Managing the Evolution to Future Internet
Architectures and Seamless Interoperation

Mohammad Jahanian*, Jiachen Chenf, and K. K. Ramakrishnan*
*University of California, Riverside, CA, USA. Email: mjaha001 @ucr.edu, kk@cs.ucr.edu
TWINLAB, Rutgers University, NJ, USA. Email: jiachen@winlab.rutgers.edu

Abstract—With the increasing diversity of application needs
(datacenters, IoT, content retrieval, industrial automation, etc.),
new network architectures are continually being proposed to
address specific and particular requirements. From a network
management perspective, it is both important and challenging
to enable evolution towards such new architectures. Given the
ubiquity of the Internet, a clean-slate change of the entire
infrastructure to a new architecture is impractical. It is believed
that we will see new network architectures coming into existence
with support for interoperability between separate architectural
islands. We may have servers, and more importantly, content,
residing in domains having different architectures. This paper
presents COIN, a content-oriented interoperability framework
for current and future Internet architectures. We seek to provide
seamless connectivity and content accessibility across multiple
of these network architectures, including the current Internet.
COIN preserves each domain’s key architectural features and
mechanisms, while allowing flexibility for evolvability and exten-
sibility. We focus on Information-Centric Networks (ICN), the
prominent class of Future Internet architectures. COIN avoids
expanding domain-specific protocols or namespaces. Instead, it
uses an application-layer Object Resolution Service to deliver
the right “foreign” names to consumers. COIN uses translation
gateways that retain essential interoperability state, leverages
encryption for confidentiality, and relies on domain-specific signa-
tures to guarantee provenance and data integrity. Using NDN and
MobilityFirst as important candidate solutions of ICN, and IP,
we evaluate COIN. Measurements from an implementation of the
gateways show that the overhead is manageable and scales well.

Index Terms—Future Internet Architectures; Interoperability;
Information-Centric Networking

I. INTRODUCTION

The evolution of the Internet has been driven by demand
from new applications and services, the majority of which
facilitate improved information delivery. Even though IP is
ubiquitous, a number of network research projects have pro-
posed radically new architectural designs to improve delivery
of capabilities in a more timely or convenient way, rather
than using IP as the common network layer protocol. Each
of these solutions revisit and challenge the principles behind
IP, primarily in terms of its communication model aspects,
such as addressing, connectivity, and mobility support. With
the ubiquity of IP and the scale of the Internet, managing the
evolution of the network layer and the infrastructure is likely
to be increasingly difficult. The ossification of the Internet may
lead to a “ManyNets” world rather than the “OneNet” Internet
we have today [1]. In other words, there may be multiple
“islands” coexisting with each other, each being a separate
domain having a unique and distinct network architecture [2].

Reachability across domains with different architectures is
important and challenging. We believe a pragmatic approach
to manage network evolution would be to design an interoper-
ability framework between these different domains, or in other
words, “bridging the many islands”. This way, we can avoid
having to necessarily change all existing designs (including
legacy IP networks), while allowing different architectural
designs (including the several ‘future Internet architectures’
being currently considered [3]) to advance and be used in their
own domains. In addition, we seek to support the evolution
to even other future Internet architectures, thereby sustaining
research into such architectures.

There have been many attempts over several decades ad-
dressing interoperability across network architectures in the
form of multi-protocol routers and gateways. We believe that
the concept needs to be revisited today, since compared to
previous efforts, the architectures we seek to support for
interoperation are much more different in nature than in
the past. Some of the proposed architectures for the future
Internet challenge the very core idea of the IP-based and
host-centric architecture of today’s Internet. An important
class of architectures that attempt this are Information-Centric
Networks (ICN) [4]-[10]. Focusing on what rather than where,
ICN proposes a content-centric, location-independent network
layer, motivated by the fact that the main purpose served
by today’s Internet is information delivery, rather than mere
computer-to-computer connectivity [4]. ICN has gained a great
deal of interest from both academia and industry in the recent
years [11], [12]. ICN has a set of key features and benefits,
such as location-independent forwarding [4], content-oriented
security [13], and in-network caching [14].

In this paper, we propose COIN, a framework for inter-
operability between legacy and future Internet architectures,
focusing on the important class of ICNs, which are signifi-
cantly different from today’s IP architecture. COIN does not
require any change in existing individual domain architectures
and preserves their key features and mechanisms. Additionally,
COIN does not require content to be moved or replicated to al-
low access to it from users and end-systems that are in a differ-
ent network domain. It also does not require the identity/name
of a content item to be replicated for each existing domain
and end host’s understandable semantics. For content-oriented
interoperability, it is key that naming is harmonized across
different domains. An integral part of this harmonization is that
the native naming schema of each domain type (e.g., hierar-

978-1-7281-6607-0/20/$31.00 ©2020 IEEE

chical structure of NDN [5]) is retained while enabling access
and retrieval of content across domains with different naming
schema. This goal would be very difficult to achieve with
an overlay approach, especially for traversals across multiple
domains of different architectures [2]. On the other hand, an
efficient translation of content requests and responses between
domains can support this interoperability. To this end, rather
than creating a new universal layer or overlay, COIN provides
translation-based interoperation across multiple domains, with
the use of gateways that process requests/responses and retain
state information. COIN supports both static and dynamic
content requests. Using encryption/decryption as well as it-
erative signatures performed as we cross from one domain to
another domain, COIN ensures confidentiality, integrity and
provenance. To obtain content names in a foreign domain,
COIN incorporates an Object Resolution Service (ORS) [15].
ORS is an important capability that enables cross-domain
name retrieval and usage through a systematic, application-
layer procedure. Our ORS design, importantly, relieves the
interoperability framework and content providers from re-
naming content for each domain, and consumers from having
to understand new name formats foreign to them. Focusing
on the candidate cases of IP, Named Data Network (NDN)
[5] and MobilityFirst (MF) [6], we implement and experiment
with our design for interoperation. We focus on NDN and MF
for two reasons: 1) The Future Internet Architecture (FIA)
community treats these as two prominent ICN projects [3],
with continuing research efforts and community involvement.
2) The two architectures have significant differences and rep-
resent two different “sub-classes” of ICN architectures: NDN
supports hierarchical naming with implicit name resolution in
the network, while MF supports flat names with explicit name
resolution. Taking these differences into account, we evaluate
COIN and show that it is effective and efficient.

The contributions of this paper are: 1) a generic interoper-
ability framework among ICN and IP domains for secure static
and dynamic content retrieval that preserves key features of do-
mains, thus managing evolution in a flexible manner; 2) an im-
plementation of the framework [16] for interoperability among
IP/HTTP, NDN and MF; and 3) measurements based on the
implementation of the framework across different domains to
demonstrate its utility from a performance perspective.

II. BACKGROUND AND RELATED WORK
A. Information-Centric Networking

Information-Centric Networking (ICN) enables access to
named objects, independent of their locations. There have been
a number of different ICN proposals in the past decade, e.g.,
NDN [5], MobilityFirst (MF) [6], DONA [7], XIA [8], Net-
Inf [9], and PURSUIT [10]. In this paper, we mainly focus on
two notable ICNs, namely NDN and MF. There are differences
between IP and ICNs [4], and also between different ICNs
[17]. ICN has several key features and aspects, which we wish
to support and preserve while enabling interoperation:

1) Naming: In ICN, the network layer is aware of names,
while in IP it is only aware of addresses. Different ICNs

have different naming schemas: NDN uses human-readable
hierarchical names [5], while MF uses 20-byte flat names
called GUIDs (Globally Unique Identifiers) [6]. An important
service is Name Resolution Service (NRS), which maps names
to locations, either implicitly (FIBs in NDN [5]). or explicitly
(DNS in IP or GNRS in MF [6]). 2) Name-based forwarding
and routing: The ICN network layer makes forwarding and
routing decisions based on names, which provides benefits
such as location-independence and inherent support for mo-
bility [4], [6]. MF forwards both requests and responses
based on the source/destination network address (like IP)
after late-binding of the name to address, while NDN uses
reverse path forwarding (RPF) policy for delivering the re-
sponse back to the consumer, through Pending Interest Tables
(PIT) [5]. 3) Connectionless transport: While there has been
some work on TCP-like additions to NDN [18] and MF
[19], ICN primarily enables content request and retrieval
without establishing an end-to-end channel, in contrast to
today’s HTTP/TCP/IP-based connection-oriented communica-
tion channel-based content retrieval [4]. 4) Content-oriented
security: ICN secures the data itself, as opposed to IP’s
channel-based and host-based security [13]. NDN uses a trust
schema [20] while MF uses self-certifying objects [6] to ensure
provenance and integrity. 5) In-network content caching: ICNs
typically cache content, indexed by names, at every router [14].
This extends the selective and limited CDN-like caching done
in today’s IP. Many studies have shown ICN caching to be very
beneficial for reducing the response time for content delivery
as well as availability, especially at the edge [21], [22].

B. ICN Interoperability

There have been different recent approaches for interoper-
ability involving ICNs (surveyed in [23]):

1) Tunneling (Overlay/Underlay): Some approaches use
ICN-over-IP tunneling. For example, the basic design of [24]
is an NDN-overlay: NDN packets are encapsulated into UDP,
TCP or native IP packets traversing IP routers. This enables in-
cremental deployment of ICN over IP and has been used as the
starting point for development of software packages of most
ICN architectures [4], [9], [10], [25]. Work in [2] introduces
a layer 3.5 as overlay, and this layer allows new architectures
such as NDN to run. In this approach, each new architecture
would have its own layer 3.5 protocol, having to go through the
overhead of mapping from/to the underlying layers. Similarly,
each overlay has its own naming schema. However, the work
does not go into details on how the right name to use is chosen
or obtained by a requesting client. IP-over-ICN solutions,
such as [18], [26], [27], allow legacy (HTTP/TCP) applications
function across an ICN infrastructure, where IP packets are
encapsulated in NDN headers, which get decapsulated when
leaving the NDN domain. These solutions typically assume a
single ICN architecture universally deployed (e.g., NDN [5])
and build IP capabilities on top of it. Also, they deal with
added IP-to-ICN (and back) mapping latencies at certain
routers on the path [23].

2) Hybrid Approach: An approach to enable evolution to
new architectures and interoperation is to add the semantics
of a new architecture into an existing one. This results in a
new hybrid network layer that is backward-compatible with
the native version of the original architecture. CLIP [28] uses
an IPv6 subnet prefix for content to enable ICN in IP. Work
in [29] proposes the combination of HTTP and ICN, arguing
that they both follow a content-centric pattern. Most recently,
hICN [30] proposes to encode NDN-specific components into
IPv6, and allows the coexistence of IP and ICN dual stacks
at hICN-enabled routers (capable of processing both legacy
and ICN-enhanced IP packets), while also making use of
regular IP routers (capable of processing legacy IP packets).
Consumers and data providers, however, still need to have the
same semantic understanding, e.g., in terms of naming and
how “network” names get mapped to “application” names.

3) Translation: Solutions in [31]-[33] perform direct trans-
lation between HTTP and NDN/MF traffic. Translation-based
interoperability solutions bring great advantages, such as not
having to change domain-specific mechanisms. Work in [31]
further optimizes the ability to cache in the network by adding
heuristic rules. Moiseenko et al. [34] modify NDN packets
to better support HTTP-like communication (e.g., uploading
large data using POST). These solutions either support only
2 domains (IP plus either NDN or MF), do not support some
of the key domain capabilities, and/or require heavy changes
to end nodes and routers in existing domains. Our approach
overcomes these shortcomings using translation-based stateful
gateways for interoperating multiple domains with different
architectures, while preserving their key features.

III. MOTIVATION AND OVERVIEW
A. Design Goals and Rationale

COIN provides interoperability between legacy (current)
and future architectures guided by these requirements:

e It should support host-centric (e.g., IP) and information-
centric (e.g., NDN and MF) networks.

o It should add no architecture/protocol change to the existing
individual domains (i.e., no new layer or protocol change).

e Introduce minimal change to end host logic, so clients in
one domain use native mechanisms to seamlessly exchange
information with another domain.

e Support request for both static (e.g., find a movie) and dy-
namic content (e.g., query for current weather information),
potentially across multiple (>2) domains.

e Preserve domain-specific features (§II-A); i.e., interoperate
between different naming schema, between connection-
oriented and connectionless transport, between stateless and
stateful forwarding, between channel-based security and
content-oriented security, and support in-network caching.

e Each domain’s content namespace should be limited only to
include the objects in that domains.

e Inter-domain message exchanges must be secure (i.e., prove-
nance, confidentiality, and integrity ensured).

To satisfy the above requirements, we use a translation-
based approach primarily to retain each domain independently

(and preserve their key features), without changes to existing
architectures (thus allowing for easier deployability and evo-
lution). This approach overcomes some of the shortcomings
and challenges of alternative approaches:

e Tunneling (overlay/underlay) and hybrid approaches require
both the consumer and content provider to have the same
semantics and formats, including components such as the
naming schema [2], [30]. Translation can achieve the goal
of every end host only having to “speak its own language”.

e Overlays cannot take advantage of all the capabilities in
the underlying domain since the underlay usually does not
understand the semantics of the overlay; e.g., in ICN-over-
IP [24], TP does not provide many of the advantages that
would be obtained from ICN, such as content caching
or stateful forwarding. Hybrid approaches are also limited
in terms of satisfying all key ICN features through their
integrated protocols [23], [30]. With translation, we can
retain domain-specific features as well as essential ICN
features across domains.

e Overlay approaches introduce considerable overhead and
complexity at the overlay-enabled routers, having to perform
the mapping between the different decoupled layers; this
may be encountered at (potentially) many routers on the path
[23]. With translation gateways, routers retain their native
domain-specific designs and implementations.

e The addition of new architectures requires significant
changes to the overlay at tunnel end-points, both in terms of
standardization and deployment. The same is true with hy-
brid approaches, which requires the embedding of domain-
specific components of the new architecture into the in-
tegrated network layer protocol. With translation, we can
add any number of new network types and attach them to
existing domains via gateways supporting them.

e The above challenges become even more severe when deal-
ing with a multitude of interoperating domain types (more
than two). We alleviate this in COIN.

It is sometimes noted that translation-based interoperation is
counter to the end-to-end principle of the Internet, as argued
in [2]. However, we believe that new architectures (mainly
ICNs) already challenge the pure end-to-end principle; e.g.,
in NDN, the procedure for requesting and receiving content
is asynchronous, with routers managing transport on a hop-
by-hop basis, without necessarily having a complete end-to-
end communication [5]. Also, in today’s Internet, middleboxes
such as NATs add additional indirection in the network [35].
We believe a translation-based approach is suitable and prag-
matic for interoperability between current and future networks.

With a focus on content-oriented services, our translation
is performed at the “content name level”, i.e., in the layer
that identifies content names, be it the application layer in
legacy IP domains (e.g., URLs to identify content in HTTP)
or network layer in NDN domains (in form of hierarchical
human-readable names). This provides a significantly higher
abstraction than the address-based design of legacy interoper-
ation and is important since names are “first-class” entities in
information-centric paradigms (§II-A). In such environments,

it is also important for consumers to pick “the right name”
for a content request, and receive that content. Recent works
such as [2], [30] allude to the importance and challenges of
such mechanisms, although they do not provide a solution for
it. We propose a protocol for Object Resolution, to enable the
retrieval of the necessary names (which we explain in §IV-G).

B. Overview of COIN

COIN provides interoperability among any number
of domains, each having a distinct network design and
architecture, including legacy (IP) or future (ICN) Internet
architectures. COIN gateways provide this interoperability
through translation and state maintenance. A client in one
domain can request for content (static or dynamic) multiple
domains away, and receive the corresponding content in the
response. COIN makes no change to existing domain-specific
architectures, and preserves key domain features, including
domain-specific security models and mechanisms. Most
notably, COIN preserves namespace size and structure of
each domain, and does not create a new naming schema.
Content can be universally identified using its domain-specific
(i.e., native) name, plus its domain ID. A client requesting
content from another domain, uses the content’s native name
and its domain ID. To acquire that information, COIN uses
an Object Resolution Service (ORS), which is an application-
layer search engine-like service providing names as response
to keyword queries. The foreign name provided to consumers
are not distinguishable from native ones, thus making the
consumer’s request for content seamless.

C. Addressing Challenges for Gateway-based Interoperability

While our solution (overviewed in §III-B) helps achieve our
design goals, there are additional concerns to be addressed.
Most of these challenges exist for other translation-based
approaches as well. We explain how COIN overcomes them.

Evolution flexibility; Too many pair-wise translators? Typ-
ically, in a translation-based interoperability solution, for n
different network architectural designs, one might end up
needing n? translators [2]. Not only would it be too complex
to design so many translators, it also can make it very
inflexible for adding a new domain architecture: n additional
translators would need to be implemented. COIN overcomes
this by having an internal canonical form at the gateways,
and adapters that convert domain-specific packets to/from this
canonical form (explained in §IV-F). This way, for n different
network designs, we will only have n adapters at the gateway
(rather than n? individual translators), and one canonical form
that is consistent across all gateways. Note that this canonical
form is not ‘yet another network layer’; it is only an internal
design component inside the gateway.

Too many requests going through gateways? Only the
requests going across a domain to another domain need to go
through a gateway. However, this may still end up resulting in
an excessive number of requests that a gateway has to process.
This can make the gateway un-responsive and be a single
point of failure. This is a general problem of gateway-based

Current weather in Riverside, CA

A football match highlight

A paper

Avideo with two
segments

A movie

Information

Layer
/weather/ca/riverside/
201812022315 [PaperGuID |
Object
. ports .
Resolution h“p'/./a‘m:'/ Video segment 1 GUID Service
IOVIE.E; /sports/football || /sports/golf Layer
/sports/football / Video segment 2 GUID
match11/seq01 /
I URLs Hierarchical names i Flat IDs
Name S @ Routing
Resolution Layer
. I 7 NDN . MF)
~— ST S ~ S

Fig. 1. Layered architecture overview

interoperation. To overcome this, COIN leverages in-network
caching, a key domain-specific feature that COIN preserves,
because of its use of the native naming schema of the domain.
Content coming from another domain through a gateway can
still be cached in the consumer domain (§IV-F). Many works
have shown that in-network caching is very beneficial since the
content demand in the Internet follows a Zipfian distribution
[21]. Work in [22] has shown that with a proper caching
scheme, in-network caching for a typical web workload can
achieve up to 70% hit rate even with cache capacities as little
as 2% to 7% percent of the whole content space. With caching
enabled, and assuming Zipfian workload, the majority of the
requests in COIN would be satisfied in the consumer domain,
thus not having to necessarily go to gateway to be processed.

Storage overhead at gateways? Gateways have to keep
a small amount of information as state for every incoming
request. While in-network caching can dramatically reduce
the number of requests the gateway has to process, storing
state associated with each of them may still be a challenge. To
overcome this, gateways in COIN leverage request aggregation
for requests for the same content (typically static content)
(more details in §IV-F). Only the first request is forwarded,
while the subsequent identical ones get aggregated (similar to
NDN PIT [5]). In addition, COIN gateways can cache content
themselves, thus enabling them to respond without having to
issue a new request (and thus store associated state) in the
next domain. These methods, combined, greatly reduce the
amount of memory consumption at the gateways as well as
the number of requests going out of them.

IV. ARCHITECTURE AND DESIGN
A. Preliminaries

COIN’s network environment may be made up of a number
of different domains (e.g., IP, NDN, and MF) with gateways
connecting pairs of domains, in addition to clients, servers,
publishers, and content repositories that can reside in any of
the domains. A high-level, layered architecture view is shown
in Fig. 1. We identify three layers (similar to [36]), each
characterizing an important aspect of COIN’s content-centric
view. The Information layer captures accessible objects and
content items in various applications. A Service layer shows
in what format (hierarchical format, efc.) each object in an
Information layer is named and identified. The Routing layer

takes care of transmitting packets to an appropriate (one or
more) recipient(s) using routing/forwarding protocols within
that domain. It is important to note that we are not adding any
new layers; rather, we are recognizing the logical layers that
represent functionality that is common in the domain-specific
architectures. For example, the service layer is part of the net-
work layer in NDN and MF, and part of the application layer
in IP. The Object Resolution Service (ORS) generates names
understandable by the corresponding domain’s service layer
and the domain-specific Name Resolution Service (e.g., DNS
in IP and GNRS in MF). It helps names to be mapped to lo-
cation information in each domain for routing. The figure also
shows that each domain (and producers and consumers in the
domain) only needs to understand its own naming structures
(whether hierarchical or flat). Gateways facilitate appropriate
translations and bridging between different network architec-
tures, preserving their key features and internal mechanisms.

B. Service Interface

The primary services supported by COIN are static and dy-
namic content retrieval. Both follow a query/response model, a
very popular model in today’s Internet as well as in ICNs [4].
This distinction between static and dynamic content requests
is important, since they need to be treated differently: The
response for a dynamic content request might depend both on
consumer’s input and the current state of the server (such as
a keyword-based search that may depend on time, location,
or server policies). Thus, the response cannot be from a
cache, since the current server-generated response is desired.
Static content requests, on the other hand, have no such
restriction. Cached content, in routers or Content Delivery
Networks (CDNs), can be returned to consumers, as long
as it has the right version. Note that other possible services,
e.g., publish/subscribe [37] are not the focus of COIN’s cur-
rent design. However, with additional modules for processing
those other services, e.g., push-based multicast or repetitive
poll-based request generation component implementation for
publish/subscribe with the capability to translate to/from an
internal canonical format, COIN can support them as well.

C. Common Information Elements

These are common elements on which the translation be-
tween different formats have to be performed and are primary
parts of a COIN gateway’s canonical form. COIN supports all
protocols that have these common elements (e.g., HTTP/IP,
NDN, MF, XIA, Netlnf, and even FTP):

e Request type (to distinguish between dynamic and static
content requests; request type can be a pre-existing field in
the packet header or body based on implementation choice);

e Destination domain and content name (generally as “DstDo-
main/ContentName” to identify content and target domain);

e Content version (as content may have different versions);

e Exclude for static content request (to allow consumers to
get the latest version of a content item);

e [nput for dynamic data request (to allow a consumer to pass
parameters to a dynamic data provider); and,

o Demultiplexing key (to identify a corresponding request
when the response data comes back to a gateway).

D. Naming

Naming is key to enabling content-oriented interoperability.
COIN primarily performs translations at name level. This
principle brings important benefits: 1) Each domain keeps
its naming schema (e.g., NDN’s hierarchical naming [5] or
MF’s flat IDs [6]), which helps with evolvability. While
consumers have to use a globally unique expression for each
content as “ContentDomain+ContentName”, they do not have
to understand such a syntax. It will look seamless to users,
as if they are using a native name. This is facilitated by
the ORS, as described in §IV-G. For example, a consumer
in an IP domain requesting for content named “/ICCCN/pa-
pers/COIN.pdf” in an NDN repository, will send an HTTP
request for “http://NDN/ICCCN/papers/COIN.pdf”, which is
just like any other HTTP request. After going through gateway
processing, the NDN repository receives the request as an
NDN Interest with name “/ICCCN/papers/COIN.pdf”, just like
any other NDN Interest. 2) Each domain keeps its namespace
size, which helps with scalability. No domain has to keep
track of, or maintain, another domain’s content namespace
(just needs the IDs of other domains). 3) The name-to-location
mapping in each domain, utilized in order to deliver to/from
gateway, consumer, or producer, is handled by the domain’s
already existing name resolution service (e.g., GNRS in MF).

E. Transport, Routing and Forwarding

Motivated by its design principle, COIN allows the com-
position of connection-oriented and connectionless trans-
port across domains. For example, if a consumer using
HTTP/TCP/IP is requesting content from a producer in NDN,
the gateway acts as the second end of the TCP connection (i.e.,
similar to a proxy server listening on an HTTP port) to the
consumer (establishing sessions, efc.), while acting as a typical
NDN client (sending a content Interest in a connectionless
manner) towards the NDN side. When the data comes back,
the gateway sends the data to the consumer, using the stored
IP address and source port information of the consumer.

Similar to today’s Internet, COIN decouples intra- and inter-
domain routing [2]. Domain-specific routing mechanisms can
be leveraged, and be stitched at gateways. In the case of
multiple gateways between two domains, inter-domain routing
can be used to connect one gateway to the nearest other gate-
way. Existing architectures need not know or implement these
inter-domain algorithms. As for state, gateways connecting the
same domains on either side can exchange and share state
information, so any gateway can process the response.

COIN gateways process requests and responses differently,
with an important distinction being that response forwarding is
stateful (§IV-F). Importantly, gateway forwarding conforms to
domain-specific forwarding policies; e.g., NDN has a reverse
path forwarding (RPF) policy where every node traversed
by the request has to be in the responses path [5]. Other
architectures, such as MF, may not have such a restriction, thus

é" g 5 Static | Dynamic E 5 M ?:D
Z = . O S || <DstDomain> 3 = =
a g_ [/DstDomain]/<NAME> [| F 2.1 Name> |, _’% sl & S
Z g | | /<INPUT>/<reqiD> Z T || <Exclude> | <Input> \ / i &= z &
g 2 <||<pemux> < < 3
— = 2 © -
1
60 S = | |Static| D: F‘% = (0 o)
o C.GUID—TargetGUID = 15 atic | ynamic [, =8 &
(29— O + | |<DstDomain> o0 et e
S g T 2H<Name> H =L E8HPS &
(3} . < | | <Exclude> | <Input> =1 =1
2 o 2|8 5
e = < ||<Demux> S S <[S
5= —
— = 2 | rE A
o0) [ClIP:port—>GW.IP:port & & | [Static | Dynamic (72} =M zﬂg’
& = | |[PoST <NAME> i 2 | [<Dstbomain> j \ E 2 & 5
= § HTTP/1.1 A 5H<Name> H T 2 £ 5
T 2| ||Host: <DstDomain> £ 2 || Excude | <Input> = B T 5
——=/ ||[<iNpPUT> = SUETUC, & L =)

Fig. 2. COIN gateway design: processing requests

allowing secondary gateways to route the response back to-
wards the consumer. Conforming to such forwarding policies,
COIN can provide a seamless interoperation across domains,
without having to change existing infrastructures.

FE COIN Gateways

A COIN gateway translates requests for information re-
ceived from one domain to a request meaningful in the
adjacent domain (and similarly for responses). We design
and implement the interface to each distinct domain as a
“pluggable adapter” on the gateway in each direction. We
choose to translate the incoming request or the headers of
the response to an “internal” canonical form (IV-C).

Incoming request processing involves recognizing whether
the request is for static or dynamic content. For NDN, a
request with a specific version is seen as a request for dynamic
content while a request with just a prefix (and exclude) is for
static content. For HTTP, we use POST and GET methods
as dynamic and static content respectively. It also determines
the destination domain based on the “Host” field in case of
HTTP, the destination GUID in MF, and the domain prefix
in NDN. The opaque string (from the originating domain’s
perspective) that is the name on the destination domain will be
extracted from the request (marked as the field “<Name>" in
Fig.2. For dynamic requests, the incoming request processing
recognizes the body of the POST in MF and HTTP, and the
penultimate component of NDN name, as the request input.
The demultiplexing entity (“<Demuz>") depends on the
different cases. For static content requests, we use the tu-
ple <domainName, content N ame, exclude>. For dynamic
content requests, we use client </ Paddress, port> (socket)
for HTTP case, client <GUID,reqI D> in MF case and
<clientID,reqI D> in NDN case.

The incoming request processing results in an internal
canonical request (orange boxes in Fig. 2). The gateway
can respond to requests for static content from the local
cache, aggregate requests for the same static content (with
same exclude) or consume them. The remaining requests (in
canonical form) are sent to the “switching fabric”, where
inter-domain routing determines the forwarding to the proper
outgoing request processor. The outgoing request processing
forms a domain-specific outgoing request.

When the response returns, the gateway matches it based on
the state information and forwards the content to all the pend-
ing requests waiting on this key (similar to matching a PIT

Format for D1 B Repository | Native-form
Result: D3+N [f— N\ P Domain Content Name
7 v D3 N
1)
4 A
{ o / ORS Server Q)
Y \
_ ‘ e
To 0 in D2]ﬁ[} DZ/L\' \(Content
Y ?\/ | Producer
< N .
I'min D1 // D1 ﬁ)g Repository|
= -)
7 — — W " [Rewomec]
Request: D3+N \;,,, AL /‘6
Consumer 9.\————~

Fig. 3. A schematic view of object resolution and content retrieval in COIN

entry in NDN). This enables native multicast, similar to NDN.
We use the “Last-modified” field in HTTP and MF and the ver-
sion field in the NDN name as the version of the response. The
gateway sends the version using the domain-specific format.

G. Object Resolution

In COIN, an important step in requesting a piece of content
residing in another domain is to acquire the content’s name and
the ID of the domain it is in. This is achieved using an Object
Resolution Service (ORS). ORS is an application-layer search
engine that: 1) returns names for keyword queries, and 2)
leverages a combination of crawling, registration and indexing
methods to gain and store knowledge of content names. This
way, ORS plays the same role that today’s popular search
engines, e.g., Google or Bing do. More specifically, today’s
single-domain search engines could be considered as a special
case of ORS. ORS has to additionally take both the content’s
and consumer’s domain(s) into account: it has to provide the
content domain ID in its query result, presented in a format
understandable in the consumer domain (and thereby by the
consumer). This is an important design choice, as having
ORS servers that understand multiple domain languages avoids
having all data providers/servers in the world learn the other
domains’ languages. There has been prior work on ORS in
ORICE [15], which we use and extend in COIN.

Fig. 3 shows a high-level schematic view of the object
resolution procedure. There are three domains with different
network architectures D1, D2, and D3, with three COIN gate-
ways stitching them together. The consumer, object resolution
server O, and content repository for content C' reside in D1,
D2, and D3 respectively. We put the consumer and the ORS
server O in two different domains to show a more complicated
scenario; normally, D1 could have an ORS server too which
the consumer can ask without having to go across domains.
The consumer generates a query for keyword (phrase) K,
asking ORS O in D2. Identifying the ORS’s name and its
domain are important to make sure that the query goes to the
right gateway. Although the figure only shows the information
at a high level, the specific formats depend on what the domain
is. For example, if the consumer is in an IP domain, he will
perform a DNS lookup on “D2”, obtaining the IP address of
GW 1. In NDN, the consumer will send a packet with prefix
“/D2/0/”, which will be directed to GW1 (GW1 has already

announced and registered itself as “D2” in D1). The consumer
also specifies that he is in D1; so O generates the result in
a format understandable to a user in D1. With the help of
GW 1’s translation and state-maintenance, the query can reach
O and its result sent back to the consumer. Some packet-level
details, such as demultiplexing keys are omitted in the figure.
More on protocol exchange details are in §IV-H (ORS query
is an example of a dynamic content retrieval).

Upon receiving the consumer’s query, O searches for K
in its database of indexed content names and their domains
(including content in D3). The way this database is managed
is similar to today’s search engines’ crawling and registration
methods; more details are provided in [15]. Assume K hits one
entry with a content named N in domain D3 (for presentation
simplicity, we assume only one item in the result, while
in practice there can be many more). O generates a result
combining D3 and N (“D3+N” in Fig. 3), formatted for D1.
What N looks like depends on the naming structure of D3;
but the formatting of the result depends on the semantics of
D1. For example, if both D1 and D3 are in an HTTP/IP
domain (as in today’s Google search), then N would be a URL
(e.g., “abc.com/def”), formatted and presented to the consumer
as “http://abc.com/def” (no indication of D3 is needed for
same-domain pairs). As another example, if D3 is MF, then
N would be a content GUID (e.g., “1234”). If D1 is NDN,
then the result would be the enriched name “/MF/1234”. More
combinations are described in [38].

After gathering the result, the consumer generates a request
for the content itself, using the acquired name N combined
with D3, getting routed to GW 2. Note that for this purpose,
the consumer’s own domain ID is not needed, since the
repository returns content C' (named N), not knowing (and
not needing to know) where the consumer resides.

While at first glance, it may seem a burdensome task to
acquire names through the ORS for content requests, it follows
the pattern that users use on the Internet today in practice
[15]. For example, most often, retrieving a webpage for the
music video of the 2017 song “Despacito”, is proceeded by
a (Google) search such as for “Despacito music video”. ORS
in COIN plays the same essential role as the search engine. It
is also worth mentioning that ORS is a service which can be
provided by many entities (as we have Google, Bing, etc.) and
each can have many physical servers. We believe ORS is an
important, convenient service to deploy by ISPs or third-party
entities, and provides benefits for interoperability.

H. Protocol Exchange

To illustrate the translation-based exchange for interoperat-
ing across multiple domains, we use a 3-domain setting where
a consumer residing in an NDN domain wishes to receive
content from a server/producer residing in an MF domain,
with an IP domain in the middle (Fig. 4). We examine two
cases: dynamic content retrieval (DCR) using the example of
ORS (Fig. 4(a)); and static content retrieval (SCR, Fig. 4(b)).

The three different architectures take care of content naming
at different domain-specific layers: the HTTP application layer,

NDN IP/HTTP MF
Consumer C GW1 GW2 ORS

INTEREST. /MF/ORS/C.ID/ReqID
Keywords=icn&Domain=NDN Sre: GWLIP, GW1.Port,

Dst: GW2.IP, GW2.Port
POST /ORS

+ (CID, ReqID) & GW1.Port | POST /ORS Host: ME
Host: MF

DN
+ (GWLIP, GWL.Port) & ReqlD’ | &Reqid’
S
Generate query results for C

Matches to GW1's quer J Src: ORS.GUID, Dst: GW2.GUID

HTTP 200 OK

Matches to C's query—‘ Src: GW2.IP, GW2.Port,]éas;;fmdiﬁed: 2019-08-30...
eq:

Dst: GWLIP, GW1.Port
DATA: /MF/ORS/C.ID/ReqID/=00 | HTTP 200 OK <ip> ccnx://IP/Con.URL </ip>
<ip> ccnx://IP/Con.URL </ip> Last-modified: 2019-08-30... <ndn> ccnx://Con.Name </ndn>
<ndn> cenx://Con.Name </ndn> <ip> cenx://IP/Con.URL </ip> <mf> cenx://MF/Con.GUID </mf>
<mf> cenx://MF/Con.GUID </mf> <ndn> ccnx://Con.Name </ndn>
<mf> ccnx://MF/Con.GUID </mf>

Src: GW2.GUID, Dst: ORS.GUID

(a) Dynamic content retrieval (object resolution example)

NDN IP/HTTP MF
Consumer C GW1 GW2 Producer P

INTEREST: /MF/Con.GUID
Ex (B,=FD0590EB370000,
=FE000000000000,B)

Src: GWLIP, GW1.Port,
Dst: GW2.IP, GW2.Port
GET /MF/Con.GUID

Host: MF

If-modified-since: 2019-08-30
+ IntName+Ex...o GWl.Portj 20:00:00
dified-since: 2019-08-30

It
[+ (GWLIP, GW1.Port) & Con.GUID | 20:00:00
— |

Generate data respom
Matches to GW1’s request | Src: Con.GUID, Dst: GW2.GUID

HTTP 200 0K

Src: GW2.GUID, Dst: Con.GUID
GET /ReqID

Matches to s request | Sre: GW2.IP, GW2.Port, Last-modified: 2019-08-30
Dst: GWLIP, GW1.Port 23:59:00
DATA: /MF/Con.GUID/ HTTP 200 OK ID: ReqID
==FD059.../=00 Last-modified: 2019-08-30 DATA
DATA 23:59:00
DATA

(b) Static content retrieval
Fig. 4. Protocol exchange across 3 domains

in IP; network layer in NDN; and either HTTP or network
layer in MF. When a client generates an NDN Interest, to
enable correct translation, we use the destination domain ID
in the name. To distinguish between DCR and SCR, we use
POST and GET methods in HTTP respectively; we check the
existence of Exclude or Input in NDN Interests. For DCR
(Fig. 4(a)), the retrieved response should not be from a cache,
since the current server-generated response is desired. This
requires individual requests to be distinguishable (globally
unique), to have the correct response-to-request mapping at
the servers and gateways, including even those made by the
same client. In TCP/IP, client IP and port numbers provide
this demultiplexing capability. For NDN and MF, we introduce
a unique Request ID (ReqID) generated by the consumer or
gateway. The ReqID can be a component of the DCR Interest
name in NDN, and part of the request payload in MF. Gate-
ways create state (marked as ‘+’ in the Fig.) associated with
each outgoing request, and maintain state for demultiplexing.
For example, in Fig. 4(a), the mapping on an NDN-to-IP
gateway is a 3-tuple of <Client ID, Request ID, GW1 port
number>. When the response data is returned, the gateway can
find the corresponding request based on its port number (which
is the source port number that was previously used to connect
to GW2) in the response. As can be seen in Fig .4, using
domain-specific naming, in-network caching can be supported
and provide benefits, in COIN. Although we show 3-domain
examples here, details and protocol exchange scenarios for all
possible 2-domain cases are provided in [38].

1. Security

Securely bridging communication across different network
architectures that have different security models and mecha-

nisms seamlessly, without significant changes to the individual
architectures is challenging. We aim to unify different security
models across the architectures. They may be classified as
being either channel-based (for host-centric networking e.g.,
IP), or content-oriented (for ICNs). The fundamental distinc-
tion between the two security models lies in the relationship
between the “name” layer (content retrieval functionality)
and security layer (ensuring confidentiality, provenance, in-
tegrity, etc.) functionality in the service layer (§IV-A). With
connection-oriented security the security layer (TLS/SSL) op-
erates below the name layer (HTTP). Interoperability gateways
do not have access to information such as keys, as they are
encrypted. For interoperability, the gateways have to decrypt
the information exchanged to get the name and other features
required for content retrieval. In contrast, content-oriented
security may just encrypt the data (payload) and leave the
content-retrieval headers (e.g., NDN/MF headers, including
content names) in the clear. Thus, gateways can reformat the
headers without modifying or having to access the payload.
COIN supports a number of mechanisms to unify access to
information across these two security models. We focus on
two important security use cases of COIN: Encryption (to
ensure confidentiality); and Signatures (to ensure provenance
and integrity). The mechanisms presented here are security-
enhancements to protocol exchange presented in §IV-H.

1) Encryption: Encryption prevents unauthorized network
nodes (including eavesdroppers) from accessing confidential
content. The common approach to achieve this is to encrypt
the data (e.g., RSA and ECC [39]) or encrypt the channel
between the data consumer and producer (e.g., HTTPS). The
producer and a (set of) predefined (authorized) consumer(s)
have to agree on a common encryption mechanism. We focus
on content retrieval across compositions of content-oriented
(ICN) and channel-based (IP) security models, with endpoints
having the same security model, and when they are different.

Case 1: Both endpoints with content-oriented security
model, and intervening domains with channel-based se-
curity. We consider a scenario with a consumer and pro-
ducer in two separate NDN domains using content-oriented
security, and an IP domain in between using channel-based
security. Fig. 5 shows COIN ’s encryption-enhanced protocol
exchange for this case. With both the consumer and producer
using content-oriented encryption, the authorization informa-
tion (authc) and Data would be encrypted when travers-
ing the gateways. The authorization information can be the
consumer’s public key (pubc), following a priori consumer-
producer consensus on the authorization mechanism. The gate-
ways simply translate between NDN names and HTTP/HTTPS
URLSs, without needing to decrypt and/or re-encrypt authc or
Data. Thus, COIN ensures end-to-end confidentiality.

Case 2: Either endpoint with channel-based security
When at least one of the two endpoints (consumer and/or
producer) uses channel-based security (e.g., HTTPS) and the
other(s) use content-based security, gateways would then need
to re-encrypt the data retrieved in one domain to provide con-
fidentiality while delivering the content to the other domain.

GW1 GW2 Producer P

Consumer C
INTEREST:

/<Con.Name>/<authc>

GET hitps://<Con Name> NTEREST: /<Con.Name>/<auth,
Authorization=<auth > Verify auth,

and Encrypt Data

DATA: /<Con.Name>/<authc>
Enc(Data, auth,)
(5]

L] 200 0K
IDATA: /<Con.Name>/<authg: H"C(’)Hg, authg)

Enc(Data, auth)

Dccrﬂ?tData (2]
Fig. 5. NDN/IP/NDN encryption
Consumer C GW Producer P

GET <Con.Name> HTTP/1.1
Authorization = ID:abc, Pass:def]|
TLS(pubc, pubgy)

(1]

INTEREST:/<Con.Name>/Enc(“ID
:abc&Pass:def”, puby) /pub’cy,
(2]

o Decrypt with its private key prip,
And verify 1D, Pass
DATA:/<Con.Name>/Enc(“ID
:abc&Pass:def”, pubp)/pub’y
Enc(Data, pub’s,)

Decrypt with pri’gy, o
and re-encrypt
200 OK
TLS(pubg, pubgy)
Enc(Data, auth)

Decriiét Data |@

Fig. 6. IP/NDN encryption

COIN’s gateways borrow ideas from the popular state-of-the-
art solution of HTTPS proxies. The gateway has to decrypt the
HTTP header inside a TLS connection, in order to discover
the content name (URL). The gateway acts as a proxy, trusted
by both consumer and producer. We believe this is acceptable,
as it is a well-established practice to trust HTTPS proxies.

Unlike Case 1, COIN ’s mechanism in Case 2 decouples
encryption and authorization, to allow composition of two
different security models of the end points: An HTTP/IP end
point achieves this by using the HTTP header “Authorization”
field, or Web-based authorization (the consumer provides the
username and password, which are carried in the HTTP request
body). The producer can then verify the authorization.

Fig. 6 shows an example for this case with a gateway
between HTTPS/IP and NDN. The consumer in the [P domain
requests the content as if the gateway is an HTTPS proxy,
by establishing a secure connection to the gateway using the
public key of its own (pubc) and the gateway (pubgw)
(Diffie-Hellman key exchange in TLS). In the HTTP header
(or body) over the TLS connection, the consumer sends the
content name and the authorization information (username
and password in step 1 in the Fig., or alternately the public
key of the consumer). The gateway creates an Interest in the
NDN domain. We make minor modifications to the name
in NDN (to provide the authorization), using the format
“Inamelauthcl/encrypt”, to provide the producer with the
needed information for authorization and encryption. In the
Fig., the gateway encrypts the authorization information with
the public key of the producer (pubp) and uses its own public
key (pubgyy). The gateway could use different key pairs (e.g.,
pubyy, and pubgw) for the two different domains (step 2).
For MF, the request packet format would include a new field
for the authorization information. When the field is not set,
authorization information is used as encryption information,
as in Case 1. On receiving the request, the producer will

decrypt it using its own private key and verify the authorization
information (step 3). Upon verification, the producer sends
the NDN Data packet (to the gateway) whose payload is
Data, encrypted by pubgy, (step 4). The gateway decrypts
the data with its own private key prigy, (step 5) and sends
the data over the TLS connection to the consumer (step 6).
The consumer can then decrypt and access the data (step 7).
The reverse, ICN-IP scenario, would follow a similar pattern.

2) Signatures: In the scenario where the producer allows
the content to be shared with anyone in the network. The
consumers need to verify that: 1) the data is coming from a
trusted producer (provenance) and 2) no one on the path has
tampered with the content (integrity). To ensure the integrity of
the content, a cryptographic hash function (e.g., MD5, SHA-
1, SHA-256) can be applied to the data and announced to the
consumer. Provenance is verified by a digital signature: the
hash encrypted by the private key of the producer (e.g., RSA
signing, ECDSA, EADSA [40]). The consumer can decrypt the
signature with the public key of the producer, and compare
the result with the hash of the content, possibly followed by
some trust schema [20]. For interoperability across different
domains, it is highly likely that the consumer may not under-
stand the producer’s signature algorithm or the trust schema (or
both). To overcome this, COIN takes advantage of transitive
trust [41] with domain-by-domain signatures: the gateway on
the producer side verifies the provenance and integrity of the
data on behalf of the consumer and re-signs data with its own
private key for the next domain. The consumer verifies (and
trusts) the last hop gateway.

Fig. 7 shows an example of our solution spanning 3 do-
mains. After receiving the request, the producer will sign the
data (D) with its own private key (prip) based on the signature
algorithm in the domain (S Ap;r). On receiving the content,
GW 2 will verify the provenance and integrity using the public
key of the producer (pubp) on behalf of the consumer, since it
understands the signature algorithm and can also utilize local
certificate authorities (CAs) to check its trustworthiness. Once
GW?2 confirms that the content is trustworthy, it will re-sign
the data with its own private key (prigwe2) using the signature
algorithm in the IP domain. GW'1 will thus trust the producer,
since it trusts GIW 2 (due to transitive trust). Once the signature
is verified using GW?2’s public key, GW1 will forward the
data to the NDN domain and sign the content using its own
private key. Since the consumer trusts GIW1, it concludes that
the content is trustworthy.

3) Denial of Service (DoS) Attacks: While request aggrega-
tion and content caching alleviate COIN from some negative
impacts of excessive request and response processing load
(that is benign) on gateways, malicious DoS (and DDoS)
attacks can impact gateways’ availability. IP and ICN domains,
with different security models, can be the source of different
DoS attacks, such as bandwidth depletion and reflection at-
tacks in legacy IP domains [42]. With ICN’s content-oriented
security models, DoS attacks manifest themselves mainly as
Interest flooding (too many malicious requests for non-existing
content) and content/cache poisoning (responding with fake

GW1 GW2 Producer P

Consumer C

[———
INTEREST: /MF/<Con.GUID>|
o

(3]
Src: GW2.GUID, Dst: Con.GUID

GET /MF/<Con.GUID>
HTTP/1.1
(2]

Sign data D with producer
private key prip using
domain-specific signature

algorithm (SA) of MF

Src: Con.GUID, dst: GW2,
data: D, sig: Sig(prip, D, SAyy)

Verify sig on D using ® (o]
ublic key of P

200 OK
data: D, sig: Sig(prigwz D, SAyrrps)

Verify sig on D using
(o3 ublic key of GW2 ®

DATA: /MF/<Con.GUID>
data: D, sig: Sig(prigy;, D, SAypy)

Verify sig on D using By
ublic key of GW1

or corrupted content) [43]. In COIN, each domain retains its
own security model and mechanisms, to allow development
of countermeasures for attacks meaningful in its own domain.
Thus, in COIN, DoS attacks in a domain are contained within
that domain. For example, with Interest flooding, excessive
requests will be dropped at or before the ICN-border gateway
(through mechanisms such as statistic-based rate limiting [43],
[44]). Similarly for content poisoning, with the proper use
of content-oriented signature validations, fake or corrupted
content will be detected and discarded at or before the first
gateways it encounters.

Fig. 7. NDN/IP/MF signatures

V. EVALUATION

For evaluation, we use a representative implementation
for each domain: CCNx v0.8.0 (it contains all the essential
components of NDN needed for our framework); the latest
version of MobilityFirst project [45] for MF domain; and a
basic Linux implementation of IP forwarding. The implemen-
tation of COIN, including all its essential components such as
gateway and adapter modules are available in [16] as proof
of concept. We experimented on various combinations and
settings, and observed COIN’s ability to satisfy its design goals
(§III-A), especially its ability to preserve each domain’s key
features (as explained in more detail in §IV-I3). While there
are a number of aspects to consider including correctness,
user convenience, deployment flexibility etc., we focus on the
performance of COIN here (we have proved the correctness
of the proposed translation procedures in [46]).

A. Forwarding Efficiency

To evaluate the forwarding efficiency of the implementation,
we set up a testbed with five VMs with the topology as
“C+rR1<GW<+>Ry+>P”, in which client C' and router R,
are in domain D1, and content provider P and router R, are in
domain D5. Node GW, an implementation of COIN gateway,
is in between the two domains and performs translation. Each
VM has 1GB memory and runs Ubuntu 14.04. With cases of
domains D; and D, being both distinct (i.e., interoperation
scenarios) and same (i.e., native scenarios), we evaluated
all 9 combinations (each being IP, NDN, MF). In native
scenarios, GW is replaced by a regular router, with the same
configuration as R; and Rs. We tested functionality with a

O Provider Service
I GW Request Processing N GW Response Processing

B Overal Response

f=4 mn (=3 mn
0 N n N
1000 | 3 32 2
on o o on

72.75
64.50

(N
(=3
=)

Latency (ms)
[y
[=}

1 N i
0.1 -
—

(a) Interoperation scenarios (different domain types for D1 and D3)

Scenarios

B Overal Response O Provider Service

1000
324.00
155.25

100

@ 37.00

£ 22.00
>

210

§ 3.75 H
I3

k 2

1
IP-IP NDN-hDT MF-MF

I
-

Scenarios 010

(b) Native scenarios (same domain types for D1 and D2)

Fig. 8. Latencies (static content retrieval): total response, content provider,
gateway request and response processing (logarithmic axes). Note that there
are no gateways (and thus gateway latencies) in native scenarios (b).

client asking for content residing in a remote domain of a
potentially different architecture, and getting the content back.

Fig. 8 shows the latencies measured for requests for static
content. The overall content retrieval time (response time) at
the consumer, the provider’s service time and gateway process-
ing time for request and response (averaged over several runs,
discarding outliers), are shown. Note the difference in the y-
axes of the different bars in the figure. As shown in Fig. 8(a),
the processing time at the gateway in interoperation scenarios,
including reformatting and maintaining state between the two
domains, while not negligible, is reasonable for an initial
software implementation. The gateway contributes between 4-
19 ms of processing delay, compared to the total response time
of 60-360 ms, in this small-scale topology. The gateway con-
tributes a relatively small portion of the overall response time,
especially in the ICN cases. It should be noted that the higher
response time observed whenever one side is NDN, is not due
to the interoperability gateway, but rather the NDN logic itself:
the client waits for sending a second query to ensure it has
received the latest piece of content. In fact, we observed a
response time of ~300 ms for NDN—NDN on our testbed.
This is seen in Fig. 8(b) as well, which shows the latencies for
native scenarios, i.e., those with same domain types throughout
the topology, with no COIN gateways. Our results show that
the overhead of COIN’s forwarding is reasonably small.

B. Scalability

We use the ORBIT testbed [47] to evaluate the scalability of
COIN. ORBIT is a network of 400 nodes in a grid topology.

Req. from Consumer
Req. to Provider
Memory consumption

——20 per. Mov. Avg. (Memory consumption)

500 =
/m
400 152
g g
Q 1
g 300 10 &
3 g
< 200 Z
#* 5 o
100 >
5
0 0 £
0 1 2 =

Time (s)

(a) Dynamic content retrieval

500 =
[aa]
400 15 g
Z g
Q 1
% 300 10 g_
< 200 2
- 5 E
100 >
8
0 - 0 g
0 0.5 1 1.5 2 =

Time (s)

(b) Static content retrieval
Fig. 9. Scalability: memory consumption and number of requests

Each machine has 4GB memory and runs Ubuntu 14.04.
We run each router (forwarding engine), provider, consumer
and gateway on separate physical nodes. In our topology,
we included 50 consumers (in one domain), 1 provider (in
another domain) and 1 gateway. The consumers are connected
to the gateway via a pre-configured access network. Our server
stalls the response to each request for 3 seconds to batch
more requests on the gateway (especially for NDN, and 3 sec.
because the request timeout time in NDN is ~4 sec.)

We measure the amount of state stored in the gateway
(memory consumption) vs. different numbers of requests from
consumers. The implementation is in Java, which has auto-
mated memory management. We call garbage collection very
frequently during run-time to get a better estimate of memory
consumption. This would make our gateway slightly slower
compared to production use. We evaluate the requests to
static and dynamic content separately. Only the results of the
experiments for [IP—+NDN is shown in Fig. 9.

Evaluation for dynamic content: We have 50 clients send-
ing 328 dynamic content requests simultaneously. Fig. 9(a)
shows the instantaneous memory consumption (and moving
average over 20 values) vs. the number of incoming and
outgoing requests for this scenario.

Since consumers request dynamic content, we do not see
any aggregation at the gateway — each request from the client
results in a distinct request to the provider. Therefore, the
incoming and outgoing request values are very close to each
other in the Fig. We observe that the memory consumption
grows linearly with the number of incoming requests since
we keep the states for each request.

Evaluation for static content: Clients make 328 requests
spread across 100 static content items simultaneously. The

popularity of the content follows a Zipf distribution with
a=0.81. [48] shows that this is a realistic content demand
model. The server still waits 3 seconds before sending the
response to allow request accumulation. Fig. 9(b) shows the
results. Since we keep the state on the gateway, we can aggre-
gate multiple requests for the same content (name). Therefore,
the number of requests arriving at the provider is smaller than
the number of requests generated by the consumers. The mem-
ory consumption grows sub-linearly relative to the incoming
requests. The memory consumption is also lower, compared
to that of dynamic content for the same number of requests.
We ran the same experiments in other domain combinations
(NDN—IP, MF—NDN, efc.) and saw similar results. Although
keeping per-session state puts additional burden on the gate-
ways (state grows with number of flows), it is analogous (and
no worse than) maintaining PIT state at an NDN router. Since
COIN allows request aggregation and content caching at the
gateways, this interoperability framework scales better.

VI. CONCLUSION

This paper proposes COIN, a content-oriented interoper-
ability solution as a pragmatic approach to manage evolution
towards future Internet architectures. COIN does not change
existing architectures (of IP and different ICNs), preservers
and uses their key features, enables their co-existence, and
is flexible for extensibility and evolvabaility. Through various
scenarios and experiments, COIN was shown to make essential
content-oriented services (static and dynamic content retrieval)
available to consumers across multiple domains, with reason-
able efficiency. While we acknowledge that there are many
other scenarios and services to consider, especially in the Inter-
net context, we believe COIN is a good starting framework for
managing seamless interoperability among multiple domain
types of future Internet architectures.

VII. ACKNOWLEDGEMENTS.

This work was supported by the US Department of Com-
merce, National Institute of Standards and Technology (award
70NANB17H188) and US National Science Foundation grants
CNS-1455815 and CNS-1818971.

REFERENCES

[1] M. Ammar, “Ex uno pluria: The service-infrastructure cycle, ossification,
and the fragmentation of the internet,” SIGCOMM CCR, 2018.

[2] J. McCauley et al., “Enabling a permanent revolution in internet archi-
tecture,” in SIGCOMM, 2019.

[3] “NSF Future Internet Architecture Project,” http://www.nets-fia.net/.

[4] V. Jacobson et al., “Networking Named Content,” in CoNEXT, 2009.

[5] L. Zhang et al., “Named data networking,” ACM SIGCOMM CCR,
vol. 44, no. 3, 2014.

[6] D. Raychaudhuri et al, “Mobilityfirst: A robust and trustworthy
mobility-centric architecture for the future internet,” SIGMOBILE, 2012.

[7] T. Koponen et al., “A data-oriented (and beyond) network architecture,”
in SIGCOMM, 2007.

[8] D. Naylor et al., “XIA: Architecting A More Trustworthy and Evolvable
Internet,” SIGCOMM CCR, 2014.

[9] C. Dannewitz et al., “Network of information (netinf)—an information-

centric networking architecture,” Computer Communications, vol. 36,

no. 7, 2013.

N. Fotiou et al., “Developing Information Networking Further: from

PSIRP to PURSUIT,” in BROADNETS, 2012.

[10]

(1]
[12]

[13]

[14]
[15]

[16]
[17]

(18]
[19]
[20]
[21]

[22]
[23]

[24]
[25]

[26]
(27]

[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]

[39]
[40]

[41]
[42]
[43]
[44]

[45]
[40]

[47]
(48]

R. Ravindran et al., “Sg-icn: Delivering icn services over 5g using
network slicing,” IEEE Communications Magazine, vol. 55, no. 5, 2017.
S. O. Amin et al., “Leveraging icn for secure content distribution in ip
networks,” in MM, 2016.

R. Tourani et al., “Security, privacy, and access control in information-
centric networking: A survey,” IEEE communications surveys & tutori-
als, vol. 20, no. 1, 2017.

G. Zhang et al., “Caching in information centric networking: A survey,”
Computer Networks, vol. 57, no. 16, 2013.

S. S. Adhatarao et al., “ORICE: An Architecture for Object Resolution
Services in Information-Centric Environment,” in LANMAN, 2015.
“COIN,” https://github.com/SAIDProtocol/ICNInteroperability.

S. S. Adhatarao et al., “Comparison of Naming Schema in ICN,” in
LANMAN, 2016.

I. Moiseenko and D. Oran, “TCP/ICN: Carrying TCP over Content
Centric and Named Data Networks,” in ICN, 2016.

K. Su et al., “Mftp: A clean-slate transport protocol for the information
centric mobilityfirst network,” in ICN, 2015.

Y. Yu et al., “Schematizing trust in named data networking,” in ICN,
2015.

S. K. Fayazbakhsh et al., “Less pain, most of the gain: Incrementally
deployable icn,” ACM SIGCOMM CCR, vol. 43, no. 4, 2013.

S. Li et al., “Popularity-driven content caching,” in INFOCOM, 2016.
M. Conti et al., “The road ahead for networking: A survey on icn-ip
coexistence solutions,” arXiv preprint arXiv:1903.07446, 2019.

W. Shang et al., “NDN.JS: A JavaScript Client Library for Named Data
Networking,” in NOMEN, 2013.

J. Chen et al., “Coexist: Integrating Content Oriented Publish/Subscribe
Systems with IP,” in ANCS, 2012.

D. Trossen et al., “IP over ICN — The better IP?” in EuCNC, 2015.

S. Shannigrahi et al., “Bridging the icn deployment gap with ipoc: An
ip-over-icn protocol for 5g networks,” in NEAT, 2018.

L. Heath et al., “Clip: Content labeling in ipv6, a layer 3 protocol for
information centric networking,” in /CC, 2013.

L. Popa et al., “Http as the narrow waist of the future internet,” in
Hotnets, 2010.

G. Carofiglio et al., “Enabling icn in the internet protocol: Analysis and
evaluation of the hybrid-icn architecture,” in ICN, 2019.

S. Wang et al, “On Adapting HTTP Protocol to Content Centric
Networking,” in CFI, 2012.

F. Bronzino et al., “In-Network Compute Extensions for Rate-Adaptive
Content Delivery in Mobile Networks,” in ICNP, 2014.

S. Luo et al., “Ip/ndn: A multi-level translation and migration mecha-
nism,” in NOMS, 2018.

1. Moiseenko et al., “Communication Patterns for Web Interaction in
Named Data Networking,” in ICN, 2014.

J. Crowcroft et al., “Plutarch: an argument for network pluralism,” ACM
SIGCOMM CCR, vol. 33, no. 4, 2003.

M. Jahanian et al., “Graph-based namespaces and load sharing for
efficient information dissemination in disasters,” in ICNP, 2019.

J. Chen et al., “COPSS: An Efficient Content Oriented Pub/Sub System,”
in ANCS, 2011.

M. Jahanian et al., “Interoperability of ICNs and IP,” 2020, https://www.
cs.ucr.edu/~mjaha001/ICI-TR.pdf.

V. S. Miller, “Use of elliptic curves in cryptography,” in CRYPTO, 1985.
R. van Rijswijk-Deij et al., “On the adoption of the elliptic curve digital
signature algorithm (ecdsa) in dnssec,” in CNSM, 2016.

P. Resnick and R. Sami, “Sybilproof transitive trust protocols,” in EC,
2009.

C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mecha-
nisms: a classification,” in ISSPIT, 2003.

P. Gasti et al., “DoS and DDoS in named data networking,” in /ICCCN,
2013.

A. Compagno et al., “Poseidon: Mitigating interest flooding ddos attacks
in named data networking,” in LCS, 2013.

“MF Software Release,” http://mobilityfirst.orbit-lab.org/wiki/Proto.

M. Jahanian et al., “Formal verification of interoperability between
future network architectures using alloy,” in ABZ, 2020.

“ORBIT,” http://www.orbit-lab.org/.

S. Li et al., “Mf-iot: A mobilityfirst-based internet of things architecture
with global reach-ability and communication diversity,” in JoTDI, 2016.

	Select a link below
	Return to Previous View
	Return to Main Menu

