
Control Engineering Practice 101 (2020) 104482

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Ultra-local model predictive control: Amodel-free approach and its
application on automated vehicle trajectory tracking
Zejiang Wang, Junmin Wang ∗

Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, United States

A R T I C L E I N F O

Keywords:

Automated vehicle
Model-free control
Predictive control
Trajectory following
Ultra-local model

A B S T R A C T

Model predictive control (MPC) has been extensively utilized in the automotive applications, such as
autonomous vehicle path planning and control, hybrid-vehicle energy management, and advanced driver-
assistance system design. As a typical model-based control law, MPC relies on a system model to predict
the state evolution of the manipulated plant within the prediction horizon. However, a representative yet
concise mathematical description of the controlled plant may not always be available in practice. Therefore,
model-free strategies, e.g., identification for control and direct data-driven control, have been incorporated
into the predictive control framework. Nonetheless, existing model-free predictive controllers usually require
reliable datasets and employ complex nonconvex optimizations to identify the underlying system model.
Furthermore, their control performances are fundamentally limited by the quality of the training data. Inspired
by the model-free control, this paper proposes the ultra-local model predictive control (ULMPC), which is
a novel and straightforward model-free predictive control technique with no need for the computationally-
extensive model learning process. The proposed ULMPC is implemented for automated vehicle trajectory
following. Carsim-Simulink joint simulations and indoor experimental field tests with a scaled car demonstrate
its effectiveness.

1. Introduction

Model predictive control (MPC), as a modern control technique
capable of systematically handling plant constraints, has flourished in
autonomous vehicle path-planning and control (Brown, Funke, Erlien,
& Gerdes, 2017), energy management and optimization (Weißmann,
Görges, & Lin, 2018), and advanced driver-assistance system develop-
ment (Ercan, Carvalho, Tseng, Gökaşan, & Borrelli, 2018). The standard
procedure for formulating an MPC problem begins with a performance-
oriented cost function, which penalizes both the state tracking errors
and the amounts of the control inputs within the prediction horizon. To
this end, a reliable system model is necessary for predicting the plant
states in the near future. Therefore, the system model is the core of an
MPC (Huusom, Poulsen, Jørgensen, & Jørgensen, 2012; Ławryńczuk,
2009).

Unfortunately, an accurate yet concise mathematical model of the
manipulated plant may not always be accessible due to intellectual
property protection, safety issues, etc. Under such circumstances, the
system model needs to be identified first. Typical identified models for
predictive control include auto-regression with exogenous input (ARX)
model (Huusom et al., 2012), neural network (Ławryńczuk, 2009), and
Fuzzy-logic model (Dovžan & Škrjanc, 2010). However, an effective

∗ Corresponding author.
E-mail addresses: wangzejiang@utexas.edu (Z. Wang), jwang@austin.utexas.edu (J. Wang).

model identification requires sufficiently rich and representative histor-
ical data (Hu, Chen, Wang, Chen, & Ren, 2018) to meet the persistent
excitation requirement, and such an input–output dataset may not be
always available, especially when the controlled plant is recently built.
Besides, the model learning process may necessitate a great deal of
time. For instance, ARX models with different orders (Huusom et al.,
2012) and neural networks with various topologies (Piche, Sayyar-
Rodsari, Johnson, & Gerules, 2000) need to be tested and compared
to determine the most appropriate model structure. In addition, the
obtained model might be nonlinear and nonconvex, which hinders
the online implementation of MPC (Forbes, Patwardhan, Hamadah, &
Gopaluni, 2015). Furthermore, if the actual system states deviate far
from the referential trajectories contained in the training dataset, the
MPC performance will be inevitably deteriorated (Novara, Formentin,
Savaresi, & Milanese, 2016). To ease the laborious model identification
procedure, a direct data-driven MPC has been recently proposed in
Piga, Formentin, and Bemporad (2017). This approach has a hierar-
chical control structure: a low-level controller converts the unknown
plant into a predefined linear model, to which a high-level command
governor (Garone, Di Cairano, & Kolmanovsky, 2017) is applied. Like
the case of ARX-based MPC, the low-level controller in Piga et al.
(2017) is continuously trained online through periodically updated

https://doi.org/10.1016/j.conengprac.2020.104482
Received 11 November 2019; Received in revised form 18 March 2020; Accepted 26 May 2020
Available online 1 June 2020
0967-0661/© 2020 Elsevier Ltd. All rights reserved.

Z. Wang and J. Wang Control Engineering Practice 101 (2020) 104482

system input and output data. However, nonconvex optimizations,
e.g., particle swarm optimization (Selvi, Piga, & Bemporad, 2018) and
Bayesian optimization (Piga, Forgione, Formentin, & Bemporad, 2019)
are involved to determine the parameters of the low-level controller.

In short, the existing model-free predictive controllers rely on either
sufficient and high-quality training data or computationally extensive
nonconvex optimizations to identify the underlying system model,
which may impede their practical utilization. Moreover, the online
iterative optimization of MPC, which entails both a remarkable compu-
tational burden and a quite large memory footprint, indeed impedes its
real-time implementation. To alleviate the MPC computational burden,
several approaches have been proposed, such as the explicit MPC (Naus
et al., 2008), control-blocking method (Li, Jia, Li, & Cheng, 2014), and
interpolation control (Tuchner & Haddad, 2017), etc.

Inspired by the Model-Free Controller (MFC) (Fliess & Join, 2013),
we propose in this paper a novel control strategy: Ultra-local Model
Predictive Control (ULMPC). ULMPC represents the manipulated plant
as an affine system and applies predictive control to this continuously
updated linear model for reference tracking and constraint handling.
In contrast to the existing model-free predictive control approaches,
no training dataset is involved in ULMPC and only small-scale convex
optimization is required for control calculation. Additionally, ULMPC
improves MFC by reducing the steady-state tracking error. The pro-
posed ULMPC is applied to an automated vehicle trajectory following
problem. Carsim-Simulink joint simulations first manifest its effec-
tiveness and field tests with a scaled car further show its ease of
use.

The rest of the paper is organized as follows. Ultra-local model and
MFC are briefly reviewed in Section 2. Then, the algorithm of ULMPC
is summarized in Section 3. After that, an automated vehicle trajectory-
following problem is formulated in Section 4, where three controllers:
a model-based linear-time-varying predictive controller (LTVMPC), an
MFC, and the proposed ULMPC are elaborated and compared. Carsim-
Simulink joint simulations demonstrate the advantages of ULMPC.
Afterwards, the proposed ULMPC is validated on a scaled car platform
in Section 5 to show its implementability in real time. Finally, Section 6
concludes this paper.

2. Ultra-local Model and Model-Free Control

The ultra-local model and the model-free control are initially pro-
posed in Fliess and Join (2013).

2.1. Ultra-local Model

A single-input-single-out (SISO) system with input 𝑢 and output 𝑦
can be expressed as an affine form:

𝑦(𝜈) (𝜏) = 𝐹 (𝜏) + 𝛼𝑢 (𝜏) . (1)

In (1), 𝑦(𝜈) (𝜏) represents the 𝜈th order derivative of the system output
at time 𝜏. 𝑢 (𝜏) depicts the system input at time 𝜏. The constant input
gain 𝛼 is chosen to make the magnitude orders of 𝛼𝑢 (𝜏) and 𝑦(𝜈) (𝜏)
close. 𝐹 (𝜏) condenses both the unmodeled system dynamics and the
external disturbances. For control purposes, 𝐹 (𝜏) is regarded as a
piecewise constant and needs to be updated at each sampling moment.
To determine 𝐹 (𝜏), 𝑦(𝜈) (𝜏) needs to be reconstructed a priori. Directly
differentiating system output 𝑦 (𝜏) is ill-posed due to the measurement
noises. Instead, the arbitrary-order derivative of a noisy signal is de-
rived from the Algebraic Differentiation Estimation (ADE) (Fliess, Join,
& Sira-Ramirez, 2008). ADE approximates the actual signal 𝑦 (𝜏) as its
truncated Taylor expansion with order 𝑁 ≥ 𝜈. Then, the truncated
Taylor expansion is converted into the operational domain via the
Laplace transform. Therein, linear differential operators:
𝛱𝑁,𝜈
𝜅,𝜛 = 1

𝑠𝑁+𝜛+1
𝑑𝑛+𝜅

𝑑𝑠𝑛+𝜅
1
𝑠

𝑑𝑁−𝜈

𝑑𝑠𝑁−𝜈 𝑠
𝑁+1, 𝜅 ∈ N, 𝜛 ∈ N, where 𝑠 indicates

the Laplace variable, can be applied to isolate the coefficient of the 𝜈th
order term of the truncated Taylor expansion. Note that the iterative

integrals from 1
𝑠𝑁+𝜛+1 will serve as a low-pass filter to wipe out noises

in the time domain.
By assigning 𝑁 = 𝜈, 𝜅 = 0, 𝜛 = 0, the zero-, first-, and second-order

derivatives of a noisy signal 𝑦 (𝑡) can be expressed as sliding-window
integral formulations (Wang, Bai, Zha, Wang, & Wang, 2019):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑦̂ (𝑡) = 2
𝑇 2
𝐴𝐷𝐸

∫
𝑇𝐴𝐷𝐸

0

(
2𝑇𝐴𝐷𝐸 − 3𝜏

)
𝑦 (𝑡 − 𝜏) 𝑑𝜏,

̂̇𝑦 (𝑡) = 6
𝑇 3
𝐴𝐷𝐸

∫
𝑇𝐴𝐷𝐸

0

(
𝑇𝐴𝐷𝐸 − 2𝜏

)
𝑦 (𝑡 − 𝜏) 𝑑𝜏,

̂̈𝑦 (𝑡) = 60
𝑇 5
𝐴𝐷𝐸

∫
𝑇𝐴𝐷𝐸

0

(
𝑇 2
𝐴𝐷𝐸

− 6𝑇𝐴𝐷𝐸𝜏 + 6𝜏2
)
𝑦 (𝑡 − 𝜏) 𝑑𝜏.

(2)

In (2), 𝑇𝐴𝐷𝐸 is the width of the sliding window, in which the system
output measurements within the period

[
𝑡 − 𝑇𝐴𝐷𝐸, 𝑡

]
are registered.

Normally, 𝑇𝐴𝐷𝐸 is chosen as an integral multiple of the sampling period
𝑇𝑠, or 𝑇𝐴𝐷𝐸 = 𝐾𝑇𝑠,𝐾 ∈ N+. Tuning of 𝑇𝐴𝐷𝐸 should balance the
Taylor expansion truncation error and the noise contribution: as 𝑇𝐴𝐷𝐸
extends, the noise-filtering effect is reinforced whereas the accumulated
truncation error also increases.

A 𝑣th order (𝑣 > 1) differentiator can also be created by cascading
𝜈 first-order differentiators in (2). This cascading approach leads to
improved attenuation of the high-frequency noises (Mboup, Join, &
Fliess, 2009). Therefore, we utilize this strategy throughout this paper.

Once 𝑦̂(𝜈) (𝜏) is determined from ADE, the scalar term 𝐹 (𝜏) in (1)
can be approximated as:

𝐹 (𝜏) ≈ 𝐹 (𝜏) = 𝑦̂(𝜈) (𝜏) − 𝛼𝑢
(
𝜏 − 𝑇𝑠

)
, (3)

where 𝑢
(
𝜏 − 𝑇𝑠

)
indicates the system input at the last step. Conse-

quently, the practical ultra-local model at time 𝜏 becomes:

𝑦(𝜈) (𝜏) = 𝐹 (𝜏) + 𝛼𝑢 (𝜏) . (4)

2.2. Model-Free Control

To make the system output 𝑦 (𝜏) follow a given reference trajectory
𝑦𝑟 (𝜏), system input 𝑢 (𝜏) in (4) can be straightforwardly designed as:

𝑢 (𝜏) =
−𝐹 (𝜏) + 𝑦(𝜈)𝑟 (𝜏) +𝛺

(
𝑦 (𝜏) − 𝑦𝑟 (𝜏)

)
𝛼

. (5)

In (5), the tracking error term 𝛺
(
𝑦 (𝜏) − 𝑦𝑟 (𝜏)

)
is typically chosen as

the canonical Brunovsky’s feedback to converge 𝑦 (𝜏) towards 𝑦𝑟 (𝜏).
However, derivative estimation from (2) suffers from a tiny time de-
lay due to its sliding window nature, which in turn introduces an
inevitable modeling error in (4). As a result, only practical stability
instead of asymptotical stability can be achieved with (5). Alternatively
speaking, MFC can merely guarantee that the absolute tracking error||𝑦 (𝜏) − 𝑦𝑟 (𝜏)|| rests inside a bounded ball around the origin Wang,
Mounier, Niculescu, Geamanu, and Cela (2016) with persisting steady-
state error. Typical strategies to resolve this issue include adaptive tun-
ing of the input gain 𝛼 (Polack, d’Andréa-Novel, Fliess, de La Fortelle,
& Menhour, 2017) and combination of MFC with model-based control.
For instance, authors in Wang, Ye, Tian, Zheng, and Christov (2016)
incorporate a sliding-mode controller with MFC for eliminating the
terminal attitude tracking error of a quadrotor.

3. Ultra-local Model Predictive Control

Following the idea of hybridizing MFC with a model-based con-
troller, we propose ULMPC by implementing MPC on the ultra-local
model (4). As will be shown, ULMPC enjoys the mutual benefits from
both MFC and MPC. Firstly, ULMPC inherits the excellent robustness to
system uncertainties and disturbances from MFC. Secondly, expressing
the manipulated plant as an ultra-local model results in a simplified
MPC formulation with a much reduced problem scale. Thirdly, the MPC
framework can reduce the steady-state tracking error in MFC.

2

Z. Wang and J. Wang Control Engineering Practice 101 (2020) 104482

Table 1

Ultra-local MPC.

Algorithm: Ultra-local Model Predictive Control

At step k do:
Step 1: Calculate 𝒚̂(𝜈) (𝒌) from (2)

Step 2: Estimate 𝑭̂ (𝒌) = 𝒚̂(𝜈) (𝒌) − 𝛼𝒖 𝒌−1|𝒌 from (3)

Step 3: Obtain the linear ultra-local model as (4):
𝒚(𝒗) (𝒌) = 𝑭̂ (𝒌) + 𝛼𝒖 𝒌|𝒌

Step 4: Solve a constrained optimization problem:
𝛥𝒖∗

𝒌|𝒌 = argmin 𝑱 (𝒌)
such that

𝒚
(𝜈)
𝒌+𝒊+1|𝒌 = 𝑭̂ (𝒌) + 𝛼

(
𝒖𝒌−1|𝒌 +∑𝒊

0 𝛥𝒖
∗
𝒌+𝒊|𝒌

)
, 𝒊 = 0,… ,𝑯𝒑

𝒖𝒌+𝒊|𝒌 ≤ 𝒖 (𝒌)max , 𝒖𝒌+𝒊|𝒌 ≥ 𝒖 (𝒌)min , 𝒊 = 0,… ,𝑯𝒑 + 1
𝛥𝒖𝒌+𝒊|𝒌 ≤ 𝛥𝒖 (𝒌)max , 𝛥𝒖𝒌+𝒊|𝒌 ≥ 𝛥𝒖 (𝒌)min , 𝒊 = 0,… ,𝑯𝒑

𝛥𝒖𝒌+𝒊|𝒌 = 0, 𝒊 = 𝑯𝒄 ,…𝑯𝒑

𝒚𝒌+𝒊|𝒌 ≤ 𝒚 (𝒌)max , 𝒚𝒌+𝒊|𝒌 ≥ 𝒚 (𝒌)min , 𝒊 = 1,… ,𝑯𝒑 + 1

Step 5: Update 𝒖∗
𝒌|𝒌 = 𝛥𝒖∗

𝒌|𝒌 + 𝒖𝒌−1|𝒌

Similar to the direct data-driven MPC in Piga et al. (2017), the
proposed ULMPC also continuously updates the system model at each
sampling step. However, thanks to the ADE, the complicated model-
learning process is thoroughly removed, which not only relieves the
requirement of sufficiently representative system input–output histori-
cal data but also ensures that the training process will not affect the
control performance of ULMPC. In addition, instead of employing a
hierarchical control structure, ULMPC straightforwardly generates the
optimal command.

The algorithm of ULMPC is summarized in Table 1. We assume
the sampling period between the step k and 𝐤 + 𝟏 is 𝑇𝑠. Concrete
examples will be given in Section 4 to further illustrate the formulation
of ULMPC.

In Table 1, 𝒖 𝒌−1|𝒌 represents the system command at the last step.
𝛥𝒖∗

𝒌|𝒌 and 𝒖∗
𝒌|𝒌 are respectively the optimal command increment and

the optimal command at the current step. The cost function 𝑱 (𝒌) is
problem-dependent but in general balances output tracking errors and
drastic command fluctuations. The optimized variable corresponds to
the command incremental sequence: 𝛥𝒖 𝒌+𝒊|𝒌 ≜ 𝒖 𝒌+𝒊|𝒌 − 𝒖 𝒌+𝒊−1|𝒌, 𝒊 =
0,… ,𝑯𝒑. Here, 𝒖 𝒌+𝒊|𝒌 indicates the future system input at step 𝒌 + 𝒊

predicted at the current step 𝒌, and 𝑯𝒑 is the prediction horizon. Com-
mand incremental instead of command itself is chosen as the optimized
variable in order to include integral action into ULMPC for offset-free
tracking (Di Ruscio, 2013). To further mitigate the MPC computational
load, we enforce 𝛥𝒖 𝒌+𝒊|𝒌 = 0, 𝒊 = 𝑯𝒄 ,…𝑯𝒑 where 𝑯𝒄 is the control
horizon. System constraints can cover input magnitude thresholds:
𝒖 (𝒌)max , 𝒖 (𝒌)min, input rate-of-change limits: 𝛥𝒖 (𝒌)max , 𝛥𝒖 (𝒌)min, and
system output bounds: 𝒚 (𝒌)max , 𝒚 (𝒌)min.The cost function 𝑱 (𝒌) has
in general the form 𝑱 (𝒌) =∑𝑯𝒑

𝒊=1
‖‖‖𝒙𝒌+𝒊|𝒌 − 𝒙𝒓

𝒌+𝒊|𝒌‖‖‖2𝑸 + ∑𝑯𝒄−1
𝒊=0

‖‖‖𝒖 𝒌+𝒊|𝒌‖‖‖2𝑹,
where 𝒙𝒓

𝒌+𝒊|𝒌 is the desired system output at the future step 𝒌 + 𝒊, and
𝑄,𝑅 are the weighting matrices with appropriate dimensions. There-
fore, 𝑱 (𝒌) can be readily converted into a convex function with respect
to the optimized variable 𝛥𝒖 𝒌+𝒊|𝒌, 𝒊 = 0,… ,𝑯𝒑 (Wang, Bai, Wang, &
Wang, 2019), and ULMPC can be then efficiently solved online with a
standard quadratic programming (QP) solver.

4. Problem formulation and simulation study

In this Section, the proposed ULMPC is tested under an automated
vehicle trajectory following task. To demonstrate the superior perfor-
mance of ULMPC, an MFC along with a model-based LTVMPC are also
provided for comparison. All the simulations are performed on the
Carsim-Simulink joint platform.

4.1. Problem formulation

An automated vehicle needs to simultaneously follow an oval path
and a velocity profile. System inputs include the steering wheel angle

Table 2

Vehicle configuration.

Item Value and unit

Longitudinal tire stiffness 66 900 N
Lateral tire stiffness 62 700 N/rad
Distance between CG and front axle 1.232 m
Distance between CG and rear axle 1.468 m
Height of CG 0.54 m
Vehicle total mass 1723 Kg
Track length 1.539 m
Yaw inertia 1960 kgm2

Wheel radius 0.31 m

𝛿𝑠𝑤 (𝑡) and the combined rear-wheel torque 𝑇𝑟 (𝑡). Measured outputs
are the minimum distance from vehicle’s center of gravity (CG) to the
desired path centerline 𝑒𝑦 (𝑡) and vehicle longitudinal speed 𝑣 (𝑡).

During the simulations, both the tire-road friction coefficient (TRFC)
𝜇 and the steering ratio 𝑁𝑠 = 𝛿𝑓 (𝑡) ∕𝛿𝑠𝑤 (𝑡), where 𝛿𝑓 (𝑡) represents the
front road wheel angle, are designed as functions of the path station 𝑠,
which is the arc length along the desired path centerline.𝑁𝑠 is fixed at
its nominal value 𝑁𝑜

𝑠 = 1∕15.176 at the beginning. Then, it decreases
to 75%𝑁𝑜

𝑠 when 𝑠 > 278.5 m and further decreases to 66%𝑁𝑜
𝑠 when

𝑠 > 1093 m. This process mimics a front steering system operating under
system faults. As for the TRFC, it is assigned with a nominal value
𝜇𝑜 = 0.9 at the start. Then, TRFC suddenly reduces to 𝜇 = 0.6 when
𝑠 > 814 m. Finally, to create a split friction road, the TRFC of the left
side of the track turns back to 𝜇 = 0.9 when 𝑠 > 1350 m.

Vehicle configurations in Carsim are summarized in Table 2. Nonlin-
ear coupled brush tire model from Wang, Bai, Wang, and Wang (2019)
is used for tire force generation.

Note that neither the MFC nor the ULMPC requires access to the
vehicle configurations, TRFC, or the steering ratio. On the contrary, the
LTVMPC enjoys the full datasheet in Table 2, and LTVMPC utilizes the
nominal TRFC and steering ratio during simulations.

4.2. System modeling

According to Menhour, d’Andréa-Novel, Fliess, Gruyer, and Mounier
(2017), the ultra-local models of vehicle longitudinal and lateral dy-
namics can be expressed as:{
𝑣̇ (𝑡) = 𝑓𝑣 (𝑡) + 𝛼𝑣𝑇𝑟 (𝑡) ,
𝑒𝑦 (𝑡) = 𝑓𝑦 (𝑡) + 𝛼𝑦𝛿𝑠𝑤 (𝑡) .

(6)

Although (6) implies that the longitudinal and lateral dynamics have
decoupled forms, the inherent tire force coupling effect is indeed
maintained in the scalar terms 𝑓𝑣 (𝑡) and 𝑓𝑦 (𝑡). For both the MFC and
the ULMPC, the constant input gains 𝛼𝑣, 𝛼𝑦 are tuned offline through a
brutal-force approach. A wide range of 𝛼𝑣, 𝛼𝑦 were tested offline, where
the tested 𝛼𝑣 begun from 0.1 and ended at 2.0 with an increment as 0.1,
and the tested 𝛼𝑦 begun from 18 and ended at 360, with an increment as
18. The finally tuned ultra-local model gains 𝛼𝑣 = 0.18, 𝛼𝑦 = 342 ensure
that MFC’s Pareto front with respect to the path-tracking error and
the speed-tracking error has been reached. In other words, the utilized
gains make sure that no simultaneous improvements on both root mean
square values: 𝑅𝑀𝑆

(
𝑒𝑦
)
and 𝑅𝑀𝑆

(
𝑣 − 𝑣𝑟

)
of MFC can be further

realized. In that sense, the tuned gains somehow make theMFC achieve
an optimal performance. However, as we will see in Section 4.6, the
(non-optimally tuned) ULMPC can still evidently outperform the MFC.

4.3. Model-Free Control design

From (6), the combined rear-wheel torque 𝑇𝑟 (𝑡) can be designed as:

𝑇𝑟 (𝑡) =
−𝑓𝑣 (𝑡) + 𝑣̇𝑟 (𝑡) + 𝜂𝑇

(
𝑣 (𝑡) − 𝑣𝑟 (𝑡)

)
𝛼𝑣

, (7)

3

Z. Wang and J. Wang Control Engineering Practice 101 (2020) 104482

where 𝑣𝑟 (𝑡) represents the desired speed and 𝜂𝑇 < 0 is the feedback
gain. According to (3), we have:

𝑓𝑣 (𝑡) = ̂̇𝑣 (𝑡) − 𝛼𝑣𝑇𝑟
(
𝑡 − 𝑇𝑠

)
, (8)

with ̂̇𝑣 (𝑡) deduced from (2) and 𝑇𝑟
(
𝑡 − 𝑇𝑠

)
as the torque command at the

last step. Considering the rear-wheel torque constraint, the actual 𝑇𝑟 (𝑡)
must lay within its upper- and lower-bounds: 𝑇 𝑑𝑜𝑤𝑛𝑟 (𝑡) ≤ 𝑇𝑟 (𝑡) ≤ 𝑇 𝑢𝑝𝑟 (𝑡),
with:{

𝑇
𝑢𝑝
𝑟 (𝑡) = min

(
𝑇max
𝑟 , 𝑇𝑟

(
𝑡 − 𝑇𝑠

)
+ 𝛥𝑇max

𝑟

)
,

𝑇 𝑑𝑜𝑤𝑛𝑟 (𝑡) = max
(
𝑇min
𝑟 , 𝑇𝑟

(
𝑡 − 𝑇𝑠

)
− 𝛥𝑇max

𝑟

)
.

(9)

In (9), 𝑇max
𝑟 and 𝑇min

𝑟 indicate respectively the maximum and the
minimum torque outputs and 𝛥𝑇max

𝑟 represents the maximal torque
increment, which can be expressed as:

𝛥𝑇max
𝑟 = 𝑇̇max

𝑟 𝑇𝑠, (10)

where 𝑇̇max
𝑟 indicates the maximal rear-wheel torque slew rate.

Similar to (7), the steering wheel angle 𝛿𝑠𝑤 (𝑡) can be deduced as:

𝛿𝑠𝑤 (𝑡) =
−𝑓𝑦 (𝑡) + 𝜂1𝑠𝑤𝑒̇𝑦 (𝑡) + 𝜂

0
𝑠𝑤𝑒𝑦 (𝑡)

𝛼𝑦
, (11)

where 𝑓𝑦 (𝑡) can be calculated as:

𝑓𝑦 (𝑡) = ̂̈𝑒𝑦 (𝑡) − 𝛼𝑦𝛿𝑠𝑤
(
𝑡 − 𝑇𝑠

)
. (12)

In (12), 𝛿𝑠𝑤
(
𝑡 − 𝑇𝑠

)
indicates the steering wheel at the last step. ̂̈𝑒𝑦 (𝑡)

is determined by successively applying twice the first-order ADE dif-
ferentiators in (2) to the measured output 𝑒𝑦 (𝑡). The position tracking
error gains 𝜂1𝑠𝑤 and 𝜂

0
𝑠𝑤 are selected such that the error dynamics matrix:[

0 1
𝜂0𝑠𝑤 𝜂1𝑠𝑤

]
is Hurwitz.

Akin to (9), the upper- and lower-bounds of 𝛿𝑠𝑤 (𝑡) are determined
as:{

𝛿
𝑢𝑝
𝑠𝑤 (𝑡) = min

(
𝛿max
𝑠𝑤 , 𝛿𝑠𝑤

(
𝑡 − 𝑇𝑠

)
+ 𝛥𝛿max

𝑠𝑤

)
,

𝛿𝑑𝑜𝑤𝑛𝑠𝑤 (𝑡) = max
(
𝛿min
𝑠𝑤 , 𝛿𝑠𝑤

(
𝑡 − 𝑇𝑠

)
− 𝛥𝛿max

𝑠𝑤

)
.

(13)

In (13), 𝛿max
𝑠𝑤 and 𝛿min

𝑠𝑤 indicate respectively the maximal and the min-
imal steering wheel angle, and 𝛥𝛿max

𝑠𝑤 is the maximal steering wheel
increment:

𝛥𝛿max
𝑠𝑤 = 𝛿̇max

𝑠𝑤 𝑇𝑠, (14)

where 𝛿̇max
𝑠𝑤 is the maximal steering wheel angular velocity.

4.4. Ultra-local Model Predictive Control design

By substituting (8) into (6), the ultra-local model of vehicle longi-
tudinal dynamics at step k can be expressed as:

𝑣̇ (𝑘) ≈ 𝑓𝑣 (𝑘) + 𝛼𝑣
(
𝑇𝑟 (𝑘 − 1) + 𝛥𝑇𝑟 (𝑘)

)
= ̂̇𝑣 (𝑘) − 𝛼𝑣𝑇𝑟 (𝑘 − 1) + 𝛼𝑣

(
𝑇𝑟 (𝑘 − 1) + 𝛥𝑇𝑟 (𝑘)

)
= ̂̇𝑣 (𝑘) + 𝛼𝑣𝛥𝑇𝑟 (𝑘) .

(15)

In (15), the unique system input is 𝑢𝑣 (𝑘) = 𝛥𝑇𝑟 (𝑘) and the sole system
state and output is 𝑥𝑣 (𝑘) = 𝑣 (𝑘).

Discretizing (15) with the sampling period 𝑇𝑠 gives us:

𝑥𝑣
𝑘+1|𝑘 = 𝑥𝑣𝑘|𝑘 + 𝛼𝑣𝑇𝑠𝑢𝑣𝑘|𝑘 + 𝑇𝑠̂̇𝑣 (𝑘) . (16)

In (16), 𝑥𝑣
𝑘|𝑘 indicates the currently measured vehicle longitudinal

speed. 𝑥𝑣
𝑘+1|𝑘 is the one-step predicted speed. ̂̇𝑣 (𝑘) represents the es-

timated first-order derivative of vehicle longitudinal speed from ADE,
and 𝑢𝑣

𝑘|𝑘 is the system input (torque increment) at the current step.
Based on (16), the cost function for vehicle longitudinal control can
be formulated as:

𝐽𝑣 =
𝐻𝑝∑
𝑖=1

‖‖‖𝑥𝑣𝑘+𝑖|𝑘 − 𝑥𝑣𝑟𝑘+𝑖|𝑘‖‖‖2𝑄𝑣 +
𝐻𝑐−1∑
𝑖=0

‖‖‖𝑢𝑣𝑘+𝑖|𝑘‖‖‖2𝑅𝑣 . (17)

As illustrated in Table 1, 𝐻𝑝 and 𝐻𝑐 represent individually the
prediction horizon and the control horizon. Additionally, 𝑥𝑣𝑟

𝑘+𝑖|𝑘, 𝑖 =
1,… ,𝐻𝑝 indicates the desired velocity profile within the prediction
horizon. In (17), the first item aims to minimize the velocity tracking
error while the second term penalizes the drastic torque variation.

In conformity with Table 1, the system constraints for speed control
are summarized as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑥𝑣
𝑘+𝑖+1|𝑘 = 𝑥𝑣𝑘+𝑖|𝑘 + 𝑇𝑠̂̇𝑣 (𝑘) + 𝛼𝑣𝑇𝑠𝑢𝑣𝑘+𝑖|𝑘, 𝑖 = 0…𝐻𝑝,

−𝛥𝑇max
𝑟 ≤ 𝑢𝑣

𝑘+𝑖|𝑘 ≤ 𝛥𝑇max
𝑟 , 𝑖 = 0…𝐻𝑐 − 1,

𝑢𝑣
𝑘+𝑖|𝑘 = 0, 𝑖 = 𝐻𝑐…𝐻𝑝,

𝑇min
𝑟 ≤ 𝑇𝑟 (𝑘 − 1) +

𝑖+∑
𝑖=0
𝑢𝑣
𝑘+𝑖|𝑘 ≤ 𝑇max

𝑟 , 𝑖+ = 0,

⋮

𝑇min
𝑟 ≤ 𝑇𝑟 (𝑘 − 1) +

𝑖+∑
𝑖=0
𝑢𝑣
𝑘+𝑖|𝑘 ≤ 𝑇max

𝑟 , 𝑖+ = 𝐻𝑐 − 1.

(18)

In (18), 𝑥𝑣
𝑘+𝑖|𝑘, 𝑖 = 1…𝐻𝑝 + 1 are the multiple-step previewed

vehicle longitudinal velocities. 𝑢𝑣
𝑘+𝑖|𝑘, 𝑖 = 0…𝐻𝑝 indicate the system

inputs (torque increments) within the prediction horizon. 𝑇𝑟 (𝑘 − 1) is
the rear-wheel torque at the last step.

By minimizing (17) under the constraints in (18), we can obtain
the optimal torque increment sequence within the prediction horizon:
𝑢𝑣∗
𝑘+𝑖|𝑘, 𝑖 = 0…𝐻𝑝. The first element of this sequence is chosen as
the optimal torque increment at the current step. Thus, the optimal
rear-wheel torque at step k can be calculated as:

𝑇 ∗
𝑟 (𝑘) = 𝑇𝑟 (𝑘 − 1) + 𝑢𝑣∗

𝑘|𝑘, (19)

which is then equally allocated to the right and left side of the rear
axle.

Likewise, by substituting (12) into (6), the ultra-local model of
vehicle lateral dynamics at step k becomes:

𝑒𝑦 (𝑘) ≈ 𝑓𝑦 (𝑘) + 𝛼𝑦𝛿𝑠𝑤 (𝑘)
= ̂̈𝑒𝑦 (𝑘) − 𝛼𝑦𝛿𝑠𝑤 (𝑘 − 1) + 𝛼𝑦

(
𝛿𝑠𝑤 (𝑘 − 1) + 𝛥𝛿𝑠𝑤 (𝑘)

)
= ̂̈𝑒𝑦 (𝑘) + 𝛼𝑦𝛥𝛿𝑠𝑤 (𝑘) .

(20)

We assign 𝑥𝑒 (𝑘) =
[
𝑒𝑦 (𝑘) , 𝑒̇𝑦 (𝑘)

]𝑇
, 𝑢𝑒 (𝑘) = 𝛥𝛿𝑠𝑤 (𝑘) as the lateral

dynamics states and input.
By discretizing (20) with the sampling period 𝑇𝑠, we have:[

𝑒𝑦 (𝑘 + 1)
𝑒̇𝑦 (𝑘 + 1)

]
=
[
1 𝑇𝑠
0 1

] [
𝑒𝑦 (𝑘)
𝑒̇𝑦 (𝑘)

]
+
[

0
𝛼𝑇𝑠

]
𝛥𝛿𝑠𝑤 (𝑘) +

[
0

̂̈𝑒𝑦 (𝑘) 𝑇𝑠

]
, (21)

which can be expressed in short as:

𝑥𝑒
𝑘+1|𝑘 = 𝐴𝑥𝑒𝑘|𝑘 + 𝐵𝑢𝑒𝑘|𝑘 + 𝑑 (𝑘) , (22)

where 𝑥𝑒
𝑘|𝑘 corresponds to the currently measured lateral dynamic

states. From (22), the cost function for the vehicle lateral dynamics
control can be designed as:

𝐽𝑒 =
𝐻𝑝∑
𝑖=1

‖‖‖𝑥𝑒𝑘+𝑖|𝑘‖‖‖2𝑄𝑒 +
𝐻𝑐−1∑
𝑖=0

‖‖‖𝑢𝑒𝑘+𝑖|𝑘‖‖‖2𝑅𝑒 . (23)

Similar to (17), cost function (23) balances the vehicle position tracking
error and the steering wheel fluctuation within the prediction horizon.
System constraints for the steering wheel are summarized as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑥𝑒
𝑘+𝑖+1|𝑘 = 𝐴𝑥𝑒𝑘+𝑖|𝑘 + 𝐵𝑢𝑒𝑘+𝑖|𝑘 + 𝑑 (𝑘) , 𝑖 = 0…𝐻𝑝,

−𝛥𝛿max
𝑠𝑤 ≤ 𝑢𝑒

𝑘+𝑖|𝑘 ≤ 𝛥𝛿max
𝑠𝑤 , 𝑖 = 0…𝐻𝑐 − 1,

𝑢𝑒
𝑘+𝑖|𝑘 = 0, 𝑖 = 𝐻𝑐…𝐻𝑝,

𝛿min
𝑠𝑤 ≤ 𝛿𝑠𝑤 (𝑘 − 1) +

𝑖+∑
𝑖=0
𝑢𝑒
𝑘+𝑖|𝑘 ≤ 𝛿max

𝑠𝑤 , 𝑖+ = 0,

⋮

𝛿min
𝑠𝑤 ≤ 𝛿𝑠𝑤 (𝑘 − 1) +

𝑖+∑
𝑖=0
𝑢𝑒
𝑘+𝑖|𝑘 ≤ 𝛿max

𝑠𝑤 , 𝑖+ = 𝐻𝑐 − 1.

(24)

4

Z. Wang and J. Wang Control Engineering Practice 101 (2020) 104482

Fig. 1. Algebraic differentiation estimation.

Table 3

MPC problem size comparison.

ULMPC (Speed) ULMPC (Steering) LTVMPC

Non-zero KKT matrix 271 585 3277
MEX file size (KB) 234 392 3025

In (24), 𝑥𝑒
𝑘+𝑖|𝑘, 𝑖 = 1…𝐻𝑝+1 are the multiple-step previewed lateral

dynamics states. 𝑢𝑒
𝑘+𝑖|𝑘, 𝑖 = 0…𝐻𝑝 represent the system inputs (steering

wheel increments) within the prediction horizon. 𝛿𝑠𝑤 (𝑘 − 1) is the steer-
ing wheel angle at the last step. Minimizing (23) under the constraints
in (24) gives us the optimal steering wheel increment sequence within
the prediction horizon: 𝑢𝑒∗

𝑘+𝑖|𝑘, 𝑖 = 0…𝐻𝑝. The first element of this
sequence is chosen as the optimal steering wheel increment at the
current step. In other words, the optimal steering wheel angle at step
k can be calculated as:

𝛿∗𝑠𝑤 (𝑘) = 𝛿𝑠𝑤 (𝑘 − 1) + 𝑢𝑒∗
𝑘|𝑘. (25)

Stability proof of ULMPC is out of the scope of this paper and
interested reader is referred to Chen (2010), which illustrates the
stability condition of a finite-horizon linear MPC without terminal cost.

4.5. Linear time-varying model predictive control design

The model-based LTVMPC comes fromWang, Zha, and Wang (2019).
To be coherent with MFC and ULMPC, the number of actuators is
reduced from eight to four by disabling the active rear-wheel steering
and the front-wheel independent torques.

4.6. CarSim-Simulink simulation results

All three controllers: MFC, ULMPC, and LTVMPC have the same
sampling period 𝑇𝑠 = 0.01 s. CVXGEN (Mattingley & Boyd, 2012) is
employed for MPC formulations and code generations. One advantage
of ULMPC is immediately identified during code generation: grounded
on the ultra-local model, the ULMPC has a relatively small problem di-
mension. For instance, the ultra-local longitudinal dynamics in (18) has
merely one state and one input while the ultra-local lateral dynamics
in (24) has only two states and one input. Instead, the model-based
LTVMPC in Wang, Zha, and Wang (2019) has five states and three
inputs. By assigning 𝐻𝑝 = 20, and 𝐻𝑐 = 1, the number of non-zero
KKT matrix entries of the generated codes and the size of the compiled
MEX files are summarized in Table 3.

Therefore, the total size of two ULMPCs’ MEX files remains less
than 21% of the size of LTVMPC’s MEX file. As current commercial
Electronic Control Unit (ECU) has a quite limited memory for code and
data storage, the small problem scale of ULMPC can definitely facilitate
its online implementation.

During simulations, white noises are deliberately added on the ultra-
local model outputs: 𝑒𝑦 (𝑡) and 𝑣 (𝑡) in (6). The first-order ADE in (2)
is utilized for reconstructing 𝑣̇ (𝑡), 𝑒̇𝑦 (𝑡), and 𝑒𝑦 (𝑡). By respectively as-
signing the sliding window size as TADE = 0.05s, 0.04s, 0.03s, (𝐾 = 5, 4, 3)
for the first-order derivative on 𝑣, the first-order derivative on 𝑒𝑦, and
the first-order derivative on ̂̇𝑒𝑦(cascading), the algebraic differentiation
estimation results are obtained and demonstrated in Fig. 1.

In Fig. 1, the red dashed lines indicate the estimated results and the
blue solid lines represent the ground truth by directly differentiating
the noisy signals. The actual second-order derivative of 𝑒 is indeed
totally covered by the high-frequency noise, hence the middle plot
in Fig. 1 is generated after removing the white noise. From Fig. 1,
we can conclude that ADE can successfully reconstruct the derivatives
of signals from noisy measurements. However, estimation delays do
exist and the higher-order estimation suffers further from the Taylor
expansion truncation error. In practice, such a delay can be reduced by
enhancing the sampling frequency 1∕𝑇𝑠 (Mboup et al., 2009).

Before exhibiting the control performance of ULMPC, the discretized
ultra-local models in (16) and (21) are validated via one-step prediction
verification and the validation results are revealed in Fig. 2.

In Fig. 2, the red dashed lines represent the predicted states of
the ultra-local models at step 𝑘 + 1 on the basis of the measured
states and inputs at step k. The blue lines express the actual states at
step 𝑘 + 1 from Carsim. The normalized maximum estimation errors:
max

(
𝑥𝑘+1 − 𝑥̂𝑘+1

)
∕max

(
𝑥𝑘+1

)
, 𝑥 ∈ {𝑣, 𝑒, 𝑒̇} are 0.31%, 0.13%, and

3.97% for respectively 𝑣, 𝑒, and 𝑒̇. Therefore, the ultra-local model can
sufficiently approximate the dynamics of the vehicle.

We first show the global path-tracking results in Fig. 3. The auto-
mated car starts from the origin and follows the oval track counter-
clockwise. The MFC is tuned with 𝜂𝑇 = −0.001 in (7) and 𝜂0𝑠𝑤 = 𝜂1𝑠𝑤 = −4
in (11) and the ULMPC weighting factors in (17) and (23) are tuned

with 𝑅𝑣 = 1, 𝑄𝑣 = 25 000, 𝑅𝑒 = 1, and 𝑄𝑒 =
[
0.1 0
0 0.03

]
.

Fig. 3 indicates that all three controllers can effectively make the
automated car follow the given track even under front steering fault
and varying road conditions, as described in Section 4.1. However, the
enlarged plots exhibit that ULMPC achieves the most accurate tracking
trajectory. This fact is further revealed in Fig. 4, where the path-
tracking error 𝑒𝑦 (𝑡) is depicted. Interestingly, MFC gives us a globally
negative tracking error whereas the other two controllers lead to a
globally positive tracking error. We believe controller-tuning plays an
important role in this phenomenon and we will study it in the future.
In addition, the RMS of the tracking errors are summarized in Table 4.

As indicated in Fig. 4, the LTVMPC produces a higher tracking error
under more challenging road conditions. For instance, LTVMPC results
in the highest tracking error max

(
𝑒𝑦
)
= 0.38 m when the automated

car runs on the split-𝜇 road. On the contrary, the model-free nature of
ULMPC and MFC ensures that they are insensitive to the modeling error
from the changing TRFC. Actually, the road condition variation can be

5

Z. Wang and J. Wang Control Engineering Practice 101 (2020) 104482

Fig. 2. Ultra-local model validation.

Fig. 3. Global path tracking comparison.

Fig. 4. Path tracking error comparison.

immediately identified in the scalar terms 𝑓𝑣 (𝑡) , 𝑓𝑦 (𝑡) in (8) and (12),
which are then either directly compensated in MFC via (7) and (11)

or employed to update the ultra-local models of ULMPC in (16) and

(21). However, MFC leads to a steady-state tracking error (red line in

Fig. 4) due to the estimation delay of ADE. In contrast, by combining

MFC with MPC, the ULMPC inherits the excellent robustness from the
ultra-local model while eliminating the steady-state tracking error.

The environment adaption ability of ULMPC is also reflected in the
steering wheel angle variation in Fig. 5.

We can firstly conclude that the constraints on the steering wheel
angle and angular velocity are well observed. For MFC, input thresholds

6

Z. Wang and J. Wang Control Engineering Practice 101 (2020) 104482

Fig. 5. Steering wheel angle.

Table 4

Root mean square values of path tracking error.

MFC ULMPC LTVMPC

RMS(𝑒𝑦) (m) 0.0864 0.0194 0.0834

Table 5

Root mean square values of velocity tracking error.

MFC ULMPC LTVMPC

RMS(𝑣 − 𝑣𝑟) (m/s) 0.1375 0.1350 0.2808

are directly imposed in (13) whereas for both LTVMPC and ULMPC,
constrained optimization is executed online for satisfying these re-
strictions. Then, all three controllers adaptively increase the steering
angle when the steering ratio suddenly decreases at 𝑠 = 278.5 m.
The adaptability of LTVMPC comes from the inherent robustness of
predictive control (Bemporad & Morari, 1999). In regards to MFC, the
model-free nature grants it robustness to steering system fault. ULMPC,
which enjoys both the predictive control architecture and the model-
free property, should be more capable at fault-tolerance. This point
will be further investigated in the future. Finally, as indicated in the
enlarged inset near the bottom right corner of the upper plot, the
steering angle from ULMPC temporarily decreases around 𝑠 = 1350 m.
At that moment, the left-turning automated car enters into the split
friction road. As the left side track suddenly provides a higher TRFC,
the reasonable action is to reduce the steering angle for avoiding
oversteering. Clearly, ULMPC successfully identifies the road condition
change and adjusts the wheel steering accordingly.

In parallel to the position control, velocity-following results are re-
vealed in Fig. 6 and the RMS of velocity tracking errors are summarized
in Table 5.

Similar to the results in Fig. 4, the model-based LTVMPC entails
a relatively higher velocity tracking error. Moreover, as demonstrated
in the enlarged inset, neither LTVMPC nor MFC can reach offset-free
velocity tracking: MFC is still impaired by the algebraic estimation
delay and the adopted LTVMPC in Wang, Zha, and Wang (2019), which
did not utilize the incremental control form in Table 1, was affected
by the unmodeled factors, like air drag and tire rolling resistance. In
contrast, ULMPC condenses all the disturbances in the ultra-local model
and utilizes command increment as the optimized variable to achieve
offset-free tracking.

Subsequently, the rear-wheel torques are depicted in Fig. 7.
Obviously, constraints on the torque magnitude and its slew rate

are well obeyed by all the three controllers. Indeed, ULMPC produces
more chattering, as it endeavors to achieve zero speed tracking error
via frequent torque adjustment.

As a final point, the tire usages of the four-wheel are displayed in
Fig. 8, where the tire usage is defined as:

𝜃𝑖,𝑗 =

√
𝐹 2
𝑥𝑖,𝑗

+ 𝐹 2
𝑦𝑖,𝑗

𝜇𝐹𝑧𝑖,𝑗
, 𝑖 =

{
𝑓𝑟𝑜𝑛𝑡 𝑟𝑒𝑎𝑟

}
, 𝑗 =

{
𝑙𝑒𝑓 𝑡 𝑟𝑖𝑔ℎ𝑡

}
, (26)

with 𝐹𝑥𝑖,𝑗 , 𝐹𝑦𝑖,𝑗 , 𝐹𝑧𝑖,𝑗 representing respectively the longitudinal, lateral,
and vertical tire force.

Therefore, the dynamics of the automated vehicle has fully entered
into the nonlinear region as the rear-left tire has its peak usage of more
than 90%. This fact further proves the performance of the proposed
ULMPC even in nonlinear situations.

4.7. Ultra-local Model Predictive Control with long prediction horizon

The ultra-local model utilizes the estimated first-order derivative
of the system output to deduce the evolution of the controlled plant.
Therefore, this prediction can remain accurate only within a rela-
tively short preview horizon (Fliess, Join, & Voyant, 2018). In this
section, we will illustrate this fundamental weakness of ULMPC through
CarSim-Simulink joint simulations.

Fig. 9 demonstrates the path tracking error 𝑒𝑦 with the ULMPC
prediction horizon 𝐻𝑝 in (17), (18), (23), and (24) extended from 20
to 65.

Therefore, the path-tracking performance degradation of ULMPC is
clearly revealed. Furthermore, the relationship between the ULMPC
prediction horizon 𝐻𝑝 and the root mean square path tracking error
𝑅𝑀𝑆

(
𝑒𝑦
)
is depicted in Fig. 10.

Hence, as the prediction horizon extends from 20 to 85, the path-
tracking error of ULMPC trebles. This fact distinguishes ULMPC from
the traditional model-based predictive controller, which in general
requires a sufficiently long prediction horizon (Wang, Bai, Wang, &
Wang, 2019). Instead, a long preview will indeed excite model-plant
mismatch of ULMPC, which can lead to actuator chattering and lower
the ultimate control performance. The steering wheel angle 𝛿∗𝑠𝑤 (𝑘) and
the real wheel torque 𝑇 ∗

𝑟 (𝑘) from ULMPC with 𝐻𝑝 equal to either 20
or 65 are compared, respectively, in Fig. 11 and Fig. 12.

7

Z. Wang and J. Wang Control Engineering Practice 101 (2020) 104482

Fig. 6. Velocity tracking error comparison.

Fig. 7. Rear wheel torque comparison.

Fig. 8. Tire usage comparison.

Even though the magnitude and the slew rate constraints of the
control are always met, such a chattering responses have no practical
usage, as the actuators will quickly wear out.

We can therefore draw the conclusion that ULMPC alone is not very
appropriate for long-preview applications, such as path-planning for
collision/obstacle avoidance. Instead, ULMPC should be combined with

8

Z. Wang and J. Wang Control Engineering Practice 101 (2020) 104482

Fig. 9. Path tracking error from ULMPC with different prediction horizon.

Fig. 10. Relationship between ULMPC prediction horizon and RMS of path tracking error.

Fig. 11. Steering wheel angle from ULMPC with long and short prediction horizon.

Fig. 12. Real-wheel torque from ULMPC with long and short prediction horizon.

9

Z. Wang and J. Wang Control Engineering Practice 101 (2020) 104482

Fig. 13. Scaled car experiment setup.

Fig. 14. Algebraic differentiation estimation of field test.

a high-level path planner. The high-level path planner is responsible
for receiving obstacle information from the perception system, timely
adjusting the reference path for the ULMPC, while considering the
system-level delay from perception, decision-making, and controller ac-
tuation. ULMPC is then devoted to accurately tracking this obstacle-free
trajectory under modeling error and external disturbances.

5. Indoor vehicle field test

In addition to the Carsim simulations, the proposed ULMPC is
further implemented on a scaled car for experimental investigation of
a similar trajectory-following task.

5.1. Experiment setup

The 1/18 scaled car has a DC-servo for front steering and a brushed
DC-motor for four-wheel-driving. Both the servo and the motor are
connected to a PCA9685, which is a 16-channel, 12-bit Pulse Width
Modulation (PWM) driver. A Raspberry Pi works as the ECU for deliv-
ering respectively the throttle and the steering PWM commands to the

motor and the servo. To capture the position of the scaled car, we utilize
a camera-based OptiTrack indoor GPS system. OptiTrack takes multiple
2D images from eight infrared cameras to reconstruct the corresponding
3D coordinates of the scaled car. Specifically for our tests, it provides
us the raw data of the global coordinates of the scaled car: 𝑋 (𝑡), 𝑌 (𝑡),
as well as its heading angle 𝜓 (𝑡). These (noisy) raw data points are
retrieved from OptiTrack in real-time by a local PC.

Inside the local PC, the ADE in (2) is employed to generate the
filtered 𝑋̂ (𝑡), 𝑌 (𝑡), 𝜓̂ (𝑡) as well as the estimated first-order derivatives:
̂̇𝑋 (𝑡), ̂̇𝑌 (𝑡), and ̂̇𝜓 (𝑡). From 𝑋̂ (𝑡), 𝑌 (𝑡), a simple mapping function is uti-
lized to determine the position tracking error 𝑒 (𝑡), and the longitudinal
velocity of the scaled car is calculated as:

𝑣̂ (𝑡) = ̂̇𝑋 (𝑡) cos (𝜓̂ (𝑡)) + ̂̇𝑌 (𝑡) sin (𝜓̂ (𝑡)) . (27)

After obtaining 𝑒 (𝑡) and 𝑣̂ (𝑡), ADE is employed again to produce ̂̇𝑒 (𝑡),
̂̈𝑒 (𝑡), and ̂̇𝑣 (𝑡). With 𝑒 (𝑡), ̂̇𝑒 (𝑡), ̂̈𝑒 (𝑡), 𝑣̂ (𝑡), and ̂̇𝑣 (𝑡), the ULMPCs described
in (17)–(18) and (23)–(24) are formulated and converted into stan-
dard QP forms via CVXPY (Diamond & Boyd, 2016) and solved with
OSQP (Stellato, Banjac, Goulart, Bemporad, & Boyd, 2018). Finally, the

10

Z. Wang and J. Wang Control Engineering Practice 101 (2020) 104482

Fig. 15. Scaled car global path tracking.

optimal PWM commands: 𝛿∗𝑝𝑤𝑚 (𝑡) and 𝑇
∗
𝑝𝑤𝑚 (𝑡) are wirelessly send back

from the local PC to the scaled car to close the loop. The overall ar-
chitecture is depicted in Fig. 13, which is similar to Liniger, Domahidi,
and Morari (2015).

The desired track of the field test remains as an oval. However, the
referential velocity profile is modified as a hyperbolic tangent function
to account for the fact that the scaled car kicks off from standing still.

Sampling period of OptiTrack and execution periods of both ULM-
PCs are fixed as 𝑇𝑠 = 0.02 s, which is determined by the highest
possible execution frequency of CVXPY on the available hardware. The
PWM commands of the steering and the throttle are individually nor-
malized between: 𝛿∗𝑝𝑤𝑚 (𝑡) ∈

[
−0.70, 0.25

]
, 𝑇 ∗

𝑝𝑤𝑚 (𝑡) ∈
[
0.33, 0.41

]
.

Ultra-local gains in (6) are respectively tuned as: 𝛼𝑣 = 750, 𝛼𝑦 = −15.
𝛼𝑦 is tuned negative because an increasing PWM command of steering
leads to a clockwise-direction steer of the front servo. Prediction hori-
zon 𝐻𝑝 = 10 and control horizon 𝐻𝑐 = 1 are used for both speed and
steering ULMPCs.

5.2. Field test results

In common with Section 4.6, we first present the signal differenti-
ation results from ADE. The sliding window size is tuned as TADE =

0.10s, 0.10s, 0.12s, 0.14s, 0.10s, 0.10s (𝐾 = 5, 5, 6, 7, 5, 5) for estimating, re-
spectively, ̂̇𝑋, ̂̇𝑌 , ̂̇𝜓 , ̂̇𝑣, ̂̇𝑒𝑦, and ̂̈𝑒𝑦. Fig. 14 demonstrates

̂̇𝑋, ̂̇𝑌 , ̂̇𝑣, ̂̇𝑒𝑦 as
examples.

In Fig. 14, the red dashed lines indicate the estimated values and
the blue solid lines represent the ground truth by directly differenti-
ating the noisy signals. Evidently, the ADE effectually reconstructs the
needed signal derivatives.

The global path tracking result is demonstrated in Fig. 15. The
scaled car starts from 𝑋 = 1.525,𝑌 = 0.1, and follows the oval track
counterclockwise.

From Fig. 15, we can observe that the scaled car can stay pretty
close to the oval track centerline. Path tracking error 𝑒𝑦 (𝑡) is then
depicted in Fig. 16.

From Fig. 16, we can deduce that the absolute maximal path track-
ing error is less than 79.1 mm and the RMS of the tracking error is less
than 29.4 mm. Considering that the overall length of the desired track
is over 9320 mm, the realized path-tracking result is quite accurate.

Then, the optimal PWM steering command 𝛿∗𝑝𝑤𝑚 (𝑡) is demonstrated
in Fig. 17.

Hence, both the PWM steering command and its changing-rate
satisfy the given constraints. Besides, we have 𝛿∗𝑝𝑤𝑚 (𝑡) = 0.15 before
3 s and after 20 s, which corresponds to the desired PWM command
leading to the neutral steering of the front DC servo.

Subsequently, the velocity tracking result is depicted in Fig. 18.
The actual speed can practically follow the desired velocity profile

with RMS of the speed tracking error less than 0.066 m/s. Note that
the highest speed of the scaled car reaches more than 0.95 m/s, which
is equivalent to 60 km/h of a full-size car.

The optimal PWM throttle command 𝑇 ∗
𝑝𝑤𝑚 (𝑡) is next depicted in

Fig. 19.
Akin to Fig. 17, both the PWM throttle command and its changing-

rate satisfy the given constraints. From Figs. 17 and 19, it is clear
that the actual PWM increments of both the steering-servo and the
driving-motor are much less than their given thresholds. This hard-
ware constraint and the relatively slow sampling frequency principally
accounts for the position and speed tracking errors in Figs. 16 and 18.

Finally, the online execution times of both the speed and the steer-
ing ULMPCs are displayed in Fig. 20.

Hence, excluding several control cycles, both the throttle and the
steering ULMPCs can be solved within the sampling period 𝑇𝑠 = 0.02 s.
Note that when this paper is written, CVXPY does not support code
generation yet. Therefore, both ULMPCs are repeatedly compiled and
solved by CVXPY in the local PC (Windows10, Intel i5-6500), which
is not a strict real-time platform. This may explain the execution time
fluctuations in Fig. 20.

Fig. 16. Scaled car path tracking error.

11

Z. Wang and J. Wang Control Engineering Practice 101 (2020) 104482

Fig. 17. Scaled car PWM steering command.

Fig. 18. Scaled car velocity tracking.

Fig. 19. Scaled car PWM throttle command.

6. Conclusions

This paper presents the ULMPC, which is a novel data-driven,
model-free predictive controller, with no need for complex and labo-
rious model learning. The key idea of ULMPC is to apply an MPC
on the ultra-local model. ULMPC inherits the robustness to system
uncertainties and disturbances from Model-Free Control (MFC), reduces

the scale of the constrained optimization problem, and eliminates the
steady-state tracking error of MFC. Carsim-Simulink joint simulations
and indoor field tests with a scaled car show the effectiveness of
ULMPC. However, similar to MFC, the constant gain tuning of the
ultra-local model remains as an open problem, which requires further
investigation. Moreover, the fundamental weakness of ULMPC is that
the continuously updated ultra-local model can only hold within a

12

Z. Wang and J. Wang Control Engineering Practice 101 (2020) 104482

Fig. 20. Online execution times of ULMPCs.

relatively short preview horizon. Therefore, ULMPC alone is not appro-
priate for long-preview applications, such as path-planning for collision
avoidance. Instead, ULMPC shall be combined with a high-level path-
planner, which is responsible for generating an obstacle-free reference
trajectory, and ULMPC is then devoted to path tracking with both
system modeling errors and external disturbances.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work was supported by National Science Foundation, USA with
project number 1901632.

References

Bemporad, A., & Morari, M. (1999). Robust model predictive control: A survey.
In Robustness in identification and control (pp. 207–226). London: Springer, http:
//dx.doi.org/10.1007/BFb0109870.

Brown, M., Funke, J., Erlien, S., & Gerdes, J. C. (2017). Safe driving envelopes for
path tracking in autonomous vehicles. Control Engineering Practice, 61, 307–316.
http://dx.doi.org/10.1016/j.conengprac.2016.04.013.

Chen, W. H. (2010). Stability analysis of classic finite horizon model predictive
control. International Journal of Control, Automation and Systems, 8(2), 187–197.
http://dx.doi.org/10.1007/s12555-010-0202-z.

Di Ruscio, D. (2013). Model predictive control with integral action: a simple MPC
algorithm. Modeling Identification and Control, 34(3), 119–129. http://dx.doi.org/
10.4173/mic.2013.3.2.

Diamond, S., & Boyd, S. (2016). CVXPY: A python-embedded modeling language
for convex optimization. Journal of Machine Learning Research (JMLR), 17(1),
2909–2913.

Dovžan, D., & Škrjanc, I. (2010). Predictive functional control based on an adaptive
fuzzy model of a hybrid semi-batch reactor. Control Engineering Practice, 18(8),
979–989. http://dx.doi.org/10.1016/j.conengprac.2010.04.004.

Ercan, Z., Carvalho, A., Tseng, H. E., Gökaşan, M., & Borrelli, F. (2018). A predictive
control framework for torque-based steering assistance to improve safety in
highway driving. Vehicle System Dynamics, 56(5), 810–831. http://dx.doi.org/10.
1080/00423114.2017.1337915.

Fliess, M., & Join, C. (2013). Model-free control. International Journal of Control, 86(12),
2228–2252. http://dx.doi.org/10.1080/00207179.2013.810345.

Fliess, M., Join, C., & Sira-Ramirez, H. (2008). Nonlinear estimation is easy. International
Journal of Modelling, Identification and Control, 40(1), 12–27. http://dx.doi.org/10.
1504/IJMIC.2008.020996.

Fliess, M., Join, C., & Voyant, C. (2018). Prediction bands for solar energy: New
short-term time series forecasting techniques. Solar Energy, 166, 519–528. http:
//dx.doi.org/10.1016/j.solener.2018.03.049.

Forbes, M. G., Patwardhan, R. S., Hamadah, H., & Gopaluni, R. B. (2015). Model
predictive control in industry: Challenges and opportunities. IFAC-PapersOnLine,
48(8), 531–538. http://dx.doi.org/10.1016/j.ifacol.2015.09.022.

Garone, E., Di Cairano, S., & Kolmanovsky, I. (2017). Reference and command
governors for systems with constraints: A survey on theory and applications.
Automatica, 75, 306–328. http://dx.doi.org/10.1016/j.automatica.2016.08.013.

Hu, Y., Chen, H., Wang, P., Chen, H., & Ren, L. (2018). Nonlinear model predictive
controller design based on learning model for turbocharged gasoline engine of
passenger vehicle. Mechanical Systems and Signal Processing, 109, 74–88. http:
//dx.doi.org/10.1016/j.ymssp.2018.02.012.

Huusom, J. K., Poulsen, N. K., Jørgensen, S. B., & Jørgensen, J. B. (2012). Tuning
SISO offset-free model predictive control based on ARX models. Journal of Process
Control, 22(10), 1997–2007. http://dx.doi.org/10.1016/j.jprocont.2012.08.007.

Ławryńczuk, M. (2009). Neural networks in model predictive control. In N. T. Nguyen,
& E. Szczerbicki (Eds.), Studies in computational intelligence: vol. 252, Intelligent sys-
tems for knowledge management (pp. 31–63). Berlin, Heidelberg, Germany: Springer,
http://dx.doi.org/10.1007/978-3-642-04170-9_2.

Li, S. E., Jia, Z., Li, K., & Cheng, B. (2014). Fast online computation of a model
predictive controller and its application to fuel economy–oriented adaptive cruise
control. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1199–1209.
http://dx.doi.org/10.1109/TITS.2014.2354052.

Liniger, A., Domahidi, A., & Morari, M. (2015). Optimization-based autonomous racing
of 1: 43 scale RC cars. Optimal Control Applications & Methods, 36(5), 628–647.
http://dx.doi.org/10.1002/oca.2123.

Mattingley, J., & Boyd, S. (2012). CVXGEN: A code generator for embedded convex
optimization. Optimization and Engineering, 13(1), 1–27. http://dx.doi.org/10.1007/
s11081-011-9176-9.

Mboup, M., Join, C., & Fliess, M. (2009). Numerical differentiation with annihilators
in noisy environment. Numerical Algorithms, 50(4), 439–467. http://dx.doi.org/10.
1007/s11075-008-9236-1.

Menhour, L., d’Andréa-Novel, B., Fliess, M., Gruyer, D., & Mounier, H. (2017). An
efficient model-free setting for longitudinal and lateral vehicle control: Validation
through the interconnected pro SiVIC/RTMaps prototyping platform. IEEE Trans-

actions on Intelligent Transportation Systems, 19(2), 461–475. http://dx.doi.org/10.
1109/TITS.2017.2699283.

Naus, G., Van Den Bleek, R., Ploeg, J., Scheepers, B., van de Molengraft, R., &
Steinbuch, M. (2008). Explicit MPC design and performance evaluation of an
ACC stop- and -Go. In 2008 American control conference (pp. 224–229). http:
//dx.doi.org/10.1109/ACC.2008.4586495, June.

Novara, C., Formentin, S., Savaresi, S. M., & Milanese, M. (2016). Data-driven design
of two degree-of-freedom nonlinear controllers: the D2-IBC approach. Automatica,
72, 19–27. http://dx.doi.org/10.1016/j.automatica.2016.05.010.

Piche, S., Sayyar-Rodsari, B., Johnson, D., & Gerules, M. (2000). Nonlinear model
predictive control using neural networks. IEEE Control Systems Magazine, 20(3),
53–62. http://dx.doi.org/10.1109/37.845038.

Piga, D., Forgione, M., Formentin, S., & Bemporad, A. (2019). Performance-oriented
model learning for data-driven MPC design. IEEE Control Systems Letters, 3(3),
577–582. http://dx.doi.org/10.1109/LCSYS.2019.2913347.

Piga, D., Formentin, S., & Bemporad, A. (2017). Direct data-driven control of
constrained systems. IEEE Transactions on Control Systems Technology, 26(4),
1422–1429. http://dx.doi.org/10.1109/TCST.2017.2702118.

Polack, P., d’Andréa-Novel, B., Fliess, M., de La Fortelle, A., & Menhour, L. (2017).
Finite-time stabilization of longitudinal control for autonomous vehicles via a
model-free approach. IFAC-PapersOnLine, 50(1), 12533–12538. http://dx.doi.org/
10.1016/j.ifacol.2017.08.2191.

Selvi, D., Piga, D., & Bemporad, A. (2018). Towards direct data-driven model-free
design of optimal controllers. In 2018 European control conference (pp. 2836–2841).
http://dx.doi.org/10.23919/ECC.2018.8550184, June.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., & Boyd, S. (2018). OSQP: An
operator splitting solver for quadratic programs. In 2018 UKACC 12th international
conference on control (p. 339). http://dx.doi.org/10.1109/CONTROL.2018.8516834,
September.

Tuchner, A., & Haddad, J. (2017). Vehicle platoon formation using interpolating
control: A laboratory experimental analysis. Transportation Research Part C: Emerging
Technologies, 84, 21–47. http://dx.doi.org/10.1016/j.trc.2017.06.019.

13

Z. Wang and J. Wang Control Engineering Practice 101 (2020) 104482

Wang, Z., Bai, Y., Wang, J., & Wang, X. (2019). Vehicle path-tracking linear-time-
varying model predictive control controller parameter selection considering central
process unit computational load. Journal of Dynamic Systems, Measurement, and
Control, 141(5), 051004. http://dx.doi.org/10.1115/1.4042196.

Wang, Z., Bai, Y., Zha, J., Wang, J., & Wang, X. (2019). Cooperative adaptive cruise
control safety enhancement via dynamic communication channel selection. In 2019
American control conference (pp. 521–526). http://dx.doi.org/10.23919/ACC.2019.
8814653.

Wang, J., Mounier, H., Niculescu, S. I., Geamanu, M. S., & Cela, A. (2016). Event-driven
model-free control in motion control with comparisons. IMA Journal of Mathematical
Control and Information, 34(4), 1255–1275. http://dx.doi.org/10.1093/imamci/
dnw023.

Wang, H., Ye, X., Tian, Y., Zheng, G., & Christov, N. (2016). Model-free-based
terminal SMC of quadrotor attitude and position. IEEE Transactions on Aerospace

and Electronic Systems, 52(5), 2519–2528. http://dx.doi.org/10.1109/TAES.2016.
150303.

Wang, Z., Zha, J., & Wang, J. (2019). Flatness-based model predictive control for
autonomous vehicle trajectory tracking. In IEEE 22th international conference on

intelligent transportation systems (pp. 4146–4151). http://dx.doi.org/10.1109/ITSC.
2019.8917260, October.

Weißmann, A., Görges, D., & Lin, X. (2018). Energy-optimal adaptive cruise control
combining model predictive control and dynamic programming. Control Engineering
Practice, 72, 125–137. http://dx.doi.org/10.1016/j.conengprac.2017.12.001.

14

