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Abstract— Model predictive control (MPC) has become more
relevant to vehicle dynamics control due to its inherent capacity
of treating system constraints. However, online optimization
from MPC introduces an extensive computational burden for
today’s onboard microprocessors. To alleviate MPC
computational load, several methods have been proposed.
Among them, online successive system linearization and the
resulting linear time-varying model predictive controller
(LTVMPC) is one of the most popular options. Nevertheless,
such online successive linearization commonly approximates the
original (nonlinear) system by a linear one, which inevitably
introduces extra modeling errors and therefore reduces MPC
performance. Actually, if the controlled system possesses the
“differential flatness” property, then it can be exactly linearized
and an equivalent linear model will appear. This linear model
maintains all the nonlinear features of the original system and
can be utilized to design a flatness-based model predictive
controller (FMPC). CarSim-Simulink joint simulations
demonstrate that the proposed FMPC substantially outperforms
a classical LTVMPC in terms of the path-tracking performance
for autonomous vehicles.

[. INTRODUCTION

Model predictive control (MPC), owing to its ability of
explicitly treating state and input constraints, has been
pervasively adopted for ground vehicle dynamic control [1],
[2]. However, because of the inherent online optimization
process, MPC, especially nonlinear MPC, entails a heavy
computational burden for today’s vehicular electronic control
unit (ECU). Several approaches [3] have been proposed and
verified to alleviate the computational burden of MPC. For
instance, efficient optimization solvers based on the
Nesterov’s gradient method [4] or the real-time iteration
algorithm [5] have been designed for reducing both algorithm
complexity and memory space requirement. Besides, explicit
MPC [3] has attracted attention from both academia and
industry. Among all the existing methods, online successive
linearization along with the resulting linear-time-varying
model predictive controller (LTVMPC) is probably one of the
most  straightforward and popular options [2], [6].
Nonetheless, local linearization around the current working
point introduces extra approximation error, which degrades
the control performance of an LTVMPC.

In contrast to the local linearization, a differentially flat
system [7] can be exactly linearized with the help of the flat
output. In fact, the inputs, states, and outputs of a
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differentially flat system can be completely parameterized
with the flat output and its finite-order derivatives. Hence, a
nonlinear flat system can be alternatively expressed as its
linear Brunovsky canonical form, which significantly reduces
control law design. Despite the benefits, explicitly including
constraints into a flat system remains hard. Therefore,
combining differential flatness with MPC gives us triple
benefits: 1) Systematic constraints handling from the MPC
structure; 2) MPC computational load alleviation thanks to the
exact linearization; and 3) Control performance enhancement
with respect to an LTVMPC by avoiding linearization error.

In fact, there exist several control structures in the
literature integrating differential flatness with predictive
control. In [8], a flatness predictive controller was illustrated.
Here, the predicted flat output was employed to obtain
feedforward system inputs and a simple proportional-integral-
derivative (PID) controller was added for disturbance
rejection. In [9], state references were generated from the
desired flat output and a separate MPC was designed for
referential states tracking. In [10], [11], and [12], system flat
output were firstly parameterized as a combination of basic
functions and the original optimization problem was
transformed into a nonlinear programming problem (NLP)
with respect to the coefficients of the basic functions.
However, as indicated in [11], it is difficult to prove that NLP
can lead to the global optima. Moreover, the computational
time of NLP can be too long to be implemented online [12].
Finally, similar to the philosophy underlies this paper, MPC
applied on an equivalent linear flat system can be found in
[13] and [14]: The original nonlinear model was firstly
converted into a linear-time-invariant (LTI) system. After that,
an MPC based on this LTI model was designed to obtain the
optimal flat inputs and states, from which the original control
inputs can be calculated.

This paper proposes a hierarchical flatness-based model
predictive controller (FMPC) for autonomous vehicle
trajectory tracking. The high-level predictive controller
generates the desired global forces and moment which are
then allocated to four wheels’ independent steering and torque
signals by a simple control-allocation module. CarSim-
Simulink joint simulations demonstrate the advantages of the
high-level FMPC over an LTVMPC.

The rest of the paper is organized as follows. A novel
kinodynamic vehicle model for path tracking is presented in
Section II. Its flatness character is proved in Section III. The
high-level control for global forces and moment generation
from either LTVMPC or FMPC is illustrated in Section IV,
where the low-level control allocation algorithm is also
mentioned. Simulation result and analysis are given in Section
V, and Section VI concludes this paper.
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II. SYSTEM MODELING

A. Vehicular Kinodynamic Trajectory Tracking Model

Inspired by [15], [24], the kinodynamic vehicle model for
trajectory tracking is demonstrated in Fig. 1.

Fig. 1. Kinodynamic trajectory tracking model.
This new system contains five states, as:

M

In (1), e represents the minimum distance from vehicle’s
center of gravity (CG) to the reference path. y indicates
vehicle yaw angle error with respect to the desired yaw
v, (s)+w), (s), with w’ (s) being the referential road

x:[é vy, }/}

direction and y;, (s) accounting for the vehicle sideslip
amendment [16]. ¥ is the velocity tracking error in regard to
the desired tangential speed v, (). v, specifies vehicle lateral

speed at CG and y shows vehicle yaw rate. v/ (s), v, (s),

and v, (s) are external reference signals that are dependent on
the station s along the reference path. We assume them
available from a planning module. Vehicle longitudinal
velocity v_, despite not included in the model, is regarded as a
measured parameter for determining v.
Besides, system admits three inputs as:

u=[F, F, M., 6)

where F_ = represents respectively the global longitudinal

and lateral force and M is the global yaw moment around

CG.
According to the kinematics relationships, we have:

and

y=M_]I. 7)

Equations (3)-(7) form the vehicular

kinodynamic trajectory tracking model.

complete

In practice, by assuming &< 1/x,(s),where «, (s)

stands for the referential road curvature, we have:

{ VR (vx cos(t;? +y, (s))—vy Sin(l/7 +y, (S)))_Vr (s).

®)
=y -y (s)-v(s).

In(8), y,, (s) can be seen as the steady-state vehicle sideslip
angle during turning [17] as:

iy, () x(s)

o)

Vi ()= L x(s) +
where [, and /. respectively indicate the distances from
vehicle CG to the front and to the rear axles, m is vehicle
mass, and C, represents the cornering stiffness of a single
tire.

III. FLATNESS SYSTEM PROOF
We prove here that the vehicle kinodynamic model
depicted by (3)-(7) is differentially flat with the flat output:

(10)

The essence to prove a system being flat is to show that
the system states and inputs can be parameterized with the flat
output and its finite-order derivatives. Since 7 already groups
three system states, we only need to concentrate on the
parameterization of Vs 7 and F, F,, M.

n=[e v 7]

In fact, by rearranging (4), we directly obtain:

y:‘/j+{6’//;(s)+al//;v(s)J(‘;Jrvr(s))’ (11)

os os

and by combining (3) and (8), we have:

vy ) g (), (0 e ) il oy, (1)
' (12)
and Subsequently, by calculating the second-order derivative
i =y— (0w, (s)/as+0y), (s)/as)(7+v,(s)), (4 of € andy, wehave:
along with - %sin ('ﬁ +y, (s))
~ F ~ ]:'y . ~ r (13)
== +y’ [ +y' F, N . 81// NP
! m COS(W Vo (S)) m Sm(‘// Vi (S)) ®) +;’COS<V/+%V(S))_%(V+W (S))Z,
L) 5y (69)6- 24 4y () o
aS : aS : ’ ‘/7_Mz [5 ‘//;I(S)+a‘//;z»=(s)](‘7+v (s))2
- 2 2 r
Then, from the vehicle lateral dynamics, we have: L s s (14)
. oy, (s) ow, (s)) . o .
v =F fm=v.r, ©) —[ (,;S( ), 'as( )]{w Vafs)(vm (s))]-
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From (5), (13), and (14), system inputs parameterization R
can be shown as: FEig, & 2 (He(k“ )l + (k1)

‘2

L, kil k)H;)

,. 1 A BN A NT
i:sin(q7+z//;w(s))[é+ au/g (S)(ﬁ+V, (S))z] *3 ;(Hg(m; |k)=F (k+i k)HRM +|F (k+ilk)—F (k+i| k)HRM )
m S
1z ) . ) )
o L avi(s), . ov(s), #Z HMZ(kH\k)sz(kJrzlk)HRW +p, & +pE,
+COS((//+I///)‘, (s)){v_ as( )(v+v, (s))é+ Vags) (F+v, (s))], 2= ( : ) )
(15) such that
along with
x(k+1)=Ax(k)+Bu(k)+d,,,
F, o s ol (s), . > ' (20)
7:cos(l//+y/p\,(s)) e+T(v+v,,(s)) y(k):x(k),
r ) and
+sin(l/7+l//l'w(s))[—\ﬁrawéi’(s)(\ﬂrv,,(s))é— 6V5(5)(ﬁ+vr (s))j,
S S
(16) |vy(k+i|k)| <0.02v, ug+¢, ,
: 0.85 , @1
and finally, |y(k+1|k)|< v'ug-i-gy,l:l...[‘[p.
. 82 r 82 r *
M, _ v J{ W;’ (s) + l//’;” (S)](ﬁ v, (s))2 The cost function (19) minimizes three items: The tracking
I 0's 0's (17 errors 77 within the prediction horizon H,, the discrepancies
oy, ( s) oy, ( S) . o, ( s) B between the actual high-level inputs u and the desired system
N T o VT (v, (s)) inputs «” within the control horizon H,, and the soft

constraint violation penalty with respect to v, and y. In (19),

As indicated in (11) and .(12) » the rest two system s.tates 7" the desired system inputs u~ can be decided by assigning
and v, can be expressed with the flat output 7 and its first- . . = L R .
s o ) e=e=e¢=0, w=y=y=0,and v=v=0 in (15), (16),
order derivatives. Similarly, as shown in (15), (16), and (17), and (17)

. . and the penalty coefficients are fixed as:
three system inputs: F,, F,,M_ can also be expressed with the penalty

=p, =leb.
flat output 7 and its derivatives up to the second order. Thus, P =Py
the vehicle kinodynamic model is indeed flat. The constraints demonstrated in (20) represent the online
successively linearized system model. Additionally, soft
IV. MODEL PREDICTIVE CONTROLLER DESIGN constraints on vehicle lateral speed v, as well as yaw rate y

The aim of the high-level MPC is to obtain the optimal [6] are included in (21) to ensure vehicle stability. In (21), u
global forces and moment u in (2) which minimize the stands for the tire road friction coefficient, g is Earth gravity,
vehicle trajectory tracking error 7 in (10) and satisfy several & and &, are the slack variables.
system constraints. Both an LTVMPC and an FMPC are o ) )
designed and compared in this Section. In addition, a typical No explicit constraints on system inputs u are accounted
low-level control-allocation algorithm is also included at the for, majorly due to two reasons: 1) The thresholds of global
end to transform the optlmal global forces and moment into forces and moment are difficult to be estimated in real time
the optimal four-wheel torque and steering signals. [18]; 2) High-level input constraints are partially redundant

with the low-level control allocation algorithm.

A. Linear Time-Varying Model Predictive Controller
. . . . B. Flatness Model Predictive Controller
The kinodynamic model in Section II can be compactly
written as: Before the FMPC design, the original nonlinear system
(18) needs to be converted into an equivalent LTI system.
{x = F (e (5).7 (5).v, (9)

y=x represent the original nonlinear model (18) as a linear system,

with xand u indicated in (1) and (2) and we assume all the With flat states as:
states can be measured. Then, the online optimization problem v = [é i v ‘7] 22)
can be summarized as: P v v >

(18) By assigning é=v,, ¥ =v,,and V=v,,we can exactly

which satisfy
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é 01 00 0]f¢g] o 00
EL 100 0 0 0|l |1 0 0fv,
|={0 0 0 1 O|w|+/0 0 0fv, | (23)
| [0 00 0 Ofl¢| |01 0fv,
511000 0 0fv]]0 01
or abstractly written as:
x,=Ax,+Byv, (24)

where v is called the flat input.
Based on the LTI model (24), an online successive

optimization problem can be formulated as:

min

Ve Yok £y

+z(

+p,8,+p,8,

L (He (ki ), + (ki1 ), +[o(e+i1 8 )

(k+i 1K), C v, (ki) v, (k+ik); ) (25)

such that
%, (k+1) = dpx, (K)+ B (k) g
7, (0)=x, (6), e
and
G(k+ilk)cos(y7(k+i|k)+y, (k+i|k))
—(F(k +ilk)+v, (k+i| k))sin(7 (k+i| k) +y), (k+i]k)) 002vpg 4,
(27)

|/?(k+i\k)+[%s(s)(k+i\k)+%‘s(s)(k+i\kﬂ 085%.

(0(k+ilk)+v,(k+ilk))

+&,i=1..H,

Similar to (19), cost function (25) minimizes the tracking
errors within the prediction horizon H ,, the flat input v

within the control horizon F/,, and the soft constraints

violation penalty. Constraint (26) is the discrete expression of
(24) and the soft constraints on the lateral velocity and yaw
rate are maintained in (27). Clearly, system parameterizations
in (11) and (12) convert the simple box constraints (21) into
the state-dependent inequalities. Moreover, the constraint on
v, becomes nonlinear. To treat this newly introduced

nonlinear constraint, we use the method in [19] to online
successively linearize this constraint. Unlike LTVMPC which
linearizes the whole state vector x in (1), only lateral velocity
is linearized for constructing a quadratic programming
problem for online optimization.

Using the first-order Taylor expansion, the parameterized
v, in (27) within the prediction horizon can be expressed as:

v, (k+ i) = g (&(k + i) (k + il ), (k + ik )y, (k +ilk).v, (k + i)

(28)

where
a—g—cos(l//—i—(//pv),(;‘i=—sin(l/7+l//;v),
(29)
a—:—ésin((/?+w" )—(\7+v )cos((/7+l//" )
a(// v r pv
and & (k+i|k=1),5" (k+i]k—=1),% (k+ik—1) are the

optimal predicted flat states within the prediction horizon
obtained at the last step.

After solving the optimization problem (25)-(27), the

optimal flat inputs v —[v: v, v:]:[é* a 15*} need

to be substituted back into (15), (16), and (17) to give us the
real optimal control u" = [F: F: M*}

C. Control Allocation

The optimal global forces and moment from either the
LTVMPC or the FMPC must be allocated to each wheel’s
spinning torque and steering. We assume the autonomous
vehicle under control enjoys four-wheel independent steering
and actuation (4WIS-4WIA) capacity. For such an over-
actuated system, the pseudo-inverse method in [20][25] is
utilized to obtain the optimal tire force vector:

*

F;ire = |:F!: F;; :|T ’i = {ﬂ rl fr r}"} ’ (30)

where F;y,. represents the desired longitudinal and lateral tire

force of each wheel.

As indicated in [20], the final expression of F, can be

formulated as:

tire

F.

(BTQB+W) B'Ou’. (31)
In (31), B represents the system matrix which associates
four wheels’ tire forces with the global forces and moment.

QO is the allocation error matrix. W is responsible for

restraining excessively demanded tire force, and u" stands
for the optimal control from the high-level MPC. A minor
modification was adopted in (31): Instead of using the grip
margin in [20], the dialog elements in W are changed as the
following one to avoid tire force saturation. In (32), s, is tire

slip ratio and ¢ is tire sideslip angle. C,,C, constitute tire

F_F.

xij 27 yij

longitudinal and cornering stiffness, and represent

the modelled longitudinal and lateral tire force of each wheel.
There exist various tire models in the literature, such as the
brush tire model in [20], the parameter varying model in [21],

~ g (& (k+ il —1),57" (ke + i)k =1), 5 (ke + ik =1),y7), (k +ilk).v, (k + i) the magic formula in [22] to estimate tire forces. To be
Lo oy [k 4i) -8 (ke -1)] % e [+ 16) = (k + - 1)] consistent, the brush tire model in [20] was utilized to
8“‘“‘“ au/’““‘* | calculate F,F .
¥ lilk-1) ¥ (k+ilk—1) xij > = yij*
=¥ (k+ilk=1)]i=1..H,,
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As indicated in Fig. 2, both MPC controllers can make the
W( F ): tan| = w autonomous vehicl.e follow the given path but the tracking
2 error of the FMPC is much smaller.

(32) Then, the minimum distance between vehicle’s center of

gravity and the reference path (&) is depicted in Fig. 3. Still,
FMPC obviously outperformed LTVMPC.

W(Fyij):tan %[ y” J

*

As a final point, the optimal wheel torque 7, and steering

ij Wi !
517. of each wheel are determined with: ~ra 7 -
A ,:
by i —with FMPC
T Requy’ g it LTvMee|
(33) <
,[( Yij ,w/ )dt +K II( vi Wf/ )dtdt’ . i A A . .
2 4 [ 8 10 12
n Time ()

where R, is the effective wheel radius, F} ; is estimated Fig. 3. Minimum distance between CG and referential path.
lateral tire force, and K, , are control gains. After that, the yaw tracking results can be found in Fig. 4.

V. SIMULATION RESULTS AND ANALYSIS

aw angle with FMPC
A path composed of a straight line and a curve with time- o sy ol with LTVMEC

varying reference speed is designed to compare the tracking

L
6 Time (s) 8 10 12

ra b
s

performance between the two MPCs. All simulations were T p——rre T T
conducted on Simulink-CarSim joint platform. oo cwie LG mmcc=s -
To fairly tune the weighting factors in (19) and (25), a pre- i i i . |

simulation with a simple Brunovsky control law [7] was "o 2 4 Time (3) 8 10 12
conducted. Following a classical tuning rule [6], we have: Fig. 4. Road yaw tracking rCSultS with LTVMPC and FMPC.
-1 /max |x| -1 /max |y|) (34) Clearly, the FMPC produced a swifter response toward

abrupt road direction changes and achieved a globally smaller

where x stands for €, w, Vv and y represents either tracking error.

F_,F,,M_ for the LTVMPC or v,,v, v, for the FMPC. The Subsequently, the tangential velocity tracking results are

78 . .
final  tuning results of the LTVMPC  are: demonstrated in Fig. 5.

Rl‘} =3.4le-4, RFV =2.13¢-4, RM: =4.5¢-3, Qe =10225, —— Vchicle tangential speed with FMPC \
-----r?c-:i.n:d mngcnr.i:ll speed o .

QW =28846,and Q, =12220. As for the FMPC, we have: = Vellinle sarentil spocd with LTVMPC

2 4 Time (s) 6 t 10 12

RVP =1.46, R, =9.13, &V =4.07, Qa =34.08, Qu/ =96.15, . 0.l I
and O, =40.73. The tracking error weights 0,,0,,0, of the £z UK:::: hec A . —————
LTVMPC were intentionally augmented 300 times which E o . | .

ensured that no obvious improvement of the LTVMPC in o 2 4 Time (s) 6 8 10 12

term§ of the trapking resylts can be .Witne.ssed even the Fig. 5. Tangential speed tracing results with LTVMPC and FMPC.
tracking error weights continue augmenting. Finally, for both o . .
LTVMPC and  FMPC controllers, we fixed This time, the LTVMPC gave us a slightly better tracking
H =10,H. =1,T =0.05, where 7. is the sampling period result and the underlying reason will be revealed in Fig. 8.

P s i, RN -JI, s .

Both the LTVMPC and the FMPC were implemented by Next, v,y and their constraints are included in Fig. 6.
using CVXGEN [23] and the optimal solution was always
found within 0.001 second with a 1.8GHz CPU. The low-
level control allocation algorithm in Section IV was utilized to

generate wheel torque 7, and steering &, for both MPCs.

y

The global path tracking results can be found in Fig. 2.

200

Yaw i

— Real path with FMPC

E) joo | |7 = = Referenee path _

= ——
% 50 100 X () 150 200 250 bk 14 32 A 8 E OHOF M

g ? with FMPC T T Fig. 6. Lateral velocity and yaw rate constraints satlsfaction.

ol o it ETVMPC I

g l TTteelLe7 As shown in Fig. 6, both the LTVMPC and the FMPC

- 2 L L " L .

“o 50 100 X (m) 150 200 20 guaranteed that the constraints on v, and y were observed.

Fig. 2. Path tracking results with LTVMPC and FMPC. However, FMPC gave us smaller lateral velocity and yaw rate
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whereas LTVMPC pushed the lateral velocity toward the
limit. In other words, FMPC introduced a higher stability
index.

According to Figs. 2-6, we can make the conclusion that
the FMPC outperformed the LTVMPC even though the
weights on tracking errors in LTVMPC were 300 times higher
than FMPC. Two fundamental reasons account for this
phenomenon: 1) LTVMPC uses local linearization, which
inevitably induces approximation error; 2) FMPC exploits the
open-loop control terms, which cogently lessens the feedback
control efforts.

Finally, four-wheel steering and torque signals from the
LTVMPC and FMPC are separately depicted in Fig. 7. and
Fig. 8.

= 157
2 10f “-.‘ i“iﬂl E-‘I‘\ITIQM'

0 3 Time (s) 10 15

7 5t - s =
0 5 Time (s) 10 15 n 5 Time (s }l[] 1=

Fig. 7. Four-wheel steering from LTVMPC and FMPC.

i 200 —mHlINI'L x
= \ = =with LTVMP( 4|
\:
N
A E —
200 1 \‘--__-—/
Time (s) 10 Time (s) 10 12
_. 200 p=— p—
\\_
[
0 5 Time (s) 10 5 Time (s) 10 12

Fig. 8. Four-wheel torques from LTVMPC and FMPC.

It is clearly indicated in Fig. 7 that LTVMPC entailed
unnecessarily drastic four-wheel steering, which strongly
affected vehicle stability as reflected in Fig. 6. In Fig. 8, the
four wheel torques from FMPC suffered from a spike around
2.2s, because the referential curvature suddenly changed from
0 to a fixed positive number at this moment. This
discontinuity substantially impacted the performance of the
flatness controller, which eventually resulted in a slightly
reduced speed tracking performance as indicated in Fig. 5.

VI. CONCLUSION

This paper proposed an FMPC for autonomous vehicle
trajectory tracking control, which outperformed an
LTVMPC. Future work will concentrate on the hardware-in-
the-Loop (HIL) implementation and assessment of this
FMPC algorithm.
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