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Scientific Significance Statement

Interannual variability is a pervasive feature of aquatic ecosystems. This variability results from short- and long-term dynamics
of biotic and abiotic origin, inclusive of multiannual variability and long-term trends. Although understanding short-term var-
iability and forecasting directional change are important research efforts, far less attention has been paid to oscillatory, or
wave-like dynamics that play out over multiple years, in aquatic ecosystems. In this essay, we argue that understanding these
modes of variability—in addition to directional trends and intraannual patterns—and their underlying causes are necessary for
understanding aquatic ecosystem functioning over long time periods for effective conservation and management. Fortunately,
given the growing availability of multidecadal data, development of statistical tools, and the urgent need to forecast change,
the field can readily adopt multiannual dynamic thinking into our understanding of aquatic ecosystems.

Environmental change occurs over a broad range of timescales.
Aquatic ecosystems can change rapidly from disturbances that
drastically affect structure and function. Other changes progress
more slowly, due to processes such as climate change, eutrophica-
tion, changes in watershed land use and flow regime, biodiversity
loss, and biological invasions. These long-term drivers tend to
cause directional, slow change or the abrupt crossing of thresh-
olds, leading to temporal trends or regime shifts. However,
other processes operating at long timescales drive variability to
ecosystem structure and function without necessarily resulting in
directional change.

Multiannual dynamics, or wavy, periodic, and quasiperiodic
oscillations operating over timescales from 2 years to over a
decade, are often a substantial source of variability that can be

independent of long-term trends. Although multiannual
dynamics are often treated as “operating in the background,”
drivers of oscillations and trends operate at all timescales, in
some cases individually et al synergistically, to regulate the
structure and function of aquatic ecosystems. These multi-
annual dynamics have been shown to be important in long-
term studies such as the eutrophication and recovery of Lake
Washington (Hampton et al. 2006), the effect of climate oscil-
lations on calanoid copepods (Fromentin and Planque 1996),
overexploitation as in the northwestern Atlantic cod collapse
(Hutchings and Myers 1994), and species invasion as in the
effects zebra mussels on the Hudson River (Strayer et al. 2014).

In some ecosystems, there may be complete absence of
trends in a variable of interest over multiannual timescales,
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but not an absence of pattern. For example, monthly mean
nitrate concentrations for the past 40 years in the Des Moines
River have no discernable trend despite being quite variable,
ranging from below detection to greater than 18 mg L−1

(Fig. 1A). The lack of a trend is somewhat surprising given the
history of land use change and agricultural intensification in the
region during this time period (Yu and Lu 2018). However,
while there are no long-term trends in nitrate concentrations in
the river, there are strong oscillatory patterns in the time series.
A wavelet analysis of the multiannual dynamics of the nitrate
time series reveals that there are repeating oscillations at sea-
sonal, annual, 3–5 year, and 10–14 year timescales (Fig. 1B) (see
Supporting Information Appendix S1 for method details). This
example illustrates the rich information that can be gleaned
from multiannual pattern analysis of long-term data.

Interest in characterizing multiannual dynamics is not
new, per se. Oceanographers have long appreciated multiyear
dynamics in currents, ocean–atmosphere connections, and
impacts of this variation on distributions and populations of
marine fauna (Di Lorenzo et al. 2013; Tommasi et al. 2017).

Lotic ecologists have analyzed variations in stream and river
discharge to assess directional, extreme, and periodic changes
on long timescales (Palmer and Ruhi 2019). Similarly, lake
researchers have conducted long-term studies of ecological
variation in the context of the interactions of external drivers
with internal processes (Hampton et al. 2006; Keitt and
Fischer 2006). Yet, we argue that as research in limnology and
oceanography is increasingly marked by long-term, intensive
ecosystem monitoring, cross-disciplinary research, big data,
and open science, the discipline is well positioned to begin
routinely incorporating multiannual dynamics into our analy-
sis of changes in aquatic ecosystems.

Additionally, the increasing ubiquity of environmental
change due to multiple anthropogenic stresses playing out over
varying spatial and temporal scales necessitates disentangling
multiannual trends and oscillations in order to effectively man-
age and conserve aquatic ecosystems long term. To that end, in
this essay, we discuss the drivers that lead to multiannual vari-
ability, the consequences of multiannual variability on ecosys-
tem functioning, and suggest strategies for characterizing and

Fig. 1. The mean monthly (A) nitrate (NO3) concentrations and (B) flow in the Des Moines River do not have a trend over four decades (1976–2016),
yet there are strong oscillatory patterns at multiple timescales in both time series. The continuous wavelet transformation analysis of the (C) nitrate and
(D) flow time series reveals strong, wave-like patterns (warmer colors in the wavelet heat maps) at specific points in time (x-axis) and timescales (y-axis),
for example, there are strong, wave-like patterns in NO3 concentrations at the 1-yr timescale, particularly from 1997 to 2016, indicating a strong, wave-
like pattern that repeats annually. Note that the wavelet components around the edges of the time series are “scalloped” to ignore times and timescales
for which the wavelet transform is unreliable due to edge effects.
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incorporating multiannual variability into aquatic ecosystem
research, conservation, and management.

What causes multiannual variability?
Drivers of variability in ecological processes operate at time

scales from days to decades. For many ecological processes,
temporal patterns emerge at multiannual timescales, such as
the population dynamics of long-lived organisms. While mul-
tiannual dynamics may interact with, and can even depend in
part, on processes occurring at shorter time scales, they often
cannot be observed, predicted, or understood from short time-
scale dynamics alone. If fact, multiannual oscillations can
greatly affect the conclusions drawn about the trajectory of an
ecosystem depending on the length and position of the obser-
vation window (e.g., colored panels in Fig. 2A). In the
Des Moines River example, strong decadal oscillations in
nitrate concentrations produced apparent shorter-term trends
(e.g., decreasing concentrations from c.a. 1981–1990; red line
in Fig. 1B) that could be erroneously attributed to directional
changes brought on by improvements in watershed nutrient
management.

Multiannual dynamics manifest across multiple timescales,
overlaying and interacting with each other. As an illustration
of the consequences of superimposed dynamics in aquatic
ecosystems, consider the long-term variation of primary pro-
ductivity. Ultimately, primary productivity is driven by tem-
perature, light, mixing, nutrient availability and grazing. The
short-term diel and seasonal oscillations of light availability,
temperature, and nutrient limitation are well understood in
aquatic ecosystems (Fig. 2B). However, some of these same
drivers also vary at longer timescales. Interannual variability
in temperature, nutrient loading and deposition, precipita-
tion, residence time, and grazer populations can all be driven
by climate oscillations (Paerl et al. 2015; Carey et al. 2016;
Nergui et al. 2016) (Fig. 2C). These multiannual oscillations
vary in their period from a few years to decades. Finally, these
oscillations can also interact with directional changes such as
eutrophication, which stimulates primary productivity over
time (Fig. 2D). All of these dynamics are superimposed
resulting in a highly variable time series of measured primary
productivity (Fig. 2A).

The numerous phenomena that generate multiannual pat-
terns manifesting in population dynamics, community com-
position and structure, and aquatic ecosystem function can be
placed into two broad categories: intrinsic cycles and periodic
oscillations driven by external forcing. Internal dynamics can
either lead to the rise of chaos or intrinsic cycles, such as
predator–prey dynamics, in the system, and will tend to have
high amplitudes and consistent cycle lengths, even in the
absence of a periodic external driver. For example, density-
dependent reproduction and stage structure prominently con-
tribute to population cycles (Myers 2018). Systems can also
exhibit periodic dynamics that arise from external drivers that also

fluctuate periodically. The El Niño-Southern Oscillation (ENSO),
Pacific Decadal Oscillation, and other climate teleconnections are
all examples of external quasiperiodic dynamics that operate at
multiannual timescales. Climate oscillations are tied to periodic
flood regimes (Palmer and Ruhi 2019), shifts in oceanic currents,
upper layer mixing dynamics, patterns of extreme weather,
and continental scale patterns of nutrient deposition (Nergui
et al. 2016), which results in year-to-year variability in environ-
mental parameters.

In addition to linear trends, other forms of nonlinear direc-
tional change such as hysteresis and time lags also contribute
to long-term variability. For example, legacy accumulation of
nutrients in watersheds and aquatic sediments often results in
a time lag between the reduction in nutrient inputs and an
improvement in water quality (Van Meter and Basu 2017;
Kusmer et al. 2019). Likewise, the trajectories of estuarine eco-
systems recovering from eutrophication follow different paths
than when nutrients were increasing, and typically do not
return to the same starting point (Duarte et al. 2009). All of
these drivers of variability—cycles, periodic dynamics, and
trends—are interacting to shape the dynamics in aquatic
ecosystems.

What external forces or intrinsic dynamics may be driving
the strong oscillations in nitrate concentration in the Des
Moines River? Variability in river flow is a likely driver of the
variability in nitrate concentrations as baseflow contributes sub-
stantially to nitrate flux. In this agriculturally rich river network,
tile drainage contributes half of the annual water yield in many
of the subbasins (Schilling et al. 2019). We can evaluate this
hypothesis by comparing the decomposed dynamics, or wave-
lets, of driver (flow) and response variable (nitrate) time series.
There was high wavelet power at similar timescales in both
nitrate concentration and river flow in the Des Moines River
(Fig. 1C,D, respectively), suggesting a relationship between these
variables’ dynamics. We can more specifically test this hypothe-
sis by evaluating the wavelet coherence, which measures
whether two time series have correlated magnitudes of oscilla-
tion and consistent phase differences (time lags) throughout a
time series, as a function of timescale (see Supporting Informa-
tion Appendix S1). The wavelet coherence analysis revealed that
the dynamics were significantly related at annual (p < 0.001),
3–5 year timescales (p < 0.001), and 10–14 year (p = 0.036) time-
scales. We can further hypothesize what drivers control variabil-
ity in flow at these timescales and could use wavelet coherence
analyses to evaluate support for these predictions. For example,
at particular timescales nitrate concentration and flow may be
driven in part by multiannual climate oscillations such as ENSO
(Jones et al. 2012).

What are the consequences of multiannual dynamics?
The incentive to examine multiannual dynamics is grow-

ing as the need to scale across time, and space is increasingly
important for predicting and coping with large-scale
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environmental changes (Payne et al. 2017; Dietze et al. 2018). In
addition to changing climate means and extremes, the autocorre-
lation structure of climate is changing (Lenton et al. 2017).
Understanding the resulting ecological change and grounding
long-term forecasting requires understanding patterns and
drivers of multiannual oscillations in order to accurately capture
variability that is independent of, or synergistic with, long-term
directional changes.

Fundamentally, we cannot contextualize or predict future
dynamics if we do not understand the role of multiannual
dynamics as a driver of variability in aquatic ecosystem struc-
ture and function. Long-term management and conservation
of aquatic ecosystem services will be strengthened by gains in

understanding long-term dynamics. These benefits are evident
in the example of the Des Moines River nitrate dynamics. The
river supplies drinking water for the City of Des Moines
(Iowa). Due to human health concerns, the water utility must
periodically remove nitrate from the source water prior to
distribution, which is an expensive process. Analyzing multi-
annual dynamics revealed previously uncharacterized, but
predictable patterns in nitrate concentration peaks and tro-
ughs at 3–5 and 10–14 year timescales (Fig. 1B) in addition to
the well-known seasonal oscillations that are already incorpo-
rated into the water utility’s management plan. In this
instance, identifying the multiannual oscillations provides
key information for long-term water source and budget man-
agement for the water utility.

Many of the environmental threats to aquatic ecosystems
and the services they provide are influenced by multiannual
dynamics. The development of marine harmful algal blooms
is influenced by the local response to climate oscillations,
which can be modified by the co-occurrence of oscillations
such as ENSO and Pacific Decadal Oscillation (Moore
et al. 2008). The variability in ice cover duration of lakes and
rivers in the northern hemisphere is also driven by high fre-
quency climate oscillations (Schmidt et al. 2019) in combina-
tion with directional shifts to earlier ice-off dates due to
climate change (Sharma et al. 2016). The changes in ice cover
duration due to both oscillations and climate change influ-
ence ecosystem function in both the winter and following ice-
free seasons (Hampton et al. 2017). In lotic ecosystems, spe-
cies with life histories driven by changes in flow regimes
necessitate the identification of the dominant frequencies of
variation at both subannual and multiannual scales in order
to effectively manage and conserve these organisms (Palmer
and Ruhi 2019). These examples illustrate the important role
that multiannual oscillations play in dictating the interannual
variability in aquatic ecosystems.

Suggestions for incorporating multiannual dynamics
into aquatic research

Detecting multiannual dynamics requires long-term data.
The benefits of long-term studies within limnology and
oceanography are well recognized and can serve as a founda-
tion for further improving the understanding of multiannual
ecosystem dynamics (Hampton et al. 2019). Robust investiga-
tion of wavy patterns requires time series containing multiples
instances of the pattern of interest. Given the period lengths
of many climate oscillations and other ecological cycles, this
often means multidecadal time series. Even longer time series
are needed to identify nonstationary patterns such as changes
in the period or amplitude of oscillations. Despite the poten-
tial insights provided by analysis of long-term data, long-term
data collections comprise only approximately 5% of limnolog-
ical and oceanographic research published in the past four
decades (Xenopoulos 2019). For the existing long-term data

Fig. 2. (A) Synthetic time series of primary productivity illustrating how
observed patterns can result from the superimposition of (B) seasonal and
(C) multiannual fluctuations and (D) a long-term linear trend. Depending
on the position of the 5-year window of observation, varying conclusions
about the trajectory of the ecosystem will be drawn including decreasing
(blue), unchanging (green), or increasing (yellow), over time.
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sets, there are often complications due to observation error
generated from methodological imprecision, changes in sam-
pling methods, detection limits, and shifts in personnel over
time. Managing observation error requires statistical tech-
niques that can account for both observation and process
error and still allow patterns and trends to be detected
(Hampton et al. 2019).Yet, given the ubiquity of multiannual
dynamics in aquatic systems, where data are available we need
statistical tools adept at decomposing and detecting these
important patterns. This can be difficult given that multi-
annual dynamics often manifest as superimposed trends and
multiple wave-like components having specific timescales of
variability. Fortunately, a number of possible analysis tools
exist, and we highlight a handful of these approaches that are
notable due to their longstanding use in ecology or their
growing popularity. Ultimately, the choice of statistical
method for exploring multiannual dynamics should be dic-
tated by the research question.

Autocorrelation functions have been long available and a
widely used tool to identify periodic oscillations in time series.
However, it can be difficult to detect when many oscillations
are present with differing periods (i.e., multiple periodicities),
such as in the Des Moines River nitrate example (Fig. 1). Addi-
tionally, irregular oscillators such as ENSO may not produce
clear and consistent peaks in the autocorrelation function. An
alternative is autoregressive integrated moving average model-
ing which can fit complex patterns arising from both density-
dependent processes and environmental forcing (Ives
et al. 2010), but the meaning of higher-order coefficients is
often opaque. Applying windowing or temporal filters to time
series can amplify patterns at certain timescales while
diminishing others, but is also prone to producing spurious,
yet apparent cycles as an artifact. Dynamic factor analysis
(Zuur et al. 2003), which is a state-space modeling approach,
can identify the common patterns underlying the dynamics
in a set of time series, such as shared trends and cycles, and
can reveal multiannual wavy patterns. An additional benefit
of state-space modeling is the treatment of missing data and
observation error, which can be common issues in ecological
time series. Finally, spectral techniques based on Fourier and
wavelet analysis have great strength for analyzing periodic
dynamics, even when multiple periodicities are present. In
particular, wavelet analysis reveals timescale (the inverse of
frequency) specific patterns and changes through time in sys-
tem behavior, and there are robust tests for time- and
timescale-dependent relationships among variables of interest
and drivers. However, while spectral techniques are useful for
analyzing periodic dynamics, they are not well suited to trend
analysis and require evenly spaced, continuous time series for
analysis.

Fortunately, we are well positioned as a discipline to incor-
porate multiannual dynamic thinking into our understanding
of aquatic ecosystem function and change. The continued
growth and acceptance of open science practices in our field,

coupled with a mounting collection of long-term data sets is
creating the opportunity to ask multiannual questions in
many systems. Additionally, the continued development of
statistical methods that disentangle complex, nonstationary,
and interacting signals is providing tools necessary for
addressing these questions. As the environment continues to
rapidly transform in response to numerous interacting
stressors, incorporating multiannual dynamic thinking into
our understanding of aquatic ecosystems will help us meet
the challenges of a changing planet.
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