Name Space Analysis:
Verification of Named Data Network Data Planes

Mohammad Jahanian
University of California, Riverside
Riverside, CA, USA
mjaha001@ucr.edu

ABSTRACT

Named Data Networking (NDN) has a number of forwarding be-
haviors, strategies, and protocols proposed by researchers and in-
corporated into the codebase, to enable exploiting the full flexibility
and functionality that NDN offers. This additional functionality
introduces complexity, motivating the need for a tool to help reason
about and verify that basic properties of an NDN data plane are
guaranteed. This paper proposes Name Space Analysis (NSA), a
network verification framework to model and analyze NDN data
planes. NSA can take as input one or more snapshots, each rep-
resenting a particular state of the data plane. It then provides the
verification result against specified properties. NSA builds on the
theory of Header Space Analysis, and extends it in a number of
ways, e.g., supporting variable-sized headers with flexible formats,
introduction of name space functions, and allowing for name-based
properties such as content reachability and name leakage-freedom.
These important additions reflect the behavior and requirements of
NDN, requiring modeling and verification foundations fundamen-
tally different from those of traditional host-centric networks. For
example, in name-based networks (NDN), host-to-content reacha-
bility is required, whereas the focus in host-centric networks (IP) is
limited to host-to-host reachability. We have implemented NSA and
identified a number of optimizations to enhance the efficiency of
verification. Results from our evaluations, using snapshots from var-
ious synthetic test cases and the real-world NDN testbed, show how
NSA is effective, in finding errors pertaining to content reachability,
loops, and name leakage, has good performance, and is scalable.

CCS CONCEPTS

« Networks — Network reliability; « Software and its engineer-
ing — Formal methods;

KEYWORDS
Named Data Networks, Network Verification
ACM Reference Format:

Mohammad Jahanian and K. K. Ramakrishnan. 2019. Name Space Analysis:
Verification of Named Data Network Data Planes. In 6th ACM Conference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICN ’19, September 24-26, 2019, Macao, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6970-1/19/09...$15.00
https://doi.org/10.1145/3357150.3357406

44

K. K. Ramakrishnan
University of California, Riverside
Riverside, CA, USA
kk@cs.ucr.edu

on Information-Centric Networking (ICN ’19), September 24-26, 2019, Macao,
China. ACM, Macao, China, 11 pages. https://doi.org/10.1145/3357150.3357406

1 INTRODUCTION

Named Data Networking (NDN) [11, 34] provides a content-aware
network layer where information is accessed over the network
without necessarily focusing on its location or the underlying mech-
anisms used to retrieve that information. To enable this location-
independence, NDN supports name-based forwarding, and in-network
caching, thereby improving performance and availability. NDN
routers primarily rely on a Forwarding Information Base (FIB),
Content Store (CS) and Pending Interest Table (PIT) with reverse
path forwarding to deliver Data associated with an Interest [34].

The flexible structure of NDN supports a wide variety of network
functions and applications. On top of basic PIT, CS, and FIB checks,
additional packet processing such as forwarding hint processing [4],
rate-based forwarding [2], and hyperbolic forwarding [19] have
been adopted and incorporated into the standard NDN Forwarding
Daemon (NFD) [3]. Additionally, a number of useful extensions
to the core NDN packet processing have been proposed in the lit-
erature to potentially be part of any NDN network, such as path
switching [24], Interest anonymization [17, 31], name resolution [1],
cache-aware forwarding [18], etc. While these network functions,
whether deployed in separate middleboxes or softwarized into a ba-
sic ICN router, make NDN powerful, they may make the network’s
data (forwarding) plane, more complex. As a result, it is very useful
to ensure that the data plane, i.e., the forwarding and processing
rules for packets, is correct. To tackle this, an automated framework
to model and verify NDN network data planes would be highly
desirable.

Network verification [7, 9, 13, 14, 16, 20, 21, 30, 33] is an active
research area, useful in analyzing large, complicated networks in
order to ensure a network is free of bugs and corner-case errors,
investigating essential properties such as reachability and loop-
freedom. Data plane verification focuses on analyzing a particular
(e.g., the current) forwarding state, i.e., data plane, of the network.
These tools normally rely on a formal foundation that covers a
large space of possibilities. They can be automated and applied
to a network snapshot, representing the data plane. While these
tools have focused on IP networks and are powerful in verifying
host-centric properties, they can be extended and integrated for
use in an ICN-based environment such as NDN.

We propose Name Space Analysis (NSA), a framework for model-
ing and verification of NDN data planes. NSA is based on the theory
of Header Space Analysis (HSA) [14]. HSA uses a geometric view
of packet headers, where each packet header is generally modeled
as a point in a space and network functions transform that point

https://doi.org/10.1145/3357150.3357406
https://doi.org/10.1145/3357150.3357406

ICN ’19, September 24-26, 2019, Macao, China

to another one within that space. Additionally, the ability to ana-
lyze a “space” rather than a “single point”, makes this an efficient
analysis approach. This flexibility and efficiency make it a good
formalism for integration in the analysis of NDN. We add another
geometric space in NSA, namely the name space, and a new function,
name space function, that transforms a point in the header space
domain to a (collection of) point(s) in the name space domain. We
extend HSA by enabling flexible atoms and variable-size wildcards
to model headers (to support NDN-specific packet formats [25]),
and adding name spaces as an essential part of the analysis. Ana-
lyzing name spaces in NDN is necessary and very useful as they
are key to accessing content. We propose NDN-specific properties
that can be checked by NSA; e.g., in NDN we are interested in
verifying host-to-content reachability, rather than the host-to-host
reachability requirement expected of traditional host-centric IP
networks. NSA has a number of verification applications (to prove
key properties), namely content reachability test, name-based loop
detection, and name leakage detection. We also mention a number
of practical problems that NSA can be used to address, e.g., name
space conflict and content censorship (§5). In addition to a single
snapshot, NSA can also be successively applied to a number of
(finite, limited) snapshots, to help verify state changes of the data
plane and identify selected data and control plane problems. We
implemented NSA [12], including all the essential components of
our design: name atoms, set operations, transfer functions, state
space generation, and verification applications. We also identified
a number of optimizations, and evaluating our implementation on
synthetic snapshots and real-world NDN testbed snapshots shows
that NSA is effective, efficient and scalable (§6).

The contributions of this paper are as follows: 1) We provide a
framework for verification of NDN data planes, based on Header
Space Analysis concepts. NSA targets the nature of an NDN, rather
than the previously developed tools for host-centric architectures,
and provides the flexibility and support for analysis of NDN-specific
properties. 2) We introduce modeling name spaces and name space
functions to analyze names, as they are the main assets required
to access content in NDN. 3) We specify essential NDN-specific
properties and approaches to analyze them. These include content
reachability test (to check unwanted and unsolicited names, as de-
fined in §5.1), name-based loop detection, and name (space) leakage
detection. 4) We implemented NSA [12]; we describe important
implementation descriptions and optimizations. Our results from
various test cases show the scalability and efficiency of NSA. 5)
Applied to a real-world NDN testbed [27] snapshot, NSA managed
to find many reachability and loop errors.

2 BACKGROUND AND RELATED WORK

This section provides a brief overview of Header Space Analysis
(HSA), network verification and NDN analysis tools.

2.1 Overview of Header Space Analysis

Header Space Analysis (HSA) [14] is a network data plane verifi-
cation tool used to model nodes and verify essential properties. A
network node is any packet processor that performs in-network
processing on a packet on its path. The most important primitives

45

M. Jahanian, and K. K. Ramakrishnan

in HSA are Header Space, Network Transfer Function, and Topology
Transfer Function.

Based on a geometric model, a Header Space H is an L-
dimensional space of packet headers, with L being the upper
bound on header length, in bits. One header is one point in this
L-dimensional space, consisting of 0’s and 1’s. A special wildcard bit
‘X’ can be used to form a header space that constrains only certain
bits. HSA defines primitive set operations (union, intersection, etc.)
to manipulate header spaces.

Using these operations and conditionals, we can define Transfer
Functions. A Network Transfer Function T models the packet pro-
cessing done by a network node. Function T(h, p) takes as input a
header space and incoming port, and produces a new (h’,p’) pair
denoting what header space will be produced as output, and which
port it has to go out of.

The Topology Transfer Function I' models link behavior. Assum-
ing the link is up and working, this function basically relays the
header, unchanged, from the output port of one node to the input
port of the next node, assuming the two ports are connected by
this link. Using a long-lived snapshot, we can model a topology of
fixed, wired links, while a sequence of short-lived snapshots may
be used to capture the effects of a mobile, wireless environment.

Using the aforementioned building blocks, HSA provides algo-
rithms to check the following properties in a network configuration:
Reachability Analysis, Loop Detection, and Slice Isolation. The analy-
ses typically consist of an initial header space injected to a (set of)
network node(s). The higher the coverage of these header spaces,
the more thorough the search will be. Usually for a full analysis,
initial header spaces of all wildcard bits are injected. Reachability
analysis gives all the headers that a node B receives, starting from
an initial header space injected at a node A. For loop detection, the
history of a header space is checked, to see whether or not (a part
of) it has visited a node more than once. Slice Isolation uses header
spaces flowing in and out of critical network nodes, to ensure cer-
tain traffic stays within a private network slice, e.g., a VLAN, and
does not leak to another slice.

2.2 Network Verification and NDN Diagnostics

Network verification aims at analyzing large, complicated networks
in order to find corner case errors and investigate essential proper-
ties. There have been efforts to build models to describe and verify
networks. For the purpose of building verification frameworks,
some works focus on analyzing control plane (to analyze all data
planes caused by configurations) and some on data plane (to analyze
the current state of the network). Computational feasibility and
full verification coverage are challenges of control plane verifica-
tion [7, 28]. We focus on data plane verification in this paper. Some
of the more notable data plane verification tools are Anteater [21],
HSA [14], VeriFlow [16], and NetPlumber [13]. These methods
typically consist of snapshot-based static checking. Anteater [21]
models the data plane as a set of boolean expressions and runs a
SAT solver to verify invariants. HSA [14] uses a geometric view of
packet headers, not making any presupposition about what each
packet header element represents, thus making it a flexible model
for integration for new network architectures. Some verification
tools additionally support real-time checking of network policies

Name Space Analysis: Verification of Named Data Network Data Planes

of Software-Defined Networks (SDN) such as VeriFlow [16] and
NetPlumber [13]. These methods leverage and rely on control up-
date messages issued by the centralized SDN controller for fast,
incremental checking of network data planes. Thus, they can react
to changes before those changes are applied to every one of the
associated routers. Our proposed model is a generic one, with no
assumption on how the network is managed. However, if we have
NDN integrated with SDN, real-time verification using control up-
date messages may be leveraged. Work in [7, 9] propose data plane
equivalence checks. While we focus on single snapshot verification
in this paper, i.e., checking a data plane against a predefined set
of properties, our work can be extended to checking equivalence
between two (or any limited number of) data plane snapshots using
methods of 7, 9].

Our work presents an NDN-specific verification framework. Di-
agnostic tools such as Ping [22] and Traceroute [5, 15, 23, 29] have
been proposed and developed for NDN. While these tools are very
helpful for performance measurements and small-scale connectiv-
ity checks, a formal approach gives us a higher level of flexibility for
property checking. The coverage of a larger problem space enables
a more holistic verification of a network.

3 OVERVIEW OF NSA

Fig. 1 shows the overall functionality provided by NSA, what spe-
cific building blocks it proposes, and the ways in which it extends
and integrates HSA for NDN. HSA leverages a combination of a
number of functions, using header primitives to enable verification.
Each verification application analyzes a particular network prop-
erty. As Fig. 1 shows, NSA is designed to be modular, so it can be
extended to support additional verification applications.

HSA is most suitable for analysis of protocols with headers hav-
ing fixed formats, e.g., IP packet headers, where (mandatory) fields
have fixed sizes and positions, according to the protocol version.
Since this is not the case for NDN packets [25], we develop NSA to
support the modeling of NDN-style flexible headers with variable
fields. NSA introduces variable-length wildcard elements to enable
modeling NDN’s header space. Also, we change HSA’s bit-based
header space modeling to a flexible atom-based one. Atoms can be
bytes (octets), fields, or names. This allows us to reasonably model
how NDN packets are encoded, at the desired level of abstraction.

While utilizing HSA network and topology functions, NSA also
proposes a Name Space Function, which enables transforming a
header space into a name space, which is an essential part of a
content-oriented network. Using this function, a wide variety of
name-based network properties can be reasoned about. Almost all
of the HSA verification applications can also be used to analyze
NDN. However, there are additional properties, specific to an ICN,
that need to be addressed. We introduce some applications that use
these additional properties in NSA, namely Content Reachability
Test, Name-based Loop Detection and Name Space Leakage Detection.
These properties focus on the specifics related to the NDN archi-
tecture, and how consumers interact with named content. Details
of NSA elements are provided in §4.

NSA, just like HSA and other data plane verification approaches,
focuses on a single snapshot, and models how the state of packets
change with regards to a given network state, but not how the

46

ICN ’19, September 24-26, 2019, Macao, China

f o] | [
E | Il I Name-based Loop Detection Ill
=3
<% |I Slice Isolation Checks I Il I Name Space Leakage Detection Iil
é |I Network Transfer Functions I Il |
3 I I Name Space Functions I
E |I Topology Transfer Functions I |
E L-Dimensional Header Space
i |] e |
£ |I Single Wildcard Element I ||

— g ——————— m

NSA-specific
Figure 1: Overall framework of NSA

state of the network itself changes. In other words, NSA reads and
writes to state at a packet-level, as explained in §5 (Fig. 2(b)), and
only reads from state at the network-level. Thus, it focuses on a
set of properties that are dependent on the current state of the
network, and not on how other packets may change it. The proper-
ties cover all packets and their paths in the existing network state.
However, this is still a huge improvement in terms of coverage
of analysis compared to existing solutions [5, 15, 22, 23, 29], and
allows for important classes of properties such as reachability and
loop-freedom [14, 21]. At any state of the network (except for tem-
porary transient states, perhaps), each content must be correctly
reachable from anywhere, and packets must not loop. Modeling the
transition of network state from one data plane state to another will
require control plane verification approaches as well. It is feasible
to analyze a finite, limited number of data plane snapshots, each
representing a state of the network, by successively running NSA
on those snapshots. An example of multi-snapshot verification is
checking if the network’s handling of producer mobility is correct.
The first snapshot would be taken while the producer is connected
at its initial point of attachment, and the second (final) snapshot
is taken at the new point of attachment, after the network’s state
converges (e.g., FIBs are updated). NSA can check if the received
headers at the producer are same across those snapshots. However,
a full-fledged dynamic verification of network properties across
data plane states needs to take into account efficiency and overhead
considerations, which we plan to work on in the near future.

4 NSA DESIGN

In this section, we describe the formal foundations and building
blocks of NSA, focusing on the components that we are adding
or are different from the original HSA and demonstrate them by
examples from NDN.

4.1 Modeling NDN Header Space

4.1.1 Atoms and Header Representation. The atoms of analysis
in HSA are bits, since some fields can be encoded as single bits
in IP. An NDN packet, on the other hand, is a set of nested Type-
Length-Value (TLV) codes represented as octets [25]. Thus, the
smallest possible atom in NSA is octets (bytes). With byte-based
atoms, NSA header representations follow NDN’s TLV octet-based
encoding. Other atoms could be picked as well: e.g., if checking
the correctness of TLV encoding is not important in a particular

ICN ’19, September 24-26, 2019, Macao, China

analysis, atoms can be NDN fields. With field atoms, NSA header
representation will be an XML-like structure. If only the name field
needs to be checked, atoms can be names. With name atoms, NSA
headers are represented as a combination of name components,
similar to NDN regular expressions [26]. Unlike HSA’s strict use
of bit atoms, NSA provides the flexibility of using byte, field and
name atoms for header representation. The correct atom depends
on the scope of verification and the desired level of abstraction.

Unlike IP packet headers, NDN does not have a fixed header
with fixed fields at fixed positions. Interest and Data packets have
different types. Normally, an NDN Interest has only headers; thus,
we use the terms “packet” and “header” for NDN interchangeably,
throughout this paper.

NSA can model headers of any length; however, for the sake of
checking finiteness, an upper bound L (maximum header length)
has to be set. Still, headers of different lengths can be processed
together; variable-length wildcard atoms provide the necessary
padding to facilitate this.

4.1.2 Wildcard Expressions. In order to efficiently model and
process a header space rather than a single point, i.e., a single header,
we use special wildcard elements to represent atoms that can take
any possible value. Wildcard expressions are supported by the set
operation as we explain below.

Single-atom wildcard. Similar to the original HSA, albeit using
flexible atoms rather than only bits, we sometimes use a wildcard of
size one, denoted as “[?]”, and defined as [?]1 = a; Uas U--- U ap,
where g; is a possible value for an atom and n is the number of
possible values for an atom; e.g., with byte atoms, we have n = 256.

Variable-length wildcard. Unlike IP headers, the NDN header
has a flexible format and there is no rule on how much information
should exist between two particular fields. To efficiently incorporate
this feature into NSA, we add a new wildcard type: variable-length
wildcard, denoted by “[*]”, which can be a wildcard of any size
(zero or more atoms) up to the size allowed for the maximum header
length. Formally,

[+] =@ U[?]JU[?]1[?]U... until length allowable by L.

Note that the “[*]” wildcard is not currently part of the NDN
architecture; we use it as part of NSA headers for the model’s
representation and verification efficiency, to be used in a symbolic
execution fashion, which we explain in §5.

4.1.3 Set Operations. Set operations are important for manipu-
lating header spaces in order to model packet processing through
transfer functions. We use a similar algebra as HSA, with the dif-
ference being that we use variable-length wildcards and flexible
atoms.

Union. This is the basic operation. For header spaces h; and ha,
header space h = hy U hy contains all headers in k1 and hy. Result
of union may or may not be simplifiable.

Intersection. For two headers to have a non-empty intersection,
they should be of equal length and have the same values (or wildcard
element) at the same position. To convert length, “[+]” should be
converted by an appropriate number of “[?]’s”, as explained above.
At the atom-level, we have ana = a, aN [?] = a. For two unequal
atom values, a; N az = [z]. Special atom “[z]” denotes an atom
that has zero possible values, i.e., null (empty). A header space h
that has even one “[z]” is regarded as empty. Also, intersection

47

M. Jahanian, and K. K. Ramakrishnan

of any atom-string with an all-wildcard “[+]” header will be the
atom-string itself.

Complementation. Complement of non-wildcard atom a, de-
noted as a, can take any values other than that of a.

Difference. Difference of two headers is defined as h = hi—hy =
hy N hy. For example, with byte atoms, using these set operators,
we will have:

ab? —abc = ab? N (abc) = ab? N (abc U abc U abc Uabc Uabc U
abcuabc) = @U@ UabcU@ U@ U@ UQ = abc

This basically means any three-byte string starting with “/a/b”
but not (i.e., minus) “/a/b/c”.

4.2 Modeling NDN Nodes

Packet processing in an NDN node is modeled using Network Trans-
fer Functions, as

T(h, f) : T(ho, fo) = {(h1, f1). (h2, f2), ... }

where a function T maps header hy coming to face fp, to all headers
h1, hy, etc., going out of faces fi, fa, etc. of the node respectively.
NSA'’s transfer functions are at the level of a face, rather than be-
ing port-level as in HSA. While this does not change the algebraic
operations on the transfer functions, in practice it does enable one
to write such functions using faces, regardless of the underlying
strategies associated with those faces. Domain and range of NSA
transfer functions are of the same type (both Interest or both Data
headers). Transitioning from Interest to Data is not a part of NSA
verification as it requires changing the state of the data plane. De-
pending on the functionality being modeled, function T may or
may not change hg, and may or may not depend on the incoming
face fy. Any NDN packet processing, including an NDN forwarding
behavior, can be modeled using (a set of) transfer functions.

For example, the transfer function for forwarding an Interest as
a result of the Longest Prefix Matching (LPM) on the FIB, assuming
there are two entries with indexes (prefixes) n1 and ny in the FIB,
can be written as:

U(h, fl."l), if FIBM(name(h), ny),
Vf™M € SF(ny)
if FIBM(name(h), nz),
v fl."2 € SF(ny)

otherwise

Tr pwa(h. f) = YUk, £),

2,

where the FIB is a collection of (prefix, set of faces) pairs; assuming
the use of LPM, the FIB match function FIBM() returns true for at
most one FIB entry; and depending on forwarding strategy, i.e., best
route, multicast, etc., the function SF() (selected faces) will return
the appropriate corresponding outgoing faces.

In general, a typical Interest processing transfer function can
be modeled as Ty(.) = T1_f+a(Tr.cs(Tr.pr7(.))). What elements we
put into a transfer function depends on our architecture and the
purpose of the analysis. For example, if we have the assumption of
the CS and PIT being empty upon the arrival of an Interest, then
we can simply have T(.) = Tj f,4(.)- Additional functions can
be added to the pipeline as well, including those that modify the
incoming header space, e.g., function TyopLimis that decrements
the HopLimit field in the Interest [25] if it is above zero and passes

Name Space Analysis: Verification of Named Data Network Data Planes

it to the subsequent transfer function in the pipeline, and drops it
otherwise:

(W, f), if HopLimit(h) > 0,
THopLimit(h, f) = HopLimit(h') = HopLimit(h) — 1
@, otherwise

Using similar patterns, we can model Data forwarding or any
additional Interest forwarding transfer functions such as the full
forwarding pipelines in the NFD specification[3] or link object
processing[4], complicated forwarding strategies and Nonce checks,
etc. A packet processing pipeline can be modeled as a cascade of
functions, i.e., Ty(Ty-1(. . . T1(.))) where each T; is a specific func-
tion (step) in the pipeline. It can also be a named function, perform-
ing an operation if the Interest name has a particular prefix; this
operation can involve changing the name in the header. E.g., an ar-
bitrary Interest anonymizer, that encrypts the name with key K and
encryption algorithm Enc, and triggered by the prefix “/Anon”, will
have a transfer function in its Interest process pipeline, as follows:

(Enc(h,K), f), if prefix(h)="/Anon"
(h.)

Generally, a condition on a header is modeled as a header space
(which may or may not have wildcard expressions) and the result
depends on the output of a logic operation on the incoming header
and the condition. This depends on the process and the condition
and may in some cases be tricky. E.g., for LPM checking, for a header
to be forwarded out of a face, the FIB entry index corresponding
to that face has to be a prefix of the header’s name (non-empty
intersection) in the Interest, and a longer FIB index must not be a
prefix of that header (empty intersection). For example, consider
an NDN node with FIB consisting of two rules “/a — f1” and “/a/b
— {27, Given an all-wildcard input header, Interest headers coming
out of face f1 are those whose names start with “/a/” (i.e., “/a/=")
and not with “/a/b” (i.e., “/a/b/+").

NSA does the conversion of the NDN FIB table to NSA transfer
function. For a FIB table with e entries, the worst case complexity of
this procedure would be O(e2D29): for every entry e;, we need to
check all other entries to find descendants, i.e., at finer granularity

otherwise

Tanon(h, f) = {

of e;. For each descendant of e;, i.e., e{, 2dij corresponding NSA
rules need to be generated, where dj; is the granularity distance
between e; and e;;. E.g., granularity distance of prefixes e; =“/a”
and e; =“/a/b/c” is 2, as ey is a descendant of e; and has two
additional name components. As a result, corresponding to e;, NSA
would create rules for “/a/b/c/+”, “/a/b/c/+”, and “/a/b/c/+
for the network transfer functions (so the outcome would be
determined by the intersection of incoming header to every rule). D
and d denote the maximum number of descendants and granularity
distance in the given FIB table.

4.3 Modeling Name Spaces

We add the notion of name spaces as a key component of our
analysis approach. Name spaces show relations between content
names, in a content repository and across the network. They are
an important part of NDN, and NSA factors them carefully in its

48

ICN ’19, September 24-26, 2019, Macao, China

analysis. As far as NSA is concerned, a name space is any structure
representable by a graph. We assume a special case of that, namely
NDN-style hierarchically structured tries (prefix trees), in this paper.

Formally, a name space in NSA represents names and their re-
lations, and is a domain separate from the header space domain.
A name space function, transforms a point in the header space
domain to a name space domain, i.e, its corresponding name(s).
Name space function Q() is introduced in NSA. It transforms a (set
of) header space(s) (after parsing it to the individual name parts) to
a name space. In particular, Q() performs the following two steps
on an input header space h: 1) extracts the (prefix) names associated
with h, 2) provides the reverse construction of the prefix tree from
the list of prefixes derived in step 1. This resulting prefix tree is the
name space, used in NSA verification applications.

5 USING NSA FOR VERIFICATION

This section explains a number of verification applications that
NSA can check. Specifically, we look at the important applications
of testing content reachability, loop detection and name leakage
detection. NSA provides significant benefits both in terms of the
verification results and its efficiency compared to simulation-based
tests.

An important part of NSA’s formal verification approach that
facilitates automated checking is the generation and analysis of
the state space, or propagation graph. The graph represents all
possible paths any packet can take, rather than a single trace that
a simulation-based approach would support. This provides the
desired coverage we need for verification. An example is shown
in Fig. 2. Each node in this propagation graph is a state, mainly
consisting of a header and a face, denoting the arrival/departure of
the header to/from the face. Depending on the specific application,
there can be additional state information, such as a visited nodes
list, e.g., for loop detection. We record as much information within
a state (e.g., list of visited nodes) as needed, so that checks could be
done by looking at the state only, so that extra processing on the
graph would not be necessary (e.g., checking all ancestors of a state
by traversing paths). The initial states, i.e., parent-less nodes in the
graph, represent injections to the network. For example, in Fig. 2,
the propagation graph (Fig. 2(b)) implies that header h0 is injected
to face A0 of node A (as shown in Fig. 2(a) as well). State transitions
in the propagation graph can be through network transfer functions
(i.e., processing packets within a node) represented by single arrows
in Fig. 2(b), or topology transfer functions (i.e., moving over physical
links) shown by double arrows.

While NSA can be used for both Interest and Data packets, we
focus on Interests in the remainder of this paper. As pointed out
in [3], Interest processing is more complicated than Data processing:
it has longer, more complicated pipelines, has additional procedures
such as forwarding strategy selection, and its forwarding decisions
are made through the result (i.e., FIB) of complicated distributed
algorithms (i.e., routing protocols). All these motivate more careful
attention.

5.1 Content Reachability Test

Reachability analysis in HSA, and other host-based verification
solutions, focuses on host (content provider) reachability. We extend

ICN ’19, September 24-26, 2019, Macao, China

Header: hO
Face: AO
Visits: A
Header: hl Header: h2
Face: Al Face: A2
Visits: A Visits: A
Header: hl Header: h2
Face: B1 Face: C2
Visits: A, B Visits: A, C
Header: h3
Face: B2
Visits: A, B
Header: h3
Face: C1
Visits: A, B, C

(b) Propagation graph (—: network
transfer function transitions; —:
topology transfer function transitions)

(a) Topology and header spaces (yel-
low boxes: header spaces are created
and transferred on links)

Figure 2: Propagation graph example

this to content (name space) reachability in NSA, since this is a
main concern in NDN. This analysis generates name spaces that
can reach content repositories, ie., at producers or content stores.
To this end, we apply a name space function on the header space
received at a content repository:

CRa-B(h, f) = U A= B paths { QT (T (Tn-1(. .. T(Ta(h,)))}

where CR denotes the content reachability function, its range being
all the content names, in form of name spaces, received at content
repository B, having injected h at face f of A, and functions T;
and I being switch network and topology transfer functions on
the path, respectively. Function Q is the name space function that
transforms header spaces to name spaces.

A big part of name space reachability analysis is comparing the
received name space request, i.e, NSp° = Q(hp) with the hosted

(actual) name space NS g”s at node B, where B is a content provider
(or a router equipped with a content store). Ideally, we desire both
name spaces, NSp° and N Sg"s to be equal. Generally, there can

be three cases possible when comparing NSE°¥ and NSﬁ"S:

(1) If part of NSE°” is not in NSI};OS (Case 1: unsolicited names), it
means B would receive Interests for names the node does not
have, i.e., those packets get blackholed.

(2) If part of NSZOS is not in NSi°@ (Case 2: unreachable names),
it means part of B’s name space is untouched, i.e., requests
for them would never be received. Cases 1 and 2 need not be
disjoint.

(3) If neither cases occur, verification is successful, i.e., ng"s =
NS (Case 3).

The process is exemplified in Fig. 3, where header space hy
injected at host A traverses nodes (e.g., routers) with transfer func-
tions T¢ and Tg where the header space hp gets transformed and
compared with the content name space at B. Node B can generally
be any node in the network that has the capability of storing and
serving content, be it a content publisher or an ICN-capable router
with content store.

Algorithm 1 specifies the application for the name space reacha-
bility test in a network, denoted by its Network Space N, which is the

49

M. Jahanian, and K. K. Ramakrishnan

C‘;"g:re
m— A

Figure 3: Content reachability test

.0}

®

collection of all name spaces, and transfer and transform functions.
Starting from an initial header space, typically of all-wildcard ele-
ments, this application generates output headers of each node, step-
by-step, by walking through the header propagation graph. It can
start from one (as shown in Algorithm 1), or any arbitrary number of
consumers. The name space functions and comparisons are applied
and performed at all the nodes in the network that are considered
content providers. The application finds all case 1 and case 2 errors
for each content provider and also returns the overall verification
result, as either True (verification success, no bugs found) or False
(verification failure, bugs exists), for the whole network. In the case
of verification failure, NSA can provide the counterexamples, i.e.,
“unsolicited” or “unreachable” names at each content repository.

Algorithm 1 Content Reachability Test

1: procedure CoNREACH(C, hy, N) » Injecting hy, at C, network
space N

2: Start with hy at C > Typically all wildcard, i.e., [*]
3: Calculate all hp,’s > Headers reached at provider P;
4: for all P; do

5 NSI’JSU «— Q(hp,)

6: NSIL_{W — NSI’,fU - NSI};;’S > ‘Unsolicited’ names
7: NSIL,C_R — NSI@;’S - NS;,?U > ‘Unreachable’ names
8 if NSgRUNSYY = o then

9: Resultp, < True > Success at P;
10: else

11: Resultp, « False > Failure at P;
12: end if

13: end for

14: return A ,1p,’sResultp, > Overall verification result

15: end procedure

The time complexity of an NSA content reachability test for
injecting a header to a consumer that leads to a single content
provider is O(dLR?s), where d, L, R, and s are maximum network
diameter (number of hops), maximum header length, maximum
number of node rules, and maximum number of paths in a trie-
based content provider name space. This analysis is based on the
linear fragmentation assumption in [14], which says that typically
very few rules in a node match an incoming packet. Unlike NSA, the
complexity of a simulation-based test would be O(da®Rs), where
a is the maximum number of values an atom can take; e.g., with
byte-based atoms, a would be 256. This shows the huge benefit
of NSA over purely simulation-based approaches, for a content
reachability analysis with high coverage.

NSA’s content reachability application can be used to reason
about various issues, both in current NDN as well as in a more
general research context, as explained in the following examples:

Name Space Analysis: Verification of Named Data Network Data Planes

e Route computation outcome correctness. We can use NSA’s
content reachability analysis to see if a particular content request
reaches the nearest (or all/any) content, in case a content resides
at two repositories with the same names. This is very useful to an-
alyze the correctness of the computation outcome (i.e., resulting
state in the FIB, and not the routing protocol itself) of traditional
routing protocols such as NLSR [10] (only focusing on content
providers) or nearest replica routing protocols [6] (focusing on
both content providers and ICN router content stores).

e Security infrastructure soundness. In NDN’s content-
oriented security design, keys that are used to perform security-
related operations (authentication, etc.), are just like any other
content: they have names, their names/prefixes populate FIBs,
and they can/should be retrieved using Interests [32]. The reach-
ability of the correct keys is important for NDN security mech-
anisms to be sound. As an important case, NSA can check if all
public keys (e.g., data with “/KEY” prefix) can be reached at appro-
priately, requested from all appropriate end points in the network.

e Name space conflict-freedom. In NDN, different content
providers can use and announce the same prefixes, especially
when names are topic-based. No content provider has sole owner-
ship or authority to announce a certain prefix. While this allows
for democratization of content and better efficiency, it can cause
conflicts that can lead to blackholed interests. Fig. 4 shows an
example of this: content providers P1 and P2, with hosted con-
tent name spaces shown in Fig. 4(b), send prefix announcements
“/news/sports” and “/news” respectively, leading to two FIB en-
tries, namely “/news/sports — f1” and “/news — f2” at router
R (Fig. 4(a)). Announcing “/news/sports” implies that P1 claims
that he has ‘everything’ under “/news/sports”, which is chal-
lenged when considering P2’s name space, who unlike P1’s, has
content under “/news/sports/xbox”; it may be the case that
P1 and P2 have different views on whether or not ‘xbox’ is a
sub-category of ‘sports’, which they are allowed to. This conflict
causes Interests for “/news/sports/xbox” to be misdirected to
P1 instead of P2. NSA’s content reachability test can catch these
errors. Also, to overcome these conflicts, name registry methods,
such as [8] can be used, to have content providers register their
prefixes before announcement, and grant them permission only if
it is a conflict-free announcement. NSA can be used to check cor-
rectness of the outcome of such registration mechanisms as well.

e Content censorship-freedom. Censorship leads to content
reachability errors; in the example in Fig. 5, censoring node R
may drop all interests for “/democracy” [17]. This would result
in (all or part of) content provider P’s name space to be unreach-
able, injecting headers from C. This is an undesired effect that
can easily be detected by NSA. While NSA cannot definitively
deduce that such a problem is caused by content censorship, the
lack of existence of such errors would imply content censorship-
freedom. Furthermore, the effectiveness of a censorship
countermeasure mechanisms can be checked using NSA.
Content neutrality. We define Content Neutrality as not favor-
ing a content provider over another (by not discriminating), with
regards to same prefixes that they serve. With multicast forward-
ing strategy at every router for every prefix, NSA can check
whether all content providers receive Interests matching their
entire name space, for every ‘all-wildcard” injection. While NSA

50

ICN ’19, September 24-26, 2019, Macao, China

<

2 P1 has announced
“/news/sports”

FIBatR

/news/sports - f1

/news — f2

P1
sp(l)rls
football || basketball || baseball

P2

[politics] [economics|[_sports |

(b) Name spaces

W >Z

J—>\

/mews/sports/
xbox/*

P1 would receive interest for
“/news/snorts/xhox” instead of P2!

P2 has announced
“/news”

(a) Network topology
Figure 4: Name space conflict example
P serves

/,\(~ CemOCTaCy S /_(\/\/ \“/democracy”
RO
il R ¥ -

N~
R drops “/democracy” —

P would not receive interests for “/democracy” which it serves, since R has censored it!

/democracy/*

Figure 5: Content censorship example

cannot detect if a reachability error is caused by discriminatory
neutrality violation or benign configuration mistakes, an error-
free data plane could be used to show if content neutrality holds.

5.2 Loop Detection

Loop freedom is an important property in networks. For NDN in
particular, looping Interests is a widely known issue, which led to
the addition of extra processes in the forwarding pipelines, such as
a Dead Nonce List [3]. While such reactive measures detect looped
Interests after they occur, looped Interest would not be prevented
and could potentially waste a large amount of network resources.
Also, it is very likely that an Interest is looping because it is not satis-
fied; i.e., did not reach its intended content provider(s) due to errors
in the forwarding state of the network. As a result, making a local
decision at an NDN router to discard or drop a looping Interest does
not solve the problem of unsatisfiability of certain Interests. Thus, it
would be highly desirable to detect all potential loops in a data plane,
before they occur, with a holistic view of the network data plane.

NSA helps in identifying all Interests that might potentially
loop. NSA typically does this by injecting all-wildcard headers and
looking for possible loops. Thus, we can track every possible Interest
and find all potential loops by following FIB rules established in a
given data plane. We therefore achieve a purely name-based loop
detection, rather than a nonce-based detection. NSA models the
transition of all packets within a single data plane snapshot, thus
enabling a robust loop detection algorithm (as does HSA [14]). As all
FIB rules causing the loops are contained in one single snapshot and
it is possible to analyze them with transitioning packets (headers),
NSA can catch all potential loops.

The loops detected can be potentially infinite or finite. Suppose
node A appears twice in a single path in the propagation graph,
visiting two header spaces h and h’ (in that order); if A’ C h, then
this would be a potential infinite loop. An example is shown in
Fig. 6, where NSA first detects a loop (as node A appears twice
in one particular path), and second, it determines the loop to be
infinite, checking the header spaces h and h’ associated with the
visits, where headers with name “/a/b/+” return back to node A.

ICN ’19, September 24-26, 2019, Macao, China

Header: hO = “/*”
Face: DO
Visits: D

v
Heade@‘/a/*”

FaceTAl
Visits: D, A

3
Heade@“/a/b/*”

Face: A2

Visits: D{A)B, C(A)
O Loop detected!

© h' € h = Infinite loop!

(a) Topology, injected header, and FIB rules (b) Propagation graph (partial)
Figure 6: Loop detection example

/prefix g ruie for “/prefix” and

=

its output face direction

Having h’ N h = @ implies a certainly finite, thus non-hazardous,
loop which NSA ignores. By adding the history of each state
to NSA, i.e., the sequence of headers and faces, NSA can easily
detect infinite loops by checking whether a particular header space
(subset) has been visited by a node twice or not.

5.3 Name (Space) Leakage Detection

What if a consumer issuing an Interest for a particular name, wishes
(parts of) the name, e.g., his ID or a particular content name, to not
be visible in the network except for certain authorized nodes, e.g.,
those in his home network? This can be a desirable property for a
variety of reasons. Works such as [31] have identified the need for
Interest name privacy.

In NSA, inspired by HSA’s slice isolation check, we can check
whether or not any confidential name leaves a particular set of
nodes authorized for read-access. Let us call this set of nodes as a
zone. A zone can be a particular router, a local network, a service
provider network, etc.

Let us consider the example in Fig. 7: Consumer C issues Interests
with header hg, which results in headers h1, hy and h3 leaving the
authorized zone of routers, denoted as Z1. We define all the headers
going out of Z1 as hyy; = h1 Uhp U hs. NSA allows us to define and
apply access control rules on names in a number of ways, and check
name constraints on hyy; accordingly, e.g., the following examples:

e Headers of particular form, e.g., containing a particular name
component or prefix, should not appear in any packets leaving
zone Z1. Then we should have hout N hpronibitea = @, where
the left-hand side of the equation denotes the intersection of
all headers leaving Z1 with all prohibited headers. Prohibited
headers can be built using NSA’s atoms and algebra, as described
in §4. The “@” on the right-hand side means that we do not want
any header in the result of the intersection to leave Z1.

e Packets associated with name space NSy should not leave Z1;
then we should have Q(hoy ;) N NSp = @. This way of defining a
rule is more efficient for constraints of a larger set of prefix-suffix
name relations representing a portion of a name space graph:
instead of checking many prefixes one by one, we can check once
against name space NSy comprising all those prefixes.

51

M. Jahanian, and K. K. Ramakrishnan

Figure 7: Name leakage detection example

6 EVALUATION

An important part of network formal verification is developing a
tool that automatizes the generation of state spaces and verification
checks in a reasonably efficient way. We have implemented NSA,
including its main components and modules, in Java; the source
code is available at [12]. We start by evaluating the performance
of NSA using synthetic grid and ring topologies, and then apply
it to the NDN testbed topology for evaluating a network that is
actively used [27]. All evaluations have been done on a machine
with Ubuntu 14.04.6 LTS using Intel(R) Xeon(R) CPU E5-2650 v4
@ 2.20GHz dual-socket with 14 cores each with hyper-threading
enabled, and 252GB RAM. We do not utilize the whole RAM capacity
though; we set the maximum memory heap size of our Java Virtual
Machine (JVM) to 10GB only. For each verification application, all
wildcard headers, i.e., “/+” is injected to all faces or nodes. While
reporting our evaluation results, we identify and present a number
of optimizations that further improves NSA’s performance.

6.1 Synthetic Networks

6.1.1 Content Reachability Analysis and Loop Detection. To eval-
uate NSA’s content reachability analysis and loop detection we use
customized n X n grid topologies (to allow many branches in the
propagation graph), with n publishers in each case, each serving
one distinct prefix; these prefixes are advertised and populated in
every node’s FIB in the snapshot being verified. Verification per-
formance results for these grid networks are presented in Fig. 8, 9,
and 10, in terms of execution times, in milliseconds.

Fig. 8 shows the execution time of content reachability on the grid
networks. This verification, as explained in §5.1, checks both un-
reachable and unsolicited names. Typically, NSA injects all-wildcard
headers into all faces, since some node rules may depend on the in-
coming faces (‘All faces’ bars in Fig. 8). As seen in Fig. 8, the growth
of execution time for ‘All faces’ injection mode is linear with respect
to the input network size growth (note the input growth on x-axis
is n?). Since we are only dealing with FIB rules that do not depend
on the incoming face, we can limit our injection to ‘One face per
node’ injection only. This would not change the outcome of the
verification results. Fig. 8 shows that this optimization significantly
improves the performance of NSA, which is due to the fact that its
fewer number of injections leads to smaller propagation graph.

For the full reachability check (Fig. 8), we need to go through
a separate propagation graph fragment, built and checked for each
injection, to check both unsolicited and unreachable names. If
our goal is to only check unsolicited names (and not unreachable
names), we can make all injections at once into a single propagation
graph fragment, aggregating the headers (Fig. 11). This way, we
preserve all reached header spaces, but not their exact paths from

Name Space Analysis: Verification of Named Data Network Data Planes

ICN ’19, September 24-26, 2019, Macao, China

160 \ I I 160 \ I I 160 ‘ ‘ ‘
140 L All faces EXXX] 140 All faces EXXX] | 140 L All faces EXXX]
One face per node] . One face per node] One face per node 2]
EIZO* ; - EIZO* N élZO* % -
E 100 — - E 100 N g 100 — §<< -
= L | p=} L H = L < |
E 80 5 80 E 80 %
g 60 - = g 60 - - E 60 - >>§ -
240 A4 el R A
84 X 53] 53] A
20 - % H - 20 - N 20 % H §<< -
0 gﬂ \H | \ 0 I @\ %H %\H 0 @ﬂ \H \
2x2 3x3 4x4 5x5 2x2 3x3 4x4 5x5 2x2 3x3 4x4 5x5
Network size (grid dimensions) Network size (grid dimensions) Network size (grid dimensions)
Figure 8: Content reachability Figure 9: Content reachability with Figure 10: Loop detection
header aggregation
We also evaluated the performance of NSA’s loop detection on
y y the same grid networks, injecting all-wildcard headers. Fig. 10
Header: h3 Header: h4 Header: h3 Header: h4 > . X . : :
Face: A2 Face: B2 Face: A2 Face: B2 shows the results for both cases of ‘All faces’ and ‘One face per
Visits: A Visits: B Visits: A Visits: B node’ injection. The complexities, growth rates and optimization
benefit of face selection in loop detection are similar to those of full
Header: h3 Header: h4 Header: h7 =h3 U h4 . .
Face: C1 Face: C1 Face: C1 content reachability analysis.
Visits: A, C Visits: B, C Visits: (A|B), C

(a) Original propagation graph (b) Aggregated propagation graph

Figure 11: Propagation graph aggregation example

1000000 F

s)

> 100000 |
10000 |-

1000

Execution time (m:

100 £

10l

NSA

Simulation Simulation Simulation Simulation
w L=1 wL=2 wL=3 w L=4
Verification method

Figure 12: NSA and simulation-based verification

origin in the visited list. Fig. 9 shows the significant performance
enhancement of this optimization, compared to full reachability
analysis in Fig. 8, if our goal is only to detect unsolicited names.
The use of wildcards is an important benefit of NSA (and HSA),
compared to simulation-based methods (which have to generate
all possible packets within a range), as shown asymptotically in
§5.1. We show the empirical results for the use of wildcards in
Fig. 12. Each ‘Simulation’ scenario is a typical simulation-based
content reachability analysis (using the aggregation optimization
with the sole purpose of detecting misdirected packets) that injects
Interests with L name components, each being a single alphabetical
letter. Fig. 12 shows the large benefit, in terms of performance and
scalability of NSA compared to these simulation-based verifications.

52

6.1.2 Name Leakage Detection. To verify name leakage-freedom,
we use two-ring topologies; where two rings of size n are connected
by one node, i.e., is a gateway between the rings. Each ring is consid-
ered its own zone, and has one publisher serving (and advertising)
two prefixes, one prefix visible to everyone, and one prefix visible
only to the nodes within the local zone. Thus, each NDN node has
rules for the three prefixes (that are visible to it): two prefixes of
its own zone, and one prefix that is public from the other zone. In
each of its rounds, NSA’s name leakage detection application in-
jects all-wildcard headers to the faces/nodes of one zone, generates
headers that reach the other zones, and checks whether or not they
violate each zone’s name privacy requirements. The performance
of name leakage on the two-ring topologies are shown in Fig. 13,
indicating its scalability (showing a linear growth) with the increase
in network size.

6.2 NDN Testbed

To evaluate NSA’s performance on an operational, practical NDN,
we considered the NDN testbed [27]. This is the largest real-world
NDN with publicly available forwarding state, with relatively large
forwarding tables (of the order of hundreds of entries per node).
We captured a snapshot of the testbed on 2019/03/09 14:43:16 CST.
Some nodes were offline or unresponsive and we removed them
from our analysis.

An important pre-processing step for NSA verification is gener-
ation of the transfer functions. We have implemented these compo-
nents in NSA. The topology transfer function generation is trivial.
For network transfer function generation for LPM-based forward-
ing rules in NDN nodes, additional processing needs to be done:
for each FIB entry, all other rules (i.e., FIB entries) have to be vis-
ited, as explained and analyzed for asymptotically completing the
generation of the network transfer function in §4.2. To show this
empirically, we picked one particular node from the testbed, the

ICN ’19, September 24-26, 2019, Macao, China

M. Jahanian, and K. K. Ramakrishnan

30 I ‘ ‘ 140
All faces EXXX
25 - One face per node 2 120 -
Exnt g Ewor
Q Q
£ £
§ 15 - - .§ 80 -
210 - % 1 Zeor
% X %
s8] X [Sa)
5+ X - 40 -
0 I I I 20 | |
2x2 2x3 2x4 2x5 40 80 120

Network size (ring sizes)
Figure 13: Name leakage

Table 1: Execution time (ms) for NDN
testbed verification for alternate for-

| warding strategies
. 2 o
A
4 4;5 =
Application =2 =
n Content Reachability Anal- | 196 | 2,481

ysis
| Content Reachability Anal- | 75 | 342
| ysis (w/aggregation)

160 200 240 Loop Detection 190 | 2,416

FIB size (# of FIB rules)
Figure 14: Network transfer function:

rule generation (‘UCI’ node)

‘UCT’ node. It has 214 FIB entries in our selected snapshot. We ran-
domly pick 50, 100, 150 and 200 FIB rules from it and perform the
network transfer function generation. The execution time (includ-
ing the case with all 214 entries) is shown in Fig. 14. These results
show that NSA’s transfer function generation for this particular
real-world case is reasonably efficient and scales well with number
of FIB rules (this is less complex than the upper bound shown in
§4.2).

We performed content reachability (both full and aggregated)
and loop detection on the snapshot (we did not perform name leak-
age detection on it since the name leakage-freedom is not one of
the properties of the NDN testbed) using two forwarding strategy
modes (for all), namely the best-route and multicast, and found
several errors. In the best-route mode, we found 450 content reach-
ability errors, either caused by forwarding state errors or physically
unavailable/offline nodes. For example, the name “/kr/re/kisti”
is reachable only in 31% of injections. Also, 704 loop-freedom viola-
tions were found; note that this is not the number of loops (cycles)
per se, but rather the total number of looped Interests detected as a
result of injections. For example, for the prefix “/kr/re/kisti”, a
loop was found between the two nodes “TNO’ and ‘GOETTINGEN".
In the multicast mode, we found hundreds of errors as well. More
details of the errors are omitted here due to lack of space. The perfor-
mance results of our verifications (execution times in milliseconds)
are shown in Table 1, showing that its latency is reasonable.

From a practical standpoint, our experiments and results show
that it is feasible to have NSA integrated into the NDN testbed (in
one of its nodes), and periodically check for data plane errors, and
checking various states of the data plane. Given that these checks
only take seconds in total, including transfer function generation
and the analysis, it would be quite reasonable to have new NDN
snapshots (which are generated every 10 minutes at the date of
this submission) be verified. This would be very helpful for the
users of the NDN testbed, and for their research experiments.

7 LIMITATIONS

While NSA answers several important questions about the network,
it has its limitations. These limitations of NSA are quite similar

53

to those of other notable data plane verification systems, such as
HSA [14].

Regarding the discovery and reporting of errors, while NSA
can give us hints about the details associated with errors, it cannot
definitively assert why such error occurred or how it can be resolved.
Additional external information, as well as refinement procedures,
are required to achieve this.

NSA is not well-suited for network-wide dynamic analysis that
involves “churning” in the network’s forwarding state. This is due
to the fact that NSA is of the class of data plane verification tools,
“mainly” optimized for static checking (i.e., checking a single data
plane with regards to operations and properties that do not change
the state of the network). Having said that, it is still feasible to check
multiple states of the network, represented by multiple snapshots,
by successively running NSA on them. However, this feature is
limited for NSA and would only work if errors of a dynamic-nature
stay longer than the “sampling period”, i.e., the interval between
collecting two snapshots.

Nonetheless, we believe NSA is a valuable tool for verifying key
NDN-specific data plane properties.

8 CONCLUSION

We proposed Name Space Analysis (NSA), a data plane verifica-
tion framework for NDN, based on the theory of Header Space
Analysis. NSA (available at [12]) includes essential NDN-specific
verification applications of content reachability test (to detect name
space conflicts, content censorship-freedom, etc.), name-based loop
detection, and name leakage detection. Applied to the NDN testbed,
we found a number of data plane errors through NSA’s automatized
verification. Our evaluation results on various test cases show the
effectiveness, efficiency, and scalability of NSA.

9 ACKNOWLEDGEMENTS

This work was supported by the US Department of Com-
merce, National Institute of Standards and Technology (award
70NANB17H188) and US National Science Foundation grant CNS-
1818971. We thank our shepherd, Craig Partridge, for his support
and insightful feedback and the reviewers for their valuable com-
ments.

Name Space Analysis: Verification of Named Data Network Data Planes

REFERENCES

(1]

[10]

[11

[12]

[13]

[14]

[16]

[17]

[18

[19]

[20

[21]

[22]

[23

[24]

[25]

Alexander Afanasyev, Xiaoke Jiang, Yingdi Yu, Jiewen Tan, Yumin Xia, Allison
Mankin, and Lixia Zhang. 2017. NDNS: A DNS-Like Name Service for NDN. In
Computer Communication and Networks (ICCCN), 2017 26th International Confer-
ence on.

Alexander Afanasyev, Priya Mahadevan, Ilya Moiseenko, Ersin Uzun, and Lixia
Zhang. 2013. Interest flooding attack and countermeasures in Named Data
Networking. In IFIP Networking Conference, 2013.

Alexander Afanasyev, Junxiao Shi, et al. 2018. NFD developer’s guide. Technical
report, NDN-0021, NDN (2018).

Alexander Afanasyev, Cheng Yi, Lan Wang, Beichuan Zhang, and Lixia Zhang.
2015. SNAMP: Secure namespace mapping to scale NDN forwarding. In Computer
Communications Workshops (INFOCOM WKSHPS), 2015 IEEE Conference on.
Hitoshi Asaeda, Xun Shao, and Thierry Turletti. 2018. Contrace: Traceroute
Facility for Content-Centric Network draft-asaeda-icnrg-contrace-04. https:
//tools.ietf.org/html/draft-asaeda-icnrg-contrace-042.

Onur Ascigil, Vasilis Sourlas, Ioannis Psaras, and George Pavlou. 2017. A native
content discovery mechanism for the information-centric networks. In Proceed-
ings of the 4th ACM Conference on Information-Centric Networking.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A General
Approach to Network Configuration Verification. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (SIGCOMM °17).
Alberto Compagno, Xuan Zeng, Luca Muscariello, Giovanna Carofiglio, and
Jordan Augé. 2017. Secure producer mobility in information-centric network. In
Proceedings of the 4th ACM Conference on Information-Centric Networking.
Dragos Dumitrescu, Radu Stoenescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. 2019. Dataplane equivalence and its applications. In 16th { USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 19).
AKM Hoque, Syed Obaid Amin, Adam Alyyan, Beichuan Zhang, Lixia Zhang, and
Lan Wang. 2013. NLSR: named-data link state routing protocol. In Proceedings of
the 3rd ACM SIGCOMM workshop on Information-centric networking.

Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H.
Briggs, and Rebecca L. Braynard. 2009. Networking Named Content. In Proceed-
ings of the 5th International Conference on Emerging Networking Experiments and
Technologies (CoNEXT °09).

Mohammad Jahanian and K. K. Ramakrishnan. 2019. Name Space Analysis.
https://github.com/mjaha/NameSpaceAnalysis.

Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-
own, and Scott Whyte. 2013. Real Time Network Policy Checking Using Header
Space Analysis. In Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13).

Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation (NSDI'12).

Siham Khoussi, Davide Pesavento, Lotfi Benmohamed, and Abdella Battou. 2017.
NDN-trace: a path tracing utility for named data networking. In Proceedings of
the 4th ACM Conference on Information-Centric Networking.

Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey.
2012. VeriFlow: Verifying Network-wide Invariants in Real Time. In Proceedings
of the First Workshop on Hot Topics in Software Defined Networks (HotSDN ’12).
Jun Kurihara, Kenji Yokota, and Atsushi Tagami. 2016. A consumer-driven access
control approach to censorship circumvention in content-centric networking. In
Proceedings of the 3rd ACM Conference on Information-Centric Networking.

Fan Lai, Feng Qiu, Wenjie Bian, Ying Cui, and Edmund Yeh. 2016. Scaled VIP
Algorithms for Joint Dynamic Forwarding and Caching in Named Data Networks.
In Proceedings of the 3rd ACM Conference on Information-Centric Networking.
Vince Lehman, Ashlesh Gawande, Beichuan Zhang, Lixia Zhang, Rodrigo Alde-
coa, Dmitri Krioukov, and Lan Wang. 2016. An experimental investigation of
hyperbolic routing with a smart forwarding plane in ndn. In Quality of Service
(IWQoS), 2016 IEEE/ACM 24th International Symposium on.

Nuno P. Lopes, Nikolaj Bjerner, Patrice Godefroid, Karthick Jayaraman, and
George Varghese. 2015. Checking Beliefs in Dynamic Networks. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15).
Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten
Godfrey, and Samuel Talmadge King. 2011. Debugging the Data Plane with
Anteater. In Proceedings of the ACM SIGCOMM 2011 Conference (SIGCOMM ’11).
Spyridon Mastorakis, Jim Gibson, Ilya Moiseenko, Ralph Droms, and David Oran.
2017. ICN Ping Protocol draft-mastorakis-icnrg-icnping-00. https://tools.ietf.org/
html/draft-mastorakis-icnrg-icnping-02.

Spyridon Mastorakis, Jim Gibson, Ilya Moiseenko, Ralph Droms, and David Oran.
2017. ICN Traceroute Protocol Specification draft-mastorakis-icnrg-icntraceroute-
01. https://tools.ietf.org/id/draft-mastorakis-icnrg-icntraceroute-01.html.

Ilya Moiseenko and Dave Oran. 2017. Path switching in content centric and
named data networks. In Proceedings of the 4th ACM Conference on Information-
Centric Networking.

NDN. 2019. NDN Packet Format Specification 0.3 documentation.
//named- data.net/doc/NDN-packet-spec/current/.

http:

54

(32

[33

[34

ICN ’19, September 24-26, 2019, Macao, China

NDN. 2019. NDN Regular Expression. http://named-data.net/doc/ndn-cxx/
current/tutorials/utils-ndn-regex.html.

NDN. 2019. NDN Testbed. http://ndndemo.arl.wustl.edu/ndn.html.

Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker. 2017.
Verifying reachability in networks with mutable datapaths. In 14th { USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 17).
Susmit Shannigrahi, Dan Massey, and Christos Papadopoulos. 2017. Traceroute
for Named Data Networking. Technical Report NDN-0055, NDN (2017).

Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2016. Sym-
Net: Scalable Symbolic Execution for Modern Networks. In Proceedings of the
2016 ACM SIGCOMM Conference (SSIGCOMM 16).

Reza Tourani, Satyajayant Misra, Joerg Kliewer, Scott Ortegel, and Travis Mick.
2015. Catch me if you can: A practical framework to evade censorship in
information-centric networks. In Proceedings of the 2nd ACM Conference on
Information-Centric Networking.

Yingdi Yu, Alexander Afanasyev, David Clark, Van Jacobson, Lixia Zhang, et al.
2015. Schematizing trust in named data networking. In Proceedings of the 2nd
ACM Conference on Information-Centric Networking.

Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda
Liu, Nick McKeown, and Amin Vahdat. 2014. Libra: Divide and Conquer to Verify
Forwarding Tables in Huge Networks. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14).

Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crowley,
Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. 2014. Named data
networking. ACM SIGCOMM Computer Communication Review 44, 3 (2014).

https://tools.ietf.org/html/draft-asaeda-icnrg-contrace-042
https://tools.ietf.org/html/draft-asaeda-icnrg-contrace-042
https://github.com/mjaha/NameSpaceAnalysis
https://tools.ietf.org/html/draft-mastorakis-icnrg-icnping-02
https://tools.ietf.org/html/draft-mastorakis-icnrg-icnping-02
https://tools.ietf.org/id/draft-mastorakis-icnrg-icntraceroute-01.html
http://named-data.net/doc/NDN-packet-spec/current/
http://named-data.net/doc/NDN-packet-spec/current/
http://named-data.net/doc/ndn-cxx/current/tutorials/utils-ndn-regex.html
http://named-data.net/doc/ndn-cxx/current/tutorials/utils-ndn-regex.html
http://ndndemo.arl.wustl.edu/ndn.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Overview of Header Space Analysis
	2.2 Network Verification and NDN Diagnostics

	3 Overview of NSA
	4 NSA Design
	4.1 Modeling NDN Header Space
	4.2 Modeling NDN Nodes
	4.3 Modeling Name Spaces

	5 Using NSA for Verification
	5.1 Content Reachability Test
	5.2 Loop Detection
	5.3 Name (Space) Leakage Detection

	6 Evaluation
	6.1 Synthetic Networks
	6.2 NDN Testbed

	7 Limitations
	8 Conclusion
	9 Acknowledgements
	References

