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Drivers’ Attentional Instability
on a Winding Roadway

Richard J. Jagacinski
Tyler N. Morrison

Abstract—The spatiotemporal distribution of drivers’ attention
to preview was inferred from their steering movements while track-
ing a winding roadway in a laboratory setting. For most subjects,
the average driving attentional distribution over six daily sessions
was relatively stable and generalized across different control de-
vices. However, there was considerable day-to-day variability in the
attentional distributions. This variability was modeled as a strong
interaction between two dynamic processes, the attentional empha-
sis of selected regions and inhibition of surrounding regions. The
model combines a novel application of a reaction-diffusion model
of biological pattern formation with an optimal control model of at-
tention to preview. The combined model treats attentional dynam-
ics as an example of the biological spacing of a limited cognitive
resource, which is also shaped by the demands of action.

Index Terms—Attention, driving, manual control, optimal con-
trol, pattern formation, preview, reaction-diffusion, tracking.

1. INTRODUCTION

N TRACKING, a winding roadway performance is improved

by the availability of a preview of the upcoming roadway [1]
[2] (see Fig. 1). Jagacinski et al. [3] have recently introduced a
methodology for measuring the spatiotemporal distribution of
attention to preview by analyzing human movements used to
track a winding roadway. Building on previous work by John-
son and Phatak [4], Sheridan [5], Levison [6], and others, the
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Fig. 1. Roadway display (upper left) and a conceptual model of movement

control with preview. Preview extends 1 s into the future at the top of the display.
The cross represents the present center of the roadway. Subjects were instructed
to keep the circular cursor directly below the cross.

previewed roadway was perturbed with a sinusoid of a different
frequency at each of ten preview times ranging from 0.1, 0.2,
up to 1.0 s. Fourier analysis of the person’s tracking movements
revealed an amplitude at each of these frequencies. The ratio
of this amplitude to the amplitude occurring at that same fre-
quency in a control condition without perturbations provided a
signal-to-noise ratio that is interpreted as a measure of attention
allocation. It is assumed that the driver has a limited cognitive
capacity to process preview and selectively emphasizes or at-
tends to certain preview times depending on the dynamics of
the control task. The present methodology measures to what de-
gree various preview times are coupled to the driver’s control
motions, and does not rely on eye movements to infer attention.
The present experimental task used a display that did not re-
quire shifting one’s gaze. This measurement technique reveals a
detailed spatiotemporal distribution of attention, which may be
helpful in assessing individual differences in cognitive aspects
of driving skill.

The data of Jagacinski et al. [3] were obtained from naive sub-
jects over 2 or 3 sessions of approximately 1 h each. The present
paper examines this measure of attention with a convenience
sample of four subjects who were researchers familiar with the
measurement technique, and who tracked for an extended period
of 18 sessions in two different laboratory settings. Questions of
interest are as follows.

1) Do subjects reach stable asymptotic performance in their

distribution of attention to preview?

2) Do subjects exhibit similar patterns of attention in two dif-

ferent laboratory settings, one using a joystick and another
using a steering wheel?
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3) Do subjects’ exhibit a continuously decreasing pattern of
attention for preview times farther into the future as sug-
gested by Miller’s optimal control analysis [7], or do they
exhibit two discrete points of attention, one close and one
far, as suggested by empirical research on car driving and
piloting [8]-[11].

II. METHOD
A. Participants

Four researchers familiar with the measurement technique of
Jagacinski er al. [3] participated in the study. They ranged in
age from 22 to 30 years. Subjects 1 and 3 had participated in
the research program for more than 2 years and had significant
practice on the experimental task involving the joystick (see
below). Subjects 2 and 4 had a slight amount of practice prior to
the experiment. All participants passed a test for 20/25 corrected
vision. The research was approved by the Institutional Review
Board at Ohio State University. Informed consent was obtained
from each participant.

B. Apparatus

A winding roadway was tracked in two different laboratories.
In Laboratory A, subjects viewed the winding roadway on a
24-in BenQ LED monitor from a distance of 26 in (66 cm). They
manipulated a one-dimensional joystick (Measurement Systems
525 constrained to one axis) to keep a circular cursor below a
cross that indicated the center of the roadway. Preview of the
roadway was provided at 0.05, 0.10, 0.20, 0.30, ...,1.00 s into
the future and was displayed as two curvy edge lines (see Fig. 1).
The horizontal separation of the edge lines decreased by 19%
from 0 to 1.00 s of the preview to give an impression of depth. In
Laboratory B subjects viewed the winding roadway on a Christie
Digital HoloStage Minicave from a distance of 74 in (183 cm).
This display provided a low fidelity simulation of driving down
a country road at a challenging speed with no additional traffic.
The drivers sat in a Playseat and manipulated a steering wheel
(Logitech G29 Racing Wheel with no force feedback) to keep
the circular cursor below the cross indicating the center of the
roadway [see Figs. 1 (left) and 2]. The depiction of the winding
roadway was the same as in Laboratory A. The horizontal range
of the roadway center was approximately 4.8° of visual angle to
the right and left in both laboratories, and both displays were up-
dated at 60 Hz. Both roadway displays could be viewed without
shifting one’s gaze. The sensitivity of the joystick was 0.27° of
visual angle per 1° of joystick movement, which was controlled
by finger and wrist movements. The sensitivity of the steering
wheel was 0.14° of visual angle per 1° of steering wheel move-
ment, which was controlled with arm movements. Both systems
directly controlled the position of the circular cursor.

C. Procedure

Each experimental session consisted of three blocks of four
trials. Each trial began with 10 s of warm-up tracking followed
by 164 s of data collection. The roadway consisted of the sum of
ten sinusoids, six with high amplitudes and four with amplitudes

Roadway Display
on Christie Digital
HoloStage Minicave

Logitech G9
Racing Wheel

: “Playseat Rl o

Fig. 2. Laboratory B with a steering wheel controller.

that were one-fifth larger. The six high amplitude sinewaves de-
termined the input bandwidth, which was approximately 3 rad/s.
One block had additional sinusoidal observation-noise distur-
bances added to the display of the roadway, one block had sinu-
soidal wind gust disturbances of the cursor, and one block had
no added disturbances. A full counterbalance of the ordering of
the blocks was used across each set of six sessions. The initial
phases of the sinusoids varied from trial to trial. There were
three sets of six sessions for a total of 18 sessions. Subjects 1
and 2 had 12 sessions with the steering wheel followed by six
sessions with the joystick. Subjects 3 and 4 had 12 sessions with
the joystick followed by six sessions with the steering wheel.
There was a one-to-five-week break between the second and
third sets. After each block subjects received feedback on their
median root-mean-squared error over the four trials.

D. Measure of Attention to Preview

In the block with additional sinusoidal observation noise, ten
different sinusoids with distinct frequencies perturbed the road
at ten preview times ranging from 0.1 to 1.0 s into the future.
Fourier analysis of the joystick or steering wheel movements
determined the median amplitude at each of these ten frequen-
cies. The ratio of this amplitude to the median amplitude at that
same frequency when there was no additional observation noise
provided a signal-to-noise ratio that was interpreted as a mea-
sure of attention to each of the ten previewed roadway positions.
The observation noise frequencies interleaved the frequencies of
the roadway and were arranged so that the fastest perturbation
frequency was at the 0.1 s preview time, and the slowest was at
the 1.0 s preview time. Previous research revealed that this or-
dering resulted in higher signal-to-noise ratios than the reverse
ordering [3].

E. Measure of Error Nulling

Wind gust disturbances consisting of ten frequencies different
from the roadway frequencies were added to the cursor position
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Fig.3. Attentional signal-to-noise ratios for Days 1-6 and Days 7—12. Circles
represent the steering wheel, and inverted triangles represent the joystick (piv-
oting about a fixed axis). The unfilled symbols are for Days 1-6, and the gray
symbols are for Days 7—12. Subjects used the same control device for Days 1-12.

for one of the three blocks of trials. Because these disturbances
were not previewed, the response of the subject at these fre-
quencies provided a measure of error nulling independent of
the response to preview. Fourier analyses were conducted to
determine the median amplitude ratio and phase shift from er-
ror to system output (commanded cursor position). A simplified
McRuer crossover model was fit to these data [12]. This model
posits that the describing function for the person plus the control
system can be approximated as a gain, an integrator, and a time
delay in a feedback loop. The log—log plot of output to error
amplitude ratio versus frequency for this model is linear and has
a slope of —1 due to the integrator. The frequency in rad/s at
which the amplitude ratio is equal to 1 is numerically equal to
the gain K. A plot of phase shift versus frequency is also linear
and has an intercept of ~90° due to the integrator in the crossover
model. The slope of the linear trend, rad versus rad/s, is equal to
the time delay. The median amplitude ratio and phase shift were
calculated across the four trials in a block at each measurement
frequency. The medians at the middle six frequencies out of ten
were used to estimate the gain and time delay for a block of trials.

III. RESULTS
A. Attention Distribution

A comparison of the attention signal-to-noise ratios at the ten
measured preview times for Days 1-6 and Days 7-12 is shown
in Fig. 3. All subjects exhibited significant effects of the preview
time (p < .01) and generally exhibited stable patterns across the
two sets of six days. Only Subject 4 showed a statistically sig-
nificant practice effect (F(1,10) = 4.95, p = .05) corresponding
to higher signal-to-noise ratios on Days 7—12.

A comparison of the attention signal-to-noise ratios for Days
7-12 and Days 8—13 is shown in Fig. 4. All subjects exhibited
significant effects of the preview time (p < .01). Only Subject 3
exhibited a significant effect of joystick versus steering wheel,
an interaction (F(9,90) = 2.18, p < .05) reflecting a greater
emphasis of longer preview times with the steering wheel. The
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Fig. 4. Attentional signal-to-noise ratios for Days 7-12 and Days 13-18. Cir-
cles represent the steering wheel, and inverted triangles represent the joystick.
The gray symbols are for Days 7—12, and the black symbols are for Days 13—18
when the subjects switched to a different control device.
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Fig. 5. Preview times at which the maximum signal-to-noise ratio occurred
across all subjects and days (4 subjects x 18 days = 72 signal-to-noise attentional
distributions).

other three subjects showed relatively stable patterns of attention
across the joystick and steering wheel.

Despite the relative stability of the six-day average attentional
patterns, there was striking variability in the day-to-day mea-
sures of attention. Fig. 5 shows the preview times corresponding
to the highest daily signal-to-noise ratio across all 18 days and
four subjects. There are two groups of preview times with simi-
larly high frequencies. Preview times 0.1, 0.2, and 0.3 s had the
maximum signal-to-noise ratio on more than half of the sessions
(57%), and preview times 0.5, 0.6, and 0.7 s had the maximum
signal-to-noise ratio on one-third of the sessions (33%).

Plots of the signal-to-noise ratios for Days 8—11 are shown in
Figs. 6 and 7 for the two subjects with the lowest error scores on
Days 7-12. Subject 2 showed a strong peak at 0.6 s on Days 8
and 11; on Days 9 and 10 there was a strong peak at 0.1 s.
Subject 4 showed strong peaks at 0.5 and 0.6 s on Days 8 and 9;
peaks at times 0.1, 0.2, or 0.3 s occurred for all four days. These
patterns of instability across days and the two regions of maximal
signal-to-noise ratio in Fig. 5 suggest that the peaks in the 0.1-
0.3 s range and the 0.5-0.7 s range are distinct foci of attention.
They may alternate across days as illustrated in Fig. 6, or they
may co-occur as illustrated in Fig. 7.
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Fig. 6. Attentional signal-to-noise ratios for Days 8—11 for Subject 2 using a
steering wheel.
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Fig. 7.  Attentional signal-to-noise ratios for Days 8—11 for Subject 4 using a
joystick.

Another possibility is that these peaks are a result of measure-
ment noise. However, similar experiments [13] in which only
part of the preview was visible provided an estimate of mea-
surement noise at preview positions that were not visible to the
subject. Signal-to-noise ratios of magnitude 3 or greater spuri-
ously occurred less than 1% of the time at these hidden preview
positions for the data in single daily sessions. These experiments
used a rate control, which has exhibited similar signal-to-noise
patterns as a position control system. Given the large magnitudes
of the signal-to-noise peaks in the daily sessions in Figs. 6 and
7, it is highly unlikely that they reflect measurement noise.

B. Error Nulling

An analysis of error nulling on Days 7-12 and Days
13—18 using the McRuer Crossover Model revealed systematic
differences in feedback control between the joystick and steer-
ing wheel for each subject (p < .01). The crossover frequency
at which the amplitude ratio equals 1.0 was estimated from a
linear fit to the middle six measurement frequencies plotted log-
arithmically against log amplitude ratio.
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Fig. 8.  Error nulling gains (K) and time delays estimated from the crossover

model. Each symbol represents a single subject. Gray symbols are for Days
7-12. Black symbols are for Days 13-18.
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Fig. 9. Amplitude ratios for the relationship between system output (com-
manded cursor position) and error for Days 8—11 for Subject 2 using a steering
wheel.

The crossover frequency is numerically equal to the gain K
in the McRuer Crossover Model. The time delay was estimated
from the slope of a linear fit to phase lag plotted against the
middle six measurement frequencies. The joystick controller re-
sulted in higher gains K and lower time delays than the steering
wheel (see Fig. 8). These differences can be attributed to biome-
chanical differences between the limbs (fingers and wrist for the
joystick versus arms for the steering wheel) and hardware (light
joystick handle versus more massive steering wheel). Similar
differences in effective time delay are reported in [14]. The pat-
tern of feedback control performance was highly stable across
days, in contrast to the attentional signal-to-noise ratios. This
stability is exemplified in the decreasing pattern of amplitude
ratios for Subject 2 in Fig. 9.

Given the 3 rad/s input bandwidth, one would expect the
crossover model gain to be 3 or higher [12]. The gain K is nu-
merically equal to the frequency in rad/s at which the output
to error amplitude ratio “crosses over” from above 1.0 to less
than 1.0. With the steering wheel subjects exhibited gains near
3. With the joystick their gains were around 4 (see Fig. 8).
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IV. MODELING ATTENTIONAL PATTERN FORMATION

A dynamic model of selective attentional emphasis and inhi-
bition of surrounding regions is proposed to interpret the patterns
of spacing and day-to-day instability in the attentional signal-to-
noise ratios (see Figs. 5-7). Broadly speaking, the function of
attention is to emphasize particular aspects of a creature’s infor-
mational environment that are relevant to achieving present goals
and/or the need to switch goals. Selective emphasis is needed
because of a creature’s limited cognitive and action capabilities
in information-rich environments. Sustained stable attention to
fixed spatiotemporal loci may be necessary for particular tasks
like tracking a moving target. However, if attention was very
stable, it might limit responses to new stimuli that indicate a
need to interrupt the present task and switch goals to address
some imminent danger or opportunity. It would therefore not be
surprising if attention had a level of stability that could be easily
interrupted by environmental perturbations.

Previous efforts to model aspects of attentional dynamics in-
clude the metaphor of a spotlight which can be quickly moved
to different locations [15], [16], a spotlight or zoom lens with
adjustable width [17], [18], and internal oscillators which can
become entrained with external rhythmic patterns as in musical
contexts [19]. The present modeling effort posits two compo-
nent processes, selective attentional emphasis (A) and inhibition
of surrounding regions (/) that have been widely discussed by
attentional researchers (see [20] for a review). This model de-
scribes the shapes of average attentional distributions over the
spatiotemporal display of the preview as well as variability over
successive blocks of trials. Leber [21] noted strong trial-to-trial
variations in the degree to which attention could be captured by
irrelevant stimuli, and also noted correlated changes in brain
activity in the middle frontal gyrus. The present model em-
phasizes attentional instability as a key aspect of behavior and
tries to exploit the detailed spatiotemporal structure revealed
by the present measurement technique to understand attentional
dynamics.

The present model of attention is an adaptation of a type of
biological model of dynamic pattern formation that has been
used to model the development of embryos [22] and cortical
feature maps [23], the rhythmic spacing of color striations on
seashells [24], and similarly many other examples of biological
pattern formation (see [25] for a review). This type of model
was introduced by Turing [26] to describe the emergence of
features in embryos (morphogenesis) from relatively uniform
initial conditions. It is called a reaction-diffusion model and
consists of two processes, an activator and an inhibitor (e.g.,
[24, p. 23], Table I) whose dynamics are described by a system
of two partial differential equations

DA/t = (e*M(xf(),l)/(lQ) (sA/1 + sba) — raA
+ DA% A)0a”

o1/t = (e MEOD0D) (42 4 by) =i

+ D; 0*1/02* ()

TABLE I
GMM MODEL
Symbol  Quantity Values
A Attentional 0<A<LS
emphasis initial conditions = 1.5
1 Inhibition of 1<17
surrounding regions  initial conditions = 1.5
X Spatial display 0.1 £ x <£1.0 in Fig. 10
of preview 0.1< x <09inFig. 11

actively attended
Production rate
amplifier

0.1 < x £0.9inFig. 12
0.15[1 +
0.03norm. distrib. (0,1)]

by Production rate 0.01
constant for A
by Production rate 0.00
constant for /
T4 Decay rate for A 0.03
T Decay rate for 1 0.06
Dy Diffusion coefficient ~ 0.0011 in Fig. 10
for A 0.01 in Fig. 11
0.01 in Fig. 12
D; Diffusion coefficient ~ 0.0440 in Fig. 10
for I 0.40in Fig. 11
0.40 in Fig. 12
M Exponential shaping 0.00 in Fig. 10

of production rate 0.45 in Fig. 11

0.90 in Fig. 12

The activator (A) has positive feedback such that it grows in
strength over time once started by a sufficiently large perturba-
tion in growth rate or initial condition. The activation slowly
spreads through space or diffuses at a rate determined by D 4.
The activator also creates an inhibitor (/) at that location that lim-
its its growth. The inhibitor spreads much more quickly through
space to limit the growth of other nearby activators (D; > D 4).
The activator and inhibitor dynamics also include decay rates,
r4 and ry, that limit their growth and constants s, b4, and by
that adjust the production rates (see Table I). This model has
qualitative characteristics of emphasizing certain regions in a
patterned manner and of stochastic variability. These are qual-
itative characteristics of human attention, so we wanted to test
whether this common dynamic found in various species could
also describe aspects of human attention.

For modeling attention, the activator process (A) will be atten-
tional emphasis, and the inhibitor process (/) will be inhibition
of attention to immediately surrounding regions. The general
intent is to consider the spatial distribution of attention as an
instance of a general class of biological pattern formation pro-
cesses. This model has a rhythmic spacing of areas of atten-
tional emphasis that is directly related to the magnitude of the
diffusion coefficients, D4 and D; [27]. In Fig. 10 the diffu-
sion coefficients are relatively small (see Table I), and multi-
ple peaks of attentional emphasis are tightly spaced. The model
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Fig. 10. Rhythmic spacing of the attentional emphasis evolving from uniform
initial conditions and random perturbations of growth rate, s in (1). Circles rep-
resent attentional emphasis (A), and *’s represent inhibition (1/2). Small values
of the diffusion coefficients, D 4 and D7, produce tight spacing of the regions of
the attentional emphasis after 400 temporal iterations. See Table I for parameter
values.

was simulated with ten discrete values for x, which correspond
to the positions of the various preview times in the display
in Fig. 1.

To extend this model to the tracking task, an additional de-
creasing exponential function multiplies the attentional empha-
sis (A) and inhibitor (/) production rates (1). The constants 0.1
and 0.9 scale the exponential multiplier to equal 1.0 when x =
0.1 and e when x = 1.0. This term reflects the optimal control
solution for tracking with finite preview developed by Miller [7].
Namely, Miller showed that the optimal attentional distribution
to preview is a decreasing exponential for a velocity control sys-
tem. The present experiment used a position control. If a position
control is approximated as a lag with a high bandwidth, Miller’s
method gives the corresponding optimal attentional weighting
of the preview as an exponential function that rapidly decreases
with increasing preview times. To reflect this task demand to
emphasize shorter preview times, both the attentional empha-
sis and inhibitor production rates are multiplied by a decreasing
exponential. This function will therefore favor the growth of at-
tentional emphasis at short preview times. A similar positional
gradient was used by Gierer and Meihnardt [22] in models of
embryo development. The equations for the combined model
will be referred to as the Gierer—Meinhardt—Miller Model or
GMM model.

A second way of controlling the inherent rhythmicity of spa-
tial attention is to limit the range of attention. The locus of spatial
attention has been previously described as having an adjustable
range or width [15], [17], [18]. The spatial rhythmicity of the
reaction-diffusion dynamics is more evident when the spatial
range of attention is larger. Therefore, a control strategy for lim-
iting this rhythmicity in the present task and emphasizing short
preview times would be to limit the range of attention to less
than the full range of ten positions (preview times) shown in
Fig. 1. In the present modeling effort (see Figs. 11 and 12), the
active range of attention was limited to nine positions to better
approximate the subjects’ data.
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Fig. 12.  (Bottom) Evolution of an attentional distribution to preview with a

strong exponential decrease (M = 0.90) in the GMM Model. Circles represent
attentional emphasis (A), and *’s represent inhibition (//2). (Top) Frequency
distribution of the location of the maximal attention (A) over 500 simulations of
the model with 400 temporal iterations each.
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Figs. 11 and 12 show the development of attentional distri-
butions from uniform initial conditions of A and /. The model
simulation begins with a random set of perturbations of the at-
tentional emphasis and inhibition production rates, s in (1), at
each of nine preview times (positions on the tracking display
in Fig. 1). As some of these attentional foci start to grow, they
simultaneously send out rapidly diffusing inhibition that lim-
its the attentional growth at other positions. As these spatially
distributed processes interact over time they can produce pat-
terns of primary emphasis at short preview times (see Fig. 12)
or primary emphasis at short and/or intermediate preview times
(see Fig. 11) depending on the exponent of the Miller function.
Fig. 11 (top) mimics the two-clump pattern in Fig. 5, although the
clump at the shortest preview time does not show the variability
exhibited by the subjects. This attentional pattern formation is
presumed to occur early in a trial and then continue throughout
the remainder of the trial.

This model attributes the daily instability in attentional focus
in Figs. 5-7 to the reaction-diffusion dynamics and the form of
the Miller shaping function. The interaction of the attentional
emphasis and inhibition of surrounding regions has a level of
stability that is sensitive to small random variations in the pro-
duction rates. The Miller exponential shaping is a way of trying
to control these sensitive processes to emphasize short preview
times. The Miller function is a smooth exponential; however, be-
cause it acts on complex reaction-diffusion dynamics, the result-
ing attentional distributions (see Fig. 11) may not be smoothly
decreasing, but instead form clumps of emphasis. The clumps
are due to the reaction-diffusion dynamics, which is a model of
biological spacing. In the case of Meinhardt’s seashells [24], the
spacing dynamics lead to highly differentiated patterns of col-
oration. In the case of attention, the advantage of spacing may
be to limit focusing too much of a limited cognitive resource in
a single delimited region.

V. DISCUSSION
A. Detailed Measure of Attention

This longitudinal study revealed that the feedforward atten-
tional pattern of signal-to-noise ratios was generally stable when
averaged across multiple six-day periods and transferred across
physically different control devices and limb movements for
most subjects (see Figs. 3 and 4). In contrast, feedback pa-
rameters of error nulling (gain and time delay) were strongly
influenced by the control devices and limbs (see Fig. 8). This
pattern of selective influence supports the common modeling
assumption that feedforward control and feedback control are
distinct behavioral processes [1], [2]. Converging evidence is
that this same measurement technique found roadway band-
width to selectively influence feedback control and not feed-
forward control [3]. With much more complex dynamic sys-
tems, feedforward also exhibits longer learning times [28].
Therefore, feedback and feedforward are behaviorally distinct
processes.

In contrast to the stability of six-day average attentional
signal-to-noise distributions, day-to-day variability was quite
marked. One interpretation of these data is that the peaks that

occurred at 0.1-0.3 s and at 0.5-0.7 s of the preview (see
Figs. 5-7) are a form of attentional spacing that results from
the influences of two complementary, but somewhat unstable
processes. A dynamic theory of the attentional emphasis and
inhibition of surrounding regions was proposed as underlying
processes to account for this pattern of instability. The insta-
bility of the feedforward attentional dynamics contrasts sharply
with the relatively stable pattern of feedback movement dynam-
ics (see Fig. 9) that were approximated as a simple lag with an
internal time delay, i.e., the crossover model [12].

One objection to this interpretation might be that some re-
searchers have proposed two separate loci of attention to preview
for car driving (e.g., [8]-[10]; for helicopter control, see [11]).
For example, the steering dynamics of a car can be approximated
as an acceleration control system. Feedback control requires lead
compensation, which can be implemented by using yaw error to
extrapolate current lateral position error [29]. The perception of
these angular and lateral errors would occur close to the present
car position. In contrast, Land and Horwood [8] estimated that
the perception of curvature for feedforward control is at about
0.8 s of preview. Miller [7] used optimal control theory to pre-
dict heightened feedforward attention in the region of 0.7 s of
preview depending on the relative emphasis of error versus ef-
fort with an acceleration control system. Land and Lee [30] and
Macadam [31] have estimated that preview even greater than 1 s
is useful in car driving. Therefore, the information requirements
for feedforward and feedback control would primarily create the
need to attend to two distinct regions of preview, one close and
one far. This interpretation would not preclude a behavioral role
for the presently proposed attentional dynamics to influence the
relative positions of the two attentional regions and their relative
stability.

In contrast to typical car dynamics, the present experiment
used a position control system. If one approximates a position
control as a lag with a high bandwidth, one can use Miller’s
method [7] to determine the optimal attentional weighting for
feedforward control with a position control system. The distri-
bution has a high attention weighting at short preview times and
exponentially decreases at a rapid rate with increasing preview
time. In this case, one would expect feedback and feedforward
control to rely on information close to the vehicle. Converg-
ing empirical evidence is provided by Ito and Ito [32]. They
found that tracking error decreased with up to about 0.25 s of
the preview for a position control, and that longer preview was
beneficial for higher order dynamics. The two separated regions
of attention found in the present experiment might therefore
arise primarily from the proposed attentional dynamics rather
than from the information requirements of the task, which are
different from typical car dynamics.

Another objection to the present modeling might be that the
peaks in the 0.5-0.7 s range are a result of measurement noise.
As noted above, estimates of measurement noise from previous
studies indicate that a signal-to-noise ratio greater than 3 occurs
less than 1% of the time [13]. Second, the range of the peaks,
0.5-0.7 s, is rather delimited. 0.4 s is rare, and 0.8—1.0 s is rare
(see Fig. 5). This limited range is consistent with the proposed
model of attentional dynamics. Namely, the balance between the
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two separate processes, A and /, leads to a relatively consistent
spacing.

A fundamental structural aspect of attention is whether it is
unitary or whether it can be allocated to separate spatial loca-
tions [33]. For the present model, the answer is “both.” Namely,
the dynamic structure of attention leads to the emphasis of sep-
arate spatial regions. However, there are continuous fields of
both attentional emphasis and inhibition that span the range of
attention (see Fig. 11). The spacing of the attentional regions of
emphasis is not arbitrary; rather, it is constrained by the under-
lying dynamics. Research on eye movements has found that in
walking, driving, and other tasks people tend to direct their gaze
toward where they will be acting 0.5 to 1 s into the future to
strengthen anticipatory responding (see [34] for a review). The
present model suggests that attention can be directed at such a
spatiotemporal region and simultaneously at a closer region by
controlling attentional dynamics.

B. Optimal Control Considerations

Subjects in the present experiment emphasized preview posi-
tions from 0.1 t0 0.7 s (see Figs. 3 and 4) rather than only the short
preview times as would be expected from Miller’s [7] optimal
control model. There are at least three possible interpretations
of this difference.

First, Miller’s optimal control modeling demonstrates that the
relative emphasis on minimizing mean-squared error and mean-
squared effort (control stick movement) should influence the
shape of the attentional distribution. The exponential function
emphasizing short preview times should decrease more quickly
with an emphasis on error minimization and more slowly with
an emphasis on effort minimization. If these experienced sub-
jects were emphasizing error minimization, then their atten-
tional distributions would be expected to be short and steep.
The wide range of the experienced subjects’ attentional distri-
butions suggests that they were minimizing movement effort.
However, this conclusion seems unlikely given that their ef-
fort scores (root-mean-squared control stick movement) closely
matched the root-mean-squared pathway excursion.

A second possible interpretation is that using the Miller ex-
ponential function to emphasize short preview times may be
attentionally effortful [35]. These experienced subjects may
have been trying to lessen attentional effort, which allowed the
reaction-diffusion dynamics to have more influence in forming
clumps of attentional emphasis. Kahneman [35] has argued that
attention to multiple sources of information can occur in paral-
lel when the overall level of attention is low. In contrast, at high
levels of effort, attention is likely to be concentrated on a single
source of information. The peak signal-to-noise ratios produced
by these experienced subjects are high (see Figs. 6 and 7), which
suggests the subjects were not minimizing attentional effort.

A third possible interpretation is that the observation noise
added to the display of the path to measure the signal-to-noise
distributions created greater uncertainty in the previewed path
position. These experienced subjects may have used a widerange
of attentional emphasis in order to obtain a more reliable esti-
mate of path position by combining information from multiple

positions. This wide range of attention then allowed the reaction-
diffusion dynamics to create clumps of attentional emphasis that
would not occur with a more restricted range of attention. The
simulation in Fig. 11 used a range of attention from 0.1 t0 0.9 s,
which was sufficient to demonstrate the secondary clump of
attention around 0.6 s of preview. If the range of attention is
restricted to 0.5 s in the simulation, there is no secondary clump
of emphasis. The range of attention may be an important behav-
ioral variable in allowing the spatiotemporal rhythmic nature of
attention to be evident.

C. Conclusions and Future Directions

In summary, from an abstract perspective, the spatiotemporal
distribution of attention may be considered an example of spac-
ing dynamics similar to those that have been investigated by
biologists in contexts ranging from the striation of seashells to
the formation of branch structures [25]. This pattern formation is
a type of complex spatial rhythm. In the present context, the im-
plication is that attentional dynamics are inherently rhythmical,
a point that has been previously raised by Jones and colleagues
in their studies of attention to sound patterns [19], [36], [37] and
in more physiological theorizing [38], [39]. Two types of con-
trol strategies for dealing with attention’s inherent rhythmicity
in the present task are spatial biasing of the growth processes
for attention and inhibition (Miller exponential) and limiting the
range of attention. The details of how these attentional control
strategies may interact with movement control in other contexts
is a topic for future research.

This new technique for examining attention to preview should
be explored with higher order dynamics more representative of
automotive control. The present method does not rely on eye
movements, but instead measures which aspects of the preview
are coupled to the driver’s control movements. Eye movements
are correlated with attention and can indicate brief changes in
attentional focus. However, as noted by Land [40] it is often not
clear what aspects of the visual field are being emphasized for
a given gaze direction. The present methodology can be used
in conjunction with eye movements to provide additional detail
regarding drivers’ attention. Future research should also develop
techniques to shorten the present 3-min measurement period and
reduce the amount of observation noise needed to assess the
attentional distributions.

The present study used nonnaive subjects and measured their
performance over an extended period of time. These condi-
tions maximize the likelihood of stationary performance and
strengthen the argument that observed variations in the atten-
tion distribution reflect an inherent instability. Future research
can proceed to examine how individual differences in driving
skill [41], [42] are related to attentional distributions in various
populations with the goal of improving driver safety.
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