 

divided by the average %DCI value at position k when positions i and j are perturbed individually. 

Thus, an EpiScore value of 1 indicates a perfect coupling additivity with respect to a given position k 

in individual versus simultaneous perturbations of two positions i and j. Figures rendered in PyMol 

[40] using β-lactamase (TEM-1) structure 1BTL [41]. 

Interestingly, through the use of DCI we can capture asymmetry between different residues 

within a protein, as coupling in and of itself is asymmetric within an anisotropic network. That is, 

each amino acid has a set of positions to which it is highly coupled, and this anisotropy in 

connections gives rise to unique differences in coupling between a given i j pair of amino acids 

which do not have direct interactions (Figure 3). DCIasym, then, is simply DCIij (the normalized 

displacement response of position j upon a perturbation to position i) − DCIji (Equation (5)). Using 

DCIasym we can determine a cause-effect relationship between the i j pair in terms of force/signal 

propagation between these two positions. 

                  (5) 

                     (6) 

 

Figure 3. Example of asymmetric coupling between residue R68 of the PPIase domain and A31 of the 

WW domain in Pin1 (PDB ID 3TCZ [7]). The differences in local contacts give rise to network 

inhomogeneities which subsequently result in different %DCI values from R68 to A31 versus A31 to 

R68 (left). The subtraction of these two values gives a measure of coupling directionality upon 

external perturbations between these two sites (right). These figures were rendered in PyMol [40]. 

3. Results and Discussion 

3.1. Epistasis and EpiScore 

To investigate the relationship between internal networking and epistasis, we first apply our 

analysis to protein G domain B1 (GB1, PDB ID 2QMT [42]), for which there exists a comprehensive 

set of mutational data. Specifically, fitness effects of mutations were determined with high 

confidence for 1045 single mutants and 509,963 double mutants, with data available for all 1485 

possible position pairs [24]. In this work, experimental epistasis was calculated as ln(Wab) − ln(Wa) − 

ln(Wb), where Wab represents the fitness for the dual mutant and Wa and Wb are the fitness values for 

the single mutants. Here we investigate the relationship between the experimental epistasis and 

EpiScore by comparing the average EpiScore for each position pair with instances of positive (blue) 

or negative (red) epistasis using the skewness of the experimental epistasis distribution over the full 
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mutational space available for a given pair (Figure 4). Skewness was chosen as it more accurately 

represented the substitution behavior than position averages, which would often tend towards zero 

without capturing the substitution behavior for a given position pair. EpiScore values were 

calculated for all position pairs relative to every other position within the protein and averaged over, 

generating one average EpiScore value for each pair. Interestingly, when we obtained the average 

EpiScore distribution of experimental positive and negative epistatic pairs we found that EpiScore 

values above and below one tend to distinctly divide positive from negative epistasis; positive 

experimental epistasis was more frequently skewed towards EpiScore > 1, and likewise negative 

cases are skewed towards EpiScore < 1. 

 

Figure 4. Distribution of the average EpiScore for protein GB1 protein pairs separated by positive 

and negative experimental epistasis using experimental deep scanning data for every position pair 

(excluding position 1). EpiScore values above and below one (dashed line) tend to distinctly divide 

cases for which experimental epistasis was more frequently skewed towards the positive (below one) 

and negative (above one)). 

The full system analysis of GB1 showed the existence of a general trend between epistasis and 

EpiScore; particularly, an inverse relationship between EpiScore above or below one and skewness 

in experimental epistasis, indicating that positions with EpiScore less than 1 more often work 

cooperatively towards beneficial protein function, whereas pairs yielding EpiScore values greater 

than 1 usually result in antagonistic interactions which impair function. In an effort to elucidate 

more specific mechanistic details or trends underlying epistatic interactions which may exist in other 

systems, we broaden our application of EpiScore to other known epistatic proteins with a focus on 

specific mutation pairs. As such, we next study DHFR, a protein involved in the development of 

anti-malarial resistances in malarial parasites. Anti-malarial drugs commonly target the DHFR, 

which catalyzes the reduction of dihydrofolate and is essential to cellular growth and proliferation. 

Pyrimethamine is one such drug, used to treat malaria caused by one of the most common malarial 

parasites, Plasmodium falciparum, by competitively inhibiting DHFR. While exhibiting a particularly 

low sequence conservation between species, most differences in sequence are from flexible loop 

regions [43], while the secondary structures between these loops are highly conserved across all 

species [44]. However, widespread use of pyrimethamine has resulted in a prevalence of 

pyrimethamine-resistant P. falciparum DHFR (pfDHFR) mutants as a result of four key amino acid 

substitutions at positions N51, C59, S108 and I164 which have also exhibited significant epistasis 

between mutation combinations [22] (Figure 5A). 
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Figure 5. (A) P. falciparum DHFR (pfDHFR) structure (PDB ID 3QGT [48]) with FG loop residues 

(196–206) in yellow and mutation sites N51, C59, S108 and I164 colored in red. While not directly 

involved in catalytic activity, widespread use of pyrimethamine has resulted in pervasive and 

persistent mutations at these sites which confer pyrimethamine resistance. (B) Violin plot 

(distribution and kernel density estimate) of EpiScore values and (C) average EpiScore values with 

respect to FG loop residues for each pfDHFR dual mutant, in order of increasing pyrimethamine IC50 

epistasis. A dashed line at EpiScore values of 1.0 has been added to aid in visual inspection. In (B) 

any FG loop residue which was within 10 angstroms of either mutation site per dual mutant was 

excluded from the averaging. The average EpiScore values have a strong, negative correlation (R = 

−0.77) with IC50 epistasis, where the stronger the positive epistasis, the lower the average EpiScore 

value. 

An EpiScore analysis applied collectively to the behavior of the functionally important FG loop 

shows an immediate relationship between epistasis in pyrimethamine IC50 values of the pairwise 

mutants and their associated EpiScore values. Figure 5B shows the EpiScore violin plots (i.e., 

distributions and kernel density estimates) with respect to FG loop residues 196–206 for each 

pfDHFR mutant pair. These violin plots show that EpiScore distribution for different mutation pairs 

yields a different distribution for different residue pairs. S108-I164 gives a narrow distribution with a 

peak around 1, suggesting that force perturbations simultaneously exerted on these positions yields 

the same fluctuation response profile of the FG loop positions as the average of individual 

fluctuation responses of the FG loop when the forces are exerted individually at S108 and I164. This 

distribution pattern was also observed for positions N51 and C59, although at completely different 

positions within the protein. On the other hand, pairing the position I164 with C59 rather than with 

S108 results in a completely different EpiScore distribution, with diverse fluctuation responses of FG 

loop positions. This suggests that I164 and C59 are highly cooperative, leading to a non-additive 

behavior when these two positions are perturbed simultaneously. As I164 and C59 are located at 

different regions of the protein (Figure 5A), one can expect to observe a wide range of EpiScore 
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values associated with this pair. This pattern tends to hold with distally located positions in the 

N51-S108 and C59-S108 distributions as well. Interestingly however, N51-C59 also exhibits EpiScore 

values less than 1, despite the fact that they belong to the same helical region. The distributions  

suggest that anisotropy in the network of interactions could modulate a wide range of fluctuation 

responses via these position pairs, which result in  different functional behavior upon mutation. To 

determine whether the change in fluctuation response of the FG loop to simultaneous perturbations 

at these mutational positions can capture functional substitution outcomes, we next investigate the 

relationship between EpiScore and experimentally measured epistasis using pfDHFR 

pyrimethamine IC50 values. 

Figure 5C presents the average EpiScore values with respect to the FG loop for each pfDHFR 

pairwise mutant, in order of increasing pyrimethamine IC50 epistasis. A dashed line at an EpiScore 

value of 1.0 has been added to aid in visual inspection. Here, IC50 epistasis is reported as the IC50 

ratio of the dual mutant to the IC50 sum of the individual mutants. Any FG loop residue which was 

within 10 angstroms of either mutation site per dual mutant was excluded from the averaging in 

order to eliminate any strong dynamic coupling effects that arise as a result of direct contact 

interactions. The average EpiScore values have a strong, negative correlation (R = −0.77) with IC50 

epistasis, where the stronger the positive epistasis, the lower the average EpiScore value. For 

example, an EpiScore value of ~0 means the pairwise dynamic coupling to FG loop positions of a 

dual mutant pair is negligible as compared to the average individual dynamic coupling; that is, the 

distal sites can individually impact position the FG loop residues allosterically. However, when 

treated together with a simultaneous perturbation at both sites, the displacement response of the FG 

loop residues are significantly lower, and, subsequently, their joint ability to allosterically regulate 

these FG loop positions is effectively lost. Due to the interaction network between the two distal 

positions with the FG loop, they may antagonistically compensate the amplitude and direction of the 

response when the perturbations on these two sites are exerted at the same time. To the reverse, an 

EpiScore value >> 1 suggests that, simultaneously, two positions may exhibit dynamic coupling to 

the FG loop enough such that their pairwise mutational impact fundamentally alters the role the FG 

loop plays within the pfDHFR interaction network resulting in loss of function. 

At first, this relationship may seem somewhat counterintuitive, as one could reasonably expect 

that the higher the EpiScore value (i.e., the stronger the dual position dynamic coupling versus 

individually averaged dynamic coupling), the higher the experimental epistasis. However, when 

complexed with substrate, the functionally critical M20 loop [45] is stabilized in part through 

interactions with amino acids in the FG loop [46]. It is possible that it is more favorable, in terms of 

pyrimethamine resistance, to have mutations occur at position pairs that induce a smaller 

fluctuation response of FG loop when perturbed simultaneously, (i.e., restricting the dynamics) than 

the average fluctuation response of individual perturbations applied one at a time. This is in 

agreement with previous work which showed that point mutations to two of the FG loop amino 

acids in E.coli resulted in a > 30 fold decrease in the steady state hydride transfer rate constant as 

compared to the wild-type [47]. This could additionally explain the pervasive and persistent nature 

of these mutations appearing globally in pfDHFR proteins. 

Expanding our study to another system important to the concept of antibiotic resistance, we 

analyze TEM-1, a protein which possesses antibiotic resistance largely driven by its high 

evolvability, with over 170 TEM-1 mutants discovered as clinical or hospital isolates [49]. TEM-1 is a 

well-studied enzyme in experimental or laboratory-guided evolution, in an effort to both 

understand the mechanisms associated with its antibiotic resistance as well as predict possible 

resistance-conferring mutations [49–52]. 

Previous work has shown that the majority of the resistance-conferring mutations in TEM-1 are 

both distal to (10 Å or further) and highly coupled with the active site residues [53], indicating that 

these mutations impact TEM-1 function by allosterically regulating active site behavior. 

Additionally, it is now also understood that mutations resulting in the emergence of new enzymatic 

function are generally destabilizing which suggests that the evolution of new function requires 

additional, stabilizing mutations. As such, a more complete understanding of TEM-1 mutational 
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behavior requires an investigation into the epistatic interplay of point mutation combinations. Thus, 

it is an ideal system for exploration of long-range dynamic communication to understand epistatic 

relationships in the emergence of resistance. 

Here we focus on the specific epistatic relationship between four TEM-1 mutation sites (42, 104, 

182 and 238) which have exhibited significant non-additive behavior [23]. Treating point mutations 

as external perturbative forces to the internal network of a protein, we apply EpiScore analysis to the 

main TEM-1 active site, residue S70, using a TEM-1 3-D structure obtained by an energy-minimized 

and equilibrated version of PDB ID 1BTL [53] with mutation sites shown as blue spheres in Figure 

6A, along with active site S70 in red and alternative control sites (43, 105, 181 and 237) in yellow. 

Figure 6B (left) shows a plot of EpiScore versus experimental epistasis using cefotaxime turnover 

rates and exhibits a relationship similar to that found in pfDHFR, with a strong negative correlation 

of R=-.71. We also find that position pairs with EpiScore values > 1.0 (horizontal dashed line), 

presenting a stronger pairwise dynamic coupling with position S70 compared to the average of the 

individual dynamic coupling, also corresponds to two of the three TEM-1 dual mutants with 

negative epistatic turnover rates (separated by vertical dashed line). Position pair 182-238 represents 

a deviation from this behavior, and position pair 42-104 is a comparative outlier to the overall 

correlation. The deviation of position pair 182-238 may be related to specific catalytic site 

interactions associated with position 238, the only position in which mutation resulted in an increase 

in turnover rate across all eight possible combinations of TEM-1 background. Interestingly, position 

182, present in all position pairs with the three highest EpiScore values, was also the position in 

which mutation resulted in a significantly beneficial effect in the fewest number of possible 

backgrounds [23]. As a control, we also conducted this analysis using the alternative sites 

representing positions immediately adjacent to the four mutation sites (Figure 6B (right)). These 

positions result in a significantly worse correlation with cefotaxime turnover rate epistasis than the 

mutation positions (R = −0.45 as compared to R = −0.71), showing the sensitivity in the EpiScore 

metric to specific positions, regardless of separation distance. 

 

Figure 6. (A) TEM-1 structure showing mutation positions (blue spheres), alternative control 

positions (yellow spheres) and active site S70 (red sphere). ((B) left) EpiScore to active site S70 versus 

epistasis in ln of turnover rate of cefotaxime for β-lactamase TEM-1 mutants [23]. Horizontal dashed 

line divides EpiScore values above and below 1 while vertical dashed line divides positive and 

negative epistasis. EpiScore and epistasis exhibit a strong negative correlation of R = −0.71. EpiScore 

values > 1 (horizontal dashed line), indicating to a stronger pairwise dynamic coupling to position 

S70, also corresponds to two of the three TEM-1 dual mutants with negative epistatic turnover rates 

(separated by vertical dashed line). Position pair 182-238 represents a deviation from this behavior, 

and position pair 42-104 is a comparative outlier to the overall correlation. ((B) right) EpiScore versus 
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ln of turnover rate using the alternative control positions. Although these positions are immediately 

adjacent to the mutation positions, they generate different EpiScore values resulting in a significantly 

worse correlation of R = −0.45. 

3.2. Asymmetry and Epistasis 

In TEM-1, mutational sites which confer incremental changes in biophysical activity are neither 

locally distributed with respect to one another, nor at important functional sites. Furthermore, they 

do not belong to an immediately identifiable allosteric inhibitor site, but they do, however, exhibit 

unique pairwise epistatic behavior which indicates that they likely regulate the active sites 

allosterically. In an effort to analyze whether the pairs having EpiScore less than 1 and associated 

with positive epistasis (a beneficial, cooperative interaction) exhibit long-range communication that 

is distinct from the pairs having EpiScore greater than 1 and associated with negative epistasis, we 

explored the degree of asymmetry in long-range communication between the mutational positions 

and the active site positions using DCIasym. Thus, we calculated DCIasym between each TEM-1 

dual-mutant site and all main active sites for the relevant TEM-1 structure (70, 73, 130, 166, 234, 

Figure 7), excluding the outliers 182-238 and 42-104 from Figure 6B. Here, positive %DCIasym values 

indicate active- site-dominant dynamic coupling, where mutational sites exhibit higher fluctuation 

response when the active site is perturbed. On the other hand, negative %DCIasym values indicate 

mutation-dominant dynamic coupling where perturbations at those positions controls the active site 

fluctuation response. Interestingly, we observe a relationship that provides some mechanical insight 

relating the degree of asymmetry to EpiScore; the dual mutants with EpiScore > 1 to active site S70 

and epistasis < 1 had more instances of mutational-dominant coupling asymmetry, while the reverse 

was true for two of the three dual mutants with EpiScore < 1 and epistasis > 1 (position pair 42-104, 

an outlier in Figure 6B, does not hold to this pattern). This suggests that the epistatic effects captured 

through EpiScore to active site S70 may be compensated via coupling asymmetry to all active sites, 

with dynamic modification of the system ultimately including both effects. A position pair that more 

strongly affects active site S70 via EpiScore also possesses active site-dominant coupling asymmetry 

and vice versa. Taken together with Figure 6B, these data indicate that dual mutants which confer 

less disruption to important active sites (indicated by EpiScore < 1) than their averaged individual 

constituents, and those which are under active site regulation, (indicated by positive %DCIasym) are 

those which display the largest degree of positive epistasis. 

Thus, as a test system, TEM-1 highlights the complex relationship between mutational 

positions, allosteric relationships, and epistatic interplay. These emergent properties of the 

anisotropic residue-residue interaction network within a protein must be accounted for when 

attempting to fully understand or predict mutation outcomes. 

3.3. Unidirectional Communication through DCIasym Creates Cause-Effect Relationships in Allosteric 

Regulations 

Using the dynamical picture presented above, the modulation of protein dynamics through 

mutations (i.e., the fluctuation response to node perturbations within a network) is similar to the 

modulation of dynamics through binding; this is the fundamental principle behind the concept of 

dynamic allostery. With the TEM-1 dual mutation positions showing unique coupling asymmetry to 

the active sites, it follows that there should be an obvious, unidirectional signature between 

allosteric sites and active sites in known allosteric proteins. Here we explore the role dynamic 

coupling directionality plays in allosteric regulations using an ideal model system, Pin1. Pin1 is a 

two-domain protein containing a catalytic PPIase domain and a distally-located WW domain, 

connected by a flexible (and highly disordered) interdomain linker [54–56]. While strictly regulated 

in both function and expression within healthy biological tissue [57], the up-regulation and 

down-regulation of Pin1 is associated with several forms of cancer and Alzheimer’s disease, 

respectively [57–61]. Studies have shown that the activity of the PPIase domain is enhanced when a 

ligand is bound at the non-catalytic WW domain [62,63] and communication between these two 

domains is requisite for proper biological function [55,64–66]. 
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Figure 7. %DCIasym distributions to all TEM-1 active sites (70, 73, 130, 166, 234) for each dual mutant 

position pair along with three-dimensional (3-D) structural representation of mutation sites (blue) 

and active sites (red) excluding the outliers 182-238 and 42-104 from Figure 6B. The first dual mutant 

(104-182, top left) has arrows drawn to indicate the coupling asymmetry, where red is active 

site-dominant and blue is mutation site-dominant. Both dual mutants with negative epistasis in  

turnover rate and EpiScore to position S70 < 1 also had %DCIasym distributions which were, overall, 

mutation site-dominant and, conversely, those with positive epistasis in turnover rate and EpiScore 

to position S70 > 1 exhibited active site-dominant %DCIasym. 

Previous works propose the existence of communication networks between the WW domain 

and the PPIase domain, including a unique allosteric pathway which only becomes active when a 

substrate is bound to the WW domain [62]. A further computational study indicated that pathways 

of communication via force propagation from the PPIase domain to the WW domain changed when 

a ligand was WW domain-bound [67]. 

Applying our asymmetry analysis to binding pocket residues in the catalytic PPIase (%DCIij) 

and non-catalytic WW domains (%DCIji) of Pin1 (PDB ID 3TCZ [7], ligands removed), we calculate 

“%DCIasym” (%DCIij − %DCIji) the coupling asymmetry between PPIase domain binding positions 

(63, 68, 129, 130, 131, 154) and WW domain binding positions (23, 31, 32, 34) (Figure 8). Hence, 

negative values indicate the WW domain position is dominant (blue arrows) whereas positive 

values indicate the PPIase domain position is dominant (red arrows). We see that each of the four 

positions in the WW domain exhibit unique asymmetric coupling with the PPIase domain positions, 

even when the WW domain positions are close to one another. However, with the exception of 

coupling between position 63 and 31, the behavior of the PPIase domain positions is unique to their 

catalytic loop grouping (e.g., {63,68}, {129,130,131}), where each position within a group has the same 

asymmetry directionality to a given WW domain position. Overall, however, the full %DCIasym 

distribution indicates that there is a clear bias toward unidirectionality from the WW domain to the 

PPIase domain; the WW domain is dynamic coupling-dominant over the PPIase domain, with twice 

as many residue pairs exhibiting WW-dominant coupling than the reverse (16/24 vs. 8/24, Figure 

8C). 

This suggests a cause-and-effect relationship exists between the two domains. Using this 

framework, a ligand binding event is modeled as a force perturbation to the binding positions in 

each domain. Upon these random force perturbations, we find that, overall, the WW domain is able 

to induce a stronger perturbation response in the PPIase domain than the reverse. This is largely the 

expected relationship between an allosteric site and a catalytic site; communication between these 

sites should predominantly involve information transfer from the allosteric site to the catalytic site, 
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indicating that %DCIasym can capture communication directionality in allosteric systems from 

structural dynamics encoded within a given set of atomic coordinates. 

 

Figure 8. (A) Graphical representation of coupling asymmetry between PPIase domain binding 

positions (63, 68, 129, 130, 131, 154) and WW domain binding positions (23, 31, 32, 34) where blue 

arrows indicate the WW domain position is dominant and red arrows indicate the PPIase domain 

position is dominant. (B) Explicit values of %DCIasym versus position combinations for position 31 in 

the WW binding domain where values above and below 0 correspond to PPIase or WW domain 

dominating, respectively (a value of 0 corresponds to perfect symmetry). (C) Full distribution of 

%DCIasym values for all four WW domain binding positions and all six PPIase domain binding 

positions where 16 total residue pairs are dominated by the WW domain whereas only eight pairs 

are PPIase domain-dominant. 

4. Conclusions 

In this work we showed how the anisotropic interaction network within a protein captures two 

essential emergent properties of protein evolution—epistasis and communication 

directionality—using the information stored in structural dynamics alone. Additionally, EpiScore 

can capture the behavior of dual-mutation epistatic outcomes with some consistent trends across 

different protein systems. As seen in pfDHFR, mutation pairs with a lower pairwise dynamic 

coupling versus average of individual couplings (EpiScore < 1) to FG loop positions are favorable, as 

dual mutations at these positions may be less likely to disrupt the FG loop’s interaction with the 

functionally critical M20 loop. A similar trend was also observed in the EpiScore analysis of TEM-1 

dual mutants, where lower EpiScore to active site S70 was generally associated with higher positive 

experimental epistasis (R = −0.71) Further, the system-wide EpiScore analysis of GB1 dual mutants 

has shown that the position pairs with average EpiScore values > 1 were associated more frequently 

with negative epistasis, indicating that these positions might ultimately be more disruptive to the 

entire protein when mutated together. Furthermore, when dynamic coupling asymmetry analysis 

was applied via %DCIasym to TEM-1, we found that EpiScore and epistasis both relate to dynamic 

coupling asymmetry, where position pairs which exhibited high EpiScores associated with negative 

epistasis also exhibited mutation-dominant coupling asymmetry. This suggests that %DCIasym and 

EpiScore may both capture factors which contribute towards the biochemical outcome of dual 

mutations. If both mutational sites dominate the dynamics coupling with the active site (i.e., the 

active site responds more to mutational site perturbations), then dual mutations on both sites lead to 

negative epistasis. 
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As modulation of normal modes and protein dynamics is not only a tool used in evolution but 

also a principle exploited via allostery, we used an “ideal” allosteric system, Pin1, and observed the 

dynamic coupling asymmetry between a well-identified allosteric domain and an enzymatically 

active domain exhibits behavior that, as expected, showed the allosteric WW domain to dominate 

communication to the PPIase domain. Overall, these two novel protein dynamics-based metrics 

provide steps to mechanistically describe these complicated interactions, and also shed light on the 

complex anisotropic interaction network which ultimately gives rise to epistasis and allosteric 

regulation. They can be useful to predict mutational outcomes, particularly for those sites distal from 

the active site that can modulate function [68]. 
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