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Abstract

We present an approach for Distributed Denial of
Service (DDoS) attack detection and mitigation in
near-real time. The adaptive unsupervised machine

learning methodology is based on volumetric
thresholding,  Functional — Principal ~ Component
Analysis, and K-means clustering (with tuning

parameters for flexibility), which dissects the dataset
into categories of outlier source IP addresses. A
probabilistic risk assessment technique is used to
assign “threat levels” to potential malicious actors.
We use our approach to analyze a synthetic DDoS
attack with ground truth, as well as the Network Time
Protocol (NTP) amplification attack that occurred
during January of 2014 at a large mountain-range
university. We demonstrate the speed and capabilities
of our technique through replay of the NTP attack. We
show that we can detect and attenuate the DDoS within
two minutes with significantly reduced volume
throughout the six waves of the attack.

1. Introduction

Distributed Denial of Service (DDoS) attacks have
received significant global attention, because they are
increasing in frequency and severity [1]. DDoS occurs
when attackers flood the target systems with huge
amounts of traffic from many compromised systems,
leading to interruption of the victim’s services [2].
Direct costs to large organizations range from $50,000
to $100,000 per hour, and indirect costs can total much
higher. We describe a system (NetBrane) designed to
detect these DDoS in near real-time, and report on two
different mitigation strategies based on our
unsupervised outlier detection mechanism.

The contribution of this work lies in its combination
of multiple features. First, our system is a near-real
time monitor of all traffic on a network; that is, we can
analyze traffic accurately without the need for
sampling. This is a major benefit because using the
entirety of the dataset for anomaly (outlier) detection
provides the best possible results in terms of accuracy
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[25]. Next, our outlier detection mechanism is
unsupervised, removing any dependence on having
labeled data. It is impractical to obtain labeled data in
many instances, especially in the case of a “new” attack
whose profile is unknown. This freedom from labels
also lets our mechanism be adaptive in the sense that it
only seeks to identify behaviors that are “unusual”
when compared to the majority of traffic.  Such
adaptivity allows for the potential to detect “new”
attacks that supervised techniques cannot.  Other
domains are also coming to the conclusion that
unsupervised learning is an attractive approach when
dealing with unlabeled data [26, 27].

Detection and mitigation of DDoS is important
because attackers increasingly use DDoS events as a
smokescreen or distraction for more covert operations
that allow them to carry out data breaches [3]. Our
adversaries want not only to steal data or intellectual
property (for later use or sale), but also to disrupt the
operations of those targeted or impact their reputation.
DDoS have been reported in the +1Tb/s range, driven
by compromised Internet of Things (IoT) devices, such
as digital video recorders and security cameras [4].
Trends in the size of DDoS appear stable; growing at
approximately 6% per year since 2017 [1]. But the
median size is erratic, with cyclic growth. It seems
that when adversaries find new methods of attack, we
see a new peak, followed by a decline when the
method is mitigated (patched or blocked).

In 2019, 95% hit at 11.3Gbps or less. While
tsunamis make headlines, the “small” ripples can still
cripple a business. Our university was overwhelmed
during a medium-sized DDoS in 2014 on two 10Gpbs
connections to our Internet service provider (ISP).

In the last six months “the total number of attacks
climbed by 84%, and the number of sustained (over
60 minutes) DDoS sessions doubled...extremely long
attacks posted a massive 487% growth” [5]. Attackers
have also resorted to small multi-vector attacks (using
more than one service or attack type at a time). These
“bit-and-piece” attacks beat detection thresholds
because the targeted IP address receives only a
relatively small number of responses in each organized
campaign, leaving little or no trace. The typical ISP
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response of blocking all traffic to an entire IP prefix
cannot reasonably be applied; it is costly, due to
blocking access to various legitimate services of many
customers. We suggest that a finer grained detection
and mitigation mechanism is required.

There are currently over 300 DDoS attack vectors,
but the worst are those of “amplified reflection”, where
adversaries send relatively small queries to a server,
spoofing a victim’s IP address(es), and requesting a
response involving a large amount of data. As a result,
the server’s and victim’s network bandwidth will be
flooded. It is the amplification factor/ratio of inbound
to outbound data that makes the attack both easy and
dangerous. Reflection attacks are occurring every 40
minutes, with the largest to date being 1.35Tbps using
memcached UDP reflection (50000:1) [6].

In this paper, we study data captured from an actual
NTP attack that occurred in 2014 on our campus with
an amplification factor of 556, as well as a simulated
attack in our network security lab. We conduct
forensic re-analysis using our methodology to detect
outliers in the flow data and apply the result to mitigate
the effects of the actual DDoS in near real-time.
Specifically, we detect unusual behaviors in two steps:
(1) Functional Principal Component Analysis (FPCA)
combined with (2) K-means clustering.

2. Related Work

Anomaly detection methods can be classified into
(1) signature-based and (2) profile-based [7]. Signature-
based methods wuse prior knowledge about
characteristics of the anomaly of interest to identify
suspects, and have several requirements, such as prior
results from anomalies, the need for labeled data, and
an external supervisor. Many machine learning
classification techniques are “supervised”’, meaning that
they need to be trained on a set of labeled data prior to
use. Examples of popular approaches are the Support
Vector Machine, Bayesian Networks, Neural Networks,
and Discriminant Analysis (surveyed in [7, 8]). While
these have been shown to perform well in certain
situations where “known” anomaly data exists, the
reliance on labeled data can be a difficult hurdle to
overcome. For the case of network traffic
classification, “ground truth” knowledge may not be
available or even exist, thus supervised techniques can
only be applied when the true labels are approximated.
Training on incorrectly labeled data greatly skews
results [9].

In the case of recent or new DDoS attacks,
knowledge of which behaviors are malicious is not
known; we do not have labels. Thus, supervised
techniques cannot be applied. Profile-based methods
create representative “normal” traffic behavior, and

anomalies are detected by deviations from this profile.
While there may be higher false alarm rates, profile-
based methods are more promising due to their data-
driven flexibility and they may also detect previously
unknown anomalies [9]. Principal Component Analysis
(PCA) is a widely used profile-based method which
has been applied to detect traffic anomalies in DDoS
data by decomposing network traffic into two
components [24]. The anomalous subspace, which is
noisier and contains the significant traffic spikes, is
separated from the normal, which is dominated by
predictable traffic. An individual observation is
deemed an anomaly if its projection to the anomalous
subspace is large. A two-stage approach was
proposed, using (1) PCA to identify potential
anomalies, and (2) a meta-heuristic to group them [10].

However, the use of PCA has been criticized due to
issues pertaining to (i) false positive rates, (ii) traffic
measurement aggregation, (iii) normal subspace
pollution and (iv) correct anomaly identification [11].
The third is important, as it highlights the need to
choose which principal components represent “normal”
behavior, and which ones represent the “abnormal”. It
has been demonstrated that some traffic captures do
not lend themselves to this partition/selection; that is,
all principal components contain abnormal behaviors,
and thus this approach is not usable [28].

Clustering is another example of a profile-based
method. Clustering has been applied to all traffic,
comparing the centers of known “normal” traffic
clusters to the centers of actual traffic, to try and
determine if the actual traffic is not normal [12].
Unfortunately, this specific approach has only been
applied to Simple Network Management Protocol
(SNMP) objects, not network flows, and requires
known normal traffic data. Clustering techniques have
been used to characterize DDoS attack traffic (K-
means, Clustering Large Applications (CLARA), and
Self Organizing Maps) [13]. K-means was found to be
the most accurate for attack detection because attack
traffic has strong similarity as opposed to the
heterogeneity of normal traffic. In this research,
“attack” clusters still mixed in legitimate traffic with
malicious (between .4% and 2.04%). We believe this
phenomenon can be eliminated by clustering only
demonstrated “outliers”, not all traffic.

To avoid the issues we have identified with PCA
and clustering when applied separately, we will use
FPCA (instead of PCA) and apply clustering to the
resulting outliers [28] (that paper examined ‘“scanner”
behavior, where here we analyze a DDoS attack). We
perform classification only using the data that is given
as input, making this technique well-suited for dealing
with an unknown attack. We suggest this is more
appropriate than using a supervised approach trained
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Figure 1. NetBrane system architecture

on data from a previous attack, as there are a wide
variety of different attack vectors, and what was
previously learned may not apply.

When ground truth knowledge of true perpetrators
in an attack is non-existent, the notion of “false-
positives” in anomaly detection arises. Frequently,
these are potentially controlled with risk assessment,
computational trust, and reputation models (for a
survey, see [14]). Methods based on probabilistic risk
assessments are widely used and seem to provide
promising results [15]. We introduce a probabilistic
approach to risk assessment which assigns a “threat
level” to potential attackers.

3. System Design and Dataset Description

The size of the organization does not matter when it
comes to protection from attack. Big, small, startup:
hackers still want your data and they will stealthily
poke holes in your network to find the access points.
While “security as a service” (SECaaS) exists (e.g.,
Qualys, Sentinel, Sophos, Proofpoint, along with
offerings from the major cloud computing companies
such as AWS, Azure, Google) and can offer some
protection, current solutions cannot benefit everyone;
SECaaS is usually cloud-based without requiring any
on-premise hardware or much software distribution.
However, many organizations, such as government,
military, and financial organizations, need to tightly
control their data which is incompatible with SECaaS —
(meta) data cannot be shipped off-premises.

To bridge this gap, we have built a system called
“NetBrane” (network membrane, [29]). NetBrane is a
defense service where technologies are combined to
construct a shield while leaving data and sensitive
services on the premises. Figure 1 shows the NetBrane

architecture. Key novelties of the project lies in the
confluence of: (a) Software-Defined Networking
(SDN) enabled small distributed footprint with 100G
capture/filter capability for neutralizing DDoS (left
side of figure), (b) elastic data analytics using near-real
time flows and cloud -capabilities (all analytics
described in this paper are conducted in the section
enclosed within the red box), (c) situational awareness,
in terms of the global Internet information, and (d)
proactive reconnaissance, by intelligent synthesis of
information from multiple sources. The design calls
for NetBrane nodes to reside in points-of-presence
(POPs), capturing and summarizing traffic at line
speed, finding anomalies worthy of creating filter rules
for, pushing these filters to the local SDN
infrastructure, communicating with the appropriate
POPs routing infrastructure to block traffic, while
tunneling legitimate traffic to its destination. We use
SDN because it allows for dynamic software control of
network design and operations. Unfortunately we have
discovered that openflow will not function at high line
rates (>20gbps), and have had to design and implement
a system called FlowRide (not described here).

At our large mountain-west university, we have
installed optical taps to capture network flows (top left,
Figure 1) at line rate. FlowRide pushes those flows
into message queues, which are read by our analytics
engine (red box on right side of Figure 1) in near-real
time where traffic is characterized (scanner or attack
detection); data is saved in parallel to hadoop (HDFS)
for data lake analytics. We read these flows from the
message queue in small time intervals and analyze
them, applying multi-core (parallel R packages). We
have currently demonstrated resilience up to 400Gb/s.

The real-world raw data we consider in this paper is
a collection of bi-directional flow records to and from
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our university, relating to the NTP service. We focus
on traffic between January 12 and January 25 of 2014,
during the second half of which a true real-world
amplified reflection DDoS was carried out (starting in
the early morning of January 18). This attack impacted
the university in six waves (see Figure 4 for a plot of
packet counts), with a wave defined by significantly
decreased packet volume, or the monitoring system
becoming unavailable.

The flow records contain timestamp, source and
destination IP (SIP & DIP), source (SRC) and
destination (DST) port, packet and byte counts. We
currently only analyze TCP data; we plan to consider
UDP in future work. We group information into one-
minute bins, and the full dataset covers roughly twenty-
thousand minutes. As this is a real-world dataset, we
lack “ground truth” knowledge of which SIPs are the
victims (spoofed by attackers). However, we suggest
that ground truth is not necessary as we know that an
amplified reflection DDoS occurred, and we only seek
ways to alleviate damage.

The synthetic data we consider is very similar to the
NTP attack data in terms of flow records. This data is
grouped into one-minute bins, but the total dataset only
covers forty minutes. This attack comes in one wave,
for which we do have ground truth. There are twenty
true attackers, all with SIPs of the form 10.1.7.X,
targeting one victim with SIP 129.82.138.136 on port
80. These attackers send approximately 20 million
packets during the attack.

4. Methodology

Upon initialization of our analytics system, we
aggregate the most recent thirty-minutes of Internet
traffic (packet and byte count separately) into one-
minute bins. For this initial thirty-minute window, we
assume that we are not under an attack and have
relatively “usual” trafficc.  When one minute has
passed, we “slide” this window to cover the new
minute’s worth of data and drop the first observation
from the previous window (i.e., the “oldest” minute of
data). With this mechanism, we always have the most
recent thirty-minute time series of traffic volumes,
allowing us to monitor for potential attacks in near-real
time.

In each iteration of the thirty-minute window, two
thresholds (one for packets and one for bytes) are
calculated and used for volumetric attack detection.
The threshold is given by Equation (1),

Thresh = max{X; | t e H} + cv-SE[max{X; |t ¢ H}]. (1)

In the above equation, X; for ¢ € H is the time series of
packets or bytes in the given window of history.

SE[max{X; | + € H}] is the standard error of the
maximum packet or byte count from a LOESS fit of
the packet/byte time series in the window of history.
Lastly, c¢v is a critical value determined from
investigation of long-term (months) packet and byte
distributions.

When our window slides and gathers the new, most
recent minute of packet and byte counts, these values
are compared to the thresholds calculated in the
previous window iteration. That is, we check if the
new packet/byte count exceeds their respective
thresholds. If they are below their thresholds, the
thresholds are recalculated, and the process is repeated
when a new minute’s worth of data is collected. If at
least one of the counts exceeds their threshold, we
believe a DDoS has been detected, and begin our
attack mitigation.

The motivation for this threshold is as follows:
when not under attack, previous “large” volumes and
counts are considered acceptable, so we believe we are
under attack from a DDoS when new data exceeds the
largest value in the window of history by more than a
scaled measure of the maximum’s variability. This
also captures the idea that we may see “normal”
network activity that is larger than a previously
accepted amount, but only see potential for a DDoS if
new packet or byte counts exceed what we expect from
historical variability of our data.

When an attack is first detected, our system decides
which destination port the attack is being launched on.
This port is chosen based on the largest relative change
in the minute at which the attack was detected. That is,
the system has already noticed a large increase in the
traffic when aggregated across all ports, so we now
focus on the specific port that saw the largest increase.
We refer to this as the “attack port”, and then attempt
to identify attacker SIPs on that port.

For each SIP that contacted a DIP on the attack port
in the given window, we construct a time series (by
minute) of packet counts sent and received by that SIP.
These time series are then used as input for Functional
Principal Component Analysis (FPCA), and outliers
are determined using the FPCA scores. We perform a
“two-pass” implementation of FPCA; that is, after
identifying outliers from one application, they are
removed from the dataset and FPCA is re-run to flag
additional outliers. This portion of the analytics is
described in more detail in Section 4.1. Once outlier
SIPs — the potential attackers — are gathered, risk
assessment is carried out and a threat level is assigned
to each. This threat level exists between 0 and 1 and is
intended to represent the likelihood of a SIP being an
attacker, with a value closer to 1 indicating malicious
activity. This risk assessment is described in more
detail in Section 4.2.
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After the first minute of attack analytics, we switch
our “sliding” window to one that is a “growing”
window. That is, we do not drop the oldest
observation when a new minute is gathered. This is
done so that we do not only investigate attack volumes
when mitigating the attack. Note that when the attack
is first detected, we have 29 minutes of “usual” traffic,
and FPCA finds outliers by identifying significant
differences between SIPs in this period of “usual”
activity and the attackers. If the sliding window is
used and the attack continues for a large amount of
time, we may eventually encounter an instance where
“usual” activity is drowned out by the attackers, or is
non-existent, which hinders the ability of FPCA to find
all significantly different SIPs. With each new minute,
the outlier detection procedure and threat Ilevel
assignment are repeated.

We then perform DDoS mitigation using the set of
outliers found by our system. For the SIPs flagged to
be an outlier by FPCA in previous iterations of attack
analytics, firewall rules are created to block their traffic
from the network in future minutes. That is, the SIPs
with unusual traffic volumes are prevented from
impacting the network any further, dampening their
effect on the system. In addition, previously
determined outliers are not considered in subsequent
FPCA analyses, so new potential attackers can be
identified and blocked, leading to continued mitigation.

To determine if an attack has stopped (or
significantly declined), we set a limit on how long we
expect to see traffic return to “usual” levels. When
new minutes’ data stay below the thresholds that were
initially exceeded for one hour, we think that we are no
longer under attack. At this point, the analytics system
removes all outlier SIPs from being blocked and
returns to calculating the packet/byte thresholds until
another attack is detected. In addition, the “growing”
window reverts back to a “sliding” window, snapping
to the most recent thirty minutes of traffic. One hour is
chosen because it is double the size of our sliding
window. That is, we revert to monitoring the traffic
rather than mitigating it when we are sure that volumes
have returned to “usual” levels, and our thresholds will
not be inflated by including attack traffic.

4.1. FPCA + K-means

The procedure begins with application of FPCA in
order to first classify “outliers” in the data. We
construct an n x T matrix whose (i,f) entry is the count
of packets sent and received by the ith SIP during the
tth minute. FPCA models this as a mean series plus a
linear combination of eigenfunctions, which are
orthogonal curves representing the descending
dimensions of variance in the data; that is, the first

eigenfunction can be thought of as the direction of
highest variability, eigenfunction two the second most
variable, and so on. We employ the Principal Analysis
by Conditional Expectation (PACE) algorithm of [16].
In order to select the number of eigenfunctions in our
model, we apply the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC)
[17]. For the data presented here, these agree on
parameter selection; but we acknowledge this may not
always be the case. Context-specific factors should be
considered when deciding which criterion is more
appropriate [18].

To classify SIPs, we calculate each observed series’
FPCA scores, which are projections of the data onto
the eigenfunctions. Each SIP has one score for every
eigenfunction, and that SIP is flagged as an “outlier” if
at least one of its scores exceeds a three standard
deviation threshold from the mean (well-known due to
its standard application based on Chebyshev’s
inequality [19]). For example, from the 7 scores on the
first eigenfunction, we can calculate the bounds xbar
+3s; xbar is the mean score and s is the standard
deviation. Any SIP whose first eigenfunction score lies
beyond these bounds is flagged as an outlier. We use
the term “outlier” because we do not think all SIPs
flagged by FPCA are attackers - these are SIPs that
contacted the network in an unusual way, which can
clearly include other activity. Because of this, we
carry out the second step of clustering these abnormal
SIPs based on their rate of successful connections,
where a “success” is characterized as the DIPs sending
at least one packet back to the SIP. With this, we can
investigate the cluster that exhibits behavior expected
of an attacker, as our abnormal SIPs are now separated
by their connectivity with the network.

In order to perform this clustering, we employ the
K-means algorithm of [20]. The number of clusters in
the application of K-means is chosen with the “elbow
method”, which seeks the cluster amount such that
adding one additional cluster would not have a
significant impact on the fraction of variance explained
(FVE) in the entire dataset [21]. K-means is run
multiple times using randomly generated centers in
order to assess sensitivity with respect to their centers,
and we find that our data does not exhibit sensitivity to
center selection.

4.2. False-Positives and Risk Assessment

In each iteration of our “growing” window when
under attack, a set of outlier SIPs is collected as
potential attackers. We do not suppose that all outliers
are attackers, so we aim to introduce a quantitative
mechanism to allow an operator to filter out possible
false positives (non-attackers identified as outliers).
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Figure 2. Initialization, simulated attack

We call this mechanism a “threat level”, which is a
value between 0 and 1, with a value closer to 0
indicating a higher likelihood of a false-positive (non-
threatening).

To calculate this threat level, we first gather the
total data sent and received by each outlier SIP and use
these to construct a cumulative density estimate of
“outlier” data. Then, we take a sample of size 200 (or
as many as we possibly can, should there be less than
200) from the non-outlier SIPs, and construct a similar
cumulative density estimate from their total volumes
sent and received. This gives us two cumulative
density estimates: one for the outliers, and one for the
non-outliers.

Next, for each outlier SIP we calculate its percentile
in both cumulative density estimates. That is, each
outlier SIP has a corresponding pl, which is the
probability that an outlier has volume less than or equal
to that of the given SIP, and p2, which is the
probability that a non-outlier has volume less than or
equal to that of the given SIP. The threat level is then
calculated by Equation (2),

Threat Level = min(1,max(0, pI — (1 —p2))). 2)

This threat level is motivated by using the SIPs not
labeled as outliers to determine if the outliers found are
false positives. If an outlier’s volume is low, it will be
closer to the distribution of non-outliers, making us
think that it is a false-positive. For example, suppose
an outlier SIP is a false-positive (non-attacker). Then,
the location of that SIP in the outlier cumulative
density estimate will be close to the body of the non-
outlier cumulative density estimate, making p/ low and
p2 high. This translates into a threat level close to
zero. Compare this to the case where we have an
outlier SIP that is an attacker. This SIP will have both
pl and p2 large, translating into a larger threat level.

With each outlier being assigned a threat level,
operators can be more measured in their “blocking”
during an attack. If an outlier with a low threat level is

S - .U/’. .« + =
Figure 3. Simulated attack detected

a known or acceptable SIP, then it may not need to be
blocked from the network. This decision would
require specific knowledge of the network and we
leave this decision to operators at this time. In our
analyses for this paper we always block all outliers
collected.

5. Results

We apply our attack detection and mitigation
methodology to a simulated DDoS attack as well as an
amplified reflective DDoS attack from 2014. The
simulated attack is discussed first, with focus on attack
detection. Ground truth from this event allows us to
use this application of our methodology as validation.
Following the synthetic event, we discuss the real-
world NTP attack with focus on attack mitigation.

5.1. Simulated Attack

Our system first initializes on a thirty-minute
window in which we are not under an attack. The
packet (top) and byte (bottom) count time series are
shown in Figure 2, with the line separating the yellow
region above indicating the thresholds for attack
detection, as calculated in this window. Note the
observation circled in teal — this is the largest value in
our window. At this point, there is a mean packet
count of 50 thousand and a mean byte count of 25
million. After initialization, the simulated attack was
started, so the next minute of data will include attack
traffic. When the new data is received by the system,
the aggregated packet and byte counts are compared to
the previous thresholds.  Figure 3 shows both
thresholds being exceeded (by the point circled in
pink), which indicates that our system is under attack
(also denoted by the red region above the yellow).
Notice that the point circled in teal is the same value
circled in Figure 2, showing the scale of this attack.
We now know the simulated attack has begun,
validating correct attack detection within its first
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minute. With this new minute of data, the average
packet count rises to 4.4 million, and the average byte
count rises to 6.25 billion.

Next, we seek to determine the attack port by
finding the port that had the largest relative increase in
the most recent minute. In this case, this is identified
to be port 80, which is the actual destination port being
targeted by the simulated attack.

Table 1 shows the outlier SIPs along with their
cluster center from application of K-means and threat
level. Note that all the attackers belong to the same
cluster with low proportion of successful contacts,
while the victim is alone in the cluster with a high
proportion.  This separation is due to the victim
appearing in the period of “usual” activity prior to the
attack. It was behaving in its usual way, reaching out
to other IPs on the network and receiving responses.
The attackers do not appear in this portion of the
dataset, only coming into play during the most recent
minute of the window. They only contact the victim,
and since they are performing a DDoS and sending
large volumes, they receive no responses.

We also see a separation between attackers and
victim in the form of the threat level. All attackers
have threat levels of at least 88%, which is appropriate
because we want a larger threat level to indicate
malicious SIPs. The victim has a threat level of about
5%, which accurately reflects the fact that it is a false-
positive (non-attacker outlier). We believe it is quite
useful that this technique captures the victim because it
likely removes a secondary step of further investigating
the attackers to determine their target.

When the next minute of data is gathered, we block
traffic from all twenty-one of these outliers. This
significantly reduces the volume seen on the network,
and returns packet and byte counts to below their

respective thresholds. This minute still involves attack
traffic, but we have mitigated all of it since we have
identified all malicious SIPs. The same is true for the
remaining minutes of the dataset — we stay below our
thresholds and mitigate the DDoS event. This analysis
focuses on an attack that only comes in one wave and
does not have enough “usual” traffic following the
simulated event to fully discuss when to stop blocking
the identified outliers from the network.

Table 1. Simulated DDoS attack - outlier summary

SIP Cluster Center Threat Level
10.1.7.133 0 0.9961
10.1.7.141 0 0.9903
10.1.7.89 0 0.9785
10.1.7.150 0 0.9779
10.1.7.136 0 0.967
10.1.7.20 0 0.967
10.1.7.37 0 0.9554
10.1.7.113 0 0.9533
10.1.7.53 0 0.9327
10.1.7.147 0 0.9286
10.1.7.23 0 0.9272
10.1.7.85 0 0.9259
10.1.7.127 0 0.9203
10.1.7.71 0 0.9189
10.1.7.134 0 0.9148
10.1.7.148 0 0.9134
10.1.7.81 0 0.9108
10.1.7.82 0 0.9033
10.1.7.58 0 0.8978
10.1.7.149 0 0.8801

129.82.138.136 0.94 0.0527
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5.2. NTP Attack

In applying our detection mechanism to the real-
world NTP amplified reflection DDoS attack, the
packet threshold is immediately exceeded in the first
minute of the first wave of the attack. As this dataset
consists only of NTP traffic, the step of determining
the “attack port” is unnecessary.

Recall our mitigation strategy: we “remember” the
SIPs we flag as outliers and block their activity until
aggregate traffic stays below our thresholds for one
hour. This attack includes six waves, each of which is
more than one hour after the end of the previous (as
shown in Figure 4). Because of the big gaps between
the waves, our analytics system treats these waves as
six different attacks, as we “forget” outlier SIPs from
previous waves. Since we now have the knowledge
that this is one attack, we aim to compare our current
strategy to one in which outliers are not forgotten and
their traffic continues to be blocked. For the purposes
of this discussion, we refer to the strategy of forgetting
outliers after one hour of usual activity as “Strategy
A”, and the alternative of never forgetting outliers as
“Strategy B”.

Figure 4 shows the time series (by minute) of
packet counts sent and received on the network for the
NTP DDoS event. The actual packet count series of
the event is shown in blue. The series shown in orange
is the remaining packet counts after mitigation Strategy
A has been applied, and the series shown in green is
after mitigation Strategy B has been applied; that is,
these are the packet counts that would have been seen
if our blocking rules had been in effect (actual packet
count minus outliers’ packet count).

First observe in Figure 4 that the series of packet
counts for both Strategy A and Strategy B are well
below that of the actual attack. This visually indicates
that our mitigation procedure is effective in reducing
the impact of the attack. Numerically, we can
investigate total packet counts across the entire attack
for all three series. In the actual attack, approximately
2.8-10° packets were sent and received across the
network on the NTP service. Applying Strategy A
brings the total packet count to approximately 6.4-108,
or 23% of the true attack (a 77% reduction in packets).
Applying Strategy B brings the total packet count to
approximately 2.4-10%, or 8.7% of the true attack (a
91.3% reduction in packets).

To more formally compare the packet counts of the
attack and our two mitigation strategies, we perform
paired t-tests for each of the three combinations [22].
That is, we test for significant differences between the
packet counts of the attack and Strategy A, the attack
and Strategy B, and both strategies. In all three of
these tests, a p-value of less than 2-10'® is reported,

indicating strong statistical evidence for a difference in
these time series. From the visual inspection of Figure
4, we certainly expected the reduced packet count
series to be different from the true attack, but we also
see a significant difference between Strategy A and B.
To further investigate their difference, we calculate the
Dynamic Time Warping (DTW) “distance” between
the two packet counts — a smaller distance implies a
greater similarity in the series [23]. The DTW
“distance” is calculated to be approximately 2.7-10%.
While this seems large, it is relatively small when
compared to the DTW “distance” between the true
attack and the two strategies: Strategy A is roughly
2.5-10° away from the full un-mitigated attack, and
Strategy B is at almost 3.5-10°. We expected Strategy
B to be further from the true attack because of the
larger packet reduction it achieved, but it is interesting
that we observe such a significant difference between
the resulting time series of Strategy A and B. Strategy
B clearly outperforms Strategy A. Further discussion
about these two strategies is included in Section 6.

This mitigation includes the steps of outlier
detection, clustering, and threat level assignment in our
analytics. Recall that, for this analysis, we
“remember” and block all outliers found in future
traffic. This makes the resulting clusters and threat
levels calculated throughout the NTP attack
independent of our mitigation. This does not always
need to be the case, as the system (or an operator)
could block traffic from only outliers with a threat
level above a specified threshold, outliers in certain
clusters, or a combination of the two. In any instance
of this, fewer outliers would be blocked than were
found, and the mitigation achieved would not be as
large as that from Strategy A or Strategy B. That is,
the mitigation we are comparing here is between
extremes — the true attack and blocking all outliers. As
such, we do not investigate the effect of blocking
subsets of outliers in this paper. For our analysis, the
clusters and threat levels were used to better
understand the types of behaviors that were apparent
during the attack. This is a benefit that was highlighted
in the smaller simulated attack of Section 5.1, and one
that an operator would be able to use as well.

6. Discussion

Our attack detection mechanism relies on the
sliding-window approximation of real-time streaming
data. Thirty-minutes is selected as the window size
because it is a near “worst-case” scenario in terms of
how much data we need for our statistical procedures to
be applicable. We want our FPCA results to be
accurate and stable, and we feel going below thirty
observations for each series would breach this. A larger
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window could be kept for attack detection, but this
would impact the thresholds in each iteration of the
window. This would also alter the set of outliers found
when an attack is detected, as we would have more
“usual” activity in the beginning of the time series.

In Section 5.1, we applied our attack detection
methodology to a simulated DDoS attack. Our
analytics detected the attack within its first minute of
activity, and accurately identified the twenty attackers
as well as the one victim. The clustering results and
threat level assignments clearly separated attackers
from victim. In the real-world attack of Section 5.2,
we cannot expect to see such a distinct stratification of
outliers because we do not have “ground truth”
knowledge of the attackers. We cannot check if they
have significantly larger threat levels or appear in
clusters distinct from the non-attackers. Further, we do
not know how many true attackers there are, so the
threat level procedure we implement might produce
“deflated” values for truly malicious SIPs.

To demonstrate this, consider the early phases of an
attack with many malicious IPs.  Imagine our
unsupervised FPCA outlier identification produces a
set of SIPs that is only a subset of the attackers
(because some have not had enough time to fully
behave like an attacker), so that some attackers are left
in the non-outlier set. In assigning threat levels, we
compare probabilities from outlier and non-outlier
cumulative density estimates, and having attackers
included in the non-outlier set makes the non-outlier
distribution closer to that of the outliers. In turn, the
approach think that outliers are more like ‘“usual
traffic”, producing a lower threat level. Note that we
attempt to reduce the impact of this issue by creating
non-outlier cumulative density estimates from a sample
of non-outliers, so it is possible that we will avoid
attackers that have not yet been flagged as outliers.
Even with this, we concede that it is possible for some
attackers to be treated as non-outliers — this is very
difficult to control for without ground truth knowledge
of the dataset.

We compared two mitigation strategies in Section
5.2 — Strategy A involved “forgetting” outliers and
resetting blocking rules when an attack subsides below
initial thresholds for an hour while Strategy B
mimicked a perfect memory and continual blocking.
Strategy A reduced total packet counts of the event to
23% of the original un-mitigated amount, and Strategy
B reduced it to 8.7%. Strategy B achieves greater
packet reduction, as it immediately blocks SIPs that
were flagged as outliers in previous waves. We
suggest Strategy B is most useful when a “botnet” is
being used for an attack, because the IPs are ‘“re-
engaging” after a pause. By building up this botnet
list, and completely blocking them, they cannot even

“restart” the attack. Further, this is why the reduced
packet counts are identical in the first wave shown in
Figure 4 (the green and orange series over plot) — there
are no previous outliers for Strategy B to block.

Note that mitigation achieved is not the only
difference between these Strategies. In all waves after
the first, Strategy A allows traffic through that was
previously being blocked, increasing the packet counts
relative to Strategy B, while also providing a different
set of SIPs for FPCA to use as input. As a result, this
also changes the threat level calculation, and
introduces a greater chance for having attackers in the
non-outlier set.

This may seem to indicate that a “perfect memory”
of outliers after an attack has been detected is superior,
but this does not account for the true nature of the real
world. During an actual DDoS attack, there is no way
to tell how many “waves” there will be and when they
will stop. Due to this, we initially recommend
“forgetting” the outliers and returning to a sliding
window (monitoring for the start of an attack) after one
hour. We allow for human operators to interact and
configure the system to implement Strategy B for a
while, and then to reset when ready.

We do not suggest that our methodology can be
used as a “set-and-forget” piece of software, but rather
a strong supplemental tool to an operator or operating
team. Consider our mechanism detecting the start of a
DDoS attack and informing humans. Outlier SIPs will
be blocked, mitigating the attack, while summary
information (clusters and threat levels) are provided to
operators every minute. They then have at least one
hour to investigate further and more accurately
determine the nature of the attack. For example,
suppose a “false alarm” is detected (large packet/byte
counts that do not truly represent an attack). If the
operator determines that this was a false alarm, they
can stop the blocking and not have to wait an hour the
system to return to attack monitoring. Alternatively,
should a true attack be detected, and operators think
there may be waves, the one-hour limit can be removed
so that larger and faster mitigation is achieved. In all,
we suggest the length of time it takes for the analytics
system goes from attack mitigation back to detection is
a tuning parameter that should be informed by specific
knowledge of the network/institution.

7. Conclusions

We have demonstrated an unsupervised, adaptive
technique for detecting and mitigating DDoS attacks
on both synthetic and real-world datasets. Dynamic
thresholding is shown to detect the attack, and the
FPCA+Kmeans approach mitigates the volume
significantly (by more than 90%). Such unsupervised
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approaches are best suited for detection and mitigation
of “unknown” attacks. We have investigated two
strategies for reducing packet and byte counts during
an attack and suggest operators with network-specific
knowledge can use both as appropriate. Assignment of
probabilistic threat levels to the outliers allows for
better understanding of the SIPs identified.
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