
  

 

Abstract— Model predictive control (MPC) has become more 

relevant to vehicle dynamics control due to its inherent capacity 

of treating system constraints. However, online optimization 

from MPC introduces an extensive computational burden for 

today’s onboard microprocessors. To alleviate MPC 

computational load, several methods have been proposed. 

Among them, online successive system linearization and the 

resulting linear time-varying model predictive controller 

(LTVMPC) is one of the most popular options. Nevertheless, 

such online successive linearization commonly approximates the 

original (nonlinear) system by a linear one, which inevitably 

introduces extra modeling errors and therefore reduces MPC 

performance. Actually, if the controlled system possesses the 

“differential flatness” property, then it can be exactly linearized 

and an equivalent linear model will appear. This linear model 

maintains all the nonlinear features of the original system and 

can be utilized to design a flatness-based model predictive 

controller (FMPC). CarSim-Simulink joint simulations 

demonstrate that the proposed FMPC substantially outperforms 

a classical LTVMPC in terms of the path-tracking performance 

for autonomous vehicles. 

I. INTRODUCTION 

Model predictive control (MPC), owing to its ability of 
explicitly treating state and input constraints, has been 
pervasively adopted for ground vehicle dynamic control [1], 
[2]. However, because of the inherent online optimization 
process, MPC, especially nonlinear MPC, entails a heavy 
computational burden for today’s vehicular electronic control 
unit (ECU). Several approaches [3] have been proposed and 
verified to alleviate the computational burden of MPC. For 
instance, efficient optimization solvers based on the 
Nesterov’s gradient method [4] or the real-time iteration 
algorithm [5] have been designed for reducing both algorithm 
complexity and memory space requirement. Besides, explicit 
MPC [3] has attracted attention from both academia and 
industry. Among all the existing methods, online successive 
linearization along with the resulting linear-time-varying 
model predictive controller (LTVMPC) is probably one of the 
most straightforward and popular options [2], [6]. 
Nonetheless, local linearization around the current working 
point introduces extra approximation error, which degrades 
the control performance of an LTVMPC.  

In contrast to the local linearization, a differentially flat 
system [7] can be exactly linearized with the help of the flat 
output. In fact, the inputs, states, and outputs of a 
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differentially flat system can be completely parameterized 
with the flat output and its finite-order derivatives. Hence, a 
nonlinear flat system can be alternatively expressed as its 
linear Brunovsky canonical form, which significantly reduces 
control law design. Despite the benefits, explicitly including 
constraints into a flat system remains hard. Therefore, 
combining differential flatness with MPC gives us triple 
benefits: 1) Systematic constraints handling from the MPC 
structure; 2) MPC computational load alleviation thanks to the 
exact linearization; and 3) Control performance enhancement 
with respect to an LTVMPC by avoiding linearization error. 

In fact, there exist several control structures in the 
literature integrating differential flatness with predictive 
control. In [8], a flatness predictive controller was illustrated. 
Here, the predicted flat output was employed to obtain 
feedforward system inputs and a simple proportional-integral-
derivative (PID) controller was added for disturbance 
rejection. In [9], state references were generated from the 
desired flat output and a separate MPC was designed for 
referential states tracking. In [10], [11], and [12], system flat 
output were firstly parameterized as a combination of basic 
functions and the original optimization problem was 
transformed into a nonlinear programming problem (NLP) 
with respect to the coefficients of the basic functions. 
However, as indicated in [11], it is difficult to prove that NLP 
can lead to the global optima. Moreover, the computational 
time of NLP can be too long to be implemented online [12]. 
Finally, similar to the philosophy underlies this paper, MPC 
applied on an equivalent linear flat system can be found in 
[13] and [14]: The original nonlinear model was firstly 
converted into a linear-time-invariant (LTI) system. After that, 
an MPC based on this LTI model was designed to obtain the 
optimal flat inputs and states, from which the original control 
inputs can be calculated. 

This paper proposes a hierarchical flatness-based model 
predictive controller (FMPC) for autonomous vehicle 
trajectory tracking. The high-level predictive controller 
generates the desired global forces and moment which are 
then allocated to four wheels’ independent steering and torque 
signals by a simple control-allocation module. CarSim-
Simulink joint simulations demonstrate the advantages of the 
high-level FMPC over an LTVMPC. 

The rest of the paper is organized as follows. A novel 
kinodynamic vehicle model for path tracking is presented in 
Section II. Its flatness character is proved in Section III. The 
high-level control for global forces and moment generation 
from either LTVMPC or FMPC is illustrated in Section IV, 
where the low-level control allocation algorithm is also 
mentioned. Simulation result and analysis are given in Section 
V, and Section VI concludes this paper. 
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II. SYSTEM MODELING 

A. Vehicular Kinodynamic Trajectory Tracking Model 

Inspired by [15], [24], the kinodynamic vehicle model for 
trajectory tracking is demonstrated in Fig. 1. 

 
Fig. 1. Kinodynamic trajectory tracking model. 

This new system contains five states, as: 

 .yx e v v  (1) 

In (1), e  represents the minimum distance from vehicle’s 

center of gravity (CG) to the reference path.  indicates 

vehicle yaw angle error with respect to the desired yaw 
r r

p pvs s , with r

p s  being the referential road 

direction and r

pv s  accounting for the vehicle sideslip 

amendment [16]. v  is the velocity tracking error in regard to 

the desired tangential speed rv s . yv specifies vehicle lateral 

speed at CG and  shows vehicle yaw rate. r

p s , r

pv s , 

and 
rv s  are external reference signals that are dependent on 

the station s  along the reference path. We assume them 

available from a planning module. Vehicle longitudinal 

velocity ,xv despite not included in the model, is regarded as a 

measured parameter for determining .v  

Besides, system admits three inputs as: 

 ,x y zu F F M  (2) 

where ,x yF  represents respectively the global longitudinal 

and lateral force and zM  is the global yaw moment around 

CG. 
According to the kinematics relationships, we have: 

 sin cos ,r r

x pv y pve v s v s  (3) 

and 

 ,r r

p pv rs s s s v v s  (4) 

along with 

 

cos sin

.

yr rx

pv pv

r

p r

r r

FF
v s s

m m

s v s
v v s e v v s

s s

 (5) 

Then, from the vehicle lateral dynamics, we have: 

 ,y y xv F m v  (6) 

and 

 .z zM I  (7) 

Equations (3)-(7) form the complete vehicular 
kinodynamic trajectory tracking model. 

In practice, by assuming 1 ,re s where 
r s  

stands for the referential road curvature, we have: 

 
cos sin ,

.

r r

x pv y pv r

r r

pv p

v v s v s v s

s s
(8) 

In (8), r

pv s  can be seen as the steady-state vehicle sideslip 

angle during turning [17] as: 

 

2

,
2

f rr

pv r

y f r

ml v s s
s l s

C l l
 (9) 

where fl  and rl  respectively indicate the distances from 

vehicle CG to the front and to the rear axles, m  is vehicle 

mass, and yC  represents the cornering stiffness of a single 

tire. 

III. FLATNESS SYSTEM PROOF 
We prove here that the vehicle kinodynamic model 

depicted by (3)-(7) is differentially flat with the flat output: 

 .e v  (10) 

The essence to prove a system being flat is to show that 
the system states and inputs can be parameterized with the flat 
output and its finite-order derivatives. Since  already groups 

three system states, we only need to concentrate on the 

parameterization of ,yv  ,  and ,xF  ,yF  .zM  

In fact, by rearranging (4), we directly obtain: 

 ,

r r

p pv

r

s s
v v s

s s
 (11) 

and by combining (3) and (8), we have: 

 cos sin .r r

y pv r pvv e s v v s s

 (12) 

Subsequently, by calculating the second-order derivative 

of e  and , we have: 
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From (5), (13), and (14), system inputs parameterization 
can be shown as: 

 

2
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prx
pv r

r
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pv r r
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s e v v s

m s

s v s
s v v v s e v v s
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along with 
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and finally, 
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As indicated in (11) and (12), the rest two system states  

and yv  can be expressed with the flat output  and its first-

order derivatives. Similarly, as shown in (15), (16), and (17), 

three system inputs: , ,x y zF F M  can also be expressed with the 

flat output  and its derivatives up to the second order. Thus, 

the vehicle kinodynamic model is indeed flat. 

IV. MODEL PREDICTIVE CONTROLLER DESIGN 

The aim of the high-level MPC is to obtain the optimal 
global forces and moment u  in (2) which minimize the 

vehicle trajectory tracking error  in (10) and satisfy several 

system constraints. Both an LTVMPC and an FMPC are 
designed and compared in this Section. In addition, a typical 
low-level control-allocation algorithm is also included at the 
end to transform the optimal global forces and moment into 
the optimal four-wheel torque and steering signals. 

A. Linear Time-Varying Model Predictive Controller 

The kinodynamic model in Section II can be compactly 
written as: 

 
, , , , ,

.

r r

pv p rx f x u s s v s

y x
 (18) 

with x and u  indicated in (1) and (2) and we assume all the 

states can be measured. Then, the online optimization problem 
can be summarized as: 

2 2 2
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H
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H
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such that 

 
,1 ,
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and 
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0.85
| , 1... .

yy x v

p

x

v k i k v g

g
k i k i H

v

 (21) 

The cost function (19) minimizes three items: The tracking 

errors  within the prediction horizon ,pH  the discrepancies 

between the actual high-level inputs u  and the desired system 

inputs *u within the control horizon ,cH  and the soft 

constraint violation penalty with respect to yv and .  In (19), 

the desired system inputs *u  can be decided by assigning 

0,e e e  0, and 0v v  in (15), (16), 

and (17), and the penalty coefficients are fixed as: 

1 6.
yv e  

The constraints demonstrated in (20) represent the online 
successively linearized system model. Additionally, soft 

constraints on vehicle lateral speed yv  as well as yaw rate  

[6] are included in (21) to ensure vehicle stability. In (21),  

stands for the tire road friction coefficient, g  is Earth gravity, 

yv
 and  are the slack variables. 

No explicit constraints on system inputs u  are accounted 

for, majorly due to two reasons: 1) The thresholds of global 
forces and moment are difficult to be estimated in real time 
[18]; 2) High-level input constraints are partially redundant 
with the low-level control allocation algorithm. 

B. Flatness Model Predictive Controller 

Before the FMPC design, the original nonlinear system 
(18) needs to be converted into an equivalent LTI system. 

By assigning ,ee , and  ,vv we can exactly 

represent the original nonlinear model (18) as a linear system, 
with flat states as: 

 ,px e e v  (22) 

which satisfy 
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0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0
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0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

e
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ee

ee

vv

 (23) 

or abstractly written as: 

 ,p p p px A x B  (24)  

where  is called the flat input. 

Based on the LTI model (24), an online successive 
optimization problem can be formulated as: 
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Similar to (19), cost function (25) minimizes the tracking 

errors within the prediction horizon ,pH  the flat input  

within the control horizon ,cH  and the soft constraints 

violation penalty. Constraint (26) is the discrete expression of 
(24) and the soft constraints on the lateral velocity and yaw 
rate are maintained in (27). Clearly, system parameterizations 
in (11) and (12) convert the simple box constraints (21) into 
the state-dependent inequalities. Moreover, the constraint on 

yv  becomes nonlinear. To treat this newly introduced 

nonlinear constraint, we use the method in [19] to online 
successively linearize this constraint. Unlike LTVMPC which 
linearizes the whole state vector x  in (1), only lateral velocity 

is linearized for constructing a quadratic programming 
problem for online optimization. 

Using the first-order Taylor expansion, the parameterized 

yv  in (27) within the prediction horizon can be expressed as: 

* *
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* * *
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1 1
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 (28) 

where 

 

cos , sin ,

sin cos .

r r

pv pv

r r

pv r pv

g g

ve

g
e v v

 (29) 

and * * *1 , 1 , 1e k i k k i k v k i k  are the 

optimal predicted flat states within the prediction horizon 
obtained at the last step. 

After solving the optimization problem (25)-(27), the 

optimal flat inputs * * * * * * *

e v e  need 

to be substituted back into (15), (16), and (17) to give us the 

real optimal control * * * * .x y zu F F M  

C. Control Allocation 

The optimal global forces and moment from either the 
LTVMPC or the FMPC must be allocated to each wheel’s 
spinning torque and steering. We assume the autonomous 
vehicle under control enjoys four-wheel independent steering 
and actuation (4WIS-4WIA) capacity. For such an over-
actuated system, the pseudo-inverse method in [20][25] is 
utilized to obtain the optimal tire force vector: 

 * * * , ,
T

tire xi yiF F F i fl rl fr rr  (30) 

where *

,x yiF  represents the desired longitudinal and lateral tire 

force of each wheel. 

As indicated in [20], the final expression of *

tireF  can be 

formulated as: 

 
1

* *.T T

tireF B QB W B Qu  (31) 

In (31), B  represents the system matrix which associates 

four wheels’ tire forces with the global forces and moment. 

Q  is the allocation error matrix. W  is responsible for 

restraining excessively demanded tire force, and *u  stands 

for the optimal control from the high-level MPC. A minor 

modification was adopted in (31): Instead of using the grip 

margin in [20], the dialog elements in W are changed as the 

following one to avoid tire force saturation. In (32), ijs  is tire 

slip ratio and ij  is tire sideslip angle. ,x yC C  constitute tire 

longitudinal and cornering stiffness, and ˆ ˆ,xij yijF F  represent 

the modelled longitudinal and lateral tire force of each wheel. 

There exist various tire models in the literature, such as the 

brush tire model in [20], the parameter varying model in [21], 

the magic formula in [22] to estimate tire forces. To be 

consistent, the brush tire model in [20] was utilized to 

calculate ˆ ˆ, .xij yijF F  
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As a final point, the optimal wheel torque *

ijT  and steering 

*

ij  of each wheel are determined with: 

 

* *

* * *

1 2

,

ˆ ˆ ,

ij ew xij

ij yij yij yij yij

T R F

K F F dt K F F dtdt
 (33) 

where ewR  is the effective wheel radius, ˆ
yijF  is estimated 

lateral tire force, and 1,2K  are control gains. 

V. SIMULATION RESULTS AND ANALYSIS 

A path composed of a straight line and a curve with time-
varying reference speed is designed to compare the tracking 
performance between the two MPCs. All simulations were 
conducted on Simulink-CarSim joint platform. 

To fairly tune the weighting factors in (19) and (25), a pre-
simulation with a simple Brunovsky control law [7] was 
conducted. Following a classical tuning rule [6], we have: 

 1 max , 1 max ,x yQ x R y  (34) 

where x  stands for e , , v  and y  represents either 

, ,x y zF F M  for the LTVMPC or , ,e v  for the FMPC. The 

final tuning results of the LTVMPC are: 

3.41 4,
xFR e 2.13 4,

yFR e 4.5 3,
zMR e 10225,eQ

28846,Q and 12220.vQ As for the FMPC, we have: 

1.46,
e

R 9.13,R 4.07,
v

R 34.08,eQ 96.15,Q  

and 40.73.vQ  The tracking error weights , ,e vQ Q Q  of the 

LTVMPC were intentionally augmented 300 times which 
ensured that no obvious improvement of the LTVMPC in 
terms of the tracking results can be witnessed even the 
tracking error weights continue augmenting. Finally, for both 
LTVMPC and FMPC controllers, we fixed 

10, 1, 0.05,p c sH H T where sT  is the sampling period. 

Both the LTVMPC and the FMPC were implemented by 
using CVXGEN [23] and the optimal solution was always 
found within 0.001 second with a 1.8GHz CPU. The low-
level control allocation algorithm in Section IV was utilized to 

generate wheel torque *

ijT  and steering *

ij
 for both MPCs. 

The global path tracking results can be found in Fig. 2. 

 
Fig. 2. Path tracking results with LTVMPC and FMPC. 

As indicated in Fig. 2, both MPC controllers can make the 
autonomous vehicle follow the given path but the tracking 
error of the FMPC is much smaller. 

Then, the minimum distance between vehicle’s center of 

gravity and the reference path e  is depicted in Fig. 3. Still, 

FMPC obviously outperformed LTVMPC. 

 
Fig. 3. Minimum distance between CG and referential path. 

After that, the yaw tracking results can be found in Fig. 4. 

 
Fig. 4. Road yaw tracking results with LTVMPC and FMPC. 

Clearly, the FMPC produced a swifter response toward 
abrupt road direction changes and achieved a globally smaller 
tracking error. 

Subsequently, the tangential velocity tracking results are 
demonstrated in Fig. 5. 

 

Fig. 5. Tangential speed tracing results with LTVMPC and FMPC. 

This time, the LTVMPC gave us a slightly better tracking 
result and the underlying reason will be revealed in Fig. 8. 

Next, yv ,  and their constraints are included in Fig. 6. 

 
Fig. 6. Lateral velocity and yaw rate constraints satisfaction. 

As shown in Fig. 6, both the LTVMPC and the FMPC 

guaranteed that the constraints on yv  and  were observed. 

However, FMPC gave us smaller lateral velocity and yaw rate 
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whereas LTVMPC pushed the lateral velocity toward the 
limit. In other words, FMPC introduced a higher stability 
index. 

According to Figs. 2-6, we can make the conclusion that 
the FMPC outperformed the LTVMPC even though the 
weights on tracking errors in LTVMPC were 300 times higher 
than FMPC. Two fundamental reasons account for this 
phenomenon: 1) LTVMPC uses local linearization, which 
inevitably induces approximation error; 2) FMPC exploits the 
open-loop control terms, which cogently lessens the feedback 
control efforts. 

Finally, four-wheel steering and torque signals from the 
LTVMPC and FMPC are separately depicted in Fig. 7. and 
Fig. 8. 

 

Fig. 7. Four-wheel steering from LTVMPC and FMPC. 

 

Fig. 8. Four-wheel torques from LTVMPC and FMPC. 

It is clearly indicated in Fig. 7 that LTVMPC entailed 
unnecessarily drastic four-wheel steering, which strongly 
affected vehicle stability as reflected in Fig. 6. In Fig. 8, the 
four wheel torques from FMPC suffered from a spike around 
2.2s, because the referential curvature suddenly changed from 
0 to a fixed positive number at this moment. This 
discontinuity substantially impacted the performance of the 
flatness controller, which eventually resulted in a slightly 
reduced speed tracking performance as indicated in Fig. 5. 

VI. CONCLUSION 

This paper proposed an FMPC for autonomous vehicle 

trajectory tracking control, which outperformed an 

LTVMPC. Future work will concentrate on the hardware-in-

the-Loop (HIL) implementation and assessment of this 

FMPC algorithm.  
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