
Name Space Analysis:
Verification of Named Data Network Data Planes

Mohammad Jahanian

University of California, Riverside

Riverside, CA, USA

mjaha001@ucr.edu

K. K. Ramakrishnan

University of California, Riverside

Riverside, CA, USA

kk@cs.ucr.edu

ABSTRACT
Named Data Networking (NDN) has a number of forwarding be-

haviors, strategies, and protocols proposed by researchers and in-

corporated into the codebase, to enable exploiting the full flexibility

and functionality that NDN offers. This additional functionality

introduces complexity, motivating the need for a tool to help reason

about and verify that basic properties of an NDN data plane are

guaranteed. This paper proposes Name Space Analysis (NSA), a

network verification framework to model and analyze NDN data

planes. NSA can take as input one or more snapshots, each rep-

resenting a particular state of the data plane. It then provides the

verification result against specified properties. NSA builds on the

theory of Header Space Analysis, and extends it in a number of

ways, e.g., supporting variable-sized headers with flexible formats,

introduction of name space functions, and allowing for name-based

properties such as content reachability and name leakage-freedom.

These important additions reflect the behavior and requirements of

NDN, requiring modeling and verification foundations fundamen-

tally different from those of traditional host-centric networks. For

example, in name-based networks (NDN), host-to-content reacha-

bility is required, whereas the focus in host-centric networks (IP) is

limited to host-to-host reachability. We have implemented NSA and

identified a number of optimizations to enhance the efficiency of

verification. Results from our evaluations, using snapshots from var-

ious synthetic test cases and the real-world NDN testbed, show how

NSA is effective, in finding errors pertaining to content reachability,

loops, and name leakage, has good performance, and is scalable.

CCS CONCEPTS
• Networks→ Network reliability; • Software and its engineer-
ing → Formal methods;

KEYWORDS
Named Data Networks, Network Verification

ACM Reference Format:
Mohammad Jahanian and K. K. Ramakrishnan. 2019. Name Space Analysis:

Verification of Named Data Network Data Planes. In 6th ACM Conference

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICN ’19, September 24–26, 2019, Macao, China
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6970-1/19/09. . . $15.00

https://doi.org/10.1145/3357150.3357406

on Information-Centric Networking (ICN ’19), September 24–26, 2019, Macao,
China.ACM,Macao, China, 11 pages. https://doi.org/10.1145/3357150.3357406

1 INTRODUCTION
Named Data Networking (NDN) [11, 34] provides a content-aware

network layer where information is accessed over the network

without necessarily focusing on its location or the underlying mech-

anisms used to retrieve that information. To enable this location-

independence, NDN supports name-based forwarding, and in-network

caching, thereby improving performance and availability. NDN

routers primarily rely on a Forwarding Information Base (FIB),

Content Store (CS) and Pending Interest Table (PIT) with reverse

path forwarding to deliver Data associated with an Interest [34].

The flexible structure of NDN supports a wide variety of network

functions and applications. On top of basic PIT, CS, and FIB checks,

additional packet processing such as forwarding hint processing [4],

rate-based forwarding [2], and hyperbolic forwarding [19] have

been adopted and incorporated into the standard NDN Forwarding

Daemon (NFD) [3]. Additionally, a number of useful extensions

to the core NDN packet processing have been proposed in the lit-

erature to potentially be part of any NDN network, such as path

switching [24], Interest anonymization [17, 31], name resolution [1],

cache-aware forwarding [18], etc.While these network functions,

whether deployed in separate middleboxes or softwarized into a ba-

sic ICN router, make NDN powerful, they may make the network’s

data (forwarding) plane, more complex. As a result, it is very useful

to ensure that the data plane, i.e., the forwarding and processing

rules for packets, is correct. To tackle this, an automated framework

to model and verify NDN network data planes would be highly

desirable.

Network verification [7, 9, 13, 14, 16, 20, 21, 30, 33] is an active

research area, useful in analyzing large, complicated networks in

order to ensure a network is free of bugs and corner-case errors,

investigating essential properties such as reachability and loop-

freedom. Data plane verification focuses on analyzing a particular

(e.g., the current) forwarding state, i.e., data plane, of the network.
These tools normally rely on a formal foundation that covers a

large space of possibilities. They can be automated and applied

to a network snapshot, representing the data plane. While these

tools have focused on IP networks and are powerful in verifying

host-centric properties, they can be extended and integrated for

use in an ICN-based environment such as NDN.

We propose Name Space Analysis (NSA), a framework for model-

ing and verification of NDN data planes. NSA is based on the theory

of Header Space Analysis (HSA) [14]. HSA uses a geometric view

of packet headers, where each packet header is generally modeled

as a point in a space and network functions transform that point

44

https://doi.org/10.1145/3357150.3357406
https://doi.org/10.1145/3357150.3357406

ICN ’19, September 24–26, 2019, Macao, China M. Jahanian, and K. K. Ramakrishnan

to another one within that space. Additionally, the ability to ana-

lyze a “space” rather than a “single point”, makes this an efficient

analysis approach. This flexibility and efficiency make it a good

formalism for integration in the analysis of NDN. We add another

geometric space in NSA, namely the name space, and a new function,

name space function, that transforms a point in the header space

domain to a (collection of) point(s) in the name space domain. We

extend HSA by enabling flexible atoms and variable-size wildcards

to model headers (to support NDN-specific packet formats [25]),

and adding name spaces as an essential part of the analysis. Ana-

lyzing name spaces in NDN is necessary and very useful as they

are key to accessing content. We propose NDN-specific properties

that can be checked by NSA; e.g., in NDN we are interested in

verifying host-to-content reachability, rather than the host-to-host

reachability requirement expected of traditional host-centric IP

networks. NSA has a number of verification applications (to prove

key properties), namely content reachability test, name-based loop

detection, and name leakage detection. We also mention a number

of practical problems that NSA can be used to address, e.g., name

space conflict and content censorship (§5). In addition to a single

snapshot, NSA can also be successively applied to a number of

(finite, limited) snapshots, to help verify state changes of the data

plane and identify selected data and control plane problems. We

implemented NSA [12], including all the essential components of

our design: name atoms, set operations, transfer functions, state

space generation, and verification applications. We also identified

a number of optimizations, and evaluating our implementation on

synthetic snapshots and real-world NDN testbed snapshots shows

that NSA is effective, efficient and scalable (§6).

The contributions of this paper are as follows: 1) We provide a

framework for verification of NDN data planes, based on Header

Space Analysis concepts. NSA targets the nature of an NDN, rather

than the previously developed tools for host-centric architectures,

and provides the flexibility and support for analysis of NDN-specific

properties. 2) We introduce modeling name spaces and name space

functions to analyze names, as they are the main assets required

to access content in NDN. 3) We specify essential NDN-specific

properties and approaches to analyze them. These include content

reachability test (to check unwanted and unsolicited names, as de-

fined in §5.1), name-based loop detection, and name (space) leakage

detection. 4) We implemented NSA [12]; we describe important

implementation descriptions and optimizations. Our results from

various test cases show the scalability and efficiency of NSA. 5)

Applied to a real-world NDN testbed [27] snapshot, NSA managed

to find many reachability and loop errors.

2 BACKGROUND AND RELATED WORK
This section provides a brief overview of Header Space Analysis

(HSA), network verification and NDN analysis tools.

2.1 Overview of Header Space Analysis
Header Space Analysis (HSA) [14] is a network data plane verifi-

cation tool used to model nodes and verify essential properties. A

network node is any packet processor that performs in-network

processing on a packet on its path. The most important primitives

in HSA are Header Space, Network Transfer Function, and Topology
Transfer Function.

Based on a geometric model, a Header Space H is an L-
dimensional space of packet headers, with L being the upper

bound on header length, in bits. One header is one point in this

L-dimensional space, consisting of 0’s and 1’s. A special wildcard bit

‘x’ can be used to form a header space that constrains only certain

bits. HSA defines primitive set operations (union, intersection, etc.)
to manipulate header spaces.

Using these operations and conditionals, we can define Transfer

Functions. A Network Transfer Function T models the packet pro-

cessing done by a network node. Function T (h,p) takes as input a
header space and incoming port, and produces a new (h′,p′) pair
denoting what header space will be produced as output, and which

port it has to go out of.

The Topology Transfer Function Γ models link behavior. Assum-

ing the link is up and working, this function basically relays the

header, unchanged, from the output port of one node to the input

port of the next node, assuming the two ports are connected by

this link. Using a long-lived snapshot, we can model a topology of

fixed, wired links, while a sequence of short-lived snapshots may

be used to capture the effects of a mobile, wireless environment.

Using the aforementioned building blocks, HSA provides algo-

rithms to check the following properties in a network configuration:

Reachability Analysis, Loop Detection, and Slice Isolation. The analy-
ses typically consist of an initial header space injected to a (set of)

network node(s). The higher the coverage of these header spaces,

the more thorough the search will be. Usually for a full analysis,

initial header spaces of all wildcard bits are injected. Reachability

analysis gives all the headers that a node B receives, starting from

an initial header space injected at a node A. For loop detection, the

history of a header space is checked, to see whether or not (a part

of) it has visited a node more than once. Slice Isolation uses header

spaces flowing in and out of critical network nodes, to ensure cer-

tain traffic stays within a private network slice, e.g., a VLAN, and
does not leak to another slice.

2.2 Network Verification and NDN Diagnostics
Network verification aims at analyzing large, complicated networks

in order to find corner case errors and investigate essential proper-

ties. There have been efforts to build models to describe and verify

networks. For the purpose of building verification frameworks,

some works focus on analyzing control plane (to analyze all data

planes caused by configurations) and some on data plane (to analyze

the current state of the network). Computational feasibility and

full verification coverage are challenges of control plane verifica-

tion [7, 28]. We focus on data plane verification in this paper. Some

of the more notable data plane verification tools are Anteater [21],

HSA [14], VeriFlow [16], and NetPlumber [13]. These methods

typically consist of snapshot-based static checking. Anteater [21]

models the data plane as a set of boolean expressions and runs a

SAT solver to verify invariants. HSA [14] uses a geometric view of

packet headers, not making any presupposition about what each

packet header element represents, thus making it a flexible model

for integration for new network architectures. Some verification

tools additionally support real-time checking of network policies

45

Name Space Analysis: Verification of Named Data Network Data Planes ICN ’19, September 24–26, 2019, Macao, China

of Software-Defined Networks (SDN) such as VeriFlow [16] and

NetPlumber [13]. These methods leverage and rely on control up-

date messages issued by the centralized SDN controller for fast,

incremental checking of network data planes. Thus, they can react

to changes before those changes are applied to every one of the

associated routers. Our proposed model is a generic one, with no

assumption on how the network is managed. However, if we have

NDN integrated with SDN, real-time verification using control up-

date messages may be leveraged. Work in [7, 9] propose data plane

equivalence checks. While we focus on single snapshot verification

in this paper, i.e., checking a data plane against a predefined set

of properties, our work can be extended to checking equivalence

between two (or any limited number of) data plane snapshots using

methods of [7, 9].

Our work presents an NDN-specific verification framework. Di-

agnostic tools such as Ping [22] and Traceroute [5, 15, 23, 29] have

been proposed and developed for NDN. While these tools are very

helpful for performance measurements and small-scale connectiv-

ity checks, a formal approach gives us a higher level of flexibility for

property checking. The coverage of a larger problem space enables

a more holistic verification of a network.

3 OVERVIEW OF NSA
Fig. 1 shows the overall functionality provided by NSA, what spe-

cific building blocks it proposes, and the ways in which it extends

and integrates HSA for NDN. HSA leverages a combination of a

number of functions, using header primitives to enable verification.

Each verification application analyzes a particular network prop-

erty. As Fig. 1 shows, NSA is designed to be modular, so it can be

extended to support additional verification applications.

HSA is most suitable for analysis of protocols with headers hav-

ing fixed formats, e.g., IP packet headers, where (mandatory) fields

have fixed sizes and positions, according to the protocol version.

Since this is not the case for NDN packets [25], we develop NSA to

support the modeling of NDN-style flexible headers with variable

fields. NSA introduces variable-length wildcard elements to enable

modeling NDN’s header space. Also, we change HSA’s bit-based

header space modeling to a flexible atom-based one. Atoms can be

bytes (octets), fields, or names. This allows us to reasonably model

how NDN packets are encoded, at the desired level of abstraction.

While utilizing HSA network and topology functions, NSA also

proposes a Name Space Function, which enables transforming a

header space into a name space, which is an essential part of a

content-oriented network. Using this function, a wide variety of

name-based network properties can be reasoned about. Almost all

of the HSA verification applications can also be used to analyze

NDN. However, there are additional properties, specific to an ICN,

that need to be addressed. We introduce some applications that use

these additional properties in NSA, namely Content Reachability
Test, Name-based Loop Detection and Name Space Leakage Detection.
These properties focus on the specifics related to the NDN archi-

tecture, and how consumers interact with named content. Details
of NSA elements are provided in §4.

NSA, just like HSA and other data plane verification approaches,

focuses on a single snapshot, and models how the state of packets

change with regards to a given network state, but not how the

Host Reachability Test

Loop Detection

Slice Isolation Checks

Network Transfer Functions

Topology Transfer Functions

L-Dimensional Header Space

Single Wildcard Element

Content Reachability Test

Name-based Loop Detection

Name Space Leakage Detection

Name Space Functions

Variable-Size Wildcard

A
p
p
li

ca
ti

o
n
s

F
u
n
ct

io
n
s

H
ea

d
er

s

Names

HSA NSA-specific

Figure 1: Overall framework of NSA

state of the network itself changes. In other words, NSA reads and

writes to state at a packet-level, as explained in §5 (Fig. 2(b)), and

only reads from state at the network-level. Thus, it focuses on a

set of properties that are dependent on the current state of the

network, and not on how other packets may change it. The proper-

ties cover all packets and their paths in the existing network state.

However, this is still a huge improvement in terms of coverage

of analysis compared to existing solutions [5, 15, 22, 23, 29], and

allows for important classes of properties such as reachability and

loop-freedom [14, 21]. At any state of the network (except for tem-

porary transient states, perhaps), each content must be correctly

reachable from anywhere, and packets must not loop. Modeling the

transition of network state from one data plane state to another will

require control plane verification approaches as well. It is feasible

to analyze a finite, limited number of data plane snapshots, each

representing a state of the network, by successively running NSA

on those snapshots. An example of multi-snapshot verification is

checking if the network’s handling of producer mobility is correct.

The first snapshot would be taken while the producer is connected

at its initial point of attachment, and the second (final) snapshot

is taken at the new point of attachment, after the network’s state

converges (e.g., FIBs are updated). NSA can check if the received

headers at the producer are same across those snapshots. However,

a full-fledged dynamic verification of network properties across

data plane states needs to take into account efficiency and overhead

considerations, which we plan to work on in the near future.

4 NSA DESIGN
In this section, we describe the formal foundations and building

blocks of NSA, focusing on the components that we are adding

or are different from the original HSA and demonstrate them by

examples from NDN.

4.1 Modeling NDN Header Space
4.1.1 Atoms and Header Representation. The atoms of analysis

in HSA are bits, since some fields can be encoded as single bits

in IP. An NDN packet, on the other hand, is a set of nested Type-

Length-Value (TLV) codes represented as octets [25]. Thus, the

smallest possible atom in NSA is octets (bytes). With byte-based

atoms, NSA header representations follow NDN’s TLV octet-based

encoding. Other atoms could be picked as well: e.g., if checking
the correctness of TLV encoding is not important in a particular

46

ICN ’19, September 24–26, 2019, Macao, China M. Jahanian, and K. K. Ramakrishnan

analysis, atoms can be NDN fields. With field atoms, NSA header

representation will be an XML-like structure. If only the name field

needs to be checked, atoms can be names. With name atoms, NSA

headers are represented as a combination of name components,

similar to NDN regular expressions [26]. Unlike HSA’s strict use

of bit atoms, NSA provides the flexibility of using byte, field and

name atoms for header representation. The correct atom depends

on the scope of verification and the desired level of abstraction.

Unlike IP packet headers, NDN does not have a fixed header

with fixed fields at fixed positions. Interest and Data packets have

different types. Normally, an NDN Interest has only headers; thus,

we use the terms “packet” and “header” for NDN interchangeably,

throughout this paper.

NSA can model headers of any length; however, for the sake of

checking finiteness, an upper bound L (maximum header length)

has to be set. Still, headers of different lengths can be processed

together; variable-length wildcard atoms provide the necessary

padding to facilitate this.

4.1.2 Wildcard Expressions. In order to efficiently model and

process a header space rather than a single point, i.e., a single header,
we use special wildcard elements to represent atoms that can take

any possible value. Wildcard expressions are supported by the set

operation as we explain below.

Single-atomwildcard. Similar to the original HSA, albeit using

flexible atoms rather than only bits, we sometimes use a wildcard of

size one, denoted as “[?]”, and defined as [?] = a1 ∪ a2 ∪ · · · ∪ an ,
where ai is a possible value for an atom and n is the number of

possible values for an atom; e.g., with byte atoms, we have n = 256.

Variable-length wildcard. Unlike IP headers, the NDN header

has a flexible format and there is no rule on how much information

should exist between two particular fields. To efficiently incorporate

this feature into NSA, we add a new wildcard type: variable-length

wildcard, denoted by “[∗]”, which can be a wildcard of any size

(zero or more atoms) up to the size allowed for the maximum header

length. Formally,

[∗] = � ∪ [?] ∪ [?][?] ∪ . . . until length allowable by L.
Note that the “[∗]” wildcard is not currently part of the NDN

architecture; we use it as part of NSA headers for the model’s

representation and verification efficiency, to be used in a symbolic
execution fashion, which we explain in §5.

4.1.3 Set Operations. Set operations are important for manipu-

lating header spaces in order to model packet processing through

transfer functions. We use a similar algebra as HSA, with the dif-

ference being that we use variable-length wildcards and flexible

atoms.

Union. This is the basic operation. For header spaces h1 and h2,
header space h = h1 ∪ h2 contains all headers in h1 and h2. Result
of union may or may not be simplifiable.

Intersection. For two headers to have a non-empty intersection,

they should be of equal length and have the same values (or wildcard

element) at the same position. To convert length, “[∗]” should be

converted by an appropriate number of “[?]’s”, as explained above.
At the atom-level, we have a ∩ a = a, a ∩ [?] = a. For two unequal
atom values, a1 ∩ a2 = [z]. Special atom “[z]” denotes an atom

that has zero possible values, i.e., null (empty). A header space h
that has even one “[z]” is regarded as empty. Also, intersection

of any atom-string with an all-wildcard “[∗]” header will be the
atom-string itself.

Complementation. Complement of non-wildcard atom a, de-
noted as a, can take any values other than that of a.

Difference.Difference of two headers is defined ash = h1−h2 =
h1 ∩ h2. For example, with byte atoms, using these set operators,

we will have:

ab?−abc = ab?∩(abc) = ab?∩(abc∪abc∪abc∪abc∪abc∪
abc ∪ abc) = � ∪ � ∪ abc ∪ � ∪ � ∪ � ∪ � = abc

This basically means any three-byte string starting with “/a/b”
but not (i.e., minus) “/a/b/c”.

4.2 Modeling NDN Nodes
Packet processing in an NDN node is modeled using Network Trans-

fer Functions, as

T (h, f) : T (h0, f0) → {(h1, f1), (h2, f2), . . . }

where a functionT maps header h0 coming to face f0, to all headers
h1, h2, etc., going out of faces f1, f2, etc. of the node respectively.
NSA’s transfer functions are at the level of a face, rather than be-

ing port-level as in HSA. While this does not change the algebraic

operations on the transfer functions, in practice it does enable one

to write such functions using faces, regardless of the underlying

strategies associated with those faces. Domain and range of NSA

transfer functions are of the same type (both Interest or both Data

headers). Transitioning from Interest to Data is not a part of NSA

verification as it requires changing the state of the data plane. De-

pending on the functionality being modeled, function T may or

may not change h0, and may or may not depend on the incoming

face f0. Any NDN packet processing, including an NDN forwarding

behavior, can be modeled using (a set of) transfer functions.

For example, the transfer function for forwarding an Interest as

a result of the Longest Prefix Matching (LPM) on the FIB, assuming

there are two entries with indexes (prefixes) n1 and n2 in the FIB,

can be written as:

TI .f wd (h, f) =



⋃
(h, f n1

i), if FIBM(name(h),n1),

∀f n1

i ∈ SF (n1)⋃
(h, f n2

i), if FIBM(name(h),n2),

∀f n2

i ∈ SF (n2)

�, otherwise

where the FIB is a collection of (prefix, set of faces) pairs; assuming

the use of LPM, the FIB match function FIBM() returns true for at
most one FIB entry; and depending on forwarding strategy, i.e., best
route, multicast, etc., the function SF () (selected faces) will return

the appropriate corresponding outgoing faces.

In general, a typical Interest processing transfer function can

be modeled asTI (.) = TI .f wd (TI .CS (TI .P IT (.))). What elements we

put into a transfer function depends on our architecture and the

purpose of the analysis. For example, if we have the assumption of

the CS and PIT being empty upon the arrival of an Interest, then

we can simply have TI (.) = TI .f wd (.). Additional functions can

be added to the pipeline as well, including those that modify the

incoming header space, e.g., function THopLimit that decrements

the HopLimit field in the Interest [25] if it is above zero and passes

47

Name Space Analysis: Verification of Named Data Network Data Planes ICN ’19, September 24–26, 2019, Macao, China

it to the subsequent transfer function in the pipeline, and drops it

otherwise:

THopLimit (h, f) =


(h′, f), if HopLimit(h) > 0,

HopLimit(h′) = HopLimit(h) − 1

�, otherwise

Using similar patterns, we can model Data forwarding or any

additional Interest forwarding transfer functions such as the full

forwarding pipelines in the NFD specification[3] or link object

processing[4], complicated forwarding strategies and Nonce checks,

etc. A packet processing pipeline can be modeled as a cascade of

functions, i.e., Tn (Tn−1(. . .T1(.))) where each Ti is a specific func-
tion (step) in the pipeline. It can also be a named function, perform-

ing an operation if the Interest name has a particular prefix; this

operation can involve changing the name in the header. E.g., an ar-

bitrary Interest anonymizer, that encrypts the name with keyK and

encryption algorithm Enc , and triggered by the prefix “/Anon”, will
have a transfer function in its Interest process pipeline, as follows:

Tanon (h, f) =

{
(Enc(h,K), f), if pre f ix(h)="/Anon"

(h, f), otherwise

Generally, a condition on a header is modeled as a header space

(which may or may not have wildcard expressions) and the result

depends on the output of a logic operation on the incoming header

and the condition. This depends on the process and the condition

andmay in some cases be tricky. E.g., for LPM checking, for a header

to be forwarded out of a face, the FIB entry index corresponding

to that face has to be a prefix of the header’s name (non-empty

intersection) in the Interest, and a longer FIB index must not be a

prefix of that header (empty intersection). For example, consider

an NDN node with FIB consisting of two rules “/a→ f1” and “/a/b

→ f2”. Given an all-wildcard input header, Interest headers coming

out of face f1 are those whose names start with “/a/” (i.e., “/a/∗”)
and not with “/a/b” (i.e., “/a/b/∗”).

NSA does the conversion of the NDN FIB table to NSA transfer

function. For a FIB table with e entries, the worst case complexity of

this procedure would be O(e2D2d): for every entry ei , we need to

check all other entries to find descendants, i.e., at finer granularity
of ei . For each descendant of ei , i.e., e

j
i , 2

di j
corresponding NSA

rules need to be generated, where di j is the granularity distance

between ei and ei j . E.g., granularity distance of prefixes e1 =“/a”
and e2 =“/a/b/c” is 2, as e2 is a descendant of e1 and has two

additional name components. As a result, corresponding to e1, NSA

would create rules for “/a/b/c/∗”, “/a/b/c/∗”, and “/a/b/c/∗”
for the network transfer functions (so the outcome would be

determined by the intersection of incoming header to every rule). D
and d denote the maximum number of descendants and granularity

distance in the given FIB table.

4.3 Modeling Name Spaces
We add the notion of name spaces as a key component of our

analysis approach. Name spaces show relations between content

names, in a content repository and across the network. They are

an important part of NDN, and NSA factors them carefully in its

analysis. As far as NSA is concerned, a name space is any structure

representable by a graph. We assume a special case of that, namely

NDN-style hierarchically structured tries (prefix trees), in this paper.

Formally, a name space in NSA represents names and their re-

lations, and is a domain separate from the header space domain.

A name space function, transforms a point in the header space

domain to a name space domain, i.e., its corresponding name(s).

Name space function Ω() is introduced in NSA. It transforms a (set

of) header space(s) (after parsing it to the individual name parts) to

a name space. In particular, Ω() performs the following two steps

on an input header space h: 1) extracts the (prefix) names associated

with h, 2) provides the reverse construction of the prefix tree from

the list of prefixes derived in step 1. This resulting prefix tree is the

name space, used in NSA verification applications.

5 USING NSA FOR VERIFICATION
This section explains a number of verification applications that

NSA can check. Specifically, we look at the important applications

of testing content reachability, loop detection and name leakage

detection. NSA provides significant benefits both in terms of the

verification results and its efficiency compared to simulation-based

tests.

An important part of NSA’s formal verification approach that

facilitates automated checking is the generation and analysis of

the state space, or propagation graph. The graph represents all

possible paths any packet can take, rather than a single trace that

a simulation-based approach would support. This provides the

desired coverage we need for verification. An example is shown

in Fig. 2. Each node in this propagation graph is a state, mainly

consisting of a header and a face, denoting the arrival/departure of

the header to/from the face. Depending on the specific application,

there can be additional state information, such as a visited nodes

list, e.g., for loop detection. We record as much information within

a state (e.g., list of visited nodes) as needed, so that checks could be

done by looking at the state only, so that extra processing on the

graph would not be necessary (e.g., checking all ancestors of a state
by traversing paths). The initial states, i.e., parent-less nodes in the

graph, represent injections to the network. For example, in Fig. 2,

the propagation graph (Fig. 2(b)) implies that header h0 is injected
to faceA0 of nodeA (as shown in Fig. 2(a) as well). State transitions

in the propagation graph can be through network transfer functions

(i.e., processing packets within a node) represented by single arrows
in Fig. 2(b), or topology transfer functions (i.e., moving over physical

links) shown by double arrows.

While NSA can be used for both Interest and Data packets, we

focus on Interests in the remainder of this paper. As pointed out

in [3], Interest processing is more complicated than Data processing:

it has longer, more complicated pipelines, has additional procedures

such as forwarding strategy selection, and its forwarding decisions

are made through the result (i.e., FIB) of complicated distributed

algorithms (i.e., routing protocols). All these motivate more careful

attention.

5.1 Content Reachability Test
Reachability analysis in HSA, and other host-based verification

solutions, focuses on host (content provider) reachability.We extend

48

ICN ’19, September 24–26, 2019, Macao, China M. Jahanian, and K. K. Ramakrishnan

B1

B2

C1

A1
A2

A0

h0

C2

h2

(a) Topology and header spaces (yel-

low boxes: header spaces are created

and transferred on links)

Header: h0

Face: A0

Visits: A

Header: h1

Face: A1

Visits: A

Header: h2

Face: A2

Visits: A

Header: h1

Face: B1

Visits: A, B

Header: h3

Face: B2

Visits: A, B

Header: h3

Face: C1

Visits: A, B, C

Header: h2

Face: C2

Visits: A, C

(b) Propagation graph (−→: network

transfer function transitions; =⇒:

topology transfer function transitions)

Figure 2: Propagation graph example

this to content (name space) reachability in NSA, since this is a

main concern in NDN. This analysis generates name spaces that

can reach content repositories, i.e., at producers or content stores.
To this end, we apply a name space function on the header space

received at a content repository:

CRA→B (h, f) =
⋃

A→B paths
{Ω(Tn (Γ(Tn−1(. . . Γ(T1(h, f))))))}

where CR denotes the content reachability function, its range being
all the content names, in form of name spaces, received at content

repository B, having injected h at face f of A, and functions Ti
and Γi being switch network and topology transfer functions on

the path, respectively. Function Ω is the name space function that

transforms header spaces to name spaces.

A big part of name space reachability analysis is comparing the

received name space request, i.e., NSrcvB = Ω(hB) with the hosted

(actual) name space NShosB at node B, where B is a content provider

(or a router equipped with a content store). Ideally, we desire both

name spaces, NSrcvB and NShosB to be equal. Generally, there can

be three cases possible when comparing NSrcvB and NShosB :

(1) If part of NSrcvB is not in NShosB (Case 1: unsolicited names), it
means B would receive Interests for names the node does not

have, i.e., those packets get blackholed.
(2) If part of NShosB is not in NSrcvB (Case 2: unreachable names),

it means part of B’s name space is untouched, i.e., requests
for them would never be received. Cases 1 and 2 need not be

disjoint.

(3) If neither cases occur, verification is successful, i.e., NShosB =

NSrcvB (Case 3).

The process is exemplified in Fig. 3, where header space hA
injected at host A traverses nodes (e.g., routers) with transfer func-

tions TC and TB where the header space hB gets transformed and

compared with the content name space at B. Node B can generally

be any node in the network that has the capability of storing and

serving content, be it a content publisher or an ICN-capable router

with content store.

Algorithm 1 specifies the application for the name space reacha-

bility test in a network, denoted by itsNetwork Space N , which is the

A ��() ��()

ℎ� ℎ� ℎ�

�	�

�� �	�

��

Compare
�(ℎ�)

Figure 3: Content reachability test

collection of all name spaces, and transfer and transform functions.

Starting from an initial header space, typically of all-wildcard ele-

ments, this application generates output headers of each node, step-

by-step, by walking through the header propagation graph. It can

start from one (as shown inAlgorithm 1), or any arbitrary number of

consumers. The name space functions and comparisons are applied

and performed at all the nodes in the network that are considered

content providers. The application finds all case 1 and case 2 errors

for each content provider and also returns the overall verification

result, as either True (verification success, no bugs found) or False

(verification failure, bugs exists), for the whole network. In the case

of verification failure, NSA can provide the counterexamples, i.e.,
“unsolicited” or “unreachable” names at each content repository.

Algorithm 1 Content Reachability Test

1: procedure ConReach(C,h0,N) ▷ Injecting h0, at C , network
space N

2: Start with h0 at C ▷ Typically all wildcard, i.e., [∗]
3: Calculate all hPi ’s ▷ Headers reached at provider Pi
4: for all Pi do
5: NSrcvPi

← Ω(hPi)

6: NSUWPi
← NSrcvPi

− NShosPi
▷ ‘Unsolicited’ names

7: NSUR
Pi
← NShosPi

− NSrcvPi
▷ ‘Unreachable’ names

8: if NSUR
Pi
∪ NSUWPi

= � then
9: ResultPi ← True ▷ Success at Pi
10: else
11: ResultPi ← False ▷ Failure at Pi
12: end if
13: end for
14: return

∧
allPi ’sResultPi ▷ Overall verification result

15: end procedure

The time complexity of an NSA content reachability test for

injecting a header to a consumer that leads to a single content

provider is O(dLR2s), where d , L, R, and s are maximum network

diameter (number of hops), maximum header length, maximum

number of node rules, and maximum number of paths in a trie-

based content provider name space. This analysis is based on the

linear fragmentation assumption in [14], which says that typically

very few rules in a node match an incoming packet. Unlike NSA, the

complexity of a simulation-based test would be O(daLRs), where
a is the maximum number of values an atom can take; e.g., with
byte-based atoms, a would be 256. This shows the huge benefit

of NSA over purely simulation-based approaches, for a content

reachability analysis with high coverage.

NSA’s content reachability application can be used to reason

about various issues, both in current NDN as well as in a more

general research context, as explained in the following examples:

49

Name Space Analysis: Verification of Named Data Network Data Planes ICN ’19, September 24–26, 2019, Macao, China

• Route computation outcome correctness.We can use NSA’s

content reachability analysis to see if a particular content request

reaches the nearest (or all/any) content, in case a content resides

at two repositories with the same names. This is very useful to an-

alyze the correctness of the computation outcome (i.e., resulting
state in the FIB, and not the routing protocol itself) of traditional
routing protocols such as NLSR [10] (only focusing on content

providers) or nearest replica routing protocols [6] (focusing on

both content providers and ICN router content stores).

• Security infrastructure soundness. In NDN’s content-

oriented security design, keys that are used to perform security-

related operations (authentication, etc.), are just like any other

content: they have names, their names/prefixes populate FIBs,

and they can/should be retrieved using Interests [32]. The reach-

ability of the correct keys is important for NDN security mech-

anisms to be sound. As an important case, NSA can check if all

public keys (e.g., data with “/KEY” prefix) can be reached at appro-
priately, requested from all appropriate end points in the network.

• Name space conflict-freedom. In NDN, different content

providers can use and announce the same prefixes, especially

when names are topic-based. No content provider has sole owner-

ship or authority to announce a certain prefix. While this allows

for democratization of content and better efficiency, it can cause

conflicts that can lead to blackholed interests. Fig. 4 shows an

example of this: content providers P1 and P2, with hosted con-

tent name spaces shown in Fig. 4(b), send prefix announcements

“/news/sports” and “/news” respectively, leading to two FIB en-

tries, namely “/news/sports→ f1” and “/news→ f2” at router

R (Fig. 4(a)). Announcing “/news/sports” implies that P1 claims

that he has ‘everything’ under “/news/sports”, which is chal-

lenged when considering P2’s name space, who unlike P1’s, has
content under “/news/sports/xbox”; it may be the case that

P1 and P2 have different views on whether or not ‘xbox’ is a

sub-category of ‘sports’, which they are allowed to. This conflict

causes Interests for “/news/sports/xbox” to be misdirected to

P1 instead of P2. NSA’s content reachability test can catch these

errors. Also, to overcome these conflicts, name registry methods,

such as [8] can be used, to have content providers register their

prefixes before announcement, and grant them permission only if

it is a conflict-free announcement. NSA can be used to check cor-

rectness of the outcome of such registration mechanisms as well.

• Content censorship-freedom. Censorship leads to content

reachability errors; in the example in Fig. 5, censoring node R
may drop all interests for “/democracy” [17]. This would result

in (all or part of) content provider P ’s name space to be unreach-

able, injecting headers from C . This is an undesired effect that

can easily be detected by NSA. While NSA cannot definitively

deduce that such a problem is caused by content censorship, the

lack of existence of such errors would imply content censorship-

freedom. Furthermore, the effectiveness of a censorship

countermeasure mechanisms can be checked using NSA.

Content neutrality. We define Content Neutrality as not favor-

ing a content provider over another (by not discriminating), with

regards to same prefixes that they serve. With multicast forward-

ing strategy at every router for every prefix, NSA can check

whether all content providers receive Interests matching their

entire name space, for every ‘all-wildcard’ injection. While NSA

f0

f2

f1

P1

C

P2

FIB at R

/news/sports → f1

/news → f2

/news/sports/

xbox/*

P1 has announced

“/news/sports”

P2 has announced

“/news”

P1 would receive interest for

“/news/sports/xbox” instead of P2!

(a) Network topology

news

sports

basketball baseballfootball

news

economics sportspolitics

xbox

P1

P2

(b) Name spaces

Figure 4: Name space conflict example

PC
f1 f2

/democracy/* /democracy/*
P serves

“/democracy”

R drops “/democracy”

P would not receive interests for “/democracy” which it serves, since R has censored it!

Figure 5: Content censorship example

cannot detect if a reachability error is caused by discriminatory

neutrality violation or benign configuration mistakes, an error-

free data plane could be used to show if content neutrality holds.

5.2 Loop Detection
Loop freedom is an important property in networks. For NDN in

particular, looping Interests is a widely known issue, which led to

the addition of extra processes in the forwarding pipelines, such as

a Dead Nonce List [3]. While such reactive measures detect looped

Interests after they occur, looped Interest would not be prevented

and could potentially waste a large amount of network resources.

Also, it is very likely that an Interest is looping because it is not satis-

fied; i.e., did not reach its intended content provider(s) due to errors

in the forwarding state of the network. As a result, making a local

decision at an NDN router to discard or drop a looping Interest does

not solve the problem of unsatisfiability of certain Interests. Thus, it

would be highly desirable to detect all potential loops in a data plane,

before they occur, with a holistic view of the network data plane.

NSA helps in identifying all Interests that might potentially

loop. NSA typically does this by injecting all-wildcard headers and

looking for possible loops. Thus, we can track every possible Interest

and find all potential loops by following FIB rules established in a

given data plane. We therefore achieve a purely name-based loop

detection, rather than a nonce-based detection. NSA models the

transition of all packets within a single data plane snapshot, thus

enabling a robust loop detection algorithm (as does HSA [14]). As all

FIB rules causing the loops are contained in one single snapshot and

it is possible to analyze them with transitioning packets (headers),

NSA can catch all potential loops.

The loops detected can be potentially infinite or finite. Suppose

node A appears twice in a single path in the propagation graph,

visiting two header spaces h and h′ (in that order); if h′ ⊆ h, then
this would be a potential infinite loop. An example is shown in

Fig. 6, where NSA first detects a loop (as node A appears twice

in one particular path), and second, it determines the loop to be

infinite, checking the header spaces h and h′ associated with the

visits, where headers with name “/a/b/∗” return back to node A.

50

ICN ’19, September 24–26, 2019, Macao, China M. Jahanian, and K. K. Ramakrishnan

A2

A1

/a/b

h0=“/*”

D0

FIB rule for “/prefix” and

its output face direction

(a) Topology, injected header, and FIB rules

Header: h0 = “/*”

Face: D0

Visits: D

Header: h=“/a/*”

Face: A1

Visits: D, A

Header: h’=“/a/b/*”

Face: A2

Visits: D, A, B, C, A

…

…

Loop detected!

ℎ
�
⊆ ℎ ⇒ Infinite loop!

(b) Propagation graph (partial)

Figure 6: Loop detection example

Having h′ ∩ h = � implies a certainly finite, thus non-hazardous,

loop which NSA ignores. By adding the history of each state

to NSA, i.e., the sequence of headers and faces, NSA can easily

detect infinite loops by checking whether a particular header space

(subset) has been visited by a node twice or not.

5.3 Name (Space) Leakage Detection
What if a consumer issuing an Interest for a particular name, wishes

(parts of) the name, e.g., his ID or a particular content name, to not

be visible in the network except for certain authorized nodes, e.g.,
those in his home network? This can be a desirable property for a

variety of reasons. Works such as [31] have identified the need for

Interest name privacy.

In NSA, inspired by HSA’s slice isolation check, we can check

whether or not any confidential name leaves a particular set of

nodes authorized for read-access. Let us call this set of nodes as a

zone. A zone can be a particular router, a local network, a service

provider network, etc.
Let us consider the example in Fig. 7: ConsumerC issues Interests

with header h0, which results in headers h1, h2 and h3 leaving the

authorized zone of routers, denoted as Z1. We define all the headers

going out of Z1 as hout = h1 ∪h2 ∪h3. NSA allows us to define and

apply access control rules on names in a number of ways, and check

name constraints on hout accordingly, e.g., the following examples:

• Headers of particular form, e.g., containing a particular name

component or prefix, should not appear in any packets leaving

zone Z1. Then we should have hout ∩ hprohibited = �, where
the left-hand side of the equation denotes the intersection of

all headers leaving Z1 with all prohibited headers. Prohibited

headers can be built using NSA’s atoms and algebra, as described

in §4. The “�” on the right-hand side means that we do not want

any header in the result of the intersection to leave Z1.
• Packets associated with name space NS0 should not leave Z1;
then we should have Ω(hout) ∩ NS0 = �. This way of defining a

rule is more efficient for constraints of a larger set of prefix-suffix

name relations representing a portion of a name space graph:

instead of checking many prefixes one by one, we can check once

against name space NS0 comprising all those prefixes.

C

Zone Z1

Figure 7: Name leakage detection example

6 EVALUATION
An important part of network formal verification is developing a

tool that automatizes the generation of state spaces and verification

checks in a reasonably efficient way. We have implemented NSA,

including its main components and modules, in Java; the source

code is available at [12]. We start by evaluating the performance

of NSA using synthetic grid and ring topologies, and then apply

it to the NDN testbed topology for evaluating a network that is

actively used [27]. All evaluations have been done on a machine

with Ubuntu 14.04.6 LTS using Intel(R) Xeon(R) CPU E5-2650 v4

@ 2.20GHz dual-socket with 14 cores each with hyper-threading

enabled, and 252GB RAM.We do not utilize thewhole RAM capacity

though; we set the maximum memory heap size of our Java Virtual

Machine (JVM) to 10GB only. For each verification application, all

wildcard headers, i.e., “/∗” is injected to all faces or nodes. While

reporting our evaluation results, we identify and present a number

of optimizations that further improves NSA’s performance.

6.1 Synthetic Networks
6.1.1 Content Reachability Analysis and Loop Detection. To eval-

uate NSA’s content reachability analysis and loop detection we use

customized n × n grid topologies (to allow many branches in the

propagation graph), with n publishers in each case, each serving

one distinct prefix; these prefixes are advertised and populated in

every node’s FIB in the snapshot being verified. Verification per-

formance results for these grid networks are presented in Fig. 8, 9,

and 10, in terms of execution times, in milliseconds.

Fig. 8 shows the execution time of content reachability on the grid

networks. This verification, as explained in §5.1, checks both un-

reachable and unsolicited names. Typically, NSA injects all-wildcard

headers into all faces, since some node rules may depend on the in-

coming faces (‘All faces’ bars in Fig. 8). As seen in Fig. 8, the growth

of execution time for ‘All faces’ injection mode is linear with respect

to the input network size growth (note the input growth on x-axis

is n2). Since we are only dealing with FIB rules that do not depend

on the incoming face, we can limit our injection to ‘One face per

node’ injection only. This would not change the outcome of the

verification results. Fig. 8 shows that this optimization significantly

improves the performance of NSA, which is due to the fact that its

fewer number of injections leads to smaller propagation graph.

For the full reachability check (Fig. 8), we need to go through

a separate propagation graph fragment, built and checked for each

injection, to check both unsolicited and unreachable names. If

our goal is to only check unsolicited names (and not unreachable

names), we can make all injections at once into a single propagation

graph fragment, aggregating the headers (Fig. 11). This way, we

preserve all reached header spaces, but not their exact paths from

51

Name Space Analysis: Verification of Named Data Network Data Planes ICN ’19, September 24–26, 2019, Macao, China

 0

 20

 40

 60

 80

 100

 120

 140

 160

2x2 3x3 4x4 5x5

E
xe

cu
tio

n
tim

e
(m

s)

Network size (grid dimensions)

All faces
One face per node

Figure 8: Content reachability

 0

 20

 40

 60

 80

 100

 120

 140

 160

2x2 3x3 4x4 5x5
E

xe
cu

tio
n

tim
e

(m
s)

Network size (grid dimensions)

All faces
One face per node

Figure 9: Content reachability with
header aggregation

 0

 20

 40

 60

 80

 100

 120

 140

 160

2x2 3x3 4x4 5x5

E
xe

cu
tio

n
tim

e
(m

s)

Network size (grid dimensions)

All faces
One face per node

Figure 10: Loop detection

Header: h3

Face: A2

Visits: A

Header: h3

Face: C1

Visits: A, C

Header: h4

Face: B2

Visits: B

Header: h4

Face: C1

Visits: B, C

… …

… …

(a) Original propagation graph

Header: h3

Face: A2

Visits: A

Header: h7 = h3 ꓴ h4

Face: C1

Visits: (A | B), C

Header: h4

Face: B2

Visits: B

… …

…

(b) Aggregated propagation graph

Figure 11: Propagation graph aggregation example

10

100

1000

10000

100000

1000000

NSA Simulation
 w L=1

Simulation
 w L=2

Simulation
 w L=3

Simulation
 w L=4

E
xe

cu
tio

n
tim

e
(m

s)

Verification method

Figure 12: NSA and simulation-based verification

origin in the visited list. Fig. 9 shows the significant performance

enhancement of this optimization, compared to full reachability

analysis in Fig. 8, if our goal is only to detect unsolicited names.

The use of wildcards is an important benefit of NSA (and HSA),

compared to simulation-based methods (which have to generate

all possible packets within a range), as shown asymptotically in

§5.1. We show the empirical results for the use of wildcards in

Fig. 12. Each ‘Simulation’ scenario is a typical simulation-based

content reachability analysis (using the aggregation optimization

with the sole purpose of detecting misdirected packets) that injects

Interests with L name components, each being a single alphabetical

letter. Fig. 12 shows the large benefit, in terms of performance and

scalability of NSA compared to these simulation-based verifications.

We also evaluated the performance of NSA’s loop detection on

the same grid networks, injecting all-wildcard headers. Fig. 10

shows the results for both cases of ‘All faces’ and ‘One face per

node’ injection. The complexities, growth rates and optimization

benefit of face selection in loop detection are similar to those of full

content reachability analysis.

6.1.2 Name Leakage Detection. To verify name leakage-freedom,

we use two-ring topologies; where two rings of size n are connected

by one node, i.e., is a gateway between the rings. Each ring is consid-
ered its own zone, and has one publisher serving (and advertising)

two prefixes, one prefix visible to everyone, and one prefix visible

only to the nodes within the local zone. Thus, each NDN node has

rules for the three prefixes (that are visible to it): two prefixes of

its own zone, and one prefix that is public from the other zone. In

each of its rounds, NSA’s name leakage detection application in-

jects all-wildcard headers to the faces/nodes of one zone, generates

headers that reach the other zones, and checks whether or not they

violate each zone’s name privacy requirements. The performance

of name leakage on the two-ring topologies are shown in Fig. 13,

indicating its scalability (showing a linear growth) with the increase

in network size.

6.2 NDN Testbed
To evaluate NSA’s performance on an operational, practical NDN,

we considered the NDN testbed [27]. This is the largest real-world

NDN with publicly available forwarding state, with relatively large

forwarding tables (of the order of hundreds of entries per node).

We captured a snapshot of the testbed on 2019/03/09 14:43:16 CST.

Some nodes were offline or unresponsive and we removed them

from our analysis.

An important pre-processing step for NSA verification is gener-

ation of the transfer functions. We have implemented these compo-

nents in NSA. The topology transfer function generation is trivial.

For network transfer function generation for LPM-based forward-

ing rules in NDN nodes, additional processing needs to be done:

for each FIB entry, all other rules (i.e., FIB entries) have to be vis-

ited, as explained and analyzed for asymptotically completing the

generation of the network transfer function in §4.2. To show this

empirically, we picked one particular node from the testbed, the

52

ICN ’19, September 24–26, 2019, Macao, China M. Jahanian, and K. K. Ramakrishnan

 0

 5

 10

 15

 20

 25

 30

2x2 2x3 2x4 2x5

E
xe

cu
tio

n
tim

e
(m

s)

Network size (ring sizes)

All faces
One face per node

Figure 13: Name leakage

 20

 40

 60

 80

 100

 120

 140

 40 80 120 160 200 240
E

xe
cu

tio
n

tim
e

(m
s)

FIB size (# of FIB rules)
Figure 14: Network transfer function:
rule generation (‘UCI’ node)

Table 1: Execution time (ms) for NDN
testbed verification for alternate for-
warding strategies

Application B
e
s
t
-
r
o
u
t
e

M
u
l
t
i
c
a
s
t

Content Reachability Anal-

ysis

196 2,481

Content Reachability Anal-

ysis (w/aggregation)

75 342

Loop Detection 190 2,416

‘UCI’ node. It has 214 FIB entries in our selected snapshot. We ran-

domly pick 50, 100, 150 and 200 FIB rules from it and perform the

network transfer function generation. The execution time (includ-

ing the case with all 214 entries) is shown in Fig. 14. These results

show that NSA’s transfer function generation for this particular

real-world case is reasonably efficient and scales well with number

of FIB rules (this is less complex than the upper bound shown in

§4.2).

We performed content reachability (both full and aggregated)

and loop detection on the snapshot (we did not perform name leak-

age detection on it since the name leakage-freedom is not one of

the properties of the NDN testbed) using two forwarding strategy

modes (for all), namely the best-route and multicast, and found

several errors. In the best-route mode, we found 450 content reach-

ability errors, either caused by forwarding state errors or physically

unavailable/offline nodes. For example, the name “/kr/re/kisti”
is reachable only in 31% of injections. Also, 704 loop-freedom viola-

tions were found; note that this is not the number of loops (cycles)

per se, but rather the total number of looped Interests detected as a

result of injections. For example, for the prefix “/kr/re/kisti”, a
loop was found between the two nodes ‘TNO’ and ‘GOETTINGEN’.

In the multicast mode, we found hundreds of errors as well. More

details of the errors are omitted here due to lack of space. The perfor-

mance results of our verifications (execution times in milliseconds)

are shown in Table 1, showing that its latency is reasonable.

From a practical standpoint, our experiments and results show

that it is feasible to have NSA integrated into the NDN testbed (in

one of its nodes), and periodically check for data plane errors, and

checking various states of the data plane. Given that these checks

only take seconds in total, including transfer function generation

and the analysis, it would be quite reasonable to have new NDN

snapshots (which are generated every 10 minutes at the date of

this submission) be verified. This would be very helpful for the

users of the NDN testbed, and for their research experiments.

7 LIMITATIONS
While NSA answers several important questions about the network,

it has its limitations. These limitations of NSA are quite similar

to those of other notable data plane verification systems, such as

HSA [14].

Regarding the discovery and reporting of errors, while NSA

can give us hints about the details associated with errors, it cannot

definitively assert why such error occurred or how it can be resolved.

Additional external information, as well as refinement procedures,

are required to achieve this.

NSA is not well-suited for network-wide dynamic analysis that

involves “churning” in the network’s forwarding state. This is due

to the fact that NSA is of the class of data plane verification tools,

“mainly” optimized for static checking (i.e., checking a single data
plane with regards to operations and properties that do not change

the state of the network). Having said that, it is still feasible to check

multiple states of the network, represented by multiple snapshots,

by successively running NSA on them. However, this feature is

limited for NSA and would only work if errors of a dynamic-nature

stay longer than the “sampling period”, i.e., the interval between
collecting two snapshots.

Nonetheless, we believe NSA is a valuable tool for verifying key

NDN-specific data plane properties.

8 CONCLUSION
We proposed Name Space Analysis (NSA), a data plane verifica-

tion framework for NDN, based on the theory of Header Space

Analysis. NSA (available at [12]) includes essential NDN-specific

verification applications of content reachability test (to detect name

space conflicts, content censorship-freedom, etc.), name-based loop

detection, and name leakage detection. Applied to the NDN testbed,

we found a number of data plane errors through NSA’s automatized

verification. Our evaluation results on various test cases show the

effectiveness, efficiency, and scalability of NSA.

9 ACKNOWLEDGEMENTS
This work was supported by the US Department of Com-

merce, National Institute of Standards and Technology (award

70NANB17H188) and US National Science Foundation grant CNS-

1818971. We thank our shepherd, Craig Partridge, for his support

and insightful feedback and the reviewers for their valuable com-

ments.

53

Name Space Analysis: Verification of Named Data Network Data Planes ICN ’19, September 24–26, 2019, Macao, China

REFERENCES
[1] Alexander Afanasyev, Xiaoke Jiang, Yingdi Yu, Jiewen Tan, Yumin Xia, Allison

Mankin, and Lixia Zhang. 2017. NDNS: A DNS-Like Name Service for NDN. In

Computer Communication and Networks (ICCCN), 2017 26th International Confer-
ence on.

[2] Alexander Afanasyev, Priya Mahadevan, Ilya Moiseenko, Ersin Uzun, and Lixia

Zhang. 2013. Interest flooding attack and countermeasures in Named Data

Networking. In IFIP Networking Conference, 2013.
[3] Alexander Afanasyev, Junxiao Shi, et al. 2018. NFD developer’s guide. Technical

report, NDN-0021, NDN (2018).

[4] Alexander Afanasyev, Cheng Yi, Lan Wang, Beichuan Zhang, and Lixia Zhang.

2015. SNAMP: Secure namespace mapping to scale NDN forwarding. In Computer
Communications Workshops (INFOCOM WKSHPS), 2015 IEEE Conference on.

[5] Hitoshi Asaeda, Xun Shao, and Thierry Turletti. 2018. Contrace: Traceroute

Facility for Content-Centric Network draft-asaeda-icnrg-contrace-04. https:

//tools.ietf.org/html/draft-asaeda-icnrg-contrace-042.

[6] Onur Ascigil, Vasilis Sourlas, Ioannis Psaras, and George Pavlou. 2017. A native

content discovery mechanism for the information-centric networks. In Proceed-
ings of the 4th ACM Conference on Information-Centric Networking.

[7] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A General

Approach to Network Configuration Verification. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (SIGCOMM ’17).

[8] Alberto Compagno, Xuan Zeng, Luca Muscariello, Giovanna Carofiglio, and

Jordan Augé. 2017. Secure producer mobility in information-centric network. In

Proceedings of the 4th ACM Conference on Information-Centric Networking.
[9] Dragos Dumitrescu, Radu Stoenescu, Matei Popovici, Lorina Negreanu, and

Costin Raiciu. 2019. Dataplane equivalence and its applications. In 16th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 19).

[10] AKMHoque, Syed Obaid Amin, AdamAlyyan, Beichuan Zhang, Lixia Zhang, and

Lan Wang. 2013. NLSR: named-data link state routing protocol. In Proceedings of
the 3rd ACM SIGCOMM workshop on Information-centric networking.

[11] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H.

Briggs, and Rebecca L. Braynard. 2009. Networking Named Content. In Proceed-
ings of the 5th International Conference on Emerging Networking Experiments and
Technologies (CoNEXT ’09).

[12] Mohammad Jahanian and K. K. Ramakrishnan. 2019. Name Space Analysis.

https://github.com/mjaha/NameSpaceAnalysis.

[13] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-

own, and Scott Whyte. 2013. Real Time Network Policy Checking Using Header

Space Analysis. In Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13).

[14] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space

Analysis: Static Checking for Networks. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation (NSDI’12).

[15] Siham Khoussi, Davide Pesavento, Lotfi Benmohamed, and Abdella Battou. 2017.

NDN-trace: a path tracing utility for named data networking. In Proceedings of
the 4th ACM Conference on Information-Centric Networking.

[16] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey.

2012. VeriFlow: Verifying Network-wide Invariants in Real Time. In Proceedings
of the First Workshop on Hot Topics in Software Defined Networks (HotSDN ’12).

[17] Jun Kurihara, Kenji Yokota, and Atsushi Tagami. 2016. A consumer-driven access

control approach to censorship circumvention in content-centric networking. In

Proceedings of the 3rd ACM Conference on Information-Centric Networking.
[18] Fan Lai, Feng Qiu, Wenjie Bian, Ying Cui, and Edmund Yeh. 2016. Scaled VIP

Algorithms for Joint Dynamic Forwarding and Caching in Named Data Networks.

In Proceedings of the 3rd ACM Conference on Information-Centric Networking.
[19] Vince Lehman, Ashlesh Gawande, Beichuan Zhang, Lixia Zhang, Rodrigo Alde-

coa, Dmitri Krioukov, and Lan Wang. 2016. An experimental investigation of

hyperbolic routing with a smart forwarding plane in ndn. In Quality of Service
(IWQoS), 2016 IEEE/ACM 24th International Symposium on.

[20] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and

George Varghese. 2015. Checking Beliefs in Dynamic Networks. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15).

[21] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten

Godfrey, and Samuel Talmadge King. 2011. Debugging the Data Plane with

Anteater. In Proceedings of the ACM SIGCOMM 2011 Conference (SIGCOMM ’11).
[22] Spyridon Mastorakis, Jim Gibson, Ilya Moiseenko, Ralph Droms, and David Oran.

2017. ICN Ping Protocol draft-mastorakis-icnrg-icnping-00. https://tools.ietf.org/

html/draft-mastorakis-icnrg-icnping-02.

[23] Spyridon Mastorakis, Jim Gibson, Ilya Moiseenko, Ralph Droms, and David Oran.

2017. ICNTraceroute Protocol Specification draft-mastorakis-icnrg-icntraceroute-

01. https://tools.ietf.org/id/draft-mastorakis-icnrg-icntraceroute-01.html.

[24] Ilya Moiseenko and Dave Oran. 2017. Path switching in content centric and

named data networks. In Proceedings of the 4th ACM Conference on Information-
Centric Networking.

[25] NDN. 2019. NDN Packet Format Specification 0.3 documentation. http:

//named-data.net/doc/NDN-packet-spec/current/.

[26] NDN. 2019. NDN Regular Expression. http://named-data.net/doc/ndn-cxx/

current/tutorials/utils-ndn-regex.html.

[27] NDN. 2019. NDN Testbed. http://ndndemo.arl.wustl.edu/ndn.html.

[28] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker. 2017.

Verifying reachability in networks with mutable datapaths. In 14th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 17).

[29] Susmit Shannigrahi, Dan Massey, and Christos Papadopoulos. 2017. Traceroute

for Named Data Networking. Technical Report NDN-0055, NDN (2017).

[30] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2016. Sym-

Net: Scalable Symbolic Execution for Modern Networks. In Proceedings of the
2016 ACM SIGCOMM Conference (SIGCOMM ’16).

[31] Reza Tourani, Satyajayant Misra, Joerg Kliewer, Scott Ortegel, and Travis Mick.

2015. Catch me if you can: A practical framework to evade censorship in

information-centric networks. In Proceedings of the 2nd ACM Conference on
Information-Centric Networking.

[32] Yingdi Yu, Alexander Afanasyev, David Clark, Van Jacobson, Lixia Zhang, et al.

2015. Schematizing trust in named data networking. In Proceedings of the 2nd
ACM Conference on Information-Centric Networking.

[33] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda

Liu, Nick McKeown, and Amin Vahdat. 2014. Libra: Divide and Conquer to Verify

Forwarding Tables in Huge Networks. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14).

[34] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crowley,

Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. 2014. Named data

networking. ACM SIGCOMM Computer Communication Review 44, 3 (2014).

54

https://tools.ietf.org/html/draft-asaeda-icnrg-contrace-042
https://tools.ietf.org/html/draft-asaeda-icnrg-contrace-042
https://github.com/mjaha/NameSpaceAnalysis
https://tools.ietf.org/html/draft-mastorakis-icnrg-icnping-02
https://tools.ietf.org/html/draft-mastorakis-icnrg-icnping-02
https://tools.ietf.org/id/draft-mastorakis-icnrg-icntraceroute-01.html
http://named-data.net/doc/NDN-packet-spec/current/
http://named-data.net/doc/NDN-packet-spec/current/
http://named-data.net/doc/ndn-cxx/current/tutorials/utils-ndn-regex.html
http://named-data.net/doc/ndn-cxx/current/tutorials/utils-ndn-regex.html
http://ndndemo.arl.wustl.edu/ndn.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Overview of Header Space Analysis
	2.2 Network Verification and NDN Diagnostics

	3 Overview of NSA
	4 NSA Design
	4.1 Modeling NDN Header Space
	4.2 Modeling NDN Nodes
	4.3 Modeling Name Spaces

	5 Using NSA for Verification
	5.1 Content Reachability Test
	5.2 Loop Detection
	5.3 Name (Space) Leakage Detection

	6 Evaluation
	6.1 Synthetic Networks
	6.2 NDN Testbed

	7 Limitations
	8 Conclusion
	9 Acknowledgements
	References

