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Abstract

In this paper, we study reinforcement learning (RL) algo-
rithms to solve real-world decision problems with the objec-
tive of maximizing the long-term reward as well as satisfying
cumulative constraints. We propose a novel first-order pol-
icy optimization method, Interior-point Policy Optimization
(IPO), which augments the objective with logarithmic bar-
rier functions, inspired by the interior-point method. Our pro-
posed method is easy to implement with performance guar-
antees and can handle general types of cumulative multi-
constraint settings. We conduct extensive evaluations to com-
pare our approach with state-of-the-art baselines. Our algo-
rithm outperforms the baseline algorithms, in terms of reward
maximization and constraint satisfaction.

Introduction

Recent advances have demonstrated significant potentials
of deep reinforcement learning (RL) in solving complex
sequential decision and control problems, e.g., the Atari
game (Mnih et al. 2015), robotics (Andrychowicz et al.
2018), Go (Silver et al. 2016), etc. In such RL problems,
the objective is to maximize the discounted cumulative re-
ward. In many other problems, in addition to maximizing the
reward, a policy needs to satisfy certain constraints. For ex-
ample, in a cellular network, a common objective for the net-
work operator is to maximize the throughput or cumulative
data transmitted to users. At the same time, users may have
different requirements for the quality of service, such as
the requirements on average latency, cumulative throughput,
or the average package loss rate, which are constraints on
the optimization problem (Julian et al. 2002). Consider an-
other example of robot manipulation and control. In the task
of placing an object (Pham, De Magistris, and Tachibana
2018), the reward is the measurement of how well the object
is placed, while there are constraints on the motion of the
robot arm, such as how much the arm can twist.

RL with constraints is usually modeled as a Constrained
Markov Decision Process (CMDP)(Altman 1999), where
the agent must act with respect to constraints, in addition
to reward maximization. There are two types of constraints:
instantaneous constraints (e.g. robot arm twist) and cumula-
tive constraints (e.g. average latency). An instantaneous con-

straint is a constraint that the chosen action needs to satisfy
in each step. A cumulative constraint requires that the sum
of one constraint variable from the beginning to the current
time step is within a certain limit. In this work, we focus on
cumulative constraints, including both discounted cumula-
tive constraints and mean valued constraints.

A common approach to solve CMDPs is the Lagrangian
relaxation method (Chow et al. 2017; Tessler, Mankowitz,
and Mannor 2018). The constrained optimization problem is
reduced to an unconstrained one by augmenting the objec-
tive function with a sum of the constraint functions weighted
by their corresponding Lagrange multipliers. Then, the La-
grange multipliers are updated in the dual problem to sat-
isfy the constraints. Although constraints are satisfied when
the policy converges, this approach is sensitive to the ini-
tialization of the Lagrange multipliers and the learning rate,
and the policy obtained during training does not consistently
satisfy the constraints, as discussed in (Achiam et al. 2017;
Chow et al. 2019).

Constrained policy optimization (CPO) (Achiam et al.
2017) is proposed to solve CMDPs. It extends the trust-
region policy optimization (TRPO) algorithm (Schulman et
al. 2015) to handle the constraints. CPO monotonically im-
proves the policy during training, demonstrating promising
empirical performance, and it guarantees constraint satisfac-
tion during the training process once the constraints are sat-
isfied (Chow et al. 2019). However, CPO needs to calculate
the second-order derivatives and thus is complicated to com-
pute and implement. In addition, CPO does not handle mean
valued constraints (Tessler, Mankowitz, and Mannor 2018),
and it is difficult to employ CPO when there are multiple
constraints.

In this paper, we propose a first-order optimization
method, Interior-point Policy Optimization (IPO), to solve
CMDPs with different types of cumulative constraints.
Specifically, inspired by the interior-point method (Boyd and
Vandenberghe 2004), we augment the objective function of
IPO with logarithmic barrier functions as penalty functions
to accommodate the constraints. Intuitively, we would like
to construct functions such that 1) if a constraint is satis-
fied, the penalty added to the reward function is zero, and
2) if the constraint is violated, the penalty goes to negative



infinity. The logarithmic barrier functions satisfy these re-
quirements, are easy to implement, and also provide nice
analytical properties. For policy optimization, we leverage
PPO (Schulman et al. 2017), and thus inherit its trust region
property. We note that other policy optimization algorithms
can be integrated when needed, which increases the flexibil-
ity of the proposed methodology. Our algorithm is easy to
implement and the hyperparameters are convenient to tune.
In summary, our contributions are as follows:

e We propose IPO, a first-order optimization RL algorithm
under cumulative constraints. The algorithm is easy-to-
implement, can handle different types and multiple con-
straints, with easy-to-tune hyperparameters.

e We provide the performance bound of the IPO in terms of
reward functions using primal-dual analysis.

e We conduct extensive experiments to compare IPO with
the Lagrangian relaxation method and CPO on continu-
ous control tasks, such as MuJoco and grid-world in the
robotics setting. IPO outperforms the state-of-art methods
with higher long-term reward and lower cumulative con-
straint values.

Related work

Reinforcement learning with constraints is a significant and
challenging topic. A comprehensive overview can be found
in (Garcia and Fernandez 2015; Dulac-Arnold, Mankowitz,
and Hester 2019).

The Lagrangian relaxation method is widely applied to
solve the RL with constraints. Primal-Dual Optimization
(PDO) (Chow et al. 2017) employs the Lagrangian relax-
ation method to devise policy gradient and actor-critic al-
gorithm for risk-constrained RL. PDO is further adapted to
off-line policy learning in (Liang, Que, and Modiano 2018)
aiming to accelerate the learning process. They use off-line
data to pre-train the Lagrange multipliers and reduce the it-
erations of online updating. A batch policy learning based
on the Lagrangian method is proposed in (Le, Voloshin, and
Yue 2019) which considers both sampling efficiency and
constraint satisfaction challenges. Reward Constrained Pol-
icy Optimization (RCPO) (Tessler, Mankowitz, and Mannor
2018) is proposed as a multi-timescale actor-critic approach.
They take advantage of TD-learning to update the policy
and handle mean valued constraints based on the Lagrangian
method.

Differing from above methods which tunes Lagrange mul-
tipliers in primal and dual space, Constrained Policy Opti-
mization (CPO) (Achiam et al. 2017) uses new approxima-
tion methods from scratch to compute the Lagrange mul-
tiplier and enforce constraints in each iteration during the
training process.

Another sort of algorithms leverage Lyapunov func-
tions (Khalil 2002; Neely 2010) to handle constraints. In
(Chow et al. 2018; Chow et al. 2019), safe approximation
policy and value iteration algorithms are induced by Lya-
punov constraints.

There are also works on adding a constrained layer to the
policy network to satisfy zero-constraint violation at each

time step, such as in (Dalal et al. 2018; Pham, De Magistris,
and Tachibana 2018) .

To the best of our knowledge, there are no previous works
using the interior-point method to solve RL problems with
constraints.

Preliminaries
Markov Decision Process

A Markov Decision Process (MDP) is represented by a tuple
(S, A, R, P, p,~) (Sutton and Barto 2018), where S is the
set of states, A is the set of actions, R : S x A x S — R
is the reward function, P : S x A x S +— [0, 1] is the tran-
sition probability function, where P(s'|s,a) is the transi-
tion probability from state s to state s with taking action a,
p S — [0,1] is the initial state distribution and - is the
discount factor for future reward. A policy 7 : S — P(A) is
a mapping from states to a probability distribution over ac-
tions and 7 (a|s) is the probability of taking action a in state
s. We write a policy 7 as my to emphasize its dependence
on the parameter 6 (e.g., a neural network policy with pa-
rameter 6). A common goal of a MDP is to select a policy
g which maximizes the discounted cumulative reward. It is
denoted as

max Jg’ =Ernr, [Z Y R(st, at, s141)] (1)
t=0

where 7 = (sq,ag, $1,a1...) denotes a trajectory, and 7 ~
g means that the distribution over trajectories is following
policy 7g.

For a trajectory starting from state s, the value function of
state s is

oo
Vi’ (8) = Errr, [Z VtR(Sm at, St+1)]s0 = s
t=0
The action-value function of state s and action a is
oo
W (5,0) =Eror, > V' R(st,a1,5041)]50 = 8,00 = a
t=0

and the advantage function is
AR (s,0) = QF (s,a) = V' (s) 2)

Constrained Markov Decision Process

A Constrained Markov Decision Process (CMDP) ex-
tends the MDP by introducing a cost function C
§x Ax S — R (similar to the reward function) for
each transition tuple (s,a7s'), several constraints C; =
f(C(s0,a0,81)), .., C(Sn,an, Sn+1)), and constraint lim-
its €1, ..., €. The constraints include discounted cumulative
constraints, and mean valued constraints (Altman 1999) .
The expectation over a constraint is defined as:

JE = Brrr, [C1]

The discounted cumulative constraint is in the form of:

(oo}
JE =By > Clst, ar, 5041)] 3)
t=0



The mean valued constraint is in the form of:

T __
JC - 7'~7r9

Z C St,at,3t+1)] 4

where T is the total number of time steps in each trajectory.

For a CMDP, the goal is to find a policy g which maxi-
mizes the discounted cumulative reward while satisfying the
cumulative constraints. It is denoted as

)
meax Jg

o 5
s.t. ch <g

where ¢; is the limit for each constraint.

Policy Gradient Methods

Policy gradient (Sutton et al. 2000) is a method for finding an
optimal policy of a MDP problem. It first calculates gradient
of the objective Eq. (1),

VJEQ = Ei[wologme(as|s:)As]

where 7y is the current policy under parameter 6 and A; is
the advantage function Eq. (2) at time step ¢t. Thereafter, 6 is
updated as

0=0+nvJg,

where 7 is the learning rate.

Trust Region Policy Optimization (TRPO) (Schulman et
al. 2015) is proposed to achieve monotonic improvement
when updating policy. The objective is approximated with
a surrogate function, and the step size is limited by the Kull-
back Leibler (KL) divergence (Kullback and Leibler 1951),
shown as follows.

7T.9(Clt|8t)
TOo14 (at|3t)
s.t. EiKLmg,,,(at|s:), mo(as|s:)]] < 6.

méax LTRPO(G) = Et[ At]

where § is the step size limitation.

TRPO can be approximately solved with a conjugate gra-
dient optimization, which is efficient.

Proximal Policy Optimization (PPO) (Schulman et al.
2017) approximates the objective by a first-order surrogate
optimization problem to reduce the complexity of TRPO,
defined as

méa,X LCLIP(G)

= Ei[min(ry(0) A, clip(r4(0),1,1 — e, 1 + €) Ay)],
(6)

_me(aclsd) A i the advantage function,

Mg 4 (atlst)
clip(+) is the clip function and 7.(6) is clipped between
[1—¢€1+¢.

where 7,(0) =

Interior-point Policy Optimization

Now we introduce our Interior-point Policy Optimization
(IPO) to solve CMDP. We employ the clipped surrogate ob-
jective of PPO in Eq. (6) as our objective, and augment it
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Figure 1: Value of indicator function /(z) and logarithmic

barrier functions ¢(x) = 4%(7””). The dashed line is the
indicator function and two solid lines are logarithmic barrier
function with £ = 20 and ¢ = 50. We get better approxima-
tion with higher ¢ comparing these two solid lines.

with the logarithmic barrier function for the constraints in
the interior-point method.
Our problem is defined as

mgLX LCLIP(G)’

(7
s.t. Jgf <.

Logarithmic Barrier Function

Now we denote J&! = J7’ — €;, to simplify the notation.
Our constrained optimization problem can be reduced to an
unconstrained one by augmenting the obJectlve with indica-

tor functions 1 (JC ), for each constraint Jcr satisfying

o 0 JX <0,
I(ch):{ —ooJC > 0.

It means that when the constraints are satlsﬁed, we solve the
problem as an unconstrained policy optimization problem
only considering the reward; however, when any constraint
is violated, we must adjust the policy to satisfy the constraint
first, since the penalty is —oo

The logarithm barrier function is a differentiable approx-
imation of the indicator function, defined as

~ log(—Jx
o(Tg) = EIED,

where ¢t > 0 is a hyperparameter. The larger ¢ is, the better
the approximation is to the indicator function, as shown in

Figure 1.
Now our objective becomes
max LIPO(H), 8)
where
LIPO(0) = LT (0) + 3 o(Je).

i=1



Algorithm 1 The procedure of IPO

Input: Initialize policy m with parameter # = 6. Set the
hyperparameter r for PPO clip rate and ¢ for logarithmic bar-
rier function

Output: The policy parameters

1: Initialize the computational graph structure.
2: for iteration k=0,1,2,... do
3:  Sample N trajectories 7y, ..., 7n including observa-
tions, actions, rewards and costs under the current
policy 0,
4:  Process the trajectories to advantages, constraint val-
ues, etc
5:  Update the policy parameter with first order optimizer
Ort1 = O + 79 L'7O(0) where « is learning rate
based on the processed trajectories.
end for
return policy parameters 6 = 01

e

Thereafter, we can perform first order optimization (e.g.
Adam optimizer) to update the parametric policy (e.g. neural
network). The pseudo-code of IPO is shown in Algorithm 1.

Performance Guarantee Bound

Theorem 1. The maximum gap between the optimal value
of the constrained optimization problem in Eq. (7) and the
objective of IPO in Eq. (8) is bounded by *, where m is
the number of constraints and t is the hyperparameter of
logarithmic barrier function, if the optimal policy is strictly
feasible.

Proof. To be consistent with the standard optimization prob-
lem, we first convert our maximization problem to a min-
imization problem by obtaining its negation. The problem
defined in Eq. (7) is now

mein _LCLIP (9)

)

N ©))
s.t. Jge <0
The objective of IPO in Eq. (8) becomes
" Jog(—J%)
. 7CLIP/py _ og\—Jg,;)
min —L (0) Z - . (10)

i=1

The Lagrangian function of Eq. (9) is

L0, N) = L2 (0) + 3 T, (11)

where A; > 0 is the Lagrange multiplier.
The dual function is

m
;) = min — LI (9 NI 12
g(A;) = min 0) + ; &L 32
If the problem is strictly feasible which means an optimal
parameter 6* for Eq. (10) exists and Jgf < 0. The optimal

parameter 0* must satisfy
m

— g LCLIP(g*) 4 Z

We set

JW VI =0 (13)
C;

1
Al =——Fn—, (14)
tx J&
and plug A7 into Eq. (13). We obtain
—VLCLIP +ZA*nge* -0 (15)
=1
It means that * minimizes the Lagrangian Eq. (11) under
Ai = Af. That s,
g = —LOHTE) + YN T
i=1 (16)
_LCLIP(g*) — m
t
Let p* be the optimal value in the problem Eq. (9). By the
property of duality gap, p* > g(\*). Therefore,

_ LCLIP(G*) _p* < % (17)

It means the gap between the optimal value of the original
constrained problem with clipped surrogate function (Eq.
(7)) and IPO (Eq. (8)) is bounded by . O]

Theorem 1 indicates that a larger ¢ provides a better ap-
proximation of the original objective. Empirically, we notice
that a larger ¢ can lead to a higher reward and cost, but at
a lower convergence rate. This monotonicity enables us to
employ a binary search algorithm to find a ¢ to balance the
convergence rate and optimization.

Experiments

In the experiment, we demonstrate the following properties
of IPO:

e [PO can handle more general types of cumulative con-
straints including discounted cumulative constraints and
mean valued constraints. It outperforms the state-of-the-
art baselines, CPO (Achiam et al. 2017) and PDO (Chow
et al. 2017), on both constraints.

e [PO’s hyperparameter is easy to tune, compared to PDO.

e IPO can be easily extended to handle optimizations with
multiple constraints.

e IPO is robust in stochastic environments.

We conduct experiments and compare IPO with CPO
and PDO in various scenarios: three tasks in the Mujoco
simulator (Point-Gather, Point-Circle (Achiam et al. 2017),
HalfCheetah-Safe (Chow et al. 2019)) and a grid-world task
(Mars-Rover) inspired by (Chow et al. 2015).

To be fair, the baseline algorithms inherit all advantages
in IPO. For example, PDO is implemented with the same
PPO clipped surrogate objective. Additionally, we demon-
strate the performance of PPO and TRPO for reference, al-
though these algorithms do not take constraints into consid-
eration. We run each experiment ten times with different ran-
dom seeds and show the average performance.
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Figure 2: Average performance of TRPO, PPO, PDO, CPO
and IPO under Point Gather, Point Circle and HalfCheetah-
Safe with discounted cumulative constraints. The x-axis is
the number of trajectories. The dashed lines are constrained
limits for different tasks which is 0.1 for Point Gather, 5 for
Point Circle and 50 for HalfCheetah-Safe.

Scenario Description

We first describe our experiment scenarios. The objective in
all following scenarios is to maximize the reward (the higher
the better) while satisfying the constraints (the lower the bet-
ter).

e Point-Gather: A Point agent moves in a fixed square re-
gion where there are randomly located apples (2 apples)
and bombs (8 bombs). The agent is rewarded for col-
lecting apples and there is a constraint on the number of
bombs collected;

e Point-Circle: A Point agent moves in a circular region
with radius r. It’s rewarded for running counter-clockwise
along the circle, but is restricted to stay within a safe re-
gion, smaller than the circular region;

o HalfCheetah-Safe: The HalfCheetah agent (2-legged sim-

Point Gather with mean valued constraint
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Figure 3: Average performance of TRPO, PPO, PDO and
IPO under Point Gather, Point Circle and Mars Rover with
mean valued constraints. The dashed lines are constrained
limits for different tasks which is 0.005 for Point Gather, 0.2
for Point Circle and 0.01 for Mars Rover.

ulated robot) is rewarded for running with a speed limit at
1, for stability and safety;

e Grid-world: A rover travels in a fixed square region. It
starts from the top left corner and its destination is the
top right corner. The rover gets a negative reward for each
step it moves. There are fixed holes in the region. If the
rover falls into a hole, the trip terminates. The constraint
is on the possibility of the rover falling into a hole.

Discounted Cumulative Constraints

First, we demonstrate results on optimization with dis-
counted cumulative constraints (Eq. (3)) on three Mujoco
tasks (Point-Gather, Point-Circle, and HalfCheetah-Safe) to
compare [PO with CPO and PDO.

In Figure 2, we can see our overall performance is better
than CPO and PDO under all the three Mujoco tasks. IPO
achieves higher discounted cumulative reward with lower
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Figure 4: Average performance of TRPO, PPO, CPO and
IPO under constraint limit 1.

discounted cumulative cost than CPO. CPO converges faster
than IPO, but we notice that CPO always stops improving
when the constraint is satisfied. On the contrary, IPO con-
tinues to search for a better policy even if the constraint is
satisfied. Hence, it converges to a better reward and lower
cost.

For PDO, we try to find the satisfactory initial Lagrange
multiplier and learning rate with grid search, which is time-
consuming. From Figure 2a and 2b, we can see that PDO
can converge to a policy as good as IPO, however, the vari-
ance of the performance during training is high. The per-
formance of PDO in Figure 2¢ and 2d is worst of all. It in-
dicates that the Lagrange multiplier 0.01 and learning rate
0.01 is a bad initialization. In the HalfCheetah-Safe task,
Figure 2e and 2f, PDO achieves a policy whose constraint
value is lower than the limit, but the reward is the lowest as
well. PDO is sensitive to the initialization of the Lagrange
multiplier and learning rate. We will also demonstrate the
impact of hyperparameters in the following experiment.

The PPO and TRPO consider the optimization without
constraints. They achieve higher rewards as well as violat-
ing the constraints more, compared to IPO, CPO and PDO.

Mean Valued Constraints

Our algorithm can not only support discounted cumulative
constraints but also mean valued constraints (Eq. (4)).

We conduct experiments on optimization with the mean
valued constrains on two Mujoco tasks (Point-Gather, Point-
Circle) and the grid-world (Mars-Rover). Because the CPO
does not support mean valued constraints. We only compare
IPO with PDO.

Figure 3 shows that IPO can consistently converge to a
policy with high discounted cumulative reward and satisfy
the mean valued constrains on all tasks. PDO, however,
sometimes converges to a policy violating the constraints
(Figure 3b) and has a higher variance during training (Fig-
ure 3d and Figure 3f).

Constraint Effects

In this experiment, we would like to analyze the effects when
changing the constraints. We loosen the constraint in Point
Gather with a larger threshold, to be 1, which means that
the Point agent can collect at most one bomb on average

—#— PDO-A0.01r0.001 —e— PDO-A0.01r0.01 —&— PDO-A0.1r0.01 Limit

IPO-t10 4 IPO-t20 —¥— |PO-t40

Figure 5: Average performance of PDO and IPO with differ-
ent hyperparameters.

in each play. Figure 4 demonstrates that both IPO and CPO
can obtain almost the same discounted cumulative reward as
their corresponding unconstrained method, PPO and TRPO.
It indicates that such a constraint is so loose that the perfor-
mance of the constrained optimization is equivalent to the
unconstrained one. We observe that CPO still increases its
cost to reach the constraint 1, which is even worse than the
randomly initialized policy (around 0.8 at the first iteration).
The experiment reflects that CPO always makes efforts to
push its cost to the constraint threshold. On the contrary, [PO
keeps decreasing its cost after the constraint is satisfied. Sta-
tistically, the average number of bombs collected for CPO
is around 1 and the number for IPO is around 0.25. We also
attach the video visualizing the actions of policies learned
with IPO and CPO playing a Point Gather task with a fixed
configuration of 2 apples and 8 bombs, in the supplemental
materials.

Hyperparameter Tuning

Compared to PDO, our hyperparameter ¢ is easier to tune.
We conduct experiments in Point Gather. As shown in Fig-
ure 5, the performance of PDO is sensitive to the initializa-
tion of the Lagrange multiplier A from 0.01 to 0.1. Figure 5
also demonstrates that PDO is affected by the learning rate
which changes from 0.01 to 0.001. The smaller learning rate
slows down the policy convergence pace.

Tuning the initial Lagrange multiplier and learning rate
takes a lot of efforts in PDO. On the contrary, the reward
and cost of IPO are positively correlated with the hyperpa-
rameter ¢, which enables us to employ a binary search for a
feasible hyperparameter conveniently. As shown in Figure 5,
we achive higher reward and cost with larger ¢. Theoreti-
cally, we start from a value N big enough, and it takes us
at most O(log(N)) to find a feasible ¢ maximize the reward
and reduce the cost to satisfy the constraints. In practice, we
usually initialize ¢ to be the maximal value of discounted cu-
mulative reward and it can be found in a few iterations. Be-
sides, it’s fixed for each task even in different settings (e.g.
different constraint limits).
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Figure 7: Average performance of IPO under different noise
scale. IPO-0 means no noise is added.

Multiple Constraints

IPO can be conveniently extended to the optimization with
multiple constraints by adding a logarithm barrier function
for each constraint, which is much easier to implement than
CPO. In this section, we conduct three experiments in Point
Gather, each with two constraints. To extend the task with
multiple constraints, we add another type of balls, mine
balls, in the task. The cost of mine balls is the same as bomb
balls, which is 1. Now our goal is to maximize the num-
ber of apple balls collected, with constraints on the number
of bomb balls and mine balls collected. Below we describe
our settings, where the values in the parentheses are the con-
straints of the maximum expected numbers of corresponding
balls collected in one play. Our settings are

1. two apples, three bomb balls (0.04), five mine balls (0.06);
2. two apples, four bomb balls (0.05), four mine balls (0.05);
3. two apples, eight bomb balls (0.1), eight mine balls (0.1);

From Figure 6, we can see IPO can converge to a policy
satisfying both constraints in all three settings while achiev-
ing a high reward.

Stochastic Environment Effects

All the tasks mentioned above have deterministic feedback
and control. However, in real-world scenarios, there is al-
ways uncertainty from the environment. In this section, we
do an extra experiment showing that our method is robust to
a stochastic environment, where the outcome of an action is
affected by random noise. This setting is inspired by robotics
manipulation with uncertainty.

The agent’s actions is represented as a vector of velocities
and heading directions ranging from —1 to 1. In the experi-
ment, we add random noises following normal distributions
with mean value 0 and variances 0.2, 0.5, 1.0 to the outcome
of agent actions. By comparing the performance in Figure
7, we can see that IPO can still converge to a satisfied policy
even when the scale factor is 0.5.

Conclusion

In this paper, we propose a first-order policy optimization
method, Interior-point Point Optimization (IPO), to solve
constrained reinforcement learning problems. Compared to
the state-of-the-art methods, IPO achieves better perfor-
mance and handles more general types of multiple cumu-
lative constraints. In practice, IPO is easy to implement and
the hyperparameters are easy to tune. In the future, we will
further provide thorough theoretical guarantees for our algo-
rithm, and apply more optimization techniques to handle RL
with constraints.
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