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Abstract. The Internet is composed of many interconnected, interop-
erating networks. With the recent advances in Future Internet design,
multiple new network architectures, especially Information-Centric Net-
works (ICN) have emerged. Given the ubiquity of networks based on the
Internet Protocol (IP), it is likely that we will have a number of different
interconnecting network domains with different architectures, including
ICNs. Their interoperability is important, but at the same time difficult
to prove. A formal tool can be helpful for such analysis. ICNs have a num-
ber of unique characteristics, warranting formal analysis, establishing
properties that go beyond, and are different from, what have been used
in the state-of-the-art because ICN operates at the level of content names
rather than node addresses. We need to focus on node-to-content reach-
ability, rather than node-to-node reachability. In this paper, we present
a formal approach to model and analyze information-centric interoper-
ability (ICI). We use Alloy Analyzer’s model finding approach to verify
properties expressed as invariants for information-centric services (both
pull and push-based models) including content reachability and return-
ability. We extend our use of Alloy to model counting, to quantitatively
analyze failure and mobility properties. We present a formally-verified
ICI framework that allows for seamless interoperation among a multi-
tude of network architectures. We also report on the impact of domain
types, routing policies, and binding techniques on the probability of con-
tent reachability and returnability, under failures and mobility.

1 Introduction

Today’s computer networks, the Internet being a dominant example, are heavily
used to fulfill users’ information-centric needs: users primarily seek informa-
tion over the network without necessarily wanting to focus on its location or
the underlying mechanisms used to retrieve it [9]. However, the current way of
using “location-based” access in IP networks results in a less convenient and less
efficient means for information retrieval and dissemination. Information-Centric
Networks (ICNs) address this content-oriented networking paradigm by separat-
ing content identity from its location [9]. ICN enables access to content based on
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its name, from wherever it resides, supporting mobility as well as accessing the
named content from the best, any, or all source(s). It also allows for network-wide
caching to reduce access latency. There are a variety of ICN architectures which
have been proposed in the past decade. Two of the most notable ones, which
we primarily focus on in this paper, are Named Data Networks (NDN) [20], and
MobilityFirst [16], which have been considered for Future Internet designs [3].

Currently, there are two main factors that make the discussion of network
interoperability important: 1) Today, IP is ubiquitous and used on a majority
of network devices, despite the legacy of end-point address-oriented communica-
tion, especially considering new services and demands on today’s networks [15].
2) Research on designing new network architectures radically different from IP,
is ongoing, and in many cases has already led to implemented systems; our focus
in this paper is on an important class of such architectures, namely ICN. It is
anticipated that we may have a number of interconnected networks (domains)
using different architectures [15]. To go beyond the interconnection (i.e., physi-
cal connections between different domains) towards interoperation between them
(i.e., being able to use a service, or content, provided by one domain in another
domain), we need network interoperability. In the past decade, several designs
have been proposed for interoperation between an ICN architecture (either NDN
or MF) with IP [3]. However, such designs and their requirements were presented
informally, describing the primitives and operations. It has been observed that
network interoperability is complex [19]; thus, a formal structure for analysis
of information-centric interoperability (ICI) can be very helpful, as it can pro-
vide proofs or expose errors early on, before the universal deployment of ICI
frameworks for Future Internet.

Formal methods have been extensively used for designing and analyzing com-
puter networks and protocols (surveyed in [14]). As for interoperability, work in
[19] proposed a formal model to analyze interoperation of legacy networks. How-
ever, it only deals with host-centric interoperability (HCI), and only uses classic
model finding [17] reasoning techniques. We extend that to support ICI as well
as modeling failure and mobility with model counting [7] techniques. Network
verification tools have also been proposed to analyze network data and control
planes. Recently, work in [10] proposed a tool to verify ICN data planes, analyz-
ing properties such as reachability. However, it only deals with a single domain,
while our goal here is to cover multiple domains with different architectures
coexisting with each other. Also, the symbolic execution nature of works such as
[10] is computationally too expensive when expanded across multiple domains,
each having its own data plane.

We present an Alloy [8]-based formalization of ICI, to analyze interoperability
correctness. We cover both pull-based (request/response) and push-based (pub-
lish/subscribe) [6] content retrieval services, and their most essential properties
such as content reachability and returnability. To analyze content-oriented ser-
vices, we distinguish between static and dynamic content, justifying their dif-
ferences, and specifying no-conflict properties, especially for dynamic content
retrieval. For verification of these properties, we use Alloy Analyzer’s built-in SAT
solver-based model finding engine [2]. We also consider failure and mobility; to
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analyze them, mere model finding is not sufficient, as failure and mobility, when
severe, can cause any network protocol to become “incorrect” (and raise coun-
terexamples). Thus, for such analysis, we resort to model counting (to count and
compare the number of satisfying instances and counterexamples) to assess “how
well” a particular domain or architecture is doing under failure and mobility.

The major contributions of this paper are: 1) a model finding method to
analyze basic properties (mainly reachability and returnability) of information-
centric interoperability (ICI); 2) a formally-verified ICI framework; and 3) a
model counting method to analyze gateway failure and mobility.

2 Background and Related Work

2.1 Information-Centric Networking (ICN) and Interoperability

ICN enables access to content independent of its location, focusing on the fact
that what matters to users is what the content is rather than where that content
is located [9]. An ICN network layer recognizes and makes its forwarding deci-
sions based on content names (or IDs) instead of addresses (unlike host-centric
networks, as in today’s IP networks), achieving efficiency and scalability.

Among many different ICN architectures proposed recently, we focus on the
two most popular ones, namely Named Data Networks (NDN) [20] and Mobil-
ityFirst (MF) [16]. Both allow users to retrieve content using content names,
through pull-based request/response or push-based publish/subscribe methods
[6]. In-network content caching in routers is an important feature of ICN, allow-
ing for requests to be satisfied from an intermediate cache on the path to the
server /repository [9]. An in-network namespace is generally a graphical structure
that captures the content names and their relationships in an ICN’s content space
[12]. Despite both being ICNs, NDN and MF have important differences [16,20]:
NDN uses human-readable hierarchically-structured names, with Longest Pre-
fix Matching-based forwarding. NDN content requests (called Interests) leave
“breadcrumb” state in the routers on their path, which the associated response
(called Data packets) then follow back, via Reverse Path Forwarding (RPF). MF,
on the other hand, uses flat IDs (called GUIDs) to identify content. Response
packets contain the consumer’s ID and do not need to follow the same path
as the request. Also, MF inherently supports mobility by late binding, which
re-directs in-flight packets towards a mobile content repository. Early binding
assigns names to locations strictly at the original client, while late binding allows
such assignment to be updated on its way in the network [16].

There have been several proposals for interoperability frameworks for ICNs
(surveyed in [3]). These frameworks typically consist of interoperation gateways
between domains of different network architectures, performing translations
between them. All of these proposals allow interoperation of just two domains,
IP and one ICN (either NDN or MF), and often require addition of new proto-
cols or modification of existing ones. We generalize these solutions in our model
to an interoperability framework of multiple (>2) domain types (we allow IP,
NDN and MF to coexist simultaneously), and do not change any domain-specific
protocols.
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2.2 Alloy

Alloy is a declarative language based on relations and first order logic [8]. Alloy
models a system, M, through the declaration of signatures (objects and their
relations) and facts (constraints and axioms). A predicate is defined as a logical
formula. An Assertion is a logical formula (which can be a combination of pred-
icates) that are required to be always true (i.e., as invariants) in the system.
Alloy Analyzer [2] allows the automatic analysis of models and their properties
through utilizing off-the-shelf SAT solvers. The tool translates Alloy descrip-
tions into Congjunctive Normal Form (CNF) expressions. It uses an enumeration
of instances, also called model finding, within a bound (scope), to prove whether
or not a predicate P ever holds (by SAT-solving M A P), or an assertion A always
holds as an invariant (by SAT-solving M A —A, to look for counterexamples).

Alloy has been used in modeling and analysis of many systems, including
network protocols and architectures [8]. In the particular case of network inter-
operability, Zave [19] used Alloy to formally analyze host-centric interoperabil-
ity for legacy networks, with domains of the Public Switched Telephone Net-
work (PSTN), BoxOS and the Session Initiation Protocol (SIP). We extend the
approach to model and analyze interoperability of information-centric services
and architectures, since we are dealing with radically different network designs
(name-based networking vs. address-based [9]) and required properties (node-to-
content reachability vs. node-to-node reachability [10]). Additionally, we extend
the classic Alloy-based model finding approach, such as in [19], to a model count-
ing one, to quantitatively analyze the impacts of failure and mobility. An impor-
tant feature of Alloy is its strength in efficiently handling graph structures and
properties [18], a feature that we benefit from, in two ways: 1) the composite
network topology, and 2) a graph-based information namespace. Further, Alloy
helps provide proofs for properties with a reasonably large scope [18].

3 Modeling Information-Centric Interoperability

We now describe the basics of our formal model'. First and foremost, let us
define information-centric interoperability (ICI):

Definition 1. A sequence of interconnected domains in a mnetwork are
information-centrically interoperable if and only if any client in any of the
domains can access information-centric services provided in any other domain.

Throughout this paper, we use the term “network” to mean “a composition
of multiple network domains”, each domain being a different type of standalone
architecture (e.g., IP, NDN, or MF). An interoperability framework (such as [3])
is a set of protocols and architectural components that allow interconnected net-
works of different types to interoperate. Information-centric services are broadly
sub-categorized as: 1) requesting for and retrieving content (pull-based), and 2)

! Full source files are available in [1].
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Fig. 1. Information-centric interoperability (ICI): request for content
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Fig. 2. Example (partial) instance for ICI Alloy model (objects and relations)

subscribing to and receiving content (push-based). Both of these may be based
on namespaces defined by content producers. An example 3-domain ICI scenario
is depicted in Fig.1. As shown, ICI accesses content by name, rather than an
address. Also, requests can be satisfied at any cache node, not just the original
server. As for formal analysis, in ICI, the main property we care about is node-to-
content reachability [10], while in traditional host-centric interoperability (HCI)
analysis [19], the focus is on node-to-node reachability.

We model our networked environment using Alloy’s relational and logical
atoms. We have Domains (as abstract signatures), each of which can be an IP,
NDN, or MF type (extended signatures) (Listing 3.1). A Node is at least in one
Domain and has at least one NodelID. A Node can be either a Client, Repos
(repository/server), or GW (gateway). A gateway is associated with exactly two
Domains (constrained using facts), that it is stitching together (Listing 3.2.)

Listing 3.1. Domains Listing 3.2. Nodes

abstract sig Node{domains: some Domain, id:

abstract sig Domain{} some NodeID}

sig IPdomain extends Domain{} . .
sig NDNdomain extends Domain{} 212 gi;ilslteiﬁZiggsNggg%? }%{ 3

. S - .
sig MFdomain extends Domain{} sig GW extends Node{...}{#domains=2 && ...}

Our declarations specify a network meta-model [8], which maps to a number
of instances (models) each being a network configuration (i.e., with their own
topology, content, namespace, etc.). An example 2-domain instance is depicted
in Fig. 2, as a high-level schematic, showing objects and their inter-relations. The
Client here wishes to retrieve some Content using its ContentID or a (set of)
Keyword(s). Objects of type Route and RevRoute (reverse route) couple the
notion of “a series of links” and “packets carried over them”, the packet carry-
ing content request and response, respectively. A Route has attributes such as
initiator, acceptor, and a request for ContentID. We also extend signatures to
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add more fine-grained, domain-specific characteristics. One of Route’s extended
object types, namely IPRoute, inherits its attributes and constraints, and also
has additional attributes such as srcIPaddress and destIPaddress, and constraints
saying that source and destination IP addresses must correctly correspond to ini-
tiator and acceptor nodes. Gateways perform translation for forwarding requests
(over a composition of Routes), and retain state information which they use to
forward the content back to the client (over composition of RevRoutes). We also
add a number of additional facts, such as uniqueness of node ID, absence of self-
looping routes, and the existence of one-to-one mapping between NDN’s forward
and reverse routes (to reflect NDN’s RPF policy [20]).

We define a global-state relation C' that captures routes to/from gateways. To
model connectivity, we use the transitive closure of the route-connections relation
C where (r1,72) € C if and only if there exists a gateway between two domains
that connects routes r1 and r2. E.g., if we have C = {(r1,r2), (r2,r3)}, then its
transitive closure C* = {(r1,72), (r2,73), (r1,r3)} will represent existing paths
of any length (i.e., number of routes). We define object type Connections (as a
singleton) to capture these connections (i.e., relation C'); it has attributes being
relations themselves, primarily connected and revconnected, to capture connec-
tion relations of Routes and RevRoutes respectively. Relation revconnected has
an additional constraint, which says that for two reverse routes rrl and rr2
connected at gateway gw, corresponding state information (associated with the
ContentID or other multiplexing/demultiplexing values in 7r1 and r72) must be
stored on gw, so that the content can be carried over this cascade of reverse routes
towards the consumer (Listing 3.3). Additionally, we define a fact (path_exists,
Listing 3.4) that ensures any two nodes are connected (through one or multi-
ple Routes or RevRoutes), to reduce our instance space to only the ones with
strongly connected topology.

Listing 3.3. Connections: capture the connectivity of routes and groups

one sig Connections{connected: Route->Route, revconnected: RevRoute->RevRoute,
chain: Group->Group, revchain: Group->Group}
fact connectivity{ -- conditions for two (reverse) routes being
all r1,r2:sRoute, c:Connections |
(r1->r2) in c.connected <=>
rl.acceptor = r2.initiator && rl.contentID = r2.contentID &&
rl.reposdomain = r2.reposdomain -- requests for same content
-- similar condition for RevRoute paths (with extra criteria: gateway state
information should match for the two connecting reverse routes)

) |

¢ ‘connected’’

Listing 3.4. Constraints to ensure that a path exists between any two nodes

fact path_exists{
all co:Connections, disj nl1,n2:Node, cid:ContentID, rd: Domain |
(some r:Repos | rd in r.domains =>
(some ri1,r2:Route | (r1->r2) in ~(co.connected) && ril.initiator = nil
&& r2.acceptor = n2 && rl.contentID = cid && r2.contentID = cid
&& rl.reposdomain = rd && r2.reposdomain = rd))
-- similar condition for RevRoute paths ...

}

While Routes represent unicast exchange paths, we define Groups to denote
multicast groups (one-to-many communication), enabling push-based notifica-
tion models. Following the principles of ICN, each group is associated with a
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content name Prefiz [6] and can be used for publish/subscribe exchanges regard-
ing that prefix. Each group belongs to one domain. To model a connection of
groups across multiple domains, we add relation attributes chain and revchain
to Connections (Listing 3.3), to capture connectivity of groups (as a chain) for
subscription and publication respectively. To ensure strong connectivity, we add
a fact that says any two groups serving the same prefix are chained (Listing 3.5).

Listing 3.5. Constraints to ensure that a chain of connectivity exists between groups

fact GroupRules{
all disj gl,g2:Group, co:Connections | -- group chain conditions
(g1->g2) in co.chain <=>
(gl.prefix = g2.prefix &&
(some gw:GW| gl.domain in gw.domains && g2.domain in gw.domains))
all disj d1,d2:Domain, co:Connections, p:Prefix | -- chains for each prefix
some disj gl,g2:Group |
gl.domain = dl && g2.domain = d2 && (gl->g2) in ~(co.chain) &&
gl.prefix = p && g2.prefix = p
-- similjar conditions for revchain ...

}

Content naming is integral in ICI. We define names, i.e., ContentID objects
for each Content. Based on domain type, ContentID can be either URL (in IP),
NDNName (in NDN) or ContentGUID (in MF) (Listing 3.6). Each ContentID
is a leaf node under a Prefiz in the prefix tree (PTree). An example prefix tree
is shown in Fig. 3, which represents the network’s content namespace. PTree
may contain a number of fragmented sub-trees (i.e., as a forest), each sub-tree
representing the namespace of a different (set of) content provider(s) in differ-
ent domains. To represent the structure of hierarchical prefixes, we use binary
relations to model the immediate parent-child relationship between prefixes in
PTree. In Fig. 3, the relation P = {(P1, P2), (P1, P3), (P2, P4), (P2, P5)} rep-
resents such relationships, and is captured in the prefix-to-prefix relation map
in PTree (Listing 3.6). We also use its transitive closure to model the ancestor-
descendant relationships. We add additional facts to ensure basic constraints on
the tree, such as the non-existence of loops.

Listing 3.6. Content IDs and Prefix Tree

abstract sig ContentID{prefix: Prefix} P1
sig URL extends ContentID{} -- if in IP

sig NDNName extends ContentID{} -- if in NDN P2 [ “Usports” P3
sig ContentGUID extends ContentID{} --if in MF L
sig Prele{Parent: lone Prefix, domains: some P4| “/sports/football” || “/sports/basketball” |P5

Domain} -- each Prefix has exactly one
parent and is at least in one domain
one sig PTree {map: Prefix set -> set Prefix}

Fig. 3. Prefix tree example

4 Satisfying Information-Centric Service Properties

There are a number of important properties that are required from the frame-
work, to ensure interoperability as defined in Definition 1. We consider prop-
erties of two classes of information-centric services here: pull-based (for uni-
cast request/response), and push-based (for multicast publish/subscribe) con-
tent retrieval. We further divide the pull-based services into two categories: static
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content retrieval (SCR) and dynamic content retrieval (DCR). This distinction is
important as the nature, protocol for retrieval, and thus formal properties of the
two are different: static content is one that does not change in a long time (e.g.,
a movie) and can be retrieved from its original producer as well as a cache, while
dynamic content is created once on demand (e.g., result of a Google search), and
must be retrieved from its original server (not from a cache). Additionally, we
assume content requests are assumed to be genuine and correct, i.e., false and
bogus content requests are not our focus here.

We study essential invariant properties, guaranteed to hold at all times.
These properties are primarily associated with content-oriented reachability and
returnability. We formally specify these properties, using Alloy predicates and
assertions. For verification, Alloy’s built-in model finding engine is used to find
satisfying instances and counterexamples. Any counterexample found indicates
interoperability violations: e.g., a client cannot generate a request native to its
domain, or the gateway does not know what to do with a returned response.

4.1 Pull-Based Retrieval: Request/Response

Static Content Retrieval. In the static content retrieval (SCR) service, the
request packets carry content IDs which the client requests, and the response
packets produced by repositories (can be content producers or router caches)
carry the data associated with that content ID. We describe two of SCR’s essen-
tial content-oriented properties using Alloy (Listings 4.1 and 4.2).

Property 1.1. SCR Reachability: For every client that wants to retrieve content
associated with a content ID and has a direct route to a gateway, there is a
repository with content having that ID reachable from that gateway.

Property 1.2. SCR Returnability: For every client that reaches a repository with
a request, there is a path back to the client for the response with the content.

Listing 4.1. SCR reachability property

pred reach[c:Client, cid:ContentID, re:Repos, gw:GW]{ -- reachability predicate
all co: Connections | cid in c.want => -- if requested
(some r:Route, con:Content | r.initiator = c && r.acceptor = gw &&
r.contentID = cid &% (cid->con) in re.map =>
some rl,r2:Route | (r1->r2) in ~(co.connected) && rl.initiator = gw &&
r2.acceptor = re && ril.contentID = cid && r2.contentID = cid &&
rl.reposdomain in re.domains && r2.reposdomain in re.domains)}
assert reach{ -- reachability assertion
all c:Client, cid:ContentID| some re:Repos, gw:GW | reach[c,cid,re,gwl}

Listing 4.2. SCR returnability property

pred return[c:Client, cid:ContentID, re:Repos, gw:GW]{ -- returnability
predicate
all co:Connections | some gwl:GW | reach[c,cid,re,gwl] => -- if reachable

(some r,r1,r2:RevRoute | (r1->r2) in ~(co.revconnected) &&
rl.initiator = re && r2.acceptor = gw &&
ri.content = re.map[cid] && r2.content = re.map[cid] &&
r.initiator = gw && r.acceptor = c && r.content = re.map[cid])}
assert return{ -- returnability assertion
all c:Client, cid:ContentID, re:Repos | some gw:GW | return[c,cid,re,gw]}
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Dynamic Content Retrieval. In DCR, every request has to be mapped to a
unique response, as opposed to SCR. To facilitate this, having a demux value (for
multiplexing/demultiplexing) is essential for DCR, to provide the correct map-
ping of responses to requests; since every generated response is specific to not just
the request’s name, but also its input parameters. To access dynamic content from
a server, a client generates a query for which the gateway keeps state as <nodelD,
demux> of the requesting side and <demux> for the serving side. Reachabil-
ity and returnability are still important in DCR (Properties 2.1-2.2). However,
if the same SCR protocol is used for DCR, there can be conflicts between multi-
ple requests, e.g., a cached content may get sent back to multiple distinct clients.
Therefore, we define no-conflict properties for DCR (Property 2.3).

Property 2.1-2.2. DCR Reachability and Returnability: These two properties
are similar to those of SCR; with the difference being additional constraints
regarding elements of DCR requests, i.e., including generation and verification
of the correct demux values at gateways (i.e., in addition to contentID, etc.).

Property 2.3. No-conflict between distinct requests/clients: For every client that
searches for two distinct content items (no-conflict-A, Listing 4.3), or a dynamic
content requested by two different clients (no-conflict-B, Listing 4.4), two dis-
tinct, appropriately associated responses, should be received back. In no-conflict-
A, the focus is on the distinction between two return-ed contents, associated
with two distinct requests made by a given Client for distinct Keywords k1 and
k2. On the other hand, no-conflict-B focuses on the distinction between two
return-ed contents, associated with requests for a particular Keyword initiated
by two distinct Clients ¢l and 2.

This property shows the importance of having two separate demuz values in
packets, namely both the request ID (required for Property 2.3.a) and client ID
(required for Property 2.3.b), to make each dynamic request globally unique, for
correct multiplexing/demultiplexing. If we remove either of those two elements,
this property will be violated and counterexamples will arise; i.e., the gateway
would not know how to demultiplex incoming response data to serve the correct,
corresponding requesting client.

Listing 4.3. DCR - No conflict between 2 distinct requests from the same client

assert no-conflict-A{ -- Property 2.3.a
all c:Client, disj k1,k2:Keyword | some s1,s2:Server, gwl,gw2:GW |
return[c,k1,s1,gwl] && return[c,k2,s2,gw2] => some ni,n2: NodeID,
d1,d2,d3,d4:Demux |
(n1->d1->d2) in gwl.state && (n2->d3->d4) in gw2.state &&
nl in c.id && dl in c.demux && d2 in gwl.demux &&
n2 in c.id && d3 in c.demux && d4 in gw2.demux &&
'(nl = n2 && d1 = d3 && d2 = d4) && (some disj rl,r2:RevRoute |
ril.initiator = %wl && rl.acceptor = c && ril.contentID = sl.map[kil]
&& rl.demux = dI &% r2.initiator = gw2 && r2.acceptor = ¢
&& r2.contentID = s2.map[k2] && r2.demux = d3)}
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Listing 4.4. DCR - No conflict between 2 identical requests from two distinct clients

assert no-conflict-B{ -- Property 2.3.b
all c1,c2:Client, k:Keyword | some s1,s2:Server, gwl,gw2:GW |
return[cl,k,s1,gwl] && return[c2,k,s2,gw2] => some ni,n2: NodeID,
d1,d2,d3,d4:Demux |
(n1->d1->d2) in %wl.state && (n2->d3->d4) in gw2.state &&
nl in cl.id && diI in cl.demux && d2 in gwl.demux &&
n2 in c2.id && d3 in c2.demux && d4 in gw2.demux &&
'(nl = n2 & d1 = d3 && d2 = d4) && (some disj rl,r2:RevRoute |
rl.initiator = %wl && rl.acceptor = cl && rl.contentID = sl.map[k]
&& rl.demux = dI && r2.initiator = gw2 && r2.acceptor = c2
&& r2.contentID = s2.mapl[k] && r2.demux = d3)}

4.2 Push-Based Retrieval: Publish/Subscribe

In pub/sub, we have domain-specific multicast groups that are associated with
prefixes [6]. We want a client to be able to subscribe to and receive all relevant
publications in accordance with the prefix tree of the namespace over “chain”
of groups across domains. Groups G1 and G2 form a chain if and only if the
publisher of G1 can be a subscriber of G2, and is then able to relay data received
from G2 to his subscribers in G1.

Property 3.1. Ability to subscribe to any prefiz. For every client that wants to
retrieve future publications under/associated with an existing prefix and has a
direct route to a gateway, if there is some publisher that will publish content
under that prefix, then that publisher is accessible through a chain of groups.

Property 3.2. Ability to receive any content published directly associated with the
subscribed prefix. For every client who is subscribed to a prefix and can reach
the associated publisher, there is a path back to the client to carry any content
with a content ID belonging to that prefix. For example, a subscriber of P2 in
Fig. 3 should receive publications pertaining to P2 across domains.

Property 3.3. Ability to receive all content published that is associated with pre-
fixes under the subscribed prefix. This property says that for every client that has
subscribed to a prefix and has reached the associated publisher, there is a path
back to the client to carry any content with content ID either directly belong-
ing to that prefix or under it in the hierarchy on the prefix tree. For example,
a subscriber of P2 in Fig.3 should receive publications pertaining to P2 and
also P4 across domains. The assertion rcwvall in Listing 4.5 depends on how
relationships among groups and also between content IDs and prefixes are rep-
resented by Connections and PTree. For a domain with a namespace that does
not capture relationships between prefixes, i.e., does not map a prefix to a set of
multiple relevant prefixes according to a graph, then rcvall would be equivalent
to receiving a single content element (Property 3.2). Properties 3.1-3 collectively
model and verify properties of a service offering hierarchical pub/sub.
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Listing 4.5. Pub/Sub - receiving all relevant publications

assert rcvall{ -- all relevant publications in accordance with the prefix tree
all pub:Publisher, con:Content, cid:ContentID |
all co:Connections, pt:PTree | (cid->con) in pub.map =>
((some c:Client, p:Prefix | (p in c.want || (all pl:Prefix |
(p1->p) in ~(pt.map) && pl in c.want)) && cid.prefix = p =>
(some ri1,r2:Route | ril.initiator = pub && r2.acceptor = c &&
(r1>r2) in ~(co.connected) && some gl,g2:Group |
gl.domain = pub.domain && g2.domain = c.domain &&
gl.prefix = p && g2.prefix = p && (gl->g2) in
~(co.revchain)))}

5 Reasoning About Failure and Mobility

In addition to the basic invariants (Sect.4), there are other important aspects
of formal analysis of networks that warrant a more quantitative analysis; among
them are failure and mobility analysis. Failures and mobility of nodes can occur
in a network, causing disruption and lack of content availability. To better com-
pare how different network architectural components, e.g., routing, impact the
number of success and violation scenarios, we perform model counting [7]. While
we can consider the probability for all instances as being equal, we can also calcu-
late each instance’s probability by additionally factoring in the real-world prob-
ability of individual elements causing failures and mobility, provided as external
information (e.g., the probability of a gateway failing when processing a content
request, a route disconnecting while carrying a packet, etc.). Thus, we can pro-
vide a more realistic probabilistic analysis for the effect of failures and mobility
using weighted model counting methods [5].

While the Alloy Analyzer (v4.20) [2] allows for a limited, graphical iteration
over instances, it does not enable an explicit counting of instances in an efficient
manner. To perform model counting, we wrote an application [1] that counts
all SAT solutions, using the SAT4J solver [13] (SAT4J can be replaced by any
off-the-shelf SAT solver). We feed the Alloy model and properties, in Kodkod
format [17], to our application. Predicates and assertions are used for count-
ing instances that satisfy or violate (counterexamples) respectively. Through
this counting, we can also look into the details (relations and values) within
each instance, and gain insight such as possible cause of violations (in case of
counterexamples) and calculate the probability of occurrence of each instance
in real-world scenarios. While we do not focus on the performance aspects of
model counting in this paper, optimizations of this procedure can be leveraged
for enhancing the scalability of our approach in case of very large problem sizes.
At a minimum, our approach can provide a rough estimate of failure probabili-
ties. Even if the model counting provided by the SAT solver is through “approx-
imate” model counting (e.g., using repetitive halving procedures) [4] rather than
an “exact” one, it still gives us a good enough assessment of the degree of success
and violation of properties.
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Fig. 4. Gateway failure scenario
5.1 Failure

Our interoperability framework depends on gateways that retain state informa-
tion. What would happen to a response packet if that state is lost at the gateway
for any reason? For reliability, we consider state sharing between redundant gate-
ways that have the same domains on either side. Figure4 depicts an example
for this. Consider the gateway that received the request and created the state
as the primary gateway for the request (GW1 in the Fig.), and the replicas that
have the shared state as the secondary gateways (GW2 and GW3). Formally,
we add an extra condition to our reachability and returnability properties such
that, for two routes to connect, the gateway attaching them must be up and
running at the time the packet is received. Additionally, for returnability, the
state information must be present at the gateway. If any gateway goes down,
the corresponding potential path going through it (p1-3) back for the content
cannot be leveraged. If the gateway is neighboring an NDN domain (e.g., in
Domain, or Domain,_1), then the gateway has to be the primary only, for
correct operation with the NDN reverse-path-forwarding (RPF) policy [20]. For
other domain types, a secondary gateway that is active and has the shared state
information is adequate to forward the response data back. We model the con-
ditions representing this in Alloy as shown in Listing 5.1.

Listing 5.1. Failure scenario constraints: impact of gateway status on route connec-
tivity

all r1,r2: Route, c:Connections | -- forward routes (request) condition
(r1->r2) in c.connected <=> rl.acceptor = r2.initiator &&
rl.initiator.statusl in Up && r2.initiator.statusl in Up

all r1,r2: RevRoute, c:Connections | -- reverse routes (response) condition
(r1->r2) in c.connectedR <=> rl.acceptor = r2.initiator &&
rl.initiator.statusl in Up && r2.initiator.statusl in Up &&
((r1l.domain in NDNdomain || r2.domain in NDNdomain) =>

rl.acceptor.type in Primary) -- NDNdomain enforces RPF policy

Gateways can go down due to various reasons such as completely failing
or just losing state information due to a software failure. Our method can be
used to reason about various scenarios and measure failure probability given an
input configuration space, i.e., a set of Alloy facts that set constraints on some
objects or variables while relaxing others. As Table1 shows, a simple model
finding analysis does not provide a helpful comparison between different such
constraints:it will say that both cases lead to counterexamples raised (e.g., for the
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case that all gateways go down). To gain a better assessment of which constraint
does better, we resort to model counting (Table 2). Using model counting, we can
count (satisfying) instances (I) and counterexamples (C), and calculate (even if
approximately [7]) the probability of reliability (R = I /(I 4+ C)). This reliability
indicates to what degree interoperability is impacted in presence of failure, given
certain conditions (i.e., choice of domain policies, etc.).

5.2 Mobility

To model and analyze mobility (Fig.5), we add the notion of “time” to our
model. In particular, we associate timeout values to state entries at gateways
and birthTime and deathTime to routes (and similarly for reverse routes). We
assume gateways are stationary, but other nodes can move, causing the “death”
of their route (routel) to/from their closest gateway. A new route to the gateway
is “born” (route2) after some time, assuming the existence of a domain-specific
method to handle mobility. Temporal conditions must be incorporated into
reachability /returnability properties. The most critical case is when a mobility
event occurs while the packet is in-flight [21]. At high-level, the sum total latency
formulated as firstDeliveryAttempt—+recovery+secondDelivery Attempt, must
be below a certain expiration threshold (at every gateway and consumer).
firstDeliveryAttempt is the incomplete partial delivery latency via routel and
secondDeliveryAttempt is the delivery via route2 (continuation in MF, and
complete retransmission in IP and NDN). The recovery delay is the time it
takes for the packet to be transmitted back on the new path again; it includes
re-registration (MF and IP), FIB re-population (IP and NDN in case of provider
mobility) and/or PIT re-population (for NDN in the case of consumer mobil-
ity) delays [16,20,21]. Using this formal method, we check properties in the
presence of mobility, find appropriate values for a timeout threshold on gate-
ways and investigate the effect of domain-specific mobility handling methods
on interoperability. Listing 5.2 generally specifies how the reachability property
(to deliver a named request) depends on the condition of mobility (stationary
or mobile) and the domain policy on handling mobility (early binding or late
binding). Returnability is similarly specified (for content). Predicates stationary,
mobile EarlyBinding, and mobile Late Binding specify timing conditions for suc-
cessful delivery assuming their corresponding conditions (details of the three
properties are omitted here due to space but are in [1]). As shown in Fig.5,
we only consider intra-domain mobility here, i.e., the mobile node changes its
location and point of attachment, but stays within its domain.
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Listing 5.2. Reachability in presence of mobility
pred reach[c:Client, p:Producer, cid:ContentID]{ -- a client and content producer
(stationary[c,p,cid] && p.mobility in Stationary) -- producer p stationary
|| (mobileLateBindinglc,p,cid] && p.mobility in Mobility
&& Domain.binding in LateBinding) -- p mobile, domain does late binding
|| (mobileEarlyBindinglc,p,cid] && p.mobility in Mobility
&& Domain.binding in EarlyBinding)} -- p mobile, domain does early binding

6 Implementation and Results

We implemented the ICI framework discussed in our model in Sect. 3, with gate-
ways for interoperation among IP, NDN, and MF (Fig.1 as an example) in
a software testbed (implementation details in [11]). This section provides the
description and results of our analysis of the ICI framework (our Alloy source
code is approximately 800 lines of code in total [1]).

To check for correctness, we performed verification (supported by Alloy
Analyzer’s model finding engine) of our ICI framework model, against the
information-centric services properties (as specified in Sect. 4). In order to reach
convincing proofs (as advised in [18]), we pick the scopes for verification in
Alloy that are large enough to contain all necessary cases (i.e., minimum num-
ber of actors and objects for each service), and small enough so that we do not
encounter model explosion. The scopes, i.e., upper bounds on the number of key
objects, are provided in Table3. For most properties, we consider 1 Client, 1
Server, 1 Content, and 1 ContentID. That is, different <client, request> pairs
are considered independent of each other. However, for Properties 2.3.a/b, such
a dependency matters, and we want to show lack of conflicts. For Property 2.3.a,
we set 1 Client and 2 Contents (to generate scenarios where one client makes
two separate request for two different contents), and for Property 2.3.b, we set
2 Clients and 1 Content (to look for conflicts between request for one content
but by two clients). We use 3 Domains for most properties, as it contains all
cases with 1, 2, or 3 domains of any type, i.e., IP, NDN, or MF. Also, with upper
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Table 4. Failure analysis results Table 5. Mobility analysis results
Cases Reachability | Returnability | | Cases Stationary |Mobile
I C|R I |[C |[R Late binding | Early binding

No domain [290(0 [1.00 |56(210|0.21 DL range |l C|R I |C|R I |C|R

constraints [0, 20] 1008 |0.92|72|24(0.75 |92|64|0.58

One NDN 1760 |1.00 | 8|168|0.04 [0, 18] 96|0 [1.00|72|8 |0.90 [92[48|0.65

domain 0, 15 84|10 (1.00{64|0 |1.00 |[92]24|0.79
0, 10 64|0 {1.00{44|0 |1.00 (84| 0|1.00

bound n on the total number of Nodes, i.e., sum of Clients, Servers, and GWs,
we specify the upper bound on the number of Routes (as well as RevRoutes)
to be n(n — 1), enabling the existence of any possible (uni-directional) route.
For pub/sub services (i.e., Properties 3.1-3), we set 3 Prefizes, ContentIDs, and
Contents, to capture inter-relationship of content IDs in a large enough names-
pace. Additionally, with the upper bound on Domains and ContentIDs both set
at 3, we set the upper bound on total number of Groups (and GroupIDs) to be
3 x3 =29, so as to contain cases with one group per content ID per domain.
The blank cells in Table 3 indicate either “N/A” or “no particular upper bound
set”, in which case Alloy picks a default value. Within this scope, our verifica-
tion passes successfully for each property, showing that the stated properties are
invariants of our ICI framework. In other words, the framework design ensures
that any sequence of interconnected IP, NDN, and MF domains are information-
centrically interoperable.

We use our proposed model counting approach to analyze scenarios with
the failure of one or multiple gateways. The most important factor affecting
returnability in scenarios with the possibility of failure, is domain-specific routing
policies, in particular, whether or not it allows for a secondary (backup) gateway
to relay the returning response content. Different domains have different policies;
MF and IP decouple the forward (request) and return (response) paths, and they
can be delivered through different gateways, while NDN strictly requires the
two paths to be the same, due to RPF policy. To investigate the impact of that
policy, we considered a scenario of two domains, with two gateways between
them (one primary and one secondary), sharing state. Both gateways are Up
(working) when the request is forwarded, and either may go Down (failing)
when the response is one its way back. Table4 shows different scenarios for
reachability and returnability, with different domain constraints (with different
routing policies). In particular, the two domain constraints we consider are the
following: 1) no constraint on what any of the domains are; and 2) one domain is
definitely NDN. The table shows the values of I (instances), C' (counterexample),
and R (reliability) for each scenario, as defined in Sect.5. Our results for R in
Table 4 prove that having an NDN domain on one side dramatically reduces the
returnability reliability ratio, since basic NDN forwarding strictly forbids data
coming back on a different path than the original path taken by the request.
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When a content producer (server) moves while a content request is in-flight
(Fig.5), the domain’s handling of mobility recovery determines the reachability
probability. NDN and IP use early binding with retransmissions, while MF sup-
ports late binding with rerouting. We compare the impact of these mechanisms
and techniques using our model counting method, with results shown in Table 5.
Our modeled scenario consists of two nodes in a domain, one requester (client
or gateway) and one server (producer) with a route established among them.
The ‘Stationary’ columns in the table show reachability results in the stationary
server case. With ‘Mobile’, the route dies due to a server mobility event (at time
t = 10), leading to the birth of the second route. We set the re-registration and
re-population delays to 1 each. Also, a retransmission is initiated 1 time unit
after the mobility event. Different binding techniques for mobility, i.e., late and
early binding, are also shown in Table 5. We compare cases with different ranges
for Delivery Latency (DL), which is time approximately needed for a packet to
travel from requester to server. For a delivery latency range of [0,20], we see a
higher R for stationary ws. mobility cases. The reason is that when the server
does not move, the original route stays active, thus providing a higher chance for
requests to reach the server. Comparing the two binding techniques, late bind-
ing leads to higher chance of reachability compared to early binding, as it allows
for packets to be re-routed on the newly-born route, rather than retransmitting
from the original requester. These results serve as proof that under similar sce-
narios, late binding outperforms early binding in ICI. Also, changing the delivery
latency ranges, we can find out at what points, reachability is an invariant (if
ever) under mobility conditions. As the table shows, with ranges within [0, 18],
[0, 15], and [0, 10] (rows in Table 5 labeled in first column accordingly), reachabil-
ity becomes an invariant in cases of Stationary, Late Binding, and Early Binding,
respectively; as zero counterexamples are raised. With a small enough delivery
latency ranges, namely [0, 10], reachability becomes an invariant, no matter the
mobility conditions or binding techniques. Our approach can be used to find
such points of invariance, comparing different techniques, and prove them.

7 Conclusion

This paper presented an Alloy-based formal analysis model for information-
centric interoperability (ICI) for Future Internet environments. We showed how
model finding can be used to analyze basic (reachability and returnability) prop-
erties of ICI. Additionally, our proposed model counting approach analyzes fail-
ure and mobility scenarios, which we used to prove the negative impact of cer-
tain routing policies (particularly, reverse path forwarding), and the helpfulness
of certain mobility-handling mechanisms (particularly, late binding), providing
necessary confidence and guidelines for Future Internet interoperability.
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