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Abstract—In this paper, an innovative approach to improving
the cyber-physical security of energy-efficient powertrain system
in a hybrid electric vehicle (HEV) against sophisticated cyber-
attacks is presented. To the best of our knowledge, cyber-
attacks, especially sophisticated and subtle cyber-attacks, have
not yet been studied in energy management systems (EMSs)
for HEVs. First of all, we present a systemic assessment of
long-term sophisticated cyber-attacks that aim to deteriorate
the battery lifetime and energy efficiency of HEVs. Specifically,
three levels of attack taxonomy according to the skill level of
the attackers are considered, which are sophisticated and can
hardly be detected by the human driver. In addition to levels
1 and 2 cyber-attacks that do not or partially require prior
knowledge of the vehicle, we explore two other types of level
3 damage-oriented controller attacks made by highly-skilled
attackers who have sufficient knowledge of the system. Such
sophisticated attacks will potentially cause severe damages, such
as decreasing battery capacity and energy by up to 50%. For a
comprehensive vulnerability assessment, we propose innovative
evaluation metrics to analyze the impact and stealthiness of
sophisticated attacks. Finally, a preliminary probability-based
detection method for sophisticated damage-oriented controller
attacks is developed to improve the cyber-physical security of
energy-efficient powertrain system in HEVs.

Index Terms—Hybrid electric vehicles, Vehicle powertrain
systems, Vehicle cyber-physical security, Vulnerability assessment,
Sophisticated attacks.

I. INTRODUCTION

ONNECTED electric vehicles have recently received
increasing attention with the rapid growth of automo-
bile communication technologies, including vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I). In recent years,
both the industry and academia have focused on developing
advanced functionality and improving the overall driving
performance, such as higher energy efficiency, added safety
features, and enhanced comfortability [1], [2]. As the number
and complexity of embedded electronic control units (ECUs)
increase rapidly, a large number of ECUs need to communicate
with each other via communication buses or with external cars
or infrastructure via networks [3].
This communication will inevitably expand the attack
surfaces and their ultimate impacts, such as disabling brakes,
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turning off headlights, taking over steering [4]—-[6], and some
real incidents, e.g., attacks on Cherokee Jeep [7] and Tesla [8].
In the public service announcement on 17 March 2016, the
Federal Bureau of Investigation along with the Department
of Transportation and the National Highway Traffic Safety
Administration released the increasing vulnerability due to
remote exploits of modern automobiles [9], wherein, the
ways of accessing the vehicle networks and driver data
were also discussed. Aware of the cybersecurity problem,
the automotive industry has attempted to develop security
standards, such as the Society of Automotive Engineers (SAE)
J3061 [10], International Organization for Standardization
(ISO) 26262 [11], and committee draft of the “ISO-SAE
Road Vehicles - Cybersecurity Engineering” standard [12]. In
academia, several surveys are available in the literature summa-
rizing the updated works on vehicle cybersecurity. Specifically,
the various threats that potentially compromise the vehicle
networks are discussed in [9], [13]-[19]. To address the issue of
vehicle cybersecurity, approaches from information technology
and control perspectives are proposed to defend against the
network attacks on vehicles. In general, the vehicle has two
lines of defense against invaders. The first line of defense is
information security that aims to prevent malicious attacks, e.g.,
secure hardware, secure communication techniques, firewall,
secure software update, etc. In general, designing safer network
architecture, powerful in-vehicle network firewall, and reliable
hardware are the main consideration [13], [16], [17]. In [9], the
authors illuminated a series of cybersecurity issues in CAVs
(malware threats, on-board diagnostic (OBD) vulnerabilities,
and automobile apps attacks) and demonstrated the defending
mechanisms to them. Three main approaches were presented
to protect or defend connected vehicles against cybersecurity
threats, including over-the-air updates, cloud-based solutions
to secure connected vehicles, and a layer-based solution [20].
In [21], the author discussed the typical methods that have been
used to secure in-vehicle networks and their limitations. Several
challenges in defending vehicles against malware were pointed
out, and a cloud-assisted defense framework was proposed
to protect the vehicle against malware. In [22], mitigation
techniques for cyber-attacks on telematics and electric vehicle
supply equipment, considering both physical and remote threats.
Besides, approaches concerning message authentication and
encryption, the firewall between external networks and vehicle
devices, are also taken into consideration in [18].

Although these information-security approaches provide
technical foundations and protections against malicious attacks,
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they alone cannot guarantee the security of the whole system.
One critical issue needs to be addressed: once the car has been
compromised, what should we do to assess, detect, and mitigate
such attacks and ensure the normal operation of the ECUs?
Therefore, cyber-physical security from the control perspective,
including impact analysis [23], [24], attack detection and
diagnosis [25], and resilient control [26], must be addressed
by carmakers and researchers, which is considered as the
second line of defense. However, from the control perspective,
enhancing the cyber-physical security and resilience of ECUs
is still a significant challenge, especially considering that ECUs
in a vehicle usually come from different vendors, making it
not feasible to design one security solution for the whole
system. Another challenge is that real-world driving conditions
of vehicles change massively, even in normal circumstances. In
contrast, in other applications, e.g., power grids, the sensor data
in regular situations vary within a certain range. The specific
feature of varying working conditions in vehicles may lead to
failures in cyber-attack identification. Therefore, cyber-physical
security under various driving conditions needs to be concerned.
Notice that from the perspective of hardware implementation
of automotive control systems, all of the control systems are
realized by using embedded ECUs, and sensor measurements,
data processing, and control algorithms are integrated into a
specific controller chip. Hence in the paper, “attack ECUs” is
equivalent to attack the control system directly.

While there is an urgent need for studying cyber-physical
security in HEVs, there is little work in this area. Due to
increasing complexity in ECUs, most recent works focus
only on one specific function or control system. For instance,
literature [27] analyzed the impact of security attack (rear-
end collision) on the connected adaptive cruise control and
cooperative driving. In [28], [29], mitigation strategies were
proposed to reduce accidents for vehicle platooning systems.
Although the literature mainly focuses on cyber-attacks causing
serious consequences/damages to vehicles, such as catastrophic
multi-vehicle crashes, causing a life-threaten accident is not
the only purpose of a malicious attacker. As one of the CIA
(confidentiality, integrity, and availability) triad for carrying
out risk assessments on cyber-physical security [30], [31],
in confidentiality attacks, besides life-threaten objective, the
possible reasons for cyber-attacks on modern vehicles include
financial gain, collecting private information, and gaining
priority access to infrastructure [5], [22]. Further, in recent
work [32], the authors systematically analyzed cyber-attacks
against electric vehicles. For clear expression, they divided the
impacts into three categories: physical, strategic, and financial
losses. The physical threat addresses safety-critical events such
as loss of control, accident, and other physical attacks, which
generally occur over short timescales. The strategic attacks aim
at large-scale systems like local traffic congestion and multiple
vehicle accidents. The cyber-attacks that address financial
impacts assume to cause reduction of vehicle’s monetary value.

While cyber-attacks on EMSs may not immediately cause
physical damages, it will potentially result in severe degradation
of battery capacity and energy efficiency [32], [33], reducing
the vehicle’s monetary value. For example, in [17], the author
addressed that there is not much incentive to hack into a car to
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Fig. 1: System diagram of the HEVs, where AMT means
automated mechanical transmission.

harm the passengers. The motivation of hackers is more likely
to follow financial motivation. In [32], the impact of long-term
cyberattacks on battery in EVs that aim to cause economic and
strategic losses were analyzed. It demonstrated that attacks on
EV subsystems, such as auxiliary components, can undoubtedly
lead to the trivial effect of draining the battery, which could be
up to 20% per hour and could deteriorate the performance over
more extended periods. In [33], an efficiency-motivated attack
against autonomous vehicular transportation was proposed, the
results of which illustrated that this effect could be used to
increase the energy expenditure of surrounding vehicles by
20% to 300%. In [34], for the cybersecurity issues of battery
systems in EVs, a framework for analysis, comparison, and
test of standards is presented by identifying the critical player
in-vehicle cybersecurity. Similarly, considering cybersecurity
vulnerabilities of the inter-vehicle network of EVs, cyber-
attacks on electric drives can severely impact motor current
signature and cause performance degradation [35], [36].

To the best of our knowledge, cyber-attacks, especially
sophisticated and subtle cyber-attacks, have not yet been studied
in EMSs for HEVs. In this paper, we present a systematic
assessment of long-term sophisticated cyber-attacks that aim
to deteriorate the battery lifetime and energy efficiency and
propose a preliminary probability-based detection method for
sophisticated damage-oriented controller attacks. The system
structure of the HEVs is shown in Fig. 1. In the “cyber”
part, the velocity trajectory is generated either by the human
driver or the autonomous controller and provides the required
acceleration to EMS. The physical plant, including engine,
motor, converter, battery, and gearbox, is the ’physical” part.
The main focus of this paper is cyber-security of the energy-
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efficient powertrain system, which is based on the background
of a connected vehicle. Specifically, from the perspective of the
second line of defense against invaders, we address the impact
of cyber-attacks aiming to deteriorate the energy efficiency
of the connected electric vehicle. Thus, the considered varied
parameters are for the powertrain in the context of connected
vehicles, not specific about information communicated with
“other” vehicles. The main contributions of the paper are as
follows:

o Three levels of attack taxonomy specific to EMSs in
an HEV are proposed according to the skill level of
the attackers, which are sophisticated and can hardly be
detected by the human driver. Besides levels 1 and 2 that
do not or partially require prior knowledge of the vehicle,
we explore two other types of level 3 damage-oriented
controller attacks made by highly-skilled attackers who
have sufficient knowledge of the system.

« Innovative evaluation metrics are developed to analyze
the impact and stealthiness of sophisticated attacks. With
these metrics, we analyze the cyber-physical security
of HEVs with transient and statistic results; assessment
results can serve as guidelines for attack detection and
countermeasures.

o The stealthiness of sophisticated attacks is evaluated, and
a probability-based detection method is proposed for
damage-oriented controller attacks to improve the cyber-
physical security of energy-efficient powertrain system in
HEVs.

The paper is organized as follows. In Section II, the vehicle
modeling and EMS are described. Section III provides the attack
modeling and statements, and section IV presents the innovative
evaluation metrics and vulnerability assessment of the vehicle.
In Section V, the sophisticated attacks are discussed, and a
preliminary probability-based detection method for damage-
oriented controller attacks is proposed. Finally, conclusions are
given in Section VI.
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Fig. 2: Efficiency maps of the power sources, where (a)
represents the fuel rate of the engine M (T, wy) (g/kWh) and
(b) represents the power efficiency of the motor 7(T,,, wy,).

II. ENERGY MANAGEMENT SYSTEM

Given the acceleration of the vehicle, it is easy to derive
the total torque required by the velocity trajectory generator
using the longitudinal vehicle dynamics, as described in [37].
In response to the positive torque demand, we consider the
constraint T’y + kT3, = Tyem, where T and T, represent the

torques output from the engine and motor, respectively; Tyem,
denotes the total torque demand; and « is the vehicle parameter
determined by the construction. Then, the torque split ratio
R =Tt /Tqem can be obtained by solving the optimization

R = arg oe min  F(Tf,wy) + AG(Tm,wm), (1)

<R<Rmax
where A represents the fuel-electricity coefficient; R4, 1S
determined by the physical limits of the power sources as

Rmaz = min{Tf,maa:/Tdema 1-— KTm,min/Tdem} (2)

in which, T’ ;42 is the maximum engine torque and 7'y, in <
0 is the minimum motor torque; wy and wy, (r/min) represent
the engine and motor speed, respectively, which can be derived
by the vehicle velocity v (m/s), gear ratio ¢, of the transmission
(corresponding to the gear position i, ,,), and tire radius 7,
as [38]

3)

where 60/27 is used to fulfill the relationship between the units
r/min and m/s. In the above equations, F (T, wy) (g/s) is the
fuel rate of the engine, and F (T, w¢) = pengM (T, wys)Tiwy
on condition that the engine is well warmed up; M (T, wy)
(g/kWh) represents the fuel efficiency of the engine (see
Fig. 2(a)) and pey, is a constant to match the units; G(7T,,, w,)
(kW) is the power consumption of the motor, expressed as

{pmotmemn_1<Tmawm)a T,>0

wp = 60igv/(277y), W= W /K,

G(Trn, wim) = “4)

pmotmemn(Tmawm)a Tn <0,
wherein 1(T,,wy,) is the motor efficiency (see Fig. 2(b)), and
Pmot 18 @ constant for unit conversion.

III. ATTACK TAXONOMY

A. Assumptions and statements

In the paper, we assume that the attacker can illegally access
in-vehicle communication buses, arbitrarily modify the sensor
measurements, and hijack the EMS. The ultimate objective
is to reduce the battery lifetime and energy efficiency while
satisfying the desired torque reference of the velocity trajectory
generator. Several statements are as follows: (i) three kinds of
threats are considered here: sensor, parameter, and controller
attacks. In each case, the EMS satisfies the power demand
of the upper controller to ensure the driving requirement. (ii)
During being attacked, the operating points of the power sources
meet the physical constraints, and the battery SOC is always
in a reasonable range such that the EMS can keep working.
(iii) The transmission control unit (TCU) may not be attacked
because the damaged TCU would cause jerk and discomfort,
which means that the control law in the TCU and its control
command to the actuator would not be attacked. However, the
gear information from the TCU, as a feedback signal of the
EMS can be attacked, and the modified gear information will
not influence the safety and functionality of the vehicle since
it is feedback signal used in EMS rather than vehicle control
unit. If the gear information is compromised by an attacker,
the performance of EMS will degrade, causing higher energy
consumption.
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Besides, we denote the signal being attacked as {-}?**. All of
the intensity of attacks are approximate for a fair comparison,
and specifically, deviation of actual SOC and v is limited
to +20%, and the variation of gear position is 41. Then,
three levels of attack taxonomy specific to EMSs in HEVs are
proposed according to the skill level of the attackers, which
can hardly be detected by the human driver. Level 1 (sensor
attacks) does not require the attacker to have prior knowledge
of the EMS; level 2 (parameter attacks) requires attackers to
have the partial knowledge; level 3 (controller attacks) requires
attackers to have the sufficient knowledge.

B. Level 1: sensor attacks (Cases 1-4)

In the case of level 1, a malicious attacker can either
physically or remotely gain access to the powertrain sensors
and generate false signals to perform the attack. According
to the EMS described above, the most dominating signals
that might be attacked include vehicle speed v, gear position
g, and revolution speeds of the engine and motor (wy
and @,,, respectively). Due to the physical limits in the
powertrain topology, two possible cooperate cyber-attacks are
considered, as {@}"*, iy, 0"} and {04, i35 v} (O is
always synchronized with @) while satisfying the relationship
in (3).

C. Level 2: parameter attacks on battery SOC (Cases 5-11)

In the second level, the attackers can gain communication
access on the internal controller area network and a certain
estimator to modify the crucial parameters in EMS, e.g., SOC
estimator in EMS or battery management system. In this paper,
we present the cyber-attacks on SOC. The specific expressions
of levels 1 and 2 are given in the Appendix A.

D. Level 3: damage-oriented controller attacks

Unlike sensor and parameter attacks, in level 3, the attacker
can reprogram the EMS and inject harmful control inputs into
the closed-loop system. The aim is to deteriorate the battery
lifetime and energy efficiency without affecting the vehicle’s
dynamic performance. In this subsection, we provide a potential
attack model causing maximum damage to the system. In real-
world attack scenarios, the malicious attacker may hijack the
microcontroller and rewrite the control law of EMS with more
advanced algorithms, not by simply changing the parameter and
sensor measurements in the EMS. The results of the designed
controller attacks can help observe and evaluate the maximum
impact of cyber-attacks in terms of energy efficiency and battery
lifetime, which is necessary for further research on detection,
diagnosis, and mitigation of cyber-attacks.

1) Energy efficiency-motivated attack (Case 12): The energy
efficiency-motivated attack is performed by

ROtk — argo — SOCinit)2

&)
subject to the dynamics .¥: SOCj41 = SOCy, — (I,/Cy) At to
maximize the fuel consumption while satisfying the constraints
SOC € [SOC,in, SOCaz ], Where A4 is the weighting factor;

max

<R<Rmaz I(Tf’ wf) + AS(SOCk+1

SOCy and SOCy 4 denote the current and the next values of
battery state of charge, respectively; SOC;,,;+ is the initial SOC;
SOC,,,in and SOC,,,, represent the minimum and maximum
safe values; At is the fixed time interval; C} is the nominal
battery capacity; [, = —\/V2 — 4R, P,/(2R,C}) represents
the current; V. is the battery open circuit voltage; R} is the
battery internal resistance; P, is the battery power, which is
determined by Py, = G(Th, wim).

2) Battery lifetime-motivated attack (Case 13): The battery
life-motivated attack is orchestrated to cause reduction of
battery capacity by solving the following optimization

Rk — arg | _max H()+ A0t (SOCrp1 —SO0Cini)? (6)
subject to ., where H(-) means H(T},, wm, SOC), which re-
flects the transient battery health; A\, represents the weighting
factor. Note that \; and Ay, in the cost functions are different
because they establish different equivalent relationships: (i) fuel
consumption and SOC; (ii) battery health and SOC. Meanwhile,
they should also be tuned according to the different variation

range of F and H.

Generally speaking, the rate of battery capacity loss is
dictated by many factors, such as extreme temperature, high
C-rate, high or low SOC, and excessive depth of discharge [39],
[40]. For reliable lifetime predictions of lithium-ion batteries,
models for cell degradation are developed in the literature.
Among these battery models, calendar aging or cycle aging
models are widely considered effective in evaluating battery
health and lifetime degradation [41]-[43]. In [43], based on a
reduced set of internal cell parameters and physically supported
degradation functions, a comprehensive semi-empirical model
approach for the capacity loss of lithium-ion batteries was
presented. In this work, the temperature dependence of the cycle
aging mechanisms was fully discussed, and the long-term tests
validated the high prediction accuracy. However, despite the
high accuracy, calendar aging models are often too complicated
to design a real-time EMS algorithm. Therefore, in many
research works focusing on EMS of HEVs, the complicated
battery lifetime model is often replaced by an Ah-throughput
model and other simplified formulations, see [40], [44]-[46].
Besides the complexity, since the EMS algorithm can only
determine the output power or current of the battery, other
factors like temperature are challenging to be considered in
the optimization problem. Then, for a favorable compromise
between simplicity and accuracy, Ah-throughput based model
is often used to describe the main degradation mechanisms
when designing a real-time EMS. Because the main focus of
this paper is to develop a damage-oriented controller attack and
evaluate its effect on the vehicle, we use the Ah-throughput
battery model proposed in [40], [47], the parameters in which
were fitted by using experimental data obtained from aging
tests. Although the battery life model is not as realistic as
the cycling aging model, we can observe the impact of cyber-
attacks on the controller by comparing the results under normal
and abnormal conditions; in both scenarios, the battery model
is the same. The battery life under d1fferent cond1t10ns can be
defined as Ah-throughput model: v = f |I »(t)|dt, where
EOL represents the battery lifetime under nominal conditions,
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and I(t) is the real-time battery current. By using the battery
aging data calibrated from real-life tests, v can be quantified
by the fitting form

20 0.57
T= l 31700+ 163.31, ] (7
(ar- SOC + 3) exp(—2H00203:31e )

with o and 3 defined as follows: o = 1287.6 for SOC < 0.45
and else, a = 1385.5; 8 = 6356.3 for SOC < 0.45 and else,
£ = 4193.2. In the above equations, R is the gas constant; T’
represents the battery temperature expressed in Kelvin; and
I. = I,/Cy is determined by the battery current. Then, the
index affecting the battery life depletion due to charge exchange
is defined as

t
T
Lot (1) = / i1y(r)ldr, )
0

where I' = OEOL [Inom (t)|dt denotes the nominal battery

life, and I,,,,, is the nominal current profile. In consequence,

Lpq+(0) = 0 implies no capacity loss, and Lp.¢(t) = I" means
the end of battery life. Finally, we define
I

to represent the relative aging effects, which can be considered
a transient evaluation coefficient of battery health.

In fact, the damage-oriented optimization problem presented
above is one-step-ahead predictive control, which has been
widely used in literature [48]-[50]. The basic principle is that
the control input is determined at each point in time so as to
bring the system output at a one-step ahead future time instant
(e.g., SOCy41) to a desired value. Because in the presented
damage-oriented controllers, the dimension of the control input
is only one (torque split ratio R), we use a basic optimization
method - enumeration method. As an example, the specific
derivation of the solution of the optimization problem presented
in (6) is given as follows: (i) Initialize the vehicle parameters
and obtain the necessary system states and requirements, such
as SOC, wy,, wy, Tyem, etc. (i) Calculate the boundary of the
control input - Ree by (2), where T pae and Ty, i are
determined by the current speeds and the maximum torque
profiles of the engine and motors, respectively. (iii) Discretize
the feasible region of R into N.,; segments. Then, given a
fixed control input, denoted as R;, © = 1,2, ..., N4, calculate
the index H (T, Wi, SOC) and SOCy.11 by using (7)-(9). The
corresponding costs defined in (6) is .J;. (iv) Finally, the optimal
solution of is obtained by R%* = arg max .J;. Similarly, the
solution of the optimization problem (5) can be obtained.

To observe the extra computational burden required for
this controller attack when applied in a real-time situation,
we record the developed detector’s computational time under
the Urban Dynamometer Driving Schedule (UDDS) driving
cycle. The simulation is run on an Intel(R) Core (TM) 17-9750
CPU (2.60GHz), and the computational time is obtained by
using the CPU command in MATLAB. The computational
time of the optimization problems in (5) and (6) are given in
Fig. 3, wherein we set N.,; = 25. From the results, we can
see that despite the basic enumeration method, the average
computational burden is less than 10-15ms, which to some

extent indicate the practicability in real-time driving condition.
Notice that for the purpose of higher computational efficiency,
one can also use advanced integration algorithms to solve
the problem, for instance, Newton iteration [51], Sequential
quadratic programming (SQP) [52], inner-point method [53],
etc. Because the main focus of the paper is impact analysis
of cyber-attacks, fast algorithms for real-time tests will not be
further discussed.
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Fig. 3: Computational time of the optimization problems (5)
and (6) under the UDDS driving cycle.
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IV. VULNERABILITY ASSESSMENT

A. Innovative evaluation metrics

As stated above, these stealthy cyber-attacks are orchestrated
to cause reduction of energy efficiency and battery lifetime
while satisfying the basic dynamic performance. For objective
comparison between different cyber-attacks under various
driving conditions, we consider the influence of different initial
and final SOCs. For example, when the final SOC is lower than
others, the fuel consumption would decrease since more battery
power electricity is used to drive the car. To reduce this impact,
we introduce an artificial velocity profile after the terminal
time of attacks, repeating the previous driving cycles until
the SOC reaches its equilibrium. Suppose the driving cycle is
D;(i=1,2,...,6) as shown in Fig. 4. Then the time horizon
of the attacked and artificial phases are [t¢'F, t0F 4 Ti]
and [t¢F Ttk ¢tk 4 Totk 4 Tart] respectively, where %

g 0%
represents the starting tlme of attacks and

atk atk art art
Tm‘ =N T, Ti,j sz (10)
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with nftF ng7t € N; {i,j} representing the jth attack case

under the th driving cycle D;; and Ty; represents the time of
the driving cycle D;. Without loss of generality, it is assumed
that t2** = 0. To mitigate the effect of the artificial velocity
proﬁle on the long-term attack results, there should be n“tk >
“gt This relationship is only suitable for scenarios that cyber-
attacks have a long-term influence on the SOC, and in a short-
period attack time, there is no obvious change in SOC. The
mentioned equilibrium of SOC is defined as follows:

art

Proposition 1. Assume that the SOC at t = 0 is SOC(t) =
SOCy, and after m € N driving cycles, the initial and terminal
SOCs of the mth driving cycle are SOCy, init and SOCy, final-
If SOCy init = SOChy final, then SOCy, final is defined as
the equilibrium, which varies with the driving conditions.

Based on the statement, the equilibrium under different driving
conditions with attacks is defined as SOC%* the first m

eqm,i,j°
to reach the equilibrium as mftjk and the equilibrium under
nom
normal conditions as SOC.,7; .

It should be noted that the above discussion is actually on the
basis that the SOC can reach a balanced position after several
driving cycles despite the cyber-attacks, as discussed above.
However, for those threats that have a significant influence
on SOC in a short period, the system may not satisfy the
relationship SOC,,, ;nit = SOC,;,, fina: and no equilibrium is
available. For instance, consider Cases 5 and 6 in Appendix
A. If the SOC is mistakenly given as a high-level constant,
then the EMS always tends to use the purely electric driving
mode, giving rise to the much lower battery state without
the possibility of recovery during attacks as shown in Fig. 5.
Conversely, SOC would constantly increase until reaching its
upper boundary. To address this issue, we use an intermittent
strategy for these cyber-attacks, which means that, once SOC
reaches the upper boundary, the attacker would withdraw the
threats until it recovers to its normal value SOC{,"; . Then,
the time under attacks is set as n;”jk = 1 and the recovery time
with normal EMS is n¢%' > n¢‘F. In consequence, the attack
period is

(€ = V)T + (§ = V)T €Tqs + (11)

where ¢ € N and t%% = 0 is used. For these intermittent
cyber-attacks (Cases 5 and 6), we record results in several
periods to establish the evaluation metrics.

(5 - l)Ti(?gr't]v

In the following subsections, innovative evaluation metrics
are proposed to emphasize the damage caused by the malicious
behaviors in terms of system performance and requirements.

1) Energy consumption: To evaluate the average energy
efficiency of the vehicle compared to normal EMS, the fuel
consumption at timing ¢ is expressed as

(t) = / F(Ty,wp,7)dr,

which denotes the total energy cost during the driving cycles
if SOC remains unchanged. Then, the evaluated metric that
focuses on fuel consumption can be described as

T Eatk/Enom

eng,i,j —

12)

13)

where E“ i,; represents the fuel consumption in the jth attack
scenario under the 4th driving cycle. For sustained attack cases,
there is E“tk = E(T“tk T”t), and for the intermittent
attacks (Cases 5 and 6), we set E“tk = E(&Ty + §Tza;t)
In both attack types, E;'7™ is determlned by the total fuel
consumption over the same time horizon with no cyber-attacks.

2) Energy efficiency: Subsequently, two indexes to reflect
the efficiency are given by

Y VN
1140 = T Doy @) = (14)
Z”f,i,j(t) = U(Tm(t)awm(t)) <1, (15)

where Z¢; ;. represents the relative efficiency of the engine,
and Z7% ., represents the efficiency of the motor. Here M°
is the best fuel efficiency of the engine (see Fig. 2(a)), which
is used to normalize the engine efficiency. Then, the maximum
value of ZZ ., . is limited to 1, just as the same as 7%, ..
3) Battery lifetime: To evaluate the impact of the cyber-
attacks on battery lifetime. In the long-term horizon formulation,
we examine the relative capacity loss by
Liat ) Loat

Loat,ij = (16)

with £&k and £ defined by (8). Similarly to the energy con-
sumption metrics, for intermittent attacks, Eg‘fl’f = Lpar (£ﬂ?§k+
§T751), and in other cases, LytF = Lyq, (T74F 4+ T77F). Also,
the nommal results 73" ; are obtained under the same driving

cycles with no cyber—attacks.

B. Simulation results and impact analysis

In this subsection, we present the evaluation results of
the specified attack cases under multiple driving cycles, as
shown in Fig. 4. Firstly, as many research works do, we
choose two standard driving cycles in the automotive industry
- New European Driving Cycle (NEDC) and UDDS, which
are supposed to represent the typical usage of a car in Europe
and the United States, respectively. Then, to cover more real-
world driving conditions, we choose one highway driving cycle
from a road test car, and three city driving cycles on the
same road segment. The comparison between the results under
different driving conditions can help obtain more robustness
and convincing conclusions of vulnerability assessment for
vehicles.

1) Observation of specific cases: For the sake of the
detailed analysis of these cyber-attacks, we show the results
of Cases 5, 6, 12 and 13 in Fig. 5, wherein Z.,425 =
1.0402, Zengoe6 = 1.0804, Tper25 = 1.1617, Lpar o6 =
0.8772, Lepg2,12 = 1.4694, Lepg 213 = 1.0911, Tpat 2,12 =
1.0429 and Zyqs,2,13 = 1.4897. All of the cases are conducted
under the same driving conditions, as UDDS. Among these
figures, the upper curves show the results of two intermittent
attacks (level 2: parameter attacks) with & = 1|cases and
€ = 3|cases, Which suggest that the attacks on SOC have
a significant impact on battery and may even lead to radical
changes in SOC and fuel consumption. These results can be
expected because the EMS is highly sensitive to the mean values
of SOC. For instance, once it is overwritten with a constant
and low value, the system tends to use the engine-driven mode
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Fig. 6: Results of Cases 12 and 13 under long-term UDDS.

or even recharging mode (the engine supplies extra power to
the generator) to control the vehicle. Then, accompanied by
the increasing battery level, the fuels of the engine would
be quickly consumed. We note that although the overall
energy consumption increases in Case 6, the loss of battery
capacity is reduced. This indicates that if the cyber-attacks
are not orchestrated with the known system characteristics,
performance degradation cannot always be realized. Another
primary reason is that the battery capacity is not considered in
the original (or normal) EMS. Therefore, from the viewpoint of
optimization, some other torque split sequences, even though
caused by cyber-attacks, may produce better results. Such a
scenario is entirely possible in real engineering systems because
most of the energy management strategies only focus on energy
improvement without considering battery health.

From the results of controller attacks (level 3: Cases 12
and 13), it can be observed that the well-designed attacks
may cause a significant drop in long-term performance (up
to 50%) from both energy and battery capacity. Based on the
comparison between the two SOC profiles, although the trends
are similar, they exhibit different effects on energy efficiency
and battery life. This implies that goal-oriented controller

attacks are generally utilized to cause performance degradation
of specific objectives while almost having no effect on other
features, making it more challenging to detect the threats due
to less effective observations.

In should be noted that the word “long-term cyber-attack” is
defined relative to those safety-critical attacks. Typically, in a
safety-critical attack, the attack period is second level or even
millisecond level. In efficiency-motivated attacks, because the
main aim is to degrade energy efficiency and battery health, the
attack period will be much more extended, up to days or even
months. For visible observation on the effect, we extended
the UDDS driving cycle to 500km. The results are shown
in Fig. 6, from which we can see that the effect of attacks
will increase with time. Then, even though the attack may be
detected during car maintenance, a significant drop in battery
and energy efficiency may occur within the interval time.

2) Statistical results and impact analysis: Based on the
massive results, the statistical graphs are given in Fig. 7(a). For
comprehensive analysis of these impacts with different driving
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Fig. 7: Statistical graph of different attack cases.

cycles, these metrics are reformulated by

N,
1 c
eng [ ZIGHQ 79 Ibat Ji = ﬁ ZIbat,i; (17)
c ]:1
where N, = 13 is the total cases in one driving cycles; Z,, .

and 7, ,, ; represent the average indexes values of the ith driving
cycle. Slmllarly, we calculate the average values of metrics
with respect to four attack types: level 1 sensor attack, level 2
parameter attack, level 3 energy efficiency-motivated attack, and

level 3 battery life-motivated attack, marked as ¢ = {1,2, 3,4},

respectively. Then, the corresponding indexes are

I, e~ Lengij, — (18)
99~ 6(N, —n¢,+1 ;;ﬂ; 907
e e S Y T
bat,p 6(N¢7n¢+1 — = at,i,js
where ng = {1,5,12,13} and Ny = {4,11,12,13}: I/, ,

and 7, , represent the average metrics of the ¢th attack types.

The results are shown in Fig. 7(b).

From the results, we can conclude that both the two
sophisticated damage-oriented controller attacks (level 3) can
heavily damage the system, leading to significant performance
degradation up to 50%. Following the controller attacks, the

impact of parameter attacks on SOC (level 2) is much lower,
and generally speaking, the performance reduction is within
10-20% (see Fig 7(a)). Although these threats can lead to a
sharp change in SOC, as shown in Fig. 5, the impacts are
often attenuated by the later normal conditions, especially for
the intermittent cases. On the one hand, it is because in the
strategy of the EMS, the battery capacity is not considered,
and thus the baseline is not satisfactory. On the other hand,
despite the lower value of impact, cyber-attacks on system
states and parameters also need to be considered because
the cost of attacks on sensors is much lower than that of
controller attacks. In controller attacks, malicious attackers
must reprogram the EMS and inject harmful control inputs
into the closed-loop system. Also, they require prior knowledge
of the vehicle. In contrast, for cyber-attacks on sensors and
parameters, they only need to conduct some typical attack
types, such as denial of service (DoS) attack, replay attack,
etc., without any vehicle knowledge, which will significantly
reduce the cost of attacks. Based upon the comparison between
different Iéng , in Fig. 7(b), it is apparent that the driving
cycles can affect the results despite the same attack scenarios.
Specifically, the overall impacts of driving cycles 3-5 are more
significant than others, illustrating that lousy driving conditions
may enhance the vulnerability to attacks. It should be noted
that, although to some extent, we can deduce some conclusions
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Fig. 8: Operating points under different conditions.

based on prior knowledge of vehicles, for example, attacks on
efficiency and battery life have a significant impact on fuel
consumption and battery health, we need to use the simulation
results for quantitative analysis on the effect of attacks. From
the above analysis, we believe that the simulation results in
Fig. 7, including the radars in Fig. 7(b), are useful and necessary
for research on a more comprehensive vulnerability analysis
of cyber-attacks.

In the sensor attacks (level 1) on powertrain signals, it
suggests that the designed EMS is not sensitive to the varying
powertrain signals. In many scenarios, these sensor attacks may
even result in better fuel efficiency. As discussed in the above
subsection, it is because the EMS is not an optimal global
result over the whole driving cycle, so a changed equilibrium
point of SOC may be closer to the optimal profiles. It should
be noted that the results reported in the graphs do not imply
that the powertrain signal attacks have no influence on the
energy and battery life of the vehicle when considering the
limitation of attacks. Once this intensity is enlarged, the impact
would be noticeable.

Concerning the cost of attacks, although long-term attacks
are named continuous attacks, it does not mean that the attacker
needs to perform the attacks consistently. For example, the
malicious attacker may hijack the microcontroller and rewrite
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Fig. 9: Probability distribution of the engine efficiency and
battery transient health under different driving cycles.

the control law by the elaborate algorithm. Then, after the
invading action of the attacker, the compromised EMS would
control the vehicle continuously over time without additional
intervention. In such a case, only if the driver notices the
compromised controller, it would continually influence vehicle
performance. Besides real-time malware attacks during driving,
a likelihood for malware to enter a vehicle is the case that
the software update package is infected with malware before
it is loaded onto a car. This way is possible because any
repair shop and personnel can update ECU firmware through
the Onboard Diagnostic (OBD) port. Several other scenarios
where malware could exploit vulnerabilities to infect a vehicle
were thoroughly discussed in [21]. If the controller efficiency-
and battery lifetime-motivated attacks are performed through
these ways, the cost of long-term attacks would not be so high
compared to the negative and persistent effect.

V. ANOMALY DETECTION
A. Stealthiness of attacks: attacks or bad driving conditions?

Due to the variable driving conditions in real-life applications,
the operating points may be distributed throughout the various
regions, leading to a wide range of energy efficiency. Therefore,
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unlike the physical attacks described above, the threats targeted
by an attacker who aims to cause energy efficiency reduction
cannot be detected without considering the critical factor: the
difference between malicious system modifications and regular
operation in bad driving conditions (e.g., traffic jams, uphill,
rough road, etc.) or unskilled driving behavior. To provide
visible observation, we run the HEV with the designed EMS
under different driving cycles from D; to Dg, and obtain the
efficiency map of these operating points as shown in Fig. 8.
As can be seen from the results, while different traveling
conditions have a significant influence on energy efficiency,
most of the operating points are located in area A. It illustrates
that if the attacked points appear in B due to erroneous sensor
measurements or controller algorithms, e.g., controller attack
in Case 12, it is reasonable to conclude that the EMS probably
has been attacked although the efficiency of the motor is higher,
as shown in Fig. 8.

Unfortunately, this turns out not always the case. For
example, the attacker may also utilize this conclusion to
evade attack investigation by considering the constrains
(6710 Ty (O} € Qa, Ve € [0, 800 4 T0H) in
the optimization (5), where )4 represents the set of operating
points in area A. Moreover, an attacker is also motivated
to exploit the illegitimate control in the EMS to realize
lower efficiency, especially for the engine, as shown in the
marked area in Fig. 8. Besides Case 12, those cyber-attacks
launched to slightly falsify the signals may also lead to lower
energy efficiency while ensuring most operating points in A.
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Fig. 11: Engine operations in road test.

Apparently, only exploiting the distribution area of the operating
points is insufficient. To solve such a problem, we present
a probability-based detection method to distinguish between
subtle cyber-attacks and bad conditions, as an illustrative
example, aiming at Cases 12 and 13.

B. Preliminary detection method using probability distribution

Fig. 9 shows the probability distribution of the efficiency
metrics under different driving cycles. From the results, we can
see that in normal conditions most engine efficiency is higher
than a certain value (0.6 in the results), but it is not always
the case, as illustrated in the probability distribution of D3 and
Dy, which represent jam urban traffics. We can also note that
the probability of the engine efficiency within [0.4,0.6] shows
significant distinction among these normal and attack profiles.
Therefore, a probability-based method is introduced to detect
this controller attacks, as follows:

Proposition 2. Suppose the probability distribution of the
engine efficiency index over the past time horizon can be
known to the monitor, then we set the probability of the
engine efficiency that less than 6y = 0.6 as P(Igff < 0y)
and the corresponding normal value as P(I;; < 6f)lnom.
P, <6f) > P < 0f)lnom, the system would be
wamed being attacked by energy efficiency-motivated attacks.

Fig. 10(a) shows the P(I¢;, < d) of Case 12 and normal
conditions under different driving cycles. From the conspicuous
distinction between the normal and attacked conditions, we
can easily conclude that the proposed method is effective
for identifying the cyber-attacks aiming at reducing energy
efficiency. Similarly, one can alert the alarm of battery life-
motivated attacks by using the criterion P(H > §,) > P(H >
9b)|nom, as shown in Fig. 9(b) and Fig. 10, where H represents
the transient performance of battery health defined in (9) and
dp = 40A. To address the other factors that may also affect
engine efficiency, such as engine cooling conditions, battery
temperature, transmission temperature, etc., a few points should
be noted as follows:
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Firstly, the proposed probability-based detection method is
a preliminary concept that is suitable for those subtle cyber-
attacks causing significant degradation of energy and battery
performance. The given threshold (0.6) serves as an example to
show the results of detection. In real applications, the threshold
parameters in the presented probability-based detection method,
e.g., P(ijf < 0f)|nom and 0y need to be extracted from a
large number of real test data under normal cases. Although
there have many other factors that may influence engine
efficiency, their impact is within a reasonable bound in normal
daily conditions. Besides, despite those uncertain factors, the
primary engine efficiency is generally determined by the
operation points of the engine, which are calculated by the
EMS. Therefore, by using the road test data, we can obtain
relatively reasonable bounds of results in normal conditions,
based on which, the threshold can be defined.

Secondly, compared to those residual-based detection ap-
proaches with mean-value of residual, for instance, only using
the value of engine efficiency to identify the presence of cyber-
attacks, such as Isf 5 < 6y (0, is the threshold), the concept
of using the probability of low engine efficiencies have better
robustness because it allows low efficiency caused by uncertain
situations. This detection approach is based on the assumption
that for a well-designed vehicle, the average performance in
terms of the energy efficiency is stable.

Thirdly, in real applications, the torque used to derive
the engine efficiency should be the indicate torque of the
engine, instead of the flywheel torque. Actually, in the engine
management system, besides the required torque reference from
the EMS, the extra torque needed by other factors, such as air
conditioning (for some vehicle models), are also considered.
For example, as shown in Fig. 11, we present an engine torque
profile in a road test collected from the engine management
system in a passenger car. From the results, we can see that the
actual indicate torque is always higher than flywheel torque and
the torque reference from the EMS. The extra torque from the
engine is used to drive the other equipment. Therefore, if we
use the indicate torque of the engine to calculate the efficiency,
to some extent, we have already considered several uncertain
factors that may lead to “inefficient” engine operation.

Finally, based on the framework of probability-based detec-
tion methodology, further works need to be considered: adaptive
threshold, cyber-attack detection with multiple identification
indexes, physical-based and learning-based methods, etc. For
example, besides the statistical method, one can use a physical-
based method to determine an approximate range of dy.
Based on the known nominal control logic and the necessary
information in the past time horizon, e.g., speed, battery states,
operations of engine and motor, and road information, the
nominal range of efficiency can be obtained, which can help
to determine an adaptive ¢ in real-time driving. In particular,
for those cyber-attacks that slightly affect the vehicle, more
signal data, such as speed profile, SOC, gear ratio of the
transmission, battery current, battery voltage, etc., need to be
used to distinguish between them cyber-attacks, faults, and
various normal driving conditions.

VI. CONCLUSION

This paper has presented a systemic assessment of long-term
sophisticated cyber-attacks that aim to deteriorate the battery
lifetime and energy efficiency of an HEV, which can provide
a general guide for cyber-threat impact analysis, detection and
threat-resilient control for other crucial systems in connected
vehicles, for instance, battery management system, eco-driving
systems in automated vehicles (e.g., energy-efficient cruise
control system), and other automotive controls that concentrate
on energy savings. Three levels of attack taxonomy specific
to EMSs according to the skill level of the attackers were
proposed, which will potentially cause severe damages, such
as decreasing battery capacity and energy by up to 50%,
while being sophisticated and can hardly be detected by the
human driver. To analyze the impact and stealthiness of the
sophisticated attacks, we introduced innovative evaluation
metrics, and finally, to improve the cyber-physical security
of energy-efficient powertrain system in HEVs, we proposed
and validated a preliminary probability-based detection method
for damage-oriented controller attacks. It should be noted that
besides the work of the second line of defense against cyber-
attacks, the first line of defense - information security needs to
be also considered to reduce the probability of cyber-attacks
reaching the in-vehicle network. Collaborative efforts from both
information and control security perspectives should be made in
real-time applications, which may help develop cyber-security
monitoring systems in vehicles.

APPENDIX A

The attacks in levels 1 and 2 are summarized in Table L. In
Cases 5 and 6, intermittent attack strategy is used. In Cases
7 and 8, SOCHF — Y, where Y is the past SOC within a
time horizon [t — % t] (¢ represents the current time), In

Cases 9-11, there is {e, v} = {0.8,0},{1.2,0}, {1,0.1}, which
represent Cases 9, 10 and 11, respectively.

TABLE I: Attack Modeling and Case Definition

Case definition No.
atk
= ={0.8,1.2 1,2
Level 1 —— - “atk s -{tk — t}k
zg :zg —&—landzg :zg -1 3,4
SOC= 0.5 and 0.3 5,6
Level 2 teth = {5,10}min 7,8
SOC** = £SOC + v 9, 10, 11
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