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Coincidence counts and stimulated emission resulting from weak pulsed-field–atom interactions
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The interaction of a single-photon pulse of radiation with an atom or an ensemble of atoms is studied using
a source-field approach. The atom-field interaction is weak insofar as it can be treated in lowest, nonvanishing
order of perturbation theory. The output field intensity and second-order correlation function of the field are
calculated. It is shown that, even when any modification of the atomic dynamics produced by the incident field is
neglected, as a function of the time delay τ between the incident field pulse and the field radiated by the atom(s),
there is a “bump” in the time-integrated second-order correlation at τ = 0. The increase in coincidence counts
for τ = 0 can be interpreted in terms of Hanbury Brown and Twiss–type interference. By looking at the field
intensity, we show that the bump has no direct relation with stimulated emission—it occurs even when the input
field is attenuated. In recent down conversion experiments, an increase in coincidence counts has been attributed
to stimulated emission—we comment on the validity of such an interpretation in light of our results.
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I. INTRODUCTION

Any study of atom-field interactions would not be complete
without the inclusion of spontaneous and stimulated emission.
In his 1917 paper [1], Einstein introduced his famous A and
B coefficients, with the A coefficient associated with sponta-
neous emission and the B coefficient with either absorption or
stimulated emission (both referred to as “changes of state due
to irradiation” by Einstein). Although the underlying origin
of spontaneous and stimulated emission is well understood,
there does not seem to be a universal definition as to what
constitutes stimulated emission. Most definitions relate to
processes in which atom-field interactions lead to an increase
in the field intensity of an input field, although some are
somewhat more restrictive insofar as they require the increase
in the field intensity to occur in the same spatiotemporal
mode of the input field [2]. Moreover, when the incident
field drives atomic transitions having frequency ω0, stimulated
emission is often referred to as a process in which each
excited atom imparts an extra energy of h̄ω0 to the field.
Clearly, both of these criteria apply to stimulated emission
in the Jaynes-Cummings model [3], since there is only one
spatial field mode. They also apply (approximately) when a
π pulse is incident on a two-level atom that is prepared in its
excited state, provided the pulse duration is much less than the
lifetime of the excited state. In that case, the average energy
in the field is increased by h̄ω0 and the spatiotemporal form
of the output field mode, while not exactly the same as that
of the input field, can approximate it to a high degree. In
general, however, the stimulated emission that occurs when
an arbitrary pulse is incident on an atom or atoms prepared
with a population inversion does not produce an output field
mode that is in the same spatiotemporal mode as the input. We
might point put that, even in chiral wave guides [4], when an
n-photon pulse incident on an atom in its excited state results
in an (n + 1)-photon output pulse, the output field mode is

never in exactly the same spatiotemporal mode as the input
field.

Atom-field interactions result not only in a change in the
intensity of the incident field, they also lead to an output field
whose second-order correlation function differs from that of
the incident field. The most dramatic situation occurs when
a single-photon probe pulse is incident on a two-level atom
prepared in an arbitrary initial state at t = 0. Clearly, the
second-order correlation function vanishes for the incident
field since it corresponds to a single-photon state. However,
for times t > 0, the output field state has a two-photon compo-
nent. As a result, the second-order correlation function of the
output field does not vanish, in general. In a recent experiment
[5] involving phase-matched emission from an ensemble of
three-level atoms, the second-order time-integrated correla-
tion function of the output field was measured as a function
of the delay τ between the input probe pulse and the atomic
emission. An increase in the second-order time-integrated
correlation function that occurred for τ = 0 was attributed to
constructive Hanbury Brown and Twiss (HBT) [6] or Hong-
Ou-Mandel (HOM) [7] interference. Both HBT and HOM
fall into the general category of two-photon interference, a
subject that has been discussed extensively by many authors
[8]. We are concerned here with HBT interference associated
with pulsed fields from independent sources—in such cases,
HBT interference is a type of intensity-intensity interference
that can occur only for overlapping pulses.

Although stimulated emission involves a change in the
field intensity and does not directly relate to the second-order
correlation function, there can be correlations between the two
processes. In fact, several authors [9] explain an increase in
coincidence counts observed in down-conversion experiments
(equivalent to the nonvanishing of the second-order corre-
lation function) in terms of stimulated emission processes.
You might then ask, “Is the increase in coincidence counts a
consequence of stimulated emission?” To help clarify some of
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these issues, we consider a number of simple physical systems
in which a single photon probe pulse is incident on an atom (or
ensemble of atoms) that can itself radiate a pulsed field, even
in the absence of the probe field. In each case we calculate
the spatiotemporal intensity of the output field to see if it
matches that of the incident pulse. Moreover, we calculate the
time-integrated second-order correlation function for the total
output field. We see that there can be an increase in the time-
integrated second-order correlation function when the input
pulse overlaps with the field radiated from the atom(s), even
though stimulated emission is either absent or negligible in the
cases to be considered. This increase is interpreted as arising
from HBT-like interference.

Specifically, we look at three scenarios. In the first, a
single-photon pulse is incident on a two-level atom prepared
in an arbitrary initial state. As a function of the time delay
τ between the incident probe field and the atomic emission,
we show that there can be a twofold increase in the time-
integrated second-order correlation function, even in situa-
tions where the probe field intensity is reduced as a result of
the atom-field interaction. In the second scenario, we consider
a single-photon pulse incident on a three-level atom that is
driven by a classical pump field in a Raman configuration.
This level scheme offers several advantages. Owing to off-
resonant driving by the pump field, Raman emission occurs
only for times when the pump field interacts with the atom.
The probe field always experiences stimulated emission in
this scenario. To make some connection with the type of
calculations used to explain down conversion experiments,
we use both a source-field approach [10] and a state-vector
approach to obtain the output field intensity. We find that
subtle problems arise in the state vector approach. In particu-
lar, when the state vector is evaluated in lowest nonvanishing
order of perturbation theory (as is typically done in analyses
of down conversion experiments [9]), a spurious term appears.
It is necessary to include higher-order corrections to the state
vector to recover the correct result. Moreover, the spatiotem-
poral dependence of the amplified output field is not the same
as the input field. Finally, we analyze a scenario in which
classical fields and a single-photon pulse are incident on an
atomic ensemble, resulting in phase-matched emission. In this

case, we show that any stimulated emission depends linearly
on the atomic density, whereas the second-order correlation
function varies as the square of the atomic density. In all
cases, we adopt a one-dimensional model for the incident
pulsed field and assume that a weak-coupling approximation
is valid—atom-field interactions are treated in lowest-order
perturbation theory.

II. SINGLE-PHOTON PULSE INCIDENT ON A
TWO-LEVEL ATOM

Consider a single atom fixed at the origin having a J = 0
ground state and a J = 1 excited state. The ground state
eigenket is denoted by |1〉 and the m = 0 sublevel of the
excited state eigenket by |2〉, with the frequency separation
of the levels equal to ω0. A single-photon pulse having central
frequency ω̄ = k̄c ≈ ω0 is incident on the atoms. The state
vector associated with the atom-pulse system at time t = 0
can be written as

|ψ (0)〉 =
∑
k

(β1|1〉 + β2|2〉)bk|1k〉, (1)

where |1k〉 is the eigenket associated with a single photon in
mode k, β1 and β2 are initial atomic state amplitudes, and bk
is the initial field state amplitude for mode k. We have made
a paraxial approximation and neglected diffraction. That is,
we assume that the initial pulse has cross-sectional area A,
polarization uz and propagates in the ux direction (the u’s are
unit vectors). A lossless, 50:50 beam splitter having cross-
sectional area A is located on the X axis a distance XB from the
atom and splits the output field into fields propagating in the X
and Y directions. Detectors are placed on the X and Y axes an
equal distance D � XB from the beam splitter. Coincidences
are recorded of a photo count at one of the detectors at time t1
and the other at time t2. Our system is intended to model the
collection mode of a single-mode fiber.

With this geometry, the rate of coincidence counts, nor-
malized to the field intensity at each of the detectors, is
given approximately by the second-order correlation function,
defined by

g(2)(XB, t1, t2) = 〈E−(XB, t1)E−(XB, t2)E+(XB, t2)E+(XB, t1)〉
〈E−(XB, t1)E+(XB, t1)〉〈E−(XB, t2)E+(XB, t2)〉 , (2)

where E+(X, t ) = [E−(X, t )]† is the positive frequency component of the field operator at position X at time t . It has been
assumed implicitly that the field amplitudes can be taken as constant over the area of the beam splitter allowing us to evaluate
all fields on the X axis. We are also interested in the time-integrated correlation function, defined as

g(2)(XB) =
∫
dt1

∫
dt2〈E−(XB, t1)E−(XB, t2)E+(XB, t2)E+(XB, t1)〉[∫

dt〈E−(XB, t )E+(XB, t )〉
]2 . (3)

In effect, this expression corresponds to the normalized, time-
integrated number of coincidence counts measured at the
detectors.

To calculate g(2), we use source-field theory [10] and write
the field operator as

E+(XB, t ) = E+(tr ) = E (0)
+ (tr ) + E (Source)

+ (tr ), (4)

where

E (0)
+ (t ) = i

∑
k

(
h̄ωk

2ε0AL

)1/2

ake
−iωkt

≈ i

(
h̄

μ

)1/2
√

γ ′
2c

Lω0

∑
k

√
ωkake

−iωkt , (5)
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E (Source)
+ (t ) = i

h̄γ ′
2

μ
σ−(t )e−iω0t , (6)

where μ is the dipole matrix element between the ground and
excited state (assumed real and positive), ak is a lowering
operator for the field mode k, ωk = kc, σ−(t ) is an atomic
lowering operator in an interaction representation,

tr = t − XB/c (7)

is a retarded time, and AL is the quantization volume. The
quantity γ ′

2 is defined by

γ ′
2 = ω0μ

2

2h̄ε0Ac
= 3π

2

c2

ω2
0A

γ2, (8)

where γ2 is the spontaneous decay rate on the 2–1 transi-
tion. The ratio γ ′

2/γ2 represents the fraction of spontaneous
emission that goes into the mode volume of the detector. The
weak coupling approximation essentially boils down to the
assumption that γ ′

2/γ2 ∼ 1/k20A � 1.
We assume that only those values of k in Eq. (5) that

are sharply peaked about k = k̄ ≈ k0 contribute significantly
when expectation values are taken. As a consequence, we can
replace

√
ωk by

√
ω0 in Eq. (5). The correlation functions are

given by

g(2)(t1, t2) = 〈E−(t1)E−(t2)E+(t2)E+(t1)〉
〈E−(t1)E+(t1)〉〈E−(t2)E+(t2)〉 (9)

and

g(2) =
∫
dt1

∫
dt2〈E−(t1)E−(t2)E+(t2)E+(t1)〉
[
∫
dt〈E−(t )E+(t )〉]2 , (10)

where all times appearing in these expressions are retarded
times. From this point onwards, unless noted otherwise, all
times t that appear in equations correspond to the retarded
time t − XB/c. That is, for a beam splitter at X = XB, the
second-order correlation function g(2)(XB, t1, t2) depends only
on the retarded times t1,2 − XB/c. Similarly the field intensity
I (XB, t ) at the detector is a function only of the retarded time
t − XB/c and will be written as I (t ).

It is assumed that the atom-input field interaction is weak,
that is, to lowest order, all atom-input field interactions are
neglected. In other words, the atomic operators evolve as
if the input pulse was absent-the atom interacts only with

the vacuum field and undergoes spontaneous decay into all
directions, such that

σ−(t ) ≈ σ
(0)
− (t ) = σ−(0)e−γ t
(t ), (11)

where γ = γ2/2 and 
 is a Heaviside function. It is then a
simple matter to calculate the dimensionless intensity at the
beam splitter as

I (0)N (t ) = I (0)(t )

h̄ω0γ2
= 2ε0cA

h̄ω0γ2
〈E−(t )E+(t )〉

= c

γ2L

∣∣∣∣∣
∑
k

e−i(ωk−ω̄)t bk

∣∣∣∣∣
2

+ γ ′
2

γ2
|β2|2e−γ2t
(t ), (12)

where Eqs. (5), (6), and (8) were used. Although the atom
undergoes spontaneous emission in all directions, only a
fraction γ ′

2/γ2 of this emission goes into the mode volume of
the detector.

We transform to continuous variables using the prescrip-
tion ∑

k

→ L

2π

∫ ∞

−∞
dk; bk →

(
2π

L

)1/2

b(k) (13)

to obtain

I (0)N (t ) = 1

γ2
| f (t )|2 + γ ′

2

γ2
|β2|2e−γ2t
(t ), (14)

where

f (t ) ≈
√

c

2π

∫ ∞

−∞
dk b(k)e−i(k−k̄)ct (15)

is normalized such that∫ ∞

−∞
dt | f (t )|2 = 1. (16)

The quantity | f (t )|2 is the temporal profile of the average
field intensity measured at the detectors at time t + XB/c and
|b(k)|2 is proportional to the spectral density of the pulse. To
this order of approximation, the field intensity is simply the
sum of the intensities of the incident field and the field radiated
by the atom. Stimulated emission or absorption of the incident
field is absent since we have neglected interactions between
the incident probe field and the atom. The second term in
Eq. (14) is of order γ ′

2/γ2 smaller than the first and can be
neglected.

In a similar manner, using Eqs. (4)–(6), we can calculate

〈E−(t1)E−(t2)E+(t2)E+(t1)〉 =
(

h̄ω0

2ε0A

)(
h̄γ ′

2

μ

)2 |β2|2
γ2c

[| f (t1)|2|w(t2)|2 + | f (t2)|2|w(t1)|2 + 2Re[ f ∗(t1)w(t1) f (t2)w
∗(t2)]], (17)

where

w(t ) = √
γ2e

−γ t
(t ) (18a)

and Eqs. (5), (6), and (8) were used. Note that w(t ) has been defined such that∫ ∞

−∞
dt |w(t )|2 = 1. (19)

Combining Eqs. (9), (10), (12), and (17), we obtain

g(2)(t1, t2)=γ ′
2

γ2
|β2|2 | f (t1)|2|w(t2)|2 + | f (t2)|2|w(t1)|2 + 2Re[ f ∗(t1)w(t1) f (t2)w∗(t2)]

| f (t1)|2| f (t2)|2
(20)
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and

g(2) = 2
γ ′
2

γ2
|β2|2

(
1 +

∣∣∣∣
∫ ∞

−∞
dt f (t )w∗(t )

∣∣∣∣
2
)

. (21)

The terms involving f (t )w∗(t ) can be interpreted as con-
structive HBT interference, with the maximum value of g(2)

obtained if f (t ) = w(t ). The origin of this interference term
can be traced to terms in Eq. (17) of the form

〈E (0)
− (t1)E

(Source)
− (t2)E

(0)
+ (t2)E

(Source)
+ (t1)〉 or

〈E (Source)
− (t1)E

(0)
− (t2)E

(Source)
+ (t2)E

(0)
+ (t1)〉,

which are nonvanishing only for overlapping pulses. In effect,
HBT terms of this nature are responsible for all the interfer-
ence effects discussed in this paper. To examine the qualitative
dependence of g(2) on pulse characteristics, we choose an
exponentially decreasing pulse envelope,

fexp(t ) =
√

�e−i�t e−�(t−t0 )/2
(t − t0), (22)

with t0 = −X0/c > 0 and

� = ω̄ − ω0. (23)

This corresponds to a pulse having bandwidth � and central
frequency ω̄, whose wave front is located a distance X0 to the
left of the atom at t = 0. In that case,

g(2) = 2
γ ′
2

γ2
|β2|2

(
1 + 4�γ2e−γ2t0

(� + γ2)2 + 4�2

)
. (24)

There is a factor of two “bump” in g(2) when � = 0; t0 = 0;
� = γ2, compared to the case when either γ2t0 � 1 or |�| �
γ2 or � � γ2. Corrections to g(2) resulting from atom-input
field interactions have been neglected are smaller by a factor
of order γ ′

2/γ2 � 1. Thus, the bump in g(2) can be explained
entirely as a result of constructive HBT interference.

Field intensity

You might ask whether the bump is correlated with stim-
ulated emission; that is, are the optimal conditions for pro-
ducing the bump the same as those for maximizing the field
intensity in the forward direction. To answer this question,

we must calculate how the field intensity given in Eq. (14)
is modified by atom-input field interactions. The Hamiltonian
in an interaction representation is

HI (t ) = h̄g
∑
k

[σ+(t )ak (t )e−i(ωk−ω0 )t− a†k (t )σ−(t )ei(ωk−ω0 )t ],

(25)

where

g = −i

(
ω0

2h̄ε0AL

)1/2

μ = −i

√
γ ′
2

c

L
(26)

is a coupling constant and ak (t ) is an interaction representa-
tion Heisenberg operator. Using standard techniques [10], we
find that the time evolution equation for σ+ is

σ̇+ = ig
∑
k

a†k[σ22(t ) − σ11(t )]e
i(ωk−ω0 )t − γ σ+(t )

≈ ig
∑
k

a†k[2σ22(0)e
−γ2t
(t )−1]ei(ωk−ω0 )t − γ σ+(t ), (27)

where a†k ≡ a†k (0). Including the lowest-order corrections to
σ+(t ) produced by the probe field, we find

σ+(t ) ≈ σ+(0)e−γ t
(t )

+ ig
∑
k

a†k

∫ t

0
dt ′ei(ωk−ω0 )t ′e−γ (t−t ′)

× [2σ22(0)e
−γ2t ′ − 1]
(t ). (28)

When this is substituted into Eqs. (6) and (4), and the sums
converted to integrals, we obtain

IN (t ) = I (0)N (t ) + γ ′
2

γ2

(
f (t )

∫ t

0
dt ′ f ∗(t ′)e−γ (t−t ′)

× [2|β2|2e−γ2t ′ − 1] + c.c.

)
, (29)

where

I (0)N (t ) = 1

γ2
| f (t )|2 + γ ′

2

γ 2
2

|β2|2|w(t )|2. (30)

For the specific choice of f (t ) given in Eq. (22),

IN (t ) = �

γ2
e−�(t−t0 )
(t − t0) + γ ′

2

γ2
e−γ2t
(t ) + 8
(t − t0)�γ ′

2|β2|2
γ2[(� + γ2)2 + 4�2]

×
[
(γ2 + �){cos [�(t − t0)]e−γ (t+t0 )e−�(t−t0 )/2 − e−γ2t e−�(t−t0 )}

+2� sin [�(t − t0)]e−γ (t+t0 )e−�(t−t0 )/2

]

− 4
(t − t0)�γ ′
2

γ2[(� − γ2)2 + 4�2]

[
(� − γ2){cos [�(t − t0)]e−(γ+�)(t−t0 )/2 − e−�(t−t0 )}

+2� sin [�(t − t0)]e−(γ+�)(t−t0 )/2

]
. (31)

Even if the atom is excited initially (β2 = 1) and the probe field is chosen so that its spatiotemporal profile mirrors that of the
atomic emission (� = γ2, � = 0, t0 = 0), the output field intensity,

IN (t ) ∼ e−γ2t
(t ) + γ ′
2

γ2
e−γ2t
(t ) + 2

γ ′
2

γ2

(t )e−γ2t [2

(
1 − e−γ2t

) − γ2t], (32)

does not match that of the input probe field.
The (dimensionless) total energy deposited into the detector mode is

WN = γ2

∫ ∞

0
IN (t )dt = 1 + γ ′

2

γ2
|β2|2 + γ ′

2

γ2

4γ2
(�+γ2)2+4�2

[2�|β2|2e−γ2t0 − (γ2 + �)]. (33)
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FIG. 1. Level scheme for Raman excitation. The central fre-
quency of the pump pulse is ωL = ω21 + δ and that of the probe pulse
is ω̄ = ωL − ω1′1.

The change in the incident pulse energy is of order γ ′
2/γ2 � 1.

Note that if � = 0; |β2|2 = 1; t0 = 0; � = γ2 (conditions to
optimize the coincidence count bump), the interference term
vanishes! In fact, to maximize the intensity you need to take
� = 0; |β2|2 = 1; t0 = 0; � = 3γ2, conditions which leads to
a much smaller coincidence count rate than the optimal one.
As long as ρ22(0) = |β2|2 �= 0, the coincidence count bump is
maximal if � = 0; t0 = 0; � = γ2, regardless of whether or
not the interference term is positive (stimulated emission) or
negative (absorption).

However, the bump height in WN resulting from
stimulated processes when the pulses overlap is equal to
the corresponding bump height in g(2). Although the increase
in g(2) when the pulses overlap in this case is not caused
by stimulated emission, it is correlated with the increased
intensity produced by stimulated processes. In some sense, the
increase in coincidence counts is not classic HBT insofar as
absorption or stimulated emission accompanies the increase
in coincidence counts, but any modification of g(2) produced
by absorption or stimulated emission is negligibly small.

III. SINGLE-ATOM RAMAN CONFIGURATION

Next we consider the Raman scheme shown in Fig. 1 for a
three-level atom having states |1〉, |1′〉, and |2〉. States |1〉 and
|1′〉 have the same parity, which is opposite that of state |2〉. A
classical pulsed field having central frequency ωL drives the
1–2 transition in an atom that is located at X = 0. This pump
field is detuned from the atomic transition by an amount δ =
ωL − ω21 � γ2, where γ2 is the excited state decay rate. In the
absence of any input fields, there is Raman emission centered
at frequency ω̄ = ωL − ω1′1. An input single-photon pulse
field is incident along the X axis, whose central frequency is
taken to be equal to ω̄. This physical system, while not the
same as that encountered in down-conversion experiments,
shares many of its properties.

As in the previous section, we use an effective 1-D Hamil-
tonian which, in the interaction representation, can be taken as

HI (t ) = h̄[χ (t )σ21(t )e
−iδt + χ∗(t )σ12(t )e

iδt ]

+ h̄g1
∑
k

σ21′ (t )ak (t )e
−i(ωk−ω21′ )t

− a†k (t )σ1′2(t )e
i(ωk−ω21′ )t , (34)

where χ (t ) is one half the Rabi frequency associated with the
classical pump field that drives the 1–2 transition, the σ (t )’s
are raising or lowering interaction representation Heisenberg
operators,

g1 = −i

(
ω21′

2h̄ε0AL

)1/2

μ21′ = −i

√
γ ′
2,1′

c

L
(35)

and

γ ′
2,1′ = ω21′μ2

21′

2h̄ε0Ac
= 3π

2

1

k221′A
γ2,1′ , (36)

where μ21′ is a dipole moment matrix element (assumed real
and positive). The quantity γ2,1′ is the spontaneous decay
rate on the 2–1′ transition and γ ′

2,1′/γ2,1′ is the fraction of
spontaneous emission on the 2–1′ transition that goes into the
mode volume of the detector, which itself is matched to the
mode volume of the single-photon input probe pulse. Terms
involving vacuum field interactions on the 2–1 transition
have not been included. Such terms give rise to Rayleigh
scattering of the pump field, which is not of interest here. The
corresponding source-field result in this 1D model is

E+(t ) = E (0)
+ (t ) + E (Source)

+ (t ), (37)

where

E (0)
+ (t ) = i

h̄

μ21′

√
c

L
γ ′
2,1′

∑
k

ake
−iωkt , (38)

E (Source)
+ (t ) = i

h̄

μ21′
γ ′
2,1′σ1′2(t )e

−iω21′ t . (39)

Recall that all times are actually retarded times.

A. Equations of motion

Perturbation theory is used and only those terms are re-
tained that lead to nonzero values when expectation values
are taken with an initial state vector

|ψ (0)〉 =
∑
k

bka
†
k |1; 0〉, (40)

where |1; 0〉 is the eigenket for the atom to be in level 1 and
the field to be in its vacuum state. Moreover, we set

σ11(t ) ≈ σ11(0) = 1. (41)

The classical pump pulse is taken to be a smooth pulse
starting at t = 0 and ending at time T , with δT � 1 and δ �
γ2. As such the excited state amplitude adiabatically follows
the classical pulse and

σ21(t ) ≈ χ∗(t )eiδt

δ
. (42)

The equations of motion for the other operators that will be
needed are

σ̇1′2(t ) = −iχ (t )e−iδtσ1′1(t ); (43a)

σ̇1′1(t ) = ig1
∑
k

ake
−i(ωk−ω21′ )tσ21(t )

≈ ig1
χ∗(t )

δ

∑
k

ake
−i(ωk−ω̄)t . (43b)
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In these expressions, terms have been neglected that corre-
spond to any off-resonant driving of the 1′–2 transition by the
probe field in the absence of the classical field.

B. g(2)

To evaluate g(2), we neglect all atom-probe field interac-
tions. In that case,

σ1′2(t ) ≈ χ (t )

δ
e−iδtσ1′1(0). (44)

Then the calculation proceeds exactly as before [note that σ21′ (t )σ1′2(t ) ∼ σ11′ (0)σ1′1(0) = σ11(0) ≈ 1] and we find

g(2)(t1, t2) = γ ′
2,1′

�R

| f (t1)|2|wR(t2)|2 + | f (t2)|2|wR(t1)|2 + 2Re
[
f ∗(t1)wR(t1) f (t2)w∗

R(t2)
]

| f (t1)|2| f (t2)|2
, (45)

where

wR(t ) =
√

�R
χ (t )

δ

(t ), (46)

�−1
R =

∫ ∞

0
dt

|χ (t )|2
δ2

, (47)

and f (t1) is defined in Eq. (15). Note that, as defined,∫ ∞

−∞
dt |wR(t )|2 = 1. (48)

The time-integrated correlation function is

g(2) = 2
γ ′
2,1′

�R

(
1 +

∣∣∣∣
∫ ∞

0
dt f (t )w∗

R(t )

∣∣∣∣
2
)

. (49)

Clearly, if you match the temporal profile of the input pulse
with that of the classical field, you will get twice the coinci-
dence counts when the pulses overlap compared to the case
when they do not overlap. Thus, just as in the previous case,
the increase in coincidence counts can be attributed to HBT
interference.

C. Field Intensity

Although the increase in coincidence counts is not linked
directly to stimulated emission, we would like to see to what
extent stimulated emission is present in this Raman configu-
ration. To do so we must calculate the field intensity. Such a
calculation can be carried out in two ways—the easy way and
the hard way.

1. Source-field approach

The easy way is to use the source-field approach to evaluate

I (t ) = 2ε0cA〈[E (0)
− (t )+E (Source)

− (t )][E (0)
+ (t )+E (Source)

+ (t )]〉,
(50)

where the field operators are defined in Eqs. (38) and (39).
If atom-input field interactions are neglected, then the cross
terms vanish and

I (0)N (t ) ≡ I (0)(t )

h̄ω21′�R
= | f (t )|2

�R
+ γ ′

2,1′

�2
R

|wR(t )|2. (51)

The integrated dimensionless intensity is

W (0)
N = �R

∫ ∞

0
I (0)N (t )dt = 1 + γ ′

2,1′

�R
. (52)

To evaluate the effects of atom-input field interactions, we
must solve Eq. (43) to next order. Doing so, we find

δσ1′2(t ) = ig1
χ (t )

δ2
e−iδt

∫ t

0

∑
k

akχ
∗(t ′)e−i(ωk−ω̄)t ′dt ′. (53)

Using this result in Eq. (50), we find that the cross terms give
an additional contribution, leading to a total dimensionless
intensity given by

IN (t ) = | f (t )|2
�R

+ γ ′
2,1′

�2
R

|wR(t )|2

+ 2
γ ′
2,1′

�2
R

Re

[
f ∗(t )wR(t )

∫ t

0
f (t ′)w∗

R(t
′)dt ′

]
. (54)

The integrated dimensionless intensity is

WN = 1 + γ ′
2,1′

�R
+ γ ′

2,1′

�R

∣∣∣∣
∫ ∞

0
f (t )w∗

R(t )dt

∣∣∣∣
2

. (55)

The intensity at time t is a function only of the retarded time,
as is to be expected. The “interference” term always represents
gain, insofar as its time integral is always positive. There is a
bump in the dimensionless integrated intensity that is equal to
1/2 the bump height in g(2). As in the first example, the output
field intensity does not have the same spatiotemporal shape as
the input probe field intensity.

2. State vector approach

The details of the this calculation are given in Appendix A.
Here we simply summarize the results. In a state vector ap-
proach, the field operators are time-independent Schrödinger
operators and all the time dependence is in the state vector.
When the state vector is calculated to order |χ (t )|/δ, the
resultant change in field intensity, which is of order |χ (t )|2/δ2,
has spurious terms. For example, if the probe pulse does not
overlap with the pump pulse, then the intensity calculated in
this fashion has a term that corresponds to gain for the probe
pulse, which is physically impossible under these conditions.
Moreover, the contribution to the change in the integrated
intensity in this limit is twice the correct result! It is necessary
to go to order |χ (t )|2/δ2 in the state vector to get the correct
result for the intensity to order |χ (t )|2/δ2. The interference
term between the zeroth order and the |χ (t )|2/δ2 contributions
to the state vector removes the spurious terms in the field
intensity and restores the correct result given in Eq. (54).
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IV. PHASE-MATCHED EMISSION

The correlation functions associated with phase-matched
emission from an atomic ensemble differ in a qualitative
manner from those that have been considered so far. To illus-
trate the underlying physics, we consider one of the simplest
types of phase-matched emission involving only stimulated
emission, nondegenerate four-wave mixing. The level scheme
is the same as for the single-atom Raman case shown in Fig. 1.
At time t = 0, a pump pulse is applied, consisting of two
classical field pulses propagating in the ±X direction that
arrive simultaneously in the sample. The fields comprising
this pump pulse have propagation vectors k0A and k0B and
frequencies ω0A = k0Ac and ω0B = k0Bc, with

(ω0A − ω0B) − ω1′1 ≈ 0. (56)

For an N-atom ensemble, the pump pulse prepares the initial
atomic state vector,

|ψ (0)〉A =
N∏
j=1

(α|1〉 j + β|1′〉 jeik0·R j ), (57)

where the effective propagation vector is

k0 = k0A − k0B. (58)

Levels 1 and 1′ are two sublevels of the ground state manifold,
such that k1′1 = ω1′1/c can be set equal to zero. It is assumed
that |β|2 � 1.

Following excitation, a second pump field arrives on the
sample and drives the 1 − 2 transition in each atom. This field
has propagation vector kD ≈ k0A, frequency ωD = kDc, and
can lead to phase-matched emission on the 1′–2 transition
having propagation vector ks = kD − k0 and frequency ωs =
ωD, provided ωs ≈ ksc. That is, the requirement for phase
matching is |kD − k0|c ≈ ωD. To separate the Raman emis-
sion from the second pump pulse alone, we take k0A ≈ −k0B,
such that k0 ≈ 2k0A and ks ≈ −k0A. It is assumed that the
pump pulses interact individually with each atom - that is, the
atomic density is sufficiently low to neglect any cooperative
effects between the atoms.

In addition to the pump pulses, there is a single-photon
pulse incident in the ks direction having central frequency
ωs. We want to see if this pulse is amplified by the medium
and how any amplification is related to the second-order cor-
relation function of the outgoing fields in the phase-matched
direction.

Using an effective 1D model for the probe field, the Hamil-
tonian in the interaction representation can be taken as

HI (t ) = +h̄
N∑
j=1

[
χD(t )σ

( j)
21 (t )e

−iδt eikD·R j

+ χ∗
D(t )σ

( j)
12 (t )e

iδt e−ikD·R j
]

+ h̄g1

N∑
j=1

∑
k

σ
( j)
21′ (t )ak (t )e

ikk̂s·R j e−i(ωk−ω21′ )t

− h̄g1

N∑
j=1

∑
k

a†k (t )e
−ikk̂s·R jσ

( j)
1′2 (t )e

i(ωk−ω21′ )t , (59)

where χD(t ) is one half the Rabi frequency associated with
the classical pump field that drives the 1–2 transition,

δ = ωD − ω21, (60)

is an atom-field detuning, the σ (t )’s are raising or lowering
interaction representation Heisenberg operators, and g1 and
γ ′
2,1′ are defined in Eqs. (35) and (36), respectively. It is

assumed that any population in level 2 can be neglected. The
only emission on the 1′–2 transition that we consider is linked
to the 1–1′ coherence created by the pump field that led to the
initial state given in Eq. (57).

The corresponding source-field result for this 1D model is

E+(t ) = E (0)
+ (t ) + E (Source)

+ (t ), (61)

where

E (0)
+ (t ) = i

h̄

μ21′

√
c

L
γ ′
2,1′

∑
k

ake
−iωkt , (62)

E (Source)
+ (t ) = i

h̄

μ21′
γ ′
2,1′

N∑
j=1

σ
( j)
1′2 (t )e

−iω21′ t e−ik21′ ·R j , (63)

and

k21′ = k21′R/R = k21′

ks
ks ≈ ks,

All times are retarded times relative to the center of the
sample. The vector k21′ is in the direction of ks since the
detector is placed in the phase-matched direction.

A. Equations of motion

Perturbation theory is used and only those terms are re-
tained that lead to nonzero values when expectation values
are taken with an initial state vector

|ψ (0)〉 =
∑
k

bka
†
k |1; 0〉, (64)

where |1; 0〉 is the eigenket for all the atoms to be in level 1 and
the field to be in its vacuum state. The sum over k is restricted
to the direction of phase-matched emission and ωk = kc is
centered at the central frequency ωs of the phase-matched
emission. Moreover, we set

σ
( j)
11 (t ) ≈ σ

( j)
11 (0

+) ≈ 1; (65)

σ
( j)
1′1 (0

+) ≈ σ
( j)
1′1 (0) + β∗e−ik0·R j , (66)

where 0+ is the time immediately following the initial excita-
tion pulse. In other words, the initial pulse creates a phased,
off-diagonal atomic operator.

The classical pump pulse having (half) Rabi frequency
χD(t ) is taken to be a smooth pulse starting at t = 0 and
ending at time T , with δT � 1 and δ � γ2 = γ2,1 + γ2,1′ . The
equations of motion for the operators that will be needed are

σ̇
( j)
1′2 (t ) = −iχD(t )e

ikD·R j e−iδtσ
( j)
1′1 (t ); (67a)

σ̇
( j)
1′1 (t ) = −iχ∗

D(t )σ
( j)
1′2 (t )e

iδt e−ikD·R j

+ ig1

N∑
j=1

∑
k

σ
( j)
21 (t )ak (t )e

ikk̂s·R j e−i(ωk−ω21′ )t ;

(67b)

033824-7



P. R. BERMAN AND A. KUZMICH PHYSICAL REVIEW A 101, 033824 (2020)

σ̇
( j)
12 (t ) = −iχD(t )e

−iδt eikD·R j

−ig1
∑
k

σ
( j)
11′ (t )ak (t )e

ikk̂s·R j e−i(ωk−ω21′ )t , (67c)

along with the adjoints of these equations. Terms involving
population operators σ

( j)
22 and σ

( j)
1′1′ have been suppressed.

B. Second-order correlation function

First, we neglect all atom-input field interactions and retain
only terms linear in |χD|. In that approximation,

σ
( j)
1′2 (t ) ≈ χD(t )e−iδt

δ
eikD·R jσ

( j)
1′1 (t ); (68a)

σ
( j)
1′1 (t ) ≈ σ

( j)
1′1 (0) ≈ σ

( j)
1′1 (0) + β∗e−ik0·R j . (68b)

By combining Eqs. (63) and (68), we see that

E (Source)
+ (t ) = i

h̄

μ21′
γ ′
2,1′

N∑
j=1

χD(t )e−iδt

δ
e−iω21′ t eikD·R j e−ik21′ ·R j

× [
σ
( j)
1′1 (0) + β∗e−ik0·R j

]
. (69)

The term proportional to σ
( j)
1′1 (0) is similar to the one we

encountered for Raman emission from a single atom. Since
kD − k21′ ≈ k0, this term is not phase-matched. The second
term is phase-matched and leads to a contribution that is of
order N |β|2 times larger than the σ

( j)
1′1 (0) term. We assume

that

N |β|2 � 1, (70)

so that the phase-matched term is dominant. For perfect phase
matching,

E (Source)
+ (t ) ≈ i

h̄N

μ21′
γ ′
2,1′

χ1(t )e−iδt

δ
e−iω21′ tβ∗. (71)

Then, following the same procedure used in the previous cases we find

g(2)(t1, t2) = γ ′
2,1′

�pm

| f (t1)|2|wpm(t2)|2 + | f (t2)|2|wpm(t1)|2 + 2Re[ f ∗(t1)wpm(t1) f (t2)w∗
pm(t2)]

| f (t1)|2| f (t2)|2 , (72)

where

wpm(t ) = N
√

�pm
χD(t )

δ
β∗
(t ), (73)

�−1
pm = N2|β|2

∫ ∞

0
dt

∣∣χD(t )
∣∣2

δ2
, (74)

f (t ) is defined in Eq. (15), and∫ ∞

−∞
dt

∣∣wpm(t )
∣∣2 = 1. (75)

Note that g(2)(t1, t2) is proportional to N2. The time-integrated
correlation function is

g(2) = 2
γ ′
2,1′

�pm

(
1 +

∣∣∣∣
∫ ∞

0
dt f (t )w∗

pm(t )

∣∣∣∣
2
)

. (76)

As in the Raman case, if you match the temporal profile of
the input pulse with that of wpm(t ), then you will get twice the
coincidence counts when the pulses overlap compared to the
case when they do not overlap. The increase in coincidence
counts that can be attributed to HBT interference.

C. Field intensity

If we neglect interactions between the probe and the atoms
and neglect absorption of the probe field, then the dimension-
less field intensity is simply the sum of the contributions from
the atoms and the probe field,

I (0)N (t ) = I (0)(t )

h̄ω21′�pm
= | f (t )|2

�pm
+ γ ′

2,1′

�2
pm

|wpm(t )|2. (77)

The integrated dimensionless intensity is

W (0)
N = �pm

∫ ∞

0
I (0)N (t )dt = 1 + γ ′

2,1′

�pm
. (78)

Atom-input field interactions modify this result primarily
in two ways. First there is the same type of stimulated
emission that we encountered in the Raman problem. If the
inequality in Eq. (70) is satisfied, then this contribution,
proportional to N , can be neglected. In addition there can
be some decrease in probe intensity resulting from Rayleigh
scattering, also, proportional to N . This contribution can be
neglected relative to the phase-matched contribution if

γ ′
2,1′γ2,1′T

N
∫ T
0 dt |χD(t )|2

� 1. (79)

In this limit, any bump in the dimensionless integrated inten-
sity that occurs when the probe and pump pulses overlap is
now negligibly small compared with the bump in g(2). In this
respect, the situation is very close to HBT interference where
stimulated emission plays no role.

V. CONCLUSIONS AND DISCUSSION

We have examined a number of problems in which a single-
photon pulse is incident on an atom or an ensemble of atoms.
In each case, there can be a field radiated by the atom(s) in
the absence of the input pulse. As such there is always the
possibility that, when an input pulse is applied, there can be
a nonvanishing value of the second-order correlation function
of the output field. The output field consists of the input field,
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the field radiated by the atom(s) and interference terms which
correspond to the modification of the input field produced
by its interaction with the atom(s). In the weak coupling
approximation adopted in this work, such interference terms
have a negligible effect on the intensity of the input field.
Moreover, to lowest order, they do not affect the number of
coincidence counts measured by detectors that monitor the
output field. Nevertheless, in all the cases studied, there can
be an increase in coincidence counts when the input field
overlaps with the field radiated by the atom(s). We have
argued that such an increase is nothing more that constructive
HBT or HOM interference.

Our results call into question some approaches used to ana-
lyze coincidence counts measured in certain down-conversion
experiments [9]. The effective Hamiltonian in an interaction
representation that describes down conversion is often taken
as

HI (t ) = h̄
∑
k1,k2

(
Bk1k2 (t )e

−i(ωL−ωk1−ωk2 )t a†k1a
†
k2

+ adjoint
)
,

(80)

where a†k1 and a
†
k2
are creation operators for the signal and idler

modes, respectively, ωL is the frequency of the pump field,
and B is a function that represents the entanglement between
the signal and idler modes. Given the Hamiltonian Eq. (80),
the source-field and state vector approaches developed in this
paper can be used to evaluate both the signal and idler field
intensities for an initial single-photon state that is incident
in the direction of the signal photon probe pulse. As in the
Raman case, the signal field intensity calculated to order B2

using the state vector approach has spurious terms and does
not agree with the correct result to order B2, which can be
obtained using a source-field approach. However, the idler
field intensity calculated to order B2 using the lowest-order
state vector does agree.

The increase in the idler signal intensity when the input
probe field overlaps with the pump field is sometimes taken
to be a definitive signature of stimulated emission [11]. It
is our opinion that this assignment is not consistent with
conventional definitions of stimulated emission. Consider the
two level scheme shown in Fig. 2(a), in which a two photon
pulsed pump field having central frequency ωL ≈ (ω21 + δ)/2
drives the 1–2 transition. The field is off-resonant, but leads to
Raman-like scattering on the 2–1′ transition (level 1′ now has
parity opposite to that of level 1). A single-photon probe field
having central frequency ωL is also incident on the atom and
can be time-delayed from the pump field. Clearly, there will
be increased Raman emission when the probe field overlaps
with the pump field. In effect, the probe field provides an
additional channel for Raman scattering. In analogy with the
logic followed in the analysis of down conversion experi-
ments, the increase in Raman emission can be attributed to
stimulated emission produced by the probe. However, in this
case, the intensity of the probe field is actually reduced by
its interaction with the atom, even if the transition rate from
level 1 to 1′ is increased. That is, you can call this stimulated
emission if you wish, owing to the increased rate, but it is
not the conventional use of the term, which we claim always

FIG. 2. Level schemes increased field intensity on an undriven
transition. (a) Raman-like scheme (b) phase-matched emission at
both the “signal” and “idler” frequencies.

involves the constructive interference of an incident field with
the field scattered from a medium.

Now consider the same level scheme but with a two
photon pump field that drives the 1–2 transition in an atomic
ensemble—Fig. 2(b). In this case the pump field consists of
two fields having propagation vectors ka and kb and frequen-
cies ωa = kac ≈ ω1′1 and ωb = kbc ≈ ω21′ + δ. In addition,
there is a single-photon probe field that is incident on the
ensemble having propagation vectors kp ≈ ka and frequency
ωp = kpc ≈ ω1′1 that can be delayed relative to the pump
field. In the absence of the probe field there is nonphased
matched Raman emission at frequency ωa + ωb − ω1′1 in all
directions. In addition there is phase-matched emission of
correlated two-photon states, with one photon having wave
vector approximately equal to k1 ≈ kb (idler) and the other
approximately equal to k2 ≈ kb (signal) [12]. When the probe
field does not overlap with the pump field, emission on the
idler transition is unaffected by the presence of the probe field;
however, when it does overlap, the phase-matched emission
on the idler transition is increased. Again it is possible to
say that the increased rate for phase-matched emission on the
idler transition is a result of stimulated emission produced
by the probe pulse (even though the probe intensity actually
decreases), but we feel this corresponds to an unconventional
definition.

Returning to down conversion, the increase in phase
matched idler intensity is analogous to that for the level
scheme shown in Fig. 2(b). It is not clear in the down-
conversion experiments whether or not the probe field is
amplified or absorbed by the medium. The relatively large
increase in the idler intensity results from a corresponding
increase in the rate for phase-matched emission, which we
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have argued is not the conventional definition of stimulated
emission. In Appendix B, we try to relate the approach taken
in this paper with that followed in some of the analyses of
down-conversion experiments.
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APPENDIX A: STATE VECTOR CALCULATION OF
THE RAMAN FIELD INTENSITY AND g(2)

In this Appendix, we repeat the field intensity calculation
for the Raman problem using a state vector approach. That
is we calculate |ψ (t )〉 using perturbation theory with the
Hamiltonian Eq. (34) and then evaluate

I (t ) = 2ε0cA〈ψ (t )|E−(XB)E+(XB)|ψ (t )〉, (A1)

where E+(XB) is now the time-independent Schrödinger oper-
ator

E+(XB) = i
h̄

μ21′

√
c

L
γ ′
2,1′

∑
k

ake
ikXB (A2)

and t is the nonretarded time (in this Appendix, t always
refers to the nonretarded time and tr to the retarded time). The
perturbation theory result is

|ψ (t )〉 = e−iH0t/h̄|ψ I (t )〉, (A3)

where

|ψ I (t )〉 =
[

1 − i
h̄

∫ t
0 H

I (t ′)dt ′

− 1
h̄2

∫ t
0 H

I (t ′)dt ′
∫ t ′

0 HI (t ′′)dt ′′ + ....

]
|ψ (0)〉,

(A4)

H0 = h̄ω21|2〉〈2| + h̄ω1′1|1′〉〈1′| +
∑
k

h̄ωka
†
kak, (A5)

and

HI (t ) = h̄[χ (t )σ21e
−iδt + χ∗(t )σ12e

iδt ]

+ h̄g1
∑
k

σ21′ake
−i(ωk−ω21′ )t − a†kσ1′2e

i(ωk−ω21′ )t .

(A6)

The operators in this equation are time-independent
Schrödinger operators.

Let us define |ψ I
j (t )〉 as the jth-order perturbation theory

result. Thus, ∣∣ψ I
0 (t )

〉 = |ψ (0)〉 =
∑
k

bka
†
k |1; 0〉, (A7)

∣∣ψ I
1 (t )

〉 = − i

h̄

∫ t

0
HI (t ′)dt ′|ψ (0)〉

= −ih̄
∫ t

0
dt ′χ (t ′)σ21e

−iδt ′ |ψ (0)〉

≈ χ (t )

δ
e−iδt

∑
k

bka
†
k |2; 0〉, (A8)

and∣∣ψ I
2 (t )

〉 = − 1

h̄2

∫ t

0
HI (t ′)dt ′

∫ t ′

0
HI (t ′′)dt ′′|ψ (0)〉

= −i
g1
δ

∑
k,k′

bk

∫ t

0
dt ′ ei(ωk′−ω̄)t ′χ (t ′)a†ka

†
k′ |1′; 0〉.

(A9)

We are interested in times t > T . Since the excitation adia-
batically follows the field, the contribution given in Eq. (A8)
vanishes. To this order of perturbation theory, the state vector
consists of the original single photon state vector plus a two-
photon state vector. In theories of down conversion, this two-
photon component is said to constitute stimulated emission
when the pulses overlap. To see if this is actually the case in
the Raman problem, we need to evaluate this term.

From Eqs. (A1), (A3), (A7), and (A9), we find that there
are two contributions to the signal,

I0(t ) = 2ε0cA
〈
ψ I

0 (t )
∣∣eiH0t/h̄E−(XB)E+(XB)e

−iH0t/h̄
∣∣ψ I

0 (t )
〉

(A10)

and

I2(t ) = 2ε0cA
〈
ψ I

2 (t )
∣∣eiH0t/h̄E−(XB)E+(XB)e

−iH0t/h̄
∣∣ψ I

2 (t )
〉
.

(A11)

It is not overly difficult to show that

I0(t ) = h̄ω21′ | f (tr )|2, (A12)

in agreement with the first term in Eq. (51).
The second term is only a bit more difficult to calculate. It

is equal to

I2(t ) = h̄ω21′

δ2

( c

L

)2 ∑
k1,k2,k,k′,k′

1,k
′
2

exp
[
i
(
ωk′

1
+ ωk′

2
− ωk1 − ωk2

)
t
] ∫ t

0
dt ′′χ∗(t ′′)e−i(ωk′1

−ω̄)t ′′
b∗
k′
2

∫ t

0
dt ′χ (t ′)ei(ωk1−ω̄)t ′bk2

× e−ik′XBeikXB〈0|ak′
1
ak′

2
a†k′aka

†
k1
a†k2 |0〉. (A13)

By applying the commutation relations for the creation and
annihilation operators, we find that there are four terms that
contribute,

A : k = k1; k
′ = k′

1; k2 = k′
2; (A14)

B : k = k2; k
′ = k′

1; k1 = k′
2; (A15)

C : k = k1; k
′ = k′

2; k2 = k′
1; (A16)

D : k = k2; k
′ = k′

2; k1 = k′
1. (A17)
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Term A is evaluated as

I2A(t ) = h̄ω21′
γ ′
2,1′

�R
|wR(tr )|2, (A18)

in agreement with the second term in Eq. (54). Terms B and C
lead to

I2B(t ) + I2C (t ) = h̄ω21′
γ ′
2,1′

�R
f ∗(tr )wR(tr )

∫ t

0
f (t ′)w∗

R(t
′)dt ′

+ c.c. (A19)

This equation almost agrees with the third term in Eq. (54),
but the upper limit of the integral is t instead of tr [recall that
the t in Eq. (54) actually the retarded time tr]. Moreover, there
is an additional term,

I2D(t ) = h̄ω21′
γ ′
2,1′

�R
| f (tr )|2

∫ t

0
|wR(t

′)|2dt ′, (A20)

not found in Eq. (54).
For arbitrary probe pulse characteristics and arbitrary re-

tardation, both the change in intensity given by Eqs. (A18)–
(A20) and the change in integrated intensity differ signifi-
cantly from the correct results given in Eqs. (54) and (55). For
example, if the probe pulse does not overlap with the pump
pulse, the I2D(t ) term still corresponds to gain for the probe
pulse, which is physically impossible. Moreover, the contri-
bution to the change in the integrated intensity from the I2D(t )
term leads to a result which is twice the correct result!

The differences between the source-field and state vector
approaches can be resolved if we calculate the fourth-order
contribution to |ψ I (t )〉. The fourth-order contribution contains
a term which can interfere with the zeroth-order contribution.
There are two chains in the perturbation chain that contribute
to this fourth-order contribution,

A : |1; 1k〉 → |2; 1k〉 → ∣∣1′; 1k, 1k′
〉 → |2; 1k′ 〉 → |1; 1k′ 〉;

(A21)

B : |1; 1k〉 → |2; 1k〉 → ∣∣1′; 1k, 1k′
〉 → |2; 1k〉 → |1; 1k〉,

(A22)

where |1k〉 = a†k |0〉 is a field state with a photon in mode k and
|1k, 1k′ 〉 = a†ka

†
k′ |0〉 is a field state with one photon in mode k

and another in mode k′. In evaluating the last two terms in the
perturbation chains, we encounter factors of the form

−
∫ t

0
dt ′χ∗(t ′)eiδt

′
∫ t ′

0
dt ′′G(t ′′),

where G(t ′′) is some function. We switch the order of integra-
tion to obtain

−i
∫ t

0
dt ′′G(t ′′)

∫ t

t ′′
dt ′χ∗(t ′)eiδt

′ ≈
∫ t

0
dt ′′χ∗(t ′′)eiδt

′′
G(t ′′)/δ,

where we have again used the adiabatic following approxima-
tion. In this manner we find

∣∣ψ I
4A(t )

〉 = −|g1|2
δ2

∑
k1,k2

∫ t

0
dt ′χ∗(t ′)e−i(ωk1−ω̄)t ′

×
∫ t ′

0
dt ′′ ei(ωk2−ω̄)t ′′χ (t ′′)bk1

∣∣1; 1k2 〉; (A23)

∣∣ψ I
4B(t )

〉 = −|g1|2
δ2

∑
k1,k2

∫ t

0
dt ′χ∗(t ′)e−i(ωk2−ω̄)t ′

×
∫ t ′

0
dt ′′ ei(ωk2−ω̄)t ′′χ (t ′′)bk1 |1; 1k1〉. (A24)

In forming I (t ) there are now cross terms of the type

Ic(t ) = 2ε0cA
〈
ψ I

0 (t )
∣∣eiH0t/h̄E−(XB)E+(XB)e

−iH0t/h̄
∣∣ψ I

4 (t )
〉

+ c.c., (A25)

with 〈
ψ I

0 (t )
∣∣ =

∑
k′
1

b∗
k′
1

〈
1; 1k′

1

∣∣. (A26)

In evaluating this expression for the A contribution to |ψ I
4 (t )〉,

we find that the sum over k2 gives rise to the delta function
δ(t ′′ − t + XB/c), which implies that the integral over t ′′ con-
tributes only if t ′ > t − XB/c. Using this result and Eq. (15),
we obtain

IcA(t ) = −h̄ω21′
γ ′
2,1′

�R
f ∗(tr )wR(tr )

∫ t

t−XB/c
f (t ′)w∗

R(t
′)dt ′ + c.c.,

(A27)

which exactly cancels the nonretarded part of Eq. (A19).
Similarly in evaluating the expression for the B contribution,
we find that the sum over k1 gives rise to the δ function
δ(t ′′ − t ′) leading to

IcB(t ) = −1

2
h̄ω21′

γ ′
2,1′

�R
| f (tr )|2

∫ t

0

∣∣wR(t
′)
∣∣2dt ′ + c.c., (A28)

which exactly cancels the D contribution in Eq. (A20) [the
factor of 1/2 arises when we set

∫ t ′

0 dt ′′δ(t ′′ − t ′)G(t ′′) =
G(t ′)/2]. Thus the source-field and state vector approaches
now agree.

It is also possible to calculate g(2) using the state vector
approach if the field operators are evaluated at the same time,
but different positions, that is

g(2)(t,X1,X2) = 〈E−(X1, t )E−(X2, t )E+(X2, t )E+(X1, t )〉
〈E−(X1, t )E+(X1, t )〉〈E−(X2, t )E+(X2, t )〉 .

(A29)

With this definition all times are the same so we can replace
this expression by one in which all the field operators are
time-independent Schrödinger operators and the expectation
value is evaluated using the time-dependent ket |ψ I (t )〉. Using
Eq. (A2), we are then able to show that we can reproduce
Eq. (45) with t1 replaced by t − X1/c and t2 by t − X2/c.
Although the results are the same, it is much easier to interpret
the results using the source-field approach since the incident
input field and source-field separate in a natural fashion. With
the state vector approach, the two contributions are intermixed
so it is not as easy to conclude that the value of g(2) that is
obtained arises as if the input field and atom do not interact.
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APPENDIX B: SINGLE-MODE CALCULATION OF
THE RAMAN FIELD INTENSITY AND g(2)

In this Appendix, we calculate the correlation function and
the field intensity for the Raman problem using the types of
formalisms often employed in theories of down conversion

1. Operator approach

In theories of down conversion and in “beam splitter”
theories of attenuators or amplifiers [8,9,13], an input-output
approach is taken, based in part on a “single-mode” approach.
Quotation marks are used since the theories are often used for
pulsed fields in which the field annihilation and creation op-
erators actually correspond to localized operators of a pulsed
field. Consider first the case when the probe and pump fields
overlap, that is the probe field has the same temporal shape as
the pump field,

χ (t ) = ηχ0 f (t ), (B1)

where η is constant having units of
√
t . Since the fields

have the same spatiotemporal profile, it is assumed in such
approaches that the field emitted by the atoms in the absence
of the probe field is emitted into the same mode as the probe
field.

With this assumption, the output annihilation operator is
written as

aout = Tain + Rb†, (B2)

where

R = γ ′
2,1′

δ2

∫ ∞

0
dt |χ (t )|2 (B3)

and b† = σ1′1 is an atomic raising operator satisfying
[b, b†] = σ11 − σ1′1′ ≈ 1. To maintain the commutation rela-
tion [aout, a

†
out] = 1, it is then necessary that

T =
√
1 + R2 ≈ 1 + R2/2. (B4)

The initial state is one in which there is a single photon in the
input mode and the atom is in state |1〉. The b† operator leads
to atomic excitation, that is b†|1〉 = |1′〉. In this limit, to lowest
order in R2, it follows that the dimensionless integrated field
intensityWN and the time-integrated second-order correlation
function g(2) are

WN = 〈a†outaout〉 ∼ (1 + R2) + R2 = 1 + 2R2; (B5a)

g(2) = 〈a†outa†outaoutaout〉
〈a†outaout〉2

∼ 4R2. (B5b)

However, if the probe pulse arrives at the atom after the
pump field is no longer present, then it is assumed that the
atomic emission and the probe field emission are in distinct
field modes [aout(probe) = ain(probe)] and

W ′
N ∼ 1 + R2, (B6a)

g(2)′ = 2R2. (B6b)

In this picture, the increase inWN resulting from stimulated
emission [WN −W ′

N = R2] is correlated with the increase
in the coincidence counts [g(2) − g(2)′ = 2R2]. Although this
approach produces the correct limits for overlapping and

nonoverlapping pulses, it does not properly account for the
time-dependence of the operators.

To see why this is the case and to make connection between
the “single-mode” and exact formulations, we follow Loudon
[13] and define a time-dependent annihilation operator by

aout(t ) =
√

c

L

∑
ω

aω(t )e
−iωt → 1√

2π

∫
dω a(ω, t )e−iωt .

(B7)
The continuous field operator a(ω, t ) is a function of t
owing to the atom-field interactions. As a consequence,
[aout(t ), a

†
out(t

′)] �= δ(t − t ′), as is the case for continuous
free-field operators. In perturbation theory, it then follows
from Eqs. (B7), (38), (39), and (43) that

aout(t ) = a0(t ) + γ ′
2,1′

χ (t )

δ2
e−iω̄t

∫ t

0
ain(t

′)χ∗(t ′)dt ′

+
√

γ ′
2,1′

χ (t )

δ
e−iω̄tσ1′1(0), (B8)

where the continuous free-field operator is defined by

a0(t ) =
√

c

L

∑
ω

aωe
−iωt → 1√

2π

∫
dω a(ω)e−iωt . (B9)

Given the fact that the initial state of the field is the single-
photon state

|1 f 〉 = a†f |0〉, (B10)

where

a†f =
∫

dt f (t )e−iω̄t a†0(t ), (B11)

and that

a0(t )|1 f 〉 = f (t )e−iω̄t |0〉, (B12)

it is straightforward to show that Eq. (B8) leads to the correct
retarded field intensity given in Eq. (54) (recall that t is the
retarded time). Equation (B8) differs from the input-output
form given in Eq. (B2); that is, the first term of output field
operator aout(t ) depends in a nonlocal way on the input field
operator ain(t ).

2. State vector approach

In some theories of down-conversion, one also finds a
type of hybrid Schrödinger-Heisenberg single-mode approach
using a state vector theory in lowest-order perturbation theory.
To mirror the down conversion calculations, we must consider
two limits, overlapping and nonoverlapping pulses.

When the probe and pump field pulses overlap, the effec-
tive Hamiltonian for the Raman problem can be taken as

H (t ) = h̄G(t )(a†1b
† + a1b), (B13)

where a†1 is a creation operator for the output field mode, b†

acting on the atomic ket |1〉 converts it to |1′〉, and

G(t ) =
∣∣∣∣ηχ0 f (t )

δ

∣∣∣∣
2

(B14)
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accounts for the atom-field coupling. To lowest order, the state
vector is then given by

|ψ (T )〉 ≈ |ψ (0)〉 − i
∫ T

0
dtG(t )a†1b

†|ψ (0)〉. (B15)

If we take |ψ (0)〉 = a†1|0〉, then

|ψ (T )〉 ≈ a†1|0; 1〉 − i
∫ T

0
dtG(t )a†1a

†
1b

†|0; 1〉

= |11; 0〉 − i
√
2R

∣∣21, 1′〉, (B16)

where |nF ; nA〉 is the eigenket of an n photon state in mode 1
and the atom in state nA. If R2 � 1, then

WN = 〈ψ (T )|a†1a1|ψ (T )〉 = 1 + 2R2; (B17a)

g(2) ≈ 〈ψ (T )|a†1a†1a1a1|ψ (T )〉 = 4R2, (B17b)

just as in the operator approach.
However, if the probe and pump pulses do not overlap, then

the initial state vector is |ψ (0)〉 = a†2|0〉 (the probe pulse is in

a mode distinct from the one produced by the atom-vacuum
field interaction), leading to

|ψ (T )〉 ≈ a†2|0; 1〉 − i
∫ T

0
dtG(t )a†2a

†
1b

†|0; 1〉

= |12; 0〉 − iR|11, 12; 1′〉, (B18)

W ′
N = 〈ψ (T )|(a†1 + a†2)(a1 + a2)|ψ (T )〉 = 1 + R2, (B19)

and

g(2)′ ∼ 〈ψ (T )|(a†1 + a†2)(a
†
1 + a†2)(a2 + a1)(a2 + a1)|ψ (T )〉

〈ψ (T )|(a†1 + a†2)(a2 + a1)|ψ (T )〉2
≈ 2R2. (B20)

The factor of
√
2 in Eq. (B16), resulting from stimulated

emission can then be viewed as the origin of the increase in
coincidence counts. This is the type of reasoning used in the
explanation of the down conversion experiments [9], but there
seems to be no formal justification for this “single-mode”–
type approach. Although this approach gives the correct an-
swer in the limits of overlapping and nonoverlapping pulses,
it is no substitute for the more rigorous calculation given in
Appendix A that fully accounts for retardation. Moreover, as
we have already seen, a state vector approach carried out in
lowest order leads to an incorrect result for the field intensity.
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