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Abstract
Optimal Transport (OT) naturally arises in many
machine learning applications, yet the heavy com-
putational burden limits its wide-spread uses. To
address the scalability issue, we propose an im-
plicit generative learning-based framework called
SPOT (Scalable Push-forward of Optimal Trans-
port). Specifically, we approximate the optimal
transport plan by a pushforward of a reference dis-
tribution, and cast the optimal transport problem
into a minimax problem. We then can solve OT
problems efficiently using primal dual stochastic
gradient-type algorithms. We also show that we
can recover the density of the optimal transport
plan using neural ordinary differential equations.
Numerical experiments on both synthetic and real
datasets illustrate that SPOT is robust and has fa-
vorable convergence behavior. SPOT also allows
us to efficiently sample from the optimal trans-
port plan, which benefits downstream applications
such as domain adaptation.

1. Introduction
The Optimal Transport (OT) problem naturally arises in a
variety of machine learning applications, where we need to
handle data from multiple sources. One example is domain
adaptation: We collect multiple datasets from different do-
mains, and we need to learn a model from a source dataset,
which can be further adapted to target datasets (Ganin &
Lempitsky, 2014; Courty et al., 2017b; Damodaran et al.,
2018). Another example is resource allocation: We want to
assign a set of assets (one data source) to a set of receivers
(another data source) so that an optimal economic benefit
is achieved (Santambrogio, 2010; Galichon, 2017). Recent
literature has shown that both aforementioned applications
can be formulated as optimal transport problems.

The optimal transport problem has a long history, and its
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earliest literature dates back to Monge (1781). Since then,
it has attracted increasing attention and been widely stud-
ied in multiple communities such as applied mathematics,
probability, economy and geography (Villani, 2008; Carlier,
2012; Gross et al., 2016). Specifically, we consider two sets
of d-dimensional data, which are generated from two differ-
ent distributions denoted by X ⇠ µ and Y ⇠ ⌫.1 We aim
to find an optimal joint distribution � of X and Y , which
minimizes the expectation on some cost function c, i.e.,

�⇤ = argmin
�2⇧(µ,⌫)

E(X,Y )⇠� [c(X,Y )], (1)

The constraint � 2 ⇧(µ, ⌫) requires the marginal distribu-
tion ofX and Y in � to be identical to µ and ⌫, respectively.
Existing literature often refers to the optimal expected cost
W⇤(µ, ⌫) = E(X,Y )⇠�⇤ [c(X,Y )] asWasserstein distance,
and �⇤ as the optimal transport plan. For domain adaptation,
the function c measures the discrepancy between X and Y ,
and the optimal transport plan �⇤ essentially reveals the
transfer of the knowledge from source X to target Y . For
resource allocation, the function c is the cost of assigning
resource X to receiver Y , and the optimal transport plan �⇤

essentially yields the optimal assignment.

Since (1) is an optimization problem over the space of dis-
tributions, the problem is infinite dimensional and gener-
ally intractable when µ and ⌫ are continuous distributions.
Therefore, existing literature has resorted to finite dimen-
sional approximations. For example, Cuturi (2013) pro-
pose to discretize the support using a refined grid, and cast
(1) into a finite dimensional linear programming problem.
However, for complex distributions in high dimensions (e.g.,
images in domain adaptation), the grid size often needs to
be exponentially large (e.g., exponential in dimension) to
ensure a small approximation error (due to discretization).
Under such a regime, conventional linear programming al-
gorithms do not scale well, e.g., the interior point method
in conjunction with the Newton’s method takes O(n3 log n)
time, where n is the grid size. To ease such a scalability is-
sue, Cuturi (2013) propose an entropy regularization-based
Sinkhorn algorithm, which requires the computational cost
of O(n2), but still fail to scale to large problems.

1The optimal transport can also handle more than two distribu-
tions. See Section 3 for more details.
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While there exist several scalable stochastic algorithms for
computing Wasserstein distance for continuous distributions
µ and ⌫ (Genevay et al., 2016; Seguy et al., 2017; Yang &
Uhler, 2018), they cannot compute the optimal transport
plan �⇤ (see Section 7 for more discussion), which is crucial
in the aforementioned applications.

To address the scalability and efficiency issues, we pro-
pose a new implicit generative learning-based framework
for solving optimal transport problems. Specifically, we
approximate �⇤ by a generative model, which maps from
some latent variable Z to (X,Y ). For simplicity, we denote


X
Y

�
= G(Z) =


GX(Z)
GY (Z)

�
with Z ⇠ ⇢, (2)

where ⇢ is some simple latent distribution and G is some
operator, e.g., deep neural network or neural ordinary dif-
ferential equation (ODE). Accordingly, instead of directly
estimating the probability density of �⇤, we estimate the
mapping G between Z and (X,Y ) by solving

G⇤ = argmin
G

EZ⇠⇢[c(GX(Z), GY (Z))]. (3)

subject to GX(Z) ⇠ µ, GY (Z) ⇠ ⌫

We then cast (3) into a minimax optimization problem us-
ing the Lagrangian multiplier method. As the constraints
in (3) are over the space of continuous distributions, the
Lagrangian multiplier is actually infinite dimensional. Thus,
we propose to approximate the Lagrangian multiplier by
deep neural networks, which eventually delivers a finite
dimensional generative learning problem.

Our proposed framework has three major benefits: (1) Our
formulated minimax optimization problem can be efficiently
solved by primal dual stochastic gradient-type algorithms.
Many empirical studies have corroborated that these algo-
rithms can easily scale to very large minimax problems in
machine learning (Brock et al., 2018); (2) Our framework
can take advantage of recent advances in deep learning.
Many empirical evidences have suggested that deep neu-
ral networks can effectively adapt to data with intrinsic
low dimensional structures (Zhang et al., 2016; Li et al.,
2018a). Although they are often overparameterized, due to
the inductive biases of the training algorithms, the intrinsic
dimensions of deep neural networks are usually controlled
very well, which avoids the curse of dimensionality; (3) Our
adopted generative models allow us to efficiently sample
from the optimal transport plan. This is very convenient for
certain downstream applications such as domain adaptation,
where we can generate infinitely many data points paired
across domains (Liu & Tuzel, 2016).

Moreover, the proposed framework can also recover the den-
sity of entropy regularized optimal transport plan. Specif-
ically, we adopt the neural Ordinary Differential Equation
(ODE) approach in Chen et al. (2018) to model the dynamics

that how Z gradually evolves to G(Z). We then derive the
ODE that describes how the density evolves, and solve the
density of the transport plan from the ODE. The recovery of
density requires no extra parameters, and can be evaluated
efficiently.

Notations: Given a matrix A 2 Rd⇥d, det(A) denotes its
determinant, tr(A) =

P
i Aii denotes its trace, kAkF =qP

i,j A
2
ij denotes its Frobenius norm, and |A| denotes a

matrix with [|A|]ij = |Aij |. We use dim(v) to denote the
dimension of a vector v.

2. Background
We briefly review some background knowledge on optimal
transport and implicit generative learning.

Optimal Transport: The idea of optimal transport (OT)
originally comes from Monge (1781), which proposes to
solve the following problem,

T ⇤ = argmin
T (X)⇠⌫

EX⇠µ[c(X,T (X))], (4)

where T (·) is a mapping from the space of µ to the space of
⌫. The mapping T ⇤ is referred to as Monge map, and (4) is
referred to as Monge formulation of optimal transport.

Monge formulation, however, is not necessarily feasible.
For example, when X is a constant random variable and Y
is not, there does not exist such a map T satisfying T (X) ⇠
⌫. The Kantorovich formulation of our interest in (1) is
essentially a relaxation of (4) by replacing the deterministic
mapping with the coupling between µ and ⌫. Consequently,
Kantorovich formulation is guaranteed to be feasible and
becomes the classical formulation of optimal transport in
existing literature (Benamou et al., 2015; Chizat et al., 2015;
Frogner et al., 2015; Solomon et al., 2015; Xie et al., 2018).

Implicit Generative Learning: For generative learning
problems, direct estimation of a probability density function
is not always convenient. For example, we may not have
enough prior knowledge to specify an appropriate paramet-
ric form of the probability density function (pdf). Even
when an appropriate parametric pdf is available, computing
the maximum likelihood estimator (MLE) can be some-
times neither efficient nor scalable. To address these issues,
we resort to implicit generative learning, which do not di-
rectly specify the density. Specifically, we consider that
the observed variable X is generated by transforming a la-
tent random variable Z (with some known distribution ⇢)
through some unknown mapping G(·), i.e., X = G(Z).
We then can train a generative model by estimating G(·)
with a properly chosen loss function, which can be easier to
compute than MLE. Existing literature usually refer to the
distribution of G(Z) as the push-forward of reference dis-
tribution ⇢. Such an implicit generative learning approach
also enjoys an additional benefit: We only need to choose ⇢
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that is convenient to sample, e.g., uniform or Gaussian dis-
tribution, and we then can generate new samples from our
learned distribution directly through the estimated mapping
G very efficiently.

For many applications, the target distribution can be quite
complicated, in contrast to the distribution ⇢ being simple.
This actually requires the mapping G to be flexible. There-
fore, we choose to represent G using deep neural networks
(DNNs), which are well known for its universal approxima-
tion property, i.e., DNNs with sufficiently many neurons
and properly chosen activation functions can approximate
any continuous functions over compact support up to an
arbitrary error. Early empirical evidence, including varia-
tional auto-encoder (VAE, Kingma & Welling (2013)) and
generative adversarial networks (GAN, Goodfellow et al.
(2014)) have shown great success of parameterizing G with
DNNs. They further motivate a series of variants, which
adopt various DNN architectures to learn more complicated
generative models (Radford et al., 2015; Chen et al., 2016;
Zhao et al., 2016; Dai et al., 2017; Jiang et al., 2018).

Although the above methods cannot directly estimate the
density of the target distribution, for certain applications,
we can actually recover the density of G(Z). For example,
generative flow methods such as NICE (Dinh et al., 2014),
Real NVP (Dinh et al., 2016), and Glow (Kingma & Dhari-
wal, 2018)) impose sparsity constraints on weight matrices,
and exploit the hierarchical nature of DNNs to compute the
densities layer by layer. Specifically, NICE proposed in
Dinh et al. (2014) denotes the transitions of densities within
a neural network as

Z
f0�! h1

f1�! h2 · · ·hm
fm��! G(Z),

where hi represents the hidden units of the i-th layer and
fi is the transition function. NICE suggest to restrict the
Jacobian matrices of fi’s to be triangular. Therefore, fi’s
are reversible and the transition of density in each layer can
be easily computed. More recently, Chen et al. (2018) pro-
pose a neural ordinary differential equation (neural ODE)
approach to compute the transition from Z toG(Z). Specifi-
cally, they introduce a dynamical formulation and parameter-
izing the mapping G using DNNs with recursive structures:
They use an ODE to describe how the input Z gradually
evolves towards the output G(Z) in continuous time,

dz/dt = ⇠(z(t), t),

where z(t) denotes the continuous time interpolation of Z,
and ⇠(·, ·) denotes a feedforward-type DNN. Without loss
of generality, we choose z(0) = Z and z(1) = G(Z). Then
under certain regularity conditions, the mapping G(·) is
guaranteed to be reversible, and the density of G(Z) can
be computed in O(d) time, where d is the dimension of Z
(Grathwohl et al., 2018).

G

�X
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Figure 1. An illustrative example of SPOT framework.

3. Scalable OT with Pushforward
To achieve better efficiency and scalability, we propose a
new framework — named SPOT (Scalable Pushforward
of Optimal Transport) — for solving the optimal transport
problem. Recall that we aim to find an optimal joint distri-
bution � given by (1). Let W1(X,µ) denotes the standard
Wasserstein metric between a random vector X and a distri-
bution µ. Specifically, we write

W1(X,µ) = sup
�X2F1

EX [�X(X)]� EU⇠µ[�X(U)],

where F1 denotes the class of all 1-Lipschitz functions from
Rd to R. Note that W1(X,µ) = 0 indicates X ⇠ µ. Let
W1(Y, ⌫) be defined analogously as W1(X,µ). Then we
can rewrite (1) as

�⇤ = argmin
�

E(X,Y )⇠� [c(X,Y )], (5)

subject toW1(X,µ) = 0, W1(Y, ⌫) = 0.

As mentioned earlier, solving � in the space of all contin-
uous distributions is generally intractable. Thus, we adopt
the push-forward method, which introduces a mapping G
from some latent variable Z to (X,Y ). Recall that we de-
note (X,Y ) = G(Z) = (GX(Z), GY (Z)) as shown in (2).
The latent variable Z follows some distribution ⇢ that is
easy to sample. By the Lagrangian multiplier method and
the Kantorovich-Rubinstein duality (Villani, 2008), we then
rewrite (5) as

min
G

max
⌘X ,⌘Y ,�X2F1,�Y 2F1

EZ⇠⇢[c(GX(Z), GY (Z))]

+ ⌘XEZ⇠⇢[�X(GX(Z))]� EU⇠µ[�X(U)]

+ ⌘Y EZ⇠⇢[�Y (GY (Z))]� EV⇠⌫ [�Y (V )]. (6)

Motivated by Arjovsky et al. (2017), we then further param-
eterize G, �X , and �Y with neural networks2. We denote
G as the class of neural networks for parameterizing G and
similarly F1

X and F1
Y as the classes of 1-Lipschitz functions

for �X and �Y , respectively.

Since G, FX , and FY are only finite classes, our param-
eterization of G cannot exactly represent any continuous

2Using a single neural network to parameterize G encourages
parameter sharing between GX and GY . In fact, we can also
parameterize GX and GY with different neural networks.
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distributions of (X,Y ) (only up to a small approximation
error with sufficiently many neurons). Then the marginal
distribution constraints, GX(Z) ⇠ µ and GY (Z) ⇠ ⌫, are
not necessarily satisfied. Therefore, the Lagrangian mul-
tipliers can be unbounded and the equilibrium of (6) does
not necessarily exist. To address this issue, we directly treat
⌘X = ⌘Y = ⌘ as tuning parameters, and solve the following
problem instead

min
G2G

max
�X2F1

X ,�Y 2F1
Y

EZ⇠⇢[c(GX(Z), GY (Z))]

+ ⌘
�
EZ⇠⇢[�X(GX(Z))]� EX⇠µ[�X(X)]

+ EZ⇠⇢[�Y (GY (Z))]� EY⇠⌫ [�Y (Y )]
�
. (7)

We apply alternating stochastic gradient algorithm to solve
(7): in each iteration, we perform a few steps of gradient
ascent on �X and �Y , respectively for a fixed G, followed
by one-step gradient descent onG for fixed �X and �Y . We
use Spectral Normalization (SN, Miyato et al. (2018)) to
control the Lipschitz constant of �X and �Y being smaller
than 1. Specifically, SN constrains the spectral norm of each
weight matrixW by SN(W ) = W/�(W ) in every iteration,
where �(W ) denotes the spectral norm of W . Note that
�(W ) can be efficiently approximated by a simple one-step
power method (Golub & Van der Vorst, 2001). Therefore,
the computationally intensive SVD can be avoided. We
summarize the algorithm in Algorithm 1 with SN omitted.

Algorithm 1 Mini-batch Primal Dual Stochastic Gradient
Algorithm for SPOT

Require: Datasets {xi}Ni=1 ⇠ µ, {yj}Mj=1 ⇠ ⌫; Initialized
networks G, �X , and �Y with parameters w, ✓, and �,
respectively; ↵, the learning rate; ncritic, the number of
gradient ascent for �X and �Y ; n, the batch size
while w not converged do
for t = 1, 2, · · · , ncritic do
Sample mini-batch {xi}ni=1 from {xi}Ni=1

Sample mini-batch {yj}nj=1 from {yj}Mj=1

Sample mini-batch {zk}nk=1 from ⇢
g✓  r✓(⌘

1
n

Pn
k=1 �X,✓(GX,w(zk))

�⌘ 1
n

Pn
i=1 �X,✓(xi))

g�  r�(⌘
1
n

Pn
k=1 �Y,�(GY,w(zk))

�⌘ 1
n

Pn
i=1 �Y,�(yi))

✓  ✓ + ↵g✓, �  � + ↵g�
end for
Sample mini-batch {zk}nk=1 from ⇢
gw  rw(

1
n

Pn
k=1 c(GX,w(zk), GY,w(zk))

+⌘ 1
n

Pn
k=1 �X,✓(GX,w(zk))
+⌘ 1

n

Pn
k=1 �Y,�(GY,w(zk))

w  w + ↵gw
end while

Connection to Wasserstein Generative Adversarial Net-
works (WGANs): Our proposed framework (7) can be
viewed as a multi-task learning version of Wasserstein

GANs (Liu & Tuzel, 2016; Liu et al., 2018). Specifically,
the mapping G can be viewed as a generator that generates
samples in the domains X and Y . The Lagrangian multipli-
ers �X and �Y can be viewed as discriminators that evaluate
the discrepancies of the generated sample distributions and
the target marginal distributions. By restricting �X 2 F1

X ,
EZ⇠⇢[�X(GX(Z))] � EX⇠µ[�X(X)] essentially approx-
imates the Wasserstein distance between the distributions
of GX(Z) and X under the Euclidean ground cost (Villani
(2008), the same holds for Y ). Denote

R(GX , GY ) = EZ⇠⇢[c(GX(Z), GY (Z))], and
dw(GX , X) = max

�X2F1
X

EZ⇠⇢[�X(GX(Z))]� EX⇠µ[�X(X)].

Let dw(GY , Y ) be defined analogously as dw(GX , X). We
can rewrite (7) as

min
G2G

⌘
�
dw(GX , X) + dw(GY , Y )

�
+R(GX , GY ), (8)

which essentially learns two Wasserstein GANs with a joint
generator G through the regularizer R. An illustrative ex-
ample is provided in Figure 1.

Extension to Multiple Marginal Distributions: Our pro-
posed framework can be straightforwardly extended to more
than two marginal distributions. Consider the ground cost
function c taking m inputs X1, . . . , Xm with Xi ⇠ µi for
i = 1, . . . ,m. Then the optimal transport problem (1) be-
comes the multi-marginal problem (Pass, 2015):

�⇤ = argmin
�2⇧(µ1,µ2,··· ,µm)

E� [c(X1, X2, · · · , Xm)], (9)

where ⇧(µ1, µ2, · · · , µm) denotes all the joint distribu-
tions with marginal distributions satisfying Xi ⇠ µi for
all i = 1, . . . ,m. Following the same procedure for two
distributions, we cast (9) into the following form

min
G2G

max
�Xi2F⌘

Xi

EZ⇠⇢[c(GX1(Z), · · · , GXm(Z))]

+
Pm

i=1 (EZ⇠⇢[�Xi(GXi(Z))]� EXi⇠µi [�Xi(Xi)]) ,

whereG and �Xi ’s are all parameterized by neural networks.
Existing methods for solving the multi-marginal problem
(9) suggest to discretize the support of the joint distribution
using a refined grid. For complex distributions, the grid size
needs to be very large and can be exponential in m (Villani,
2008). Our parameterization method actually only requires
at most 2m neural networks, which further corroborates the
scalability and efficiency of our framework.

4. SPOT for Regularized Density Recovery
Existing literature has shown that entropy-regularized opti-
mal transportation outperforms the un-regularized counter-
part in some applications (Erlander & Stewart, 1990; Cuturi,
2013). This is because the entropy regularizer can tradeoff
the estimation bias and variance by controlling the smooth-
ness of the density function.
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We demonstrate how to efficiently recover the density p� of
the transport plan with entropy regularization. Instead of pa-
rameterizingG by a feedforward neural network, we choose
the neural ODE approach, which uses neural networks to ap-
proximate the transition from input Z towards output G(Z)
in the continuous time. Specifically, we take z(0) = Z and
z(1) = G(Z). Let z(t) be the continuous interpolation of
Z with density p(t) varying according to time t. We split
z(t) into z1(t) and z2(t) such that dim(z1) = dim(X) and
dim(z2) = dim(Y ). We then write the neural ODE as

dz1/dt = ⇠1(z(t), t), dz2/dt = ⇠2(z(t), t), (10)

where ⇠1 and ⇠2 capture the dynamics of z(t). We param-
eterize ⇠ = (⇠1, ⇠2) by a neural network with parameter w.
We can describe the dynamics of the joint density p(t) in
the following proposition.

Proposition 1. Let z, z1, z2, ⇠1 and ⇠2 be defined as above.
Suppose ⇠1 and ⇠2 are uniformly Lipschitz continuous in z
(the Lipschitz constant is independent of t) and continuous
in t. The log joint density satisfies the following ODE:

@ log p(t)

@t
= �

✓
tr

✓
@⇠1
@z1

◆
+ tr

✓
@⇠2
@z2

◆◆
, (11)

where @⇠1
@z1

and @⇠2
@z2

are Jacobian matrices of ⇠1 and ⇠2 with
respect to z1 and z2, respectively.

Proposition 1 is a direct result of Theorem 1 in Chen et al.
(2018). We can now recover the joint density by taking
p� = p(1), which further enables us to efficiently compute
the entropy regularizer defined as

H(p�) = EG(Z)⇠� [log p�(G(Z))].

Then we consider the entropy regularized Wasserstein dis-
tance Lc(G,�X ,�Y ) + ✏H(p�) where Lc(G,�X ,�Y ) is
the objective function in (7). Note that here G is a func-
tional operator of ⇠, and hence parameterized with w. The
training algorithm follows Algorithm 1, except that updating
G becomes more complex due to involving the neural ODE
and the entropy regularizer.

To update G, we are essentially updating w using the gra-
dient gw = @(Lc + ✏H)/@w, where ✏ is the regularization
coefficient. First we compute @Lc/@w. We adopt the inte-
gral form from Chen et al. (2018) in the following

@Lc

@w
= �

Z 1

0
a(t)>

@⇠(z(t), t)

@w
dt, (12)

where a(t) = @Lc/@z(t) is the so-called “adjoint variable”.
The detailed derivation is slightly involved due to the com-
plicated terms in the chain rule. We refer the readers to
Chen et al. (2018) for a complete argument. The advantage
of introducing a(t) is that we can compute a(t) using the
following ODE,

da(t)

dt
= �a(t)>

@⇠(z(t), t)

@z
.

Then we can use a well developed numerical method to com-
pute (12) efficiently (Davis & Rabinowitz, 2007). Next, we
compute @H/@w in a similar procedure with a(t) replaced
by b(t) = @H/@ log p(t). We then write

@H
@w

= �
Z 1

0
b(t)>

@ log p(t)

@w
dt.

Using the same numerical method, we can compute @H/@w,
which eventually allows us to compute gw and update w.

5. SPOT for Domain Adaptation
Optimal transport has been used in domain adaptation,
but existing methods are either computationally inefficient
(Courty et al., 2017a; Damodaran et al., 2018), or cannot
achieve a state-of-the-art performance (Seguy et al., 2018).
Here, we demonstrate that SPOT can tackle large scale do-
main adaptation problems with state-of-the-art performance.

Specifically, we obtain labeled source data {xi} ⇠ µ, where
each data point is associated with a label vi, and target data
{yj} ⇠ ⌫ with unknown labels. For simplicity, we use X
and Y to denote the random vectors following distributions
µ and ⌫, respectively. The two distributions µ and ⌫ can be
coupled in a way that each paired samples of (X,Y ) from
the coupled joint distribution are likely to have the same la-
bel. In order to identify such coupling information between
source and target data, we propose a new OT-based domain
adaptation method — DASPOT (Domain Adaptation with
SPOT) as follows.

Specifically, we jointly train an optimal transport plan and
two classifiers for X and Y (denoted by DX and DY , re-
spectively). Each classifier is a composition of two neural
networks — an embedding network and a decision network.
For simplicity, we denoteDX = De,X �Dc,X , whereDe,X

denotes the embedding network, and Dc,X denotes the de-
cision network (respectively for DY = De,Y �Dc,Y ). We
expect the embedding networks to extract high level fea-
tures of the source and target data, and then find an optimal
transport plan to align X and Y based on these high level
features using SPOT. Here we choose a ground cost

c(x, y) = kDe,X(x)�De,Y (y)k2. (13)

Let G denote the generator of SPOT. The Wasserstein
distance of such an OT problem can be written as
EZkDe,X(GX(Z))�De,Y (GY (Z))k2.

Meanwhile, we train DX by minimizing the empirical risk
1
n

Pn
i=1[E(DX(xi), vi)], where E denotes the cross entropy

loss function, and train DY by minimizing

EZ [E(DY (GY (Z)), argmax
k

[DX(GX(Z))]k)], (14)

where [v]k denotes the k-th entry of the vector v. The
risk function defined in (14) essentially encourages DX
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and DY to predict each paired (synthetic) samples of
(GX(Z), GY (Z)) to have the same label.

Eventually, the joint training optimize

min
DX ,DY ,G

max
�X ,�Y

Lc(G,�X ,�Y ) +
⌘s
n

nX

i=1

[E(DX(xi), vi)]

+⌘daEZ [E(DY (GY (Z)), argmax
k

[DX(GX(Z))]k)],

where Lc(G,�X ,�Y ) is the objective function in (7) with c
defined in (13), and ⌘s, ⌘da are the tuning parameters.

6. Experiments
We evaluate the SPOT framework on various tasks: Wasser-
stein distance approximation, density recovery, paired sam-
ple generation and domain adaptation. All experiments are
implemented with PyTorch using one GTX1080Ti GPU
and a Linux desktop computer with 32GB memory, and we
adopt the Adam optimizer with configuration parameters
0.5 and 0.999 (Kingma & Ba, 2014).
6.1. Wasserstein Distance (WD) Approximation
We first demonstrate that SPOT can accurately and effi-
ciently approximate the Wasserstein distance. We take
the Euclidean ground cost, i.e. c(x, y) = kx � yk.
Then EG(Z)⇠�⇤ [c(GX(Z), GY (Z))] essentially approxi-
mates the Wasserstein distance. We take the marginal distri-
butions µ and ⌫ as two Gaussian distributions in R2 with the
same identity covariance matrix. The means are (�2.5, 0)>

and (2.5, 0)>, respectively. We find the Wasserstein dis-
tance between µ and ⌫ equal to 5 by evaluating its closed-
form solution. We generate n = 105 samples from both
distributions µ and ⌫, respectively. Note that naively apply-
ing discretization-based algorithms by dividing the support
according to samples requires at least 40 GBmemory, which
is beyond the memory capability.

We parameterizeGX ,GY , �X , and �Y with fully connected
neural networks without sharing parameters. All the net-
works use the Leaky-ReLU activation (Maas et al., 2013).
GX andGY have 2 hidden layers. �X and �Y have 1 hidden
layer. The latent variable Z follows the standard Gaussian
distribution in R2. We take the batch size equal to 100.

WD vs. Number of Epochs. We compare the algorithmic
behavior of SPOT and Regularized Optimal Transport (ROT,
Seguy et al. (2017)) with different regularization coefficients.
For SPOT, we set the number of units in each hidden layer
equal to 8 and ⌘ = 104. For ROT, we adopt the code from
the authors3 with only different input samples, learning rates,
and regularization coefficients.

Figure 2 shows the convergence behavior of SPOT and
ROT for approximating the Wasserstein distance between µ
and ⌫ with different learning rates. We observe that SPOT

3https://github.com/vivienseguy/Large-Scale-OT

converges to the true Wasserstein distance with only 0.6%,
0.3%, and 0.3% relative errors corresponding to Learning
Rates (LR) 10�3, 10�4, and 10�5, respectively. In contrast,
ROT is very sensitive to its regularization coefficient. Thus,
it requires extensive tuning to achieve a good performance.

(a) LR =10�3 (b) LR =10�4 (c) LR =10�5

Figure 2. Comparison of convergence between SPOT and ROT.
All the curves are averaged over 50 runs with different random
seeds, and the shaded areas represent the standard deviation.

WD vs. Number of Hidden Units. We then explore the
adaptivity of SPOT by increasing the network size, while
the input data are generated from some low dimensional
distribution. Specifically, the number of hidden units per
layer varies from 2 to 210. Recall that we parameterize
G with two 2-hidden-layer neural networks, and �X , �Y

with two 1-hidden-layer neural networks. Accordingly, the
number of parameters in G varies from 36 to about 2⇥ 106,
and that in �X or �Y varies from 12 to about 2, 000. The
tuning parameter ⌘ also varies corresponding to the number
of hidden units in �X , �Y . We use ⌘ = 105 for 21, 22 and
23 hidden units per layer, ⌘ = 2 ⇥ 104 for 24, 25 and 26

hidden units per layer, ⌘ = 104 for 27 and 28 hidden units
per layer, ⌘ = 2⇥103 for 29, and 210 hidden units per layer.

Figure 3. Box plots of relative errors of the estimated Wasserstein
distance with respect to the number of hidden units per layer. The
results are averaged over 50 independent runs.

Figure 3 shows the estimatedWDwith respect to the number
of hidden units per layer. For large neural networks that
have 29 or 210 hidden units per layer, i.e., 5.2 ⇥ 105 or
2.0⇥ 106 parameters, the number of parameters is far larger
than the number of samples. Therefore, the model is heavily
overparameterized. As we can observe in Figure 3, the
relative error however, does not increase as the number of
parameters grows. This suggests that SPOT is quite robust
with respect to the network size.

6.2. Density Recovery
We demonstrate that SPOT can effectively recover the joint
density with entropy regularization. We adopt the neural
ODE approach as described in Section 4. Denote �(a, b)
as the density of the Gaussian distribution N(a, b). We
take the marginal distributions µ and ⌫ as (1) Gaussian dis-
tributions �(0, 1) and �(2, 0.5); (2) mixtures of Gaussian
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1
2�(�1, 0.5) + 1

2�(1, 0.5) and
1
2�(�2, 0.5) + 1

2�(2, 0.5).
The ground cost is the Euclidean square function, i.e.,
c(x, y) = kx � yk2. We run the training algorithm for
6 ⇥ 105 iterations and in each iteration, we generate 500
samples from µ and ⌫, respectively. We parameterize ⇠ with
a 3-hidden-layer fully-connected neural network with 64
hidden units per layer, and the latent dimension is 2. We
take ⌘ = 106.

Figure 4 shows the input marginal densities and heat maps
of output joint densities. We can see that a larger regular-
ization coefficient ✏ yields a smoother joint density for the
optimal transport plan. Note that with continuous marginal
distributions and the Euclidean square ground cost, the joint
density of the unregularized optimal transport degenerates
to a generalized impulse function (i.e., a generalized Dirac
� function that has nonzero value on a manifold instead of
one atom, as shown in Rachev (1985); Onural (2006)). En-
tropy regularization prevents such degeneracy by enforcing
smoothness of the density.

Figure 4. Visualization of the marginal distributions and the joint
density of the optimal transport plan.
6.3. Sample Generation
We show that SPOT can generate paired samples
(GX(Z), GY (Z)) from unpaired data X and Y that are
sampled from marginal distributions µ and ⌫, respectively.

Synthetic Data. We take the squared Euclidean cost, i.e.
c(x, y) = kx � yk2, and adopt the same implementation
and sample size as in Section 6.1 with learning rate 10�3

and 32 hidden units per layer. Figure 6 illustrates the input
samples and the generated samples with two sets of different
marginal distributions: The upper row corresponds to the
same Gaussian distributions as in Section 6.1. The lower
row takesX as Gaussian distribution with mean (�2.5, 0)>

and covariance 0.5I , Y as (sin(Y1)+Y2, 2Y1� 3)>, where
Y1 follows a uniform distribution on [0, 3], and Y2 follows a
Gaussian distribution N(2, 0.1). We observe that the gen-
erated samples and the input samples are approximately
identically distributed. Additionally, the paired relationship
is as expected – the upper mass is transported to the up-
per region, and the lower mass is transported to the lower
region.

Real Data. We next show SPOT is able to generate high
quality paired samples from two unpaired real datasets:
MNIST (LeCun et al., 1998) and MNISTM (Ganin &
Lempitsky, 2014). The handwritten digits in MNIST and
MNISTM datasets have different backgrounds and fore-
grounds (see Figrue 5). The digits in paired images however,

are expected to have similar contours. We leverage this prior
knowledge4 by adopting a semantic-aware cost function (Li
et al., 2018b) to extract the edge of handwritten letters, i.e.,
we use the following cost function

c(x, y) =
P2

i=1

P3
j=1 k|Ci ⇤ xj |� |Ci ⇤ yj |kF ,

where C1 and C2 denote the Sobel filter (Sobel, 1990), and
xj’s and yj’s are the three channels of RGB images. The
operator ⇤ denotes the matrix convolution. We set

C1 =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 and C2 =

2

4
1 2 1
0 0 0
�1 �2 �1

3

5 ,

with C1 and C2 defining two extraction directions.

We now use separate neural networks to parameterize GX

and GY instead of taking GX and GY as outputs of a com-
mon network. Note that GX and GY does not share param-
eters. Specifically, we use two 4-layer convolutional layers
in each neural network for GX or GY , and two 5-layer con-
volutional neural networks for �X and �Y . More detailed
network settings are provided in Appendix A.2. The batch
size is 32, and we train the framework with 2⇥105 iterations
until the generated samples become stable.

Figure 5 shows the generated samples of SPOT. We also
reproduce the results of CoGAN with the code from the
authors5. As can be seen, with approximately the same
network size, SPOT yields paired images with better quality
than CoGAN: The contours of the paired results of SPOT
are nearly identical, while the results of CoGAN have no
clear paired relation. Besides, the images corresponding to
GY (Z) in SPOT have colorful foreground and background,
while in CoGAN there are only few colors. Recall that
in SPOT, the paired relation is encouraged by ground cost
c, and in CoGAN it is encouraged by sharing parameters.
By leveraging prior knowledge in ground cost c, the paired
relation is more accurately controlled without compromising
the quality of the generated images.

We further test our framework on more complex real
datasets: Photo-Monet dataset (Zhu et al., 2017) and Edges-
Shoes dataset (Isola et al., 2017). We adopt the Euclidean
cost function for Photo-Monet dataset, and the semantic-
aware cost function as inMNIST-MNISTM for Edges-Shoes
dataset. Other implementations remain the same as the
MNIST-MINSTM experiment.

Figure 7 demonstrates the generated samples of both
datasets. We observe that the generated images have a de-
sired paired relation: For each Z, GX(Z) and GY (Z) gives
a pair of corresponding scenery and shoe. The generated
images are also of high quality, especially considering that

4For OT problems, c can be viewed as a way to add prior
knowledge to the problem (Peyré et al., 2017).

5https://github.com/mingyuliutw/CoGAN
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Figure 5. Generated samples of SPOT and CoGAN on the MNIST-MNISTM task.

Figure 6. Visualization of input samples and generated samples.
The black lines represent the paired relation.
Photo-Monet dataset is a pretty small but complex dataset
with 6,288 photos and 1,073 paintings.

Figure 7. Generated samples of SPOT on Photos-Monet and
Sketches-Shoes datasets.

6.4. Domain Adaptation
We choose ⌘s = 103 for all experiments. We set ⌘da = 0 for
the first 105 iteration to wait the generators to be well trained.
Then we set ⌘da = 10 for the next 3⇥105 iteration. We take
totally 4⇥ 105 iterations, and set the learning rate equal to
10�4 and batch size equal to 128 for all experiments.

We evaluate DASPOT with the MNIST, MNISTM, USPS
(Hull, 1994), and SVHN (Netzer et al., 2011) datasets. We
denote a domain adaptation task as Source Domain! Tar-
get Domain. For the tasks MNIST ! USPS, USPS !
MNIST and MNIST ! MNISTM, we use three 4-layer
networks for D,�X ,and �Y , and two 5-layer networks for
GX and GY . For the task SVHN!MNIST, we use three

5-layer downsampling ResNets (He et al., 2016) forD,�X ,
and �Y , and two 5-layer upsampling ResNets for GX and
GY . More detailed implementations are provided in Appen-
dices A.2 and A.3.

We compare the performance of DASPOT with other op-
timal transport based domain adaptation methods: ROT
(Seguy et al., 2018), StochJDOT (Damodaran et al., 2018)
and DeepJDOT (Damodaran et al., 2018). As can be seen
in Table 1, DASPOT achieves equal or better performances
on all the tasks.
Table 1. Domain Adaptation Experiments on multiple tasks.

Source MNIST USPS SVHN MNIST
Target USPS MNIST MNIST MNISTM
ROT 72.6% 60.5% 62.9% �
StochJDOT 93.6% 90.5% 67.6% 66.7%
DeepJDOT 95.7% 96.4% 96.7% 92.4%
DASPOT 97.5% 96.5% 96.2% 94.9%

Moreover, we show that DeepJDOT is not as efficient
as DASPOT. For example, in the MNIST ! USPS task,
DASPOT requires 169s running time to achieve a 95% ac-
curacy, while DeepJDOT requires 518s running time to
achieve the same accuracy. The reason behind is that Deep-
JDOT needs to solve a series of optimal transport problems
using Sinkhorn algorithm. The implementation of DeepJ-
DOT is adapted from the authors’ code6.

7. Discussion
Existing literature shows that several stochastic algorithms
can efficiently compute the Wasserstein distance between
two continuous distributions. These algorithms, however,
only apply to the dual of the OT problem (1), and cannot
provide the optimal transport plan. For example, Genevay
et al. (2016) suggest to expand the dual variables in two
reproducing kernel Hilbert spaces. They then apply the
Stochastic Averaged Gradient (SAG) algorithm to compute
the optimal objective value of OT with continuous marginal
distributions or semi-discrete marginal distributions (i.e.,
one marginal distribution is continuous and the other is
discrete). The follow-up work, Seguy et al. (2017), param-
eterize the dual variables with neural networks and apply
the Stochastic Gradient Descent (SGD) algorithm to eventu-
ally achieve a better convergence. These two methods can
only provide the optimal transport plan and recover the joint
density when the densities of the marginal distributions are
known. This is prohibitive in most applications, since we
only have access to the empirical data. Our framework actu-
ally allows us to efficiently compute the joint density from
the transformation of the latent variable Z as in Section 4.

6https://github.com/bbdamodaran/deepJDOT
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