Technical Presentation

WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

Sequential Recommendation with User Memory Networks

Xu Chen*
TNList, School of Software
Tsinghua University
xu-ch14@mails.tsinghua.edu.cn

Jiaxi Tang
School of Computing Science
Simon Fraser University
jlaxit@sfu.ca

Hongteng Xu
College of Computing
Georgia Institute of Technology
hxu42@gatech.edu

Yixin Cao
Department of Computer Science and
Technology, Tsinghua University
caoyixin2009@163.com

Yongfeng Zhang
Department of Computer Science
Rutgers University
zhangyf07@gmail.com

Zheng Qin"
School of Software
Tsinghua University
qinzh@mails.tsinghua.edu.cn

Hongyuan Zha
College of Computing
Georgia Institute of Technology
zha@cc.gatech.edu

ABSTRACT

User preferences are usually dynamic in real-world recommender
systems, and a user’s historical behavior records may not be equally
important when predicting his/her future interests. Existing rec-
ommendation algorithms - including both shallow and deep ap-
proaches — usually embed a user’s historical records into a single
latent vector/representation, which may have lost the per item- or
feature-level correlations between a user’s historical records and fu-
ture interests. In this paper, we aim to express, store, and manipulate
users’ historical records in a more explicit, dynamic, and effective
manner. To do so, we introduce the memory mechanism to rec-
ommender systems. Specifically, we design a memory-augmented
neural network (MANN) integrated with the insights of collabo-
rative filtering for recommendation. By leveraging the external
memory matrix in MANN, we store and update users’ historical
records explicitly, which enhances the expressiveness of the model.
We further adapt our framework to both item- and feature-level
versions, and design the corresponding memory reading/writing
operations according to the nature of personalized recommendation
scenarios. Compared with state-of-the-art methods that consider
users’ sequential behavior for recommendation, e.g., sequential
recommenders with recurrent neural networks (RNN) or Markov
chains, our method achieves significantly and consistently better
performance on four real-world datasets. Moreover, experimen-
tal analyses show that our method is able to extract the intuitive

* This work was conducted when the first author was visiting at Georgia Institute of
Technology.
T Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5581-0/18/02...$15.00
https://doi.org/10.1145/3159652.3159668

108

patterns of how users’ future actions are affected by previous be-
haviors.

KEYWORDS

Sequential Recommendation; Memory Networks; Collaborative
Filtering

ACM Reference Format:

Xu Chen*, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng
Qinf, and Hongyuan Zha. 2018. Sequential Recommendation with User
Memory Networks. In Proceedings of WSDM’18. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3159652.3159668

1 INTRODUCTION

In many real-world applications, users’ current interests are influ-
enced by their historical behaviors. For example, one may purchase
accessories such as phone cases or earphones after buying a smart
phone; and people may continue to buy the same brand of clothes
that they had a good previous experience.

To model this phenomenon, previous methods have been pro-
posed to make sequential recommendations with user historical
records. For example, [23] adopted Markov chain to model user
behavior sequences, and [19, 31] leveraged recurrent neural net-
works (RNNs) to embed previously purchased products for current
interest prediction.

Existing methods have achieved encouraging results, however,
they tend to compress all of a user’s previous records into a fixed
hidden representation. As exampled in Figure 1(a), the key reason
for a user to buy a phone case (item E) could be that he bought
a phone (item B) before, while the other prior purchases are not
necessarily related to the new purchase. However, RNN (and other
latent representation approaches) would forcefully summarize all
of the prior items (A through D) into a vector, i.e., h4, which is used
to predict the user’s next interest.

This lack of discriminating different historical records for next
interest prediction leads to two unfavorable consequences: 1) it
weakens the signal of highly correlated items for sequential recom-
mendation; and 2) overlooking such signal makes it difficult for us
to understand and explain the sequential recommendations.

https://doi.org/10.1145/3159652.3159668
https://doi.org/10.1145/3159652.3159668

Technical Presentation

WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

yui

[USER EMBEDDING] [ITEM EMBEDDING]

[USER EMBEDDING]

[ITEM EMBEDDING]

==
Historical Information =} hy!

((emoeaang |

=)

=3

(Tembedaing] [embedans

A

(a) Sequential recommendation based on RNN

(b) General idea to adopt memory for recommendation

3

(c) The general framework to implement our idea

Figure 1: (a) An example of leveraging user historical records for recommendation. The user bought A, B, C and D in the past
orderly, these previous records (as embeddings of A, B, C and D) are summarized into h4 for predicting E. (b) Our general idea
of introducing a per user memory matrix to store user historical records. (c) A general framework to implement our idea. (best

view in color)

To alleviate the problems, we view user behaviors as a decision
making program described as neural turing machines [5], and pro-
pose to model user historical records with external memories. With
the ability to express, store, and manipulate the records explicitly,
dynamically, and effectively, external memory networks (EMN) [25,
28] have shown their promising performance for many sequential
prediction tasks, such as question answering (QA) [18], natural lan-
guage transduction [7], and knowledge tracking (KT) [32]. Instead
of merging previous states to make predictions, EMN architecture
introduces a memory matrix to store the states separately in mem-
ory slots, and then by designing proper operations on this matrix,
it achieves significant improvement compared with conventional
RNN/LSTM models in many tasks [28].

Inspired by EMN, we propose a novel framework integrating
Recommender system with external User Memory networks [5,
25, 28] (RUM for short), and further study its intuition and per-
formance on Top-N recommendation tasks. Figure 1(b) and 1(c)
illustrate the basic ideas of our proposed framework. For each user,
an external user memory matrix is introduced to maintain her his-
torical information, which enriches the representation capacity
compared with traditional RNN hidden vectors. When making pre-
dictions, the memory matrix will be attentively read out to generate
an embedding as the user representation, where the attention mech-
anism learns the different importance of previous records for the
current recommendation. After processing each item in a sequence,
the memory will be rewritten to update the user histories.

To better explore our idea, we provide two specifications of our
framework, i.e., item-level and feature-level RUMs, which model
user records on item- and feature-level, respectively. Compared
with existing methods, our approach makes finer-grained use of
user historical records based on memory networks, which improves
the recommendation performance, meanwhile extracts intuitive
causality of consumer behaviors based on attentive analyses.

Contributions. In summary, the main contributions of this
work include:

e We propose to integrate the insights of collaborative filtering
with memory-augmented neural networks for recommendation,
which leverages user historical records in a more effective manner.
To the best of our knowledge, this is the first attempt to introduce

109

memory-augmented neural networks (MANNS) [5, 28] into the field
of recommender systems.

e We investigate two potential memory networks (on item- and
feature-level) with different representation and operation designs.
We further study and compare their performance for sequential
and top-N recommendation tasks.

e We also compare our model with state-of-the-art methods and
verify the superiority of our model through quantitative analyses
on real-world datasets, which shows that our method is able to
leverage user historical records more effectively.

o We further provide empirical analyses to explain how and why
an item is recommended by our model, which shows that with the
attention mechanism in memory networks, our model is capable
of providing intuitive explanations about how a user’s historical
records affect her current and future decisions.

In the following part of the paper, we first introduce the related
work in section 2, and then illustrate our framework in section 3
and 4. In section 5, we verify the effectiveness of our method with
experimental results, and the conclusions and outlooks of this work
are presented in section 6.

2 RELATED WORK

Our work is essentially an integration of sequential recommenda-
tion and memory-augmented neural networks. In the following,
we review the related work on these two research directions.

2.1 Sequential Recommendation

In the literature, many models have been proposed to leverage
user historical records in a sequential manner for future behavior
prediction and recommendation.

By integrating matrix factorization and Markov chains, factor-
ized personalized Markov chains (FPMC) [23] embeds the transition
information between adjacent behaviors into the item latent factors
for recommendation, and the hierarchical representation model
(HRM) [27] further extends the idea by leveraging representation
learning as latent factors. These methods mostly model the local
sequential patterns between every two adjacent records [31].

Technical Presentation

To model multiple-step sequential behaviors, [10] adopted Markov
chains to provide recommendations with sparse sequences, and [31]
proposed the dynamic recurrent basket model (DREAM) to capture
global sequential patterns and to learn dynamic user interest repre-
sentations based on recurrent neural network (RNN). In DREAM,
all of a user’s historical records are embedded into the final hidden
state of RNN to represent her current preference, and this method
has achieved significant improvement against HRM and FPMC.
Similarly, [14, 26] leveraged user previous clicking and purchasing
behaviors to model short-term preferences with RNN for session-
based recommendation, and [9] adopted a metric space learning
approach to learn additive user-item relations for sequential rec-
ommendation. Beyond e-commerce, sequential recommendation
has also been applied to various application scenarios such as POI
recommendation [3, 4], music recommendation [1, 8, 29], browsing
recommendation [35], etc.

Existing models usually implicitly encode user’s previous records
into a latent factor or hidden state without distinguishing the dif-
ferent role that each record may play when predicting the current
interest. In this work, however, we leverage user memory networks
to store and manipulate each user’s previous records, which helps
to enhance the expressive power of user histories.

2.2 Memory-Augmented Neural Networks

With the power to process sequential data effectively, external
memory network (EMN) [5, 6, 28] has been emerging in recent
years. In a nutshell, it leverages a memory matrix to store historical
hidden states, and by properly reading and updating this matrix,
it can obtain improved performance on many sequence-oriented
tasks. Following this idea, [25] designed an end-to-end memory-
augmented model, which requires significantly less supervision
during training, and makes it better applicable in real-world settings.
Very recently, researchers have successfully adapted the idea of
external memory network into several application domains, such
as question answering (QA) [18], natural language transduction
(NLT) [7], and knowledge tracking (KT) [32].

Typically, EMN consists of two major components: a memory
matrix that maintains the states, and a controller that operates
(including reading and writing) the matrix. More specifically, most
methods [5, 6, 25, 28] adopt the attention mechanism to read the
memory matrix, i.e., for an input g, they first compute the sim-
ilarity S(q,m;) between the input and each memory slot m; in
the memory matrix, and then the attention weights are derived
by w; = SOFTMAX(S(q,m;)), where SOFTMAX (x;) = il

e’
based on which the memory is attentively read out. For the eriting
process, [5] updated user memory by considering both content and
slot location to facilitate all the locations of the memory, while [24]
proposed a purely content-based writing strategy named least re-
cently used access (LRUA) to write memories to either the least
used memory location or the most recently used memory location.

In this paper, we aim to apply the idea of EMN to recommender
system for leveraging user historical behaviors more effectively,
which is yet to be explored in the research community.

110

WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

3 RUM: RECOMMENDATION WITH USER
MEMORY NETWORKS

In this section, we first present our general framework, elaborating
how to integrate user memory networks with collaborative filtering.
Then, we focus on designing the memory component by describing
two specific implementations of the general framework, namely,
the item- and feature-level user memory networks, so as to inspect
our framework from different perspectives.

3.1 General Framework

For better understanding, we first re-describe the widely used ma-
trix factorization (MF) model as a neural network. Suppose there
are N users and M items, and let p,, and q; be the embeddings of
user u and item i, then the likeness score of u to i can be predicted as
ui = pLq; in MF. In the context of neural network, the user/item
IDs with one-hot format can be used as inputs fed into the architec-
ture, then the look-up layer projects these sparse representations
into dense vectors, which correspond to the user/item embeddings
in MF models [13]. At last, the likeness score §,; is computed as
the vector inner product between p,, and q;.

Memory enhanced user embedding. To leverage user his-
torical records in our framework, we generate a user’s embedding
from two parts (see Figure 1(c)): one is related to the user’s memory
component that encodes her previous records (named as memory
embedding in the figure), and the other is a free vector used to en-
code her intrinsic preference that is not influenced by her previous
actions (named as intrinsic embedding). The memory embedding
is similar to the hidden vector in conventional RNN-based models.
However, hidden vectors blindly compress all of a user’s historical
records into a fixed vector, while in our framework, user records are
encoded, stored, and carefully updated through a more expressive
structure — the personalized memory matrix M¥.

Specifically, for user u, her memory embedding p}* is derived by
reading M* according to the current item embedding q;:

pu = READ(M", q;) (1)

And then, by merging p!* with the user intrinsic embedding p;,,
we get the final user embedding as:

pu = MERGE(p),. pi/) @)

where MERGE(+) is a function that merges two vectors into one. The
particular choice of MERGE(:) in our model is a simple weighted
vector addition, that is:

MERGE(x,y) = x + ay = pj, + apl} (3)

where a is a weighting parameter. We have also tested element-wise
multiplication and concat operations, but they led to unfavorable
performance. Another advantage of our choice is that we can tune
the weighting parameter « to study the effect of incorporating
memory mechanism for recommendation, which will be shown in
the experiments.

Prediction function. When making predictions, we feed the
final user embedding p,, and the item embedding q; into a function:

Yui = PREDICT (py, qi) (4)

where PREDICT () is an arbitrary prediction function, or even a
prediction neural network as in [13]. Here, we choose the sigmoid

Technical Presentation

y\ui

u
qv}

ITEM EMBEDDING

NEW USER EMBEDDING

(a) Item-level RUM

WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

Pu

(b) Feature-level RUM

Figure 2: Two specific implementations of our RUM framework. To better illustrate the model overflow, we plot (M*)T and
FTinstead of M* and F in the figure, so that each row corresponds to a memory slot in the figure. (best view in color)

inner product §y; = o(pu” - qi) as a specific implementation,
because it gives us better training efficiency for our data. However,
it is not necessarily restricted to this function and many others can
be used in practice according to the specific application domain.
At last, we adapt binary cross-entropy as our loss function for
model optimization, and the objective function to be maximized is:

Irum = log 1_[(i) ¥ (1 = Gui) ' 7Y = 2|10
(u, 1)

=" > logui+ Y Y. log(1 = fui) = All@|I}

u jel} u jel/I}

where © is the model parameter set, y,; is the ground truth that
would be 1 if u has purchased i, and 0 otherwise. I is the set of
all items, and I} is the set of items that u purchased arranged in
purchasing order, namely, I;r = {v;‘,v’z“‘, e ,vrﬁ‘}, where vjl.‘ is
the j-th item purchased by u. We uniformly samii)le the negative
instances from unobserved item set I, = I/I}, and it should be
noted that a nonuniform sampling strategy might further improve
the performance, and we leave the exploration as a future work.

In this equation, we maximize the likelihood of our predicted
results by the first two terms, and regularize all the model parame-
ters to avoid over fitting by the last term. In the training phase, we
learn the parameters via stochastic gradient descent (SGD).

Memory updating. After each purchasing behavior, we update
the user memory matrix M¥ to maintain its dynamic nature by:

M" — WRITE(M*, q;) (6)

In the following, we will describe how the personalized memory
matrix M¥ encodes user behaviors, and how to design the READ(-)
and WRITE(-) operations on both item- and feature-levels.

3.2 Item-level RUM

In this section, we first implement our idea by extending previous
methods in a straightforward manner (see Figure 2(a)). Similar
to existing models [14, 23, 26, 27, 31], we regard each item as a
unit, and model the impact of previously purchased items on the
following ones. Many works [23, 27] have shown that users’ recent
behaviors can be more important to the current decisions. As a

111

result, for each user u we make the memory matrix M* store the
embeddings of the u’s recently purchased items, as denoted in the
purple dashed box in Figure 2(a).

Suppose the set of items purchased by user u is defined as I} =
{vi‘,v;‘, e ,vi‘ml} (arranged in purchasing order), where v:.‘ is

the i-th item purchased by u, let p, € RP and qou € RP be the
embeddings of user u and item v, and suppose there are K columns
(i.e., memory slots) in the memory matrix, namely, M* € RPXK =
{(m¥,my,- -
M¥. We design the reading and writing operations as follows.

Reading operation. Intuitively, the previous products may
have different impacts on the current item, and the more influential
product should be valued more in the final memory embedding.
Formally, in our model, when making prediction on a user-item
pair (u, v}'), we first adopt a similar way as FPMC [23] to compute
the impacts between the items in user memory M* and the current
item by:

R m';(}, where mz € RD is the k-th column vector of

exp (fwir)
Y exp (fwij)’
where f is the strength parameter. Then, we use z;;’s as the at-
tention weights to derive u’s memory embedding, which provides
us with the ability to access user historical behaviors according to
their influences on the current item:
K
pu = Z zjf - My
k=1

Different from previous models, we do not forcefully merge
all the item embeddings in the reading process. On the contrary,
we first store them in M* individually, and then attentively pay
more attention to some of the items, which provides us a more
finer-grained method to utilize user historical records.

Writing operation. As mentioned above, users’ recent behav-
iors usually play more important roles for current predictions. As a
result, we adopt a simple first-in-first-out mechanism to maintain
the latest interacted items in the user memory matrix M“. Specif-
ically, the memory matrix M“ for user u always stores the most
recent K items. Suppose the current item is 9o then the memory

wik = (qor)” - m, zi = Vk=1,2, K (7)

®)

Technical Presentation

matrix is M = {qyu .qo ... qou }. When writing the mem-
ory, the earliest item would be replaced, and M" is updated to
U R PSR 9o, ., }. Note that when the memory is not full,
the item is directly added without replacing any other entry.

3.3 Feature-level RUM

Inspired by the insights of classical latent factor models (LFM) [17]
for recommendation, we further explore to implement the RUM
framework on the feature-level. In LFM, we assume that users
may consider a set of product features when making purchasing
decisions, and each embedding dimension in LFM represents a
latent feature in the product domain, where the features span a
latent representation space. LFM then estimates a user’s preference
on these features as a vector in this space.

In this work, we explicitly model such latent features with the
power of memory networks. Intuitively, a user’s preference on these
features should be dynamically reflected by his/her purchasing
behaviors. For example, if a user has an excellent experience on a
newly purchased iPhone, then she may continue to select Apple
products on the ‘brand’ feature in the future.

Inspired by these intuitions, we maintain the user preference on
different features in the memory matrix, which would be read to
generate user memory embeddings, and be written by each item
she purchased. More specifically, we formulate our method into a
key-value memory neural network [21], as shown in Figure 2(b).
We first design a global latent feature table (GLFT) to store the
feature embeddings, and when making predictions, an item will
interact with this table to identify its related features. For each user,
we leverage the user memory matrix M" to encode her likeness on
the features in GLFT. Based on the above identified features, the
target user will attentively merge the columns in M to obtain her
memory embedding. Same as the global feature space in LFM, the
global latent feature table here is shared across all the users, while
the memory matrix is maintained per-user level in a personalized
manner. At last, we update the user memory matrix M* using the
item embeddings.

Formally, we let p,, € R and q; € RP be the embeddings of
user u and item i. Suppose there are K latent features in our system,
and the global latent feature table is F = {f1, f2,-- -, fx}, where
fic € RP is the embedding of feature k. For a user u, we define her
memory matrix as M¥ = {m'l‘,mg,-w ,m}‘(}, where ml]: e RP is
the embedding of u’s preference on the feature k.

Reading operation. To make the reading process differentiable,
we adapt soft-attention mechanism to read the user memory matrix.
Specifically, when making prediction for the user-item pair (u, i),
we first compute i’s relativeness with each feature in the global
latent feature table by:

exp (fwik)
>j exp (Bwij)
where f is still the strength parameter, and we also linearly merge

the slots in user #’s memory matrix using the derived z; attentions
to compute her memory embedding:

T
Wik =4q; fi> Zik = ,Vk=1,2,---,K (9)

K
Pl = zik - m (10)
k=1

112

WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

Writing operation. Inspired by neural turing machine (NTM) 5],
when writing the user memory matrix M¥, it will be erased first
before new information is added.

Specifically, we first derive a D dimensional erase vector erase; €
RP from g¢; by:

erase; = o(ETq,- + be) (11)
where o(-) is the element-wise sigmoid function, and E and b are
the erase parameters to be learned. Given the attention weights
and the erase vector, the feature preference memory is updated by:

(12)

where O is element-wise product, 1 is a column-vector of all 1’s.
Therefore, the elements of a memory location are reset to zero only
if both the weight at the location and the erase element are one.
The memory vector is left unchanged if either the weight or the
erase signal is zero [32].

After erasing, an add vector add; € RP is used to update the
feature preference memory by:

m{ « m{ © (1-z; - erase;)

add; = tanh(ATqi +by), mz — mz + 2k - add;

(13)

where A and b, are the add parameters to be learned. This erase-add
update strategy allows forgetting and strengthening user feature
preference embeddings in the learning process, and the model can
determine which signals to be weakened and which to be strength-
ened by learning the erase and add parameters automatically.

4 DISCUSSIONS AND FURTHER ANALYSIS

To provide more insights of our proposed model, we analyze the rela-
tionship between the item- and feature-level RUMs, and then further
relate our method with previous ones by comparing it with ma-
trix factorization (MF) and factorized personalized Markov chains
(FPMC).

4.1 Item- v.s. Feature-level RUM

Generally speaking, both item- and feature-level RUMs are spe-
cific implementations of the same framework shown in Figure 1(c).
However, they manage user historical information from different
perspectives. The item-level RUM regards each item as a unit, and
directly store the item embeddings in the memory matrix, which
is designed to capture item-to-item transition patterns. While in
the feature-level RUM, the historical information is leveraged in a
feature-centered manner. The memory matrix is used to store the
embeddings of user preferences on different latent features, and
each item is indirectly utilized to change these embeddings.
When using these models in real-world applications, there is
actually an “explanation-effectiveness” trade-off: item-level RUM
can explicitly tell us which items in the past are more important
for the current decision, which provides the system with certain
explanatory ability. However, feature-level RUM can obtain better
performance with finer-grained modeling in a “black box”. We will
discuss more details with experimental results in the following.

4.2 Relationship between RUM and MF

As shown in Figure 1(c), RUM will reduce to traditional MF when
the user memory network is set to be unavailable, i.e., when the
user memory embedding is set as an all-0 vector.

Technical Presentation

However, by enabling the user memory network, RUM can col-
lect valuable information from the historical behaviors, which can
bring improved performance in the task of Top-N recommendation
as shown in our following experiments.

4.3 Relationship between RUM and FPMC

Both RUM and FPMC leverage user historical behaviors to predict
the current ones. To model item-to-item transition patterns for
each user, FPMC builds a tensor factorization model, and optimizes
it under the Bayesian personalized ranking (BPR) criterion. The
objective function is as follows [23, 27]:

Irpmc :ZZ Z Z log o/(%u,1,i — Xu,t,ir) — MIOI% (14)

u TP ieT{ i'gTH
where T} is u’s t-th basket, © is the model parameter set, and %, ¢, ;
is predicted by:
1
~ T T
Futi =Pu 4i+ g Z q; " qi (15)
=10 ek,
When applied to the task of sequential recommendation, each
basket in FPMC contains only one item, thus,

Irpmc = Z Z Z log 0%y, 1,i = Ru,1,17) — MO (16)

u jelyirel/l}
and,

Xuli=Pu-qi+q] Qi (17)
where I/ is the set of u’s purchased items (arranged in purchasing
orders), namely, I = {v{‘,v”, e ’v|ul+\}’ and le.‘ is the j-th item
purchased by u. I is the set of all items,uand [is the item purchased
just before i.

To show how our model degenerates to FPMC, we use only
one memory slot in the item-level RUM (i.e., K = 1), and set the
weighting parameter in MERGE(-) as 1 (i.e., « = 1), then we have:

Jui = o(pl - qi) = o(MERGE(p;,p™)" - qi)

K
=o((pl +PI" - qi) = o0l + Dz -mP)T - qi)
k=1 (18)
Zo((py+mi) 90 o+ 90" -90)
ooy i+ a7 40
where step y;1 holds because z;p = zj1 = 1 when K = 1, and step
¥2 holds because m{ is exactly the embedding of the previously
purchased item q; according to our settings in item-level RUM.
By regarding the user intrinsic embedding p;, of RUM (in Eq.(18))
as the user embedding p,, of FPMC (in Eq.(17)), we have ¢, ; =
0 (%y,1,1), and we can thus rewrite Eq.(5) as:

lRum =) Y loga(ey)+ Y. Y log(1—a(%, ;7)) - A6l

u jel} u jel/I}
(19)
Comparing Eq.(16) and (19), we see that FPMC shares the same
prediction function (Eq.(17)) with 1-order item-level RUM. How-
ever, their optimization methods are slightly different. For a triplet
(u,i,i’), where (u, i) is an observed interaction and (u, i’) is unob-
served, FPMC learns the model by maximizing the margin of u’s

113

WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

likeness between i and i’, while RUM tries to maximize u’s like-
ness on i and minimize u’s likeness on i’, respectively. Actually,
we can also use Bayesian personalized ranking (BPR) to optimize
RUM, in that way, FPMC equivalents a 1-order item-level RUM for
sequential recommendation.

Based on the above analyses, we can see that RUM is a very
general recommendation framework. On one hand, RUM is a gen-
eralization of many existing recommendation models, and on the
other hand, RUM can provide us with the opportunity to explore
other promising models by adapting the merge function, predict
function, and the reading/writing strategy to other choices.

5 EXPERIMENTS

In this section we evaluate our proposed models. We begin by
introducing the experimental setup, and then report and analyze
the experimental results.

5.1 Experimental Setup

5.1.1 Datasets. We conduct our experiments on the Amazon
dataset ! [11, 20]. This dataset contains user-product purchasing be-
haviors from Amazon spanning May 1996 - July 2014. We evaluate
our models on four product categories, including Instant Video, Mu-
sical Instrument, Automotive and Baby Care. To provide sequential
recommendations, we select those users with at least 10 purchasing
records for experiments, and the statistics of the final datasets are
shown in Table 1.

Table 1: Statistics of our datasets.

Datasets [#Users [#Items [#Ratings | Density
Instant Video 1353 7786 33726 0.32%
Musical Instrument | 2129 20928 55382 0.12%
Automotive 1144 24590 48706 0.17%
Baby Care 2379 14037 77198 0.23%

5.1.2 Evaluation methods. For each model, we define the
generated recommendation list for user u as Ry, = {r},r2,--- ,rlV},
where N is the number of recommended items, rl’; is ranked at the
i-th position in R, according to the predicted score. Suppose the set
of u’s interacted items in the test data is T,,, and there are totally
M users in our system, we thus use the following measures for
evaluation:

e Precision (P), Recall (R) and F;-score: we adopt per-user

average instead of global average for better interpretability [16]:

1 1 © Ry NTyl
P@N=— > P,@N = — 3 ']
@ M; “@N = 3 2 TR
1 1 © Ry NTyl
R@N = — > Ry@N = — 3 el
@ Mzu: u@ Mzu: ITa] (20)
1 1 2-Py@N - Ry@N
F N=— F N:— - =
1@ Mzu: we@ Mzu: P,@N + R,@N

¢ Hit-ratio (HR): Hit-ratio gives the percentage of users that
can receive at least one correct recommendation, which has been

!http://jmcauley.ucsd.edu/data/amazon/

Technical Presentation

widely used in previous work [16, 30]:

HR@N = ;I(mu N Tul) 1)
where I(x) is an indicator function whose value is 1 when x > 0,
and 0 otherwise.

¢ NDCG: The normalized discounted cumulative gain, which
evaluates ranking performance by taking the positions of correct
items into consideration [15]:

1 & oI(rnTL) _ 4

Z &4 TogyG+ 1) @)

1
NDCG@N = —DCG@N =

where I(x) is the indicator function as above, and Z is a normaliza-
tion constant, which is the maximum possible value of DCG@N.

5.1.3 Baselines. We adopt the following representative and
state-of-the-art methods as baselines for performance comparison:

e MostPopular (MP): This is a non-personalized static method,
where the most frequently purchased items are ranked in descend-
ing order of frequency to make recommendations.

¢ BPR: Bayesian personalized ranking, which is a popular method
for top-N recommendation [22]. We adopt matrix factorization as
the prediction component for BPR.

e FPMC: Factorized personalized Markov chains, which is one
of the stat-of-the-art models for sequential recommendation based
on Markov chains [23]. Each purchased item in our data is regarded
as a basket in this method.

e DREAM: The dynamic recurrent basket model, which is the
stat-of-the-art sequential recommendation method based on recur-
rent neural networks [31].

5.14 Parameter settings. When implementing our method,
the model parameters are first randomly initialized according to the
uniform distribution, and then updated by conducting stochastic
gradient descent (SGD). The learning rate of SGD is determined
by grid search in the range of {1,0.1,0.01,0.001,0.0001}, and the
number of memory slot K is empirically set as 20. We primarily set
the weighting parameter & = 0.2 in MERGE function, and the effect
of using different a settings is also studied in the experiments.

For each purchased item (i.e., positive instance), we uniformly
sample one negative instance from the uninteracted items of the
user. The embedding dimension D and regularization parameters
are determined by grid search in the range of {10, 20, 30, 40, 50} and
{0.1,0.01,0.001, 0.0001}, respectively.

In our experiments, each user’s purchasing records are ordered
in purchasing time, and the first 70% items of each user are used for
training, while the remaining are used for testing. We recommend
5 items (N = 5) for each user.

5.2 Overall Performance of Our Models

We first study the performance of our item- and feature-level RUMs
under default settings (¢ = 0.2). Results are shown in Table 2, and
we have the following observations.

The non-personalized Most Popular approach gives the most
unfavorable performance in nearly all the cases. Since it does not
consider user’s personalized information, this observation high-
lights the importance of personalization in recommendation tasks.

114

WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

As expected, by profiling users individually and optimizing the
ranking-based objective function directly, BPR performs better than
MP in most cases.

FPMC and DREAM can achieve better performance than BPR on
most measures, while the difference between these two methods is
not very significant. On considering that the key difference between
BPR and FPMC is that the latter models user historical records
in a sequential manner, this observation verifies that sequential
recommendation can help to improve performance in real-world
systems.

It is interesting to see that DREAM achieves better performance
than FPMC on instant videos. DREAM models the multi-step be-
havior instead of pair-wise behavior of users, which has the ability
to better capture users’ long-term interests on video preference.
However, on other datasets the pair-wise short-term influence be-
tween adjacent items may be more informative to predict the next
behavior, but DREAM equally merges all the previous items into
a single hidden vector through RNN, which may weaken the pair-
wise signal for sequential recommendation. This highlights the
importance of our motivation that a carefully designed mechanism
is needed to automatically determine which previous item(s) are
important for current interest prediction.

Encouragingly, we find that either item- or feature-level RUMs
achieved better performance than the best baselines in most cases.
These results indicates the effectiveness of our proposed methods
for sequential recommendation, which is actually not surprising
because the memory mechanism as well as the reading and writing
designs in our model provide better expressive power to model user
historical records.

By modeling item relations on a finer-grained level, the feature-
level RUM outperforms item-level RUM on most measures. This is
intuitive in that the function of two products may not be directly
related, but they may share some features in common which may
affect user decisions, for example, they are of the same brand.

5.3 Influence of the Weighting Parameter o

In this subsection, we are curious about whether and how the
memory mechanism is helpful to sequential recommendation. To
do so, we analyze the influence of the weighting parameter a, which
determines the importance of the memory embedding against the
intrinsic embedding in the MERGE function.

Specifically, we study the performance of our models on F; @5
by tuning « in the range of 0 ~ 1 with a step size of 0.1. Results are
shown in Figure 3.

We see that when the memory component is unavailable (i.e.,
a = 0), feature- and item-level RUMs reduce to the same model
and share the same performance. In this case, both of them give
unfavorable results across all the datasets. When memory network
is incorporated, the performance increases drastically, and the best
results are achieved when o ~ 0.2. However, when the weight of
memory embedding continues to rise, the performance goes down,
and this observation is consistent on four datasets.

This result means that considering sequential influences from a
user’s recently purchased items indeed helps to provide better rec-
ommendations, but putting too much focus on this recent purchase
signal may weaken a user’s intrinsic preference. These results fur-
ther verified the frequent observation in the research community

Technical Presentation

WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

Table 2: Summary of the performance for baselines and our models. The first block shows the baseline performances, where
starred numbers are the best baseline results; the second block shows the results of our item-level and feature-level RUM
models. Bolded numbers are the best performance of each column, and all the numbers in the table are percentage numbers

with ‘%’ omitted.

Dataset [Instant Video [Musical Instrument [Automotive [Baby Care
Measures@5(%)| P R F HR NDCG| P R Fy HR NDCG| P R F HR NDCG| P R F HR NDCG
MP 1.110 1.521 1.227 5.178 1.112|0.931 1.211 0.996 4.464 1.053"| 0.805 0.481 0.589 3.937 0.880 | 0.858 0.719 0.753 4.163 0.923
BPR 1.198 1.624 1.300 5.917 1.243|0.987 1.261* 1.044* 4.699 0.930 |0.822* 0.481 0.593 3.917 0.909%| 0.958 0.771 0.819 4.668 1.016
FPMC 1301 1.612 1.322 5917 1.400 [1.006* 1.170 1.014 4.793" 1.017 | 0.812 0.483" 0.594" 3.921* 0.873 [1.009* 0.800" 0.853" 4.962* 1.026*
DREAM 1.312" 1.652% 1.342% 6.097" 1.401*| 1.003 1.163 1.004 4.613 1.013|0.792 0.463 0.576 3.812 0.793 | 0.979 0.776 0.823 4.762 1.006
RUM (D) 1.302 1.846 1.449 6.213 1.290 | 1.005 1.243 1.047 4.652 1.106 | 0.823 0.485 0.591 4.022 0.921 | 1.051 0.878 0.918 5.088 1.025
RUM (F) 1.405 1.905 1.491 6.287 1.448|1.032 1.308 1.094 4.734 1.035 [0.842 0.501 0.622 4.111 0.963 | 1.070 0.918 0.951 5.432 1.103
1.8 —e— RUM(item) 1141 —eo— RUM(item) 0.67 —e— RUM(item) 1.034 —e— RUM(item)
—e— RUM(feature) ' —e— RUM(feature) —e— RUM(feature) —e— RUM(feature)
§ 1.41
© 1.081 0.624 0.931
— 1.0
[
0.6 1 1.021 0.57 1 0.831

T T T

T R e T
0.00.10.20.30.40.50.60.7 0.80.9 1.0

Instant Video Amazon Music

T T T T T T T T T
0.00.10.20.30.40.50.60.70.80.9 1.0

T T T T T T T T T
0.00.10.20.30.40.50.60.70.80.9 1.0

Baby Product

— T T T T T T T T T
0.00.10.20.30.40.50.60.7 0.80.9 1.0

Automotive

Figure 3: Performance of our item- and feature-level RUM models under difference choices of weighting parameter a.

that both short-term and long-term user preferences are important
for personalized recommendation.

5.4 Intuition of Attention Weights in
Item-level RUM

To illustrate intuition of item-to-item transitions, we present some
example users in Figure 4, which are sampled from the results of
item-level RUM with 5 memory slots (K = 5) on the Baby Care
dataset. When a user purchased her i-th item (corresponding to the
x-axis, denoted in a blue grid), we plot a length-5 column vector in
her subfigure (e.g., the boxed vector in the upper-middle subfigure),
and the vector element corresponding to position j on the y-axis
is the attention weight z (in Eq.(7)) that this user casts on her j-th
purchased item. When the user continues to purchase items, the
most recently purchased 5 items are maintained in the memory,
thus the column vectors shift from bottom-left to upper-right. The
darker the color, the higher attention is casted on the item. Based
on this figure, we have the following interesting observations.

Generally, the grids near the upper border of the diagonal strips
are darker in color. This means that the most influential items in the
past are usually near to the current behavior. This further confirms
the assumption behind item-level RUM that recent behaviors are
more important for current decisions. However, the specific position
of the most influential item is not always the most recent one, which
may explain why FPMC did not achieve favorable performance by
only modeling the pair-wise adjacent behaviors.

Besides, we find two types of interesting user behavior patterns.

1) Some behavior sequences are continuously triggered by the
most recent action (denoted in the green solid boxes), which is in

115

line with the assumptions of FPMC [23]. We call this as the “one-
to-one” behavior pattern, and a real-world example is that a user
purchased some infant formula, and then bought a feeding bottle,
which caused her to buy some nipples, and these nipples further
made her buy a nipple cleaner.

2) Sometimes, a sequence of multiple behaviors are mostly influ-
enced by the same previous action (denoted in the brown dotted
boxes), while the relations between themselves are not so important.
We call this the “one-to-multiple” pattern. A real-world example
is that a mom bought a crib for her baby, after that she bought a
water-proof mattress protector and a mosquito net for the crib, and
further bought a bed bell to decorate the crib. In such cases, our
RUM model with attention mechanism can automatically learn the
importance of previous items based on large-scale user purchasing
records, which is better than FPMC that assumes adjacent influence,
and also better than RNN that merges all of the previous behaviors.

Based on these discovered patterns, the item-level RUM can
interpret recommender system from the sequential behavior per-
spective, which is different from previous methods that usually
leverage side information (e.g. user textual reviews [2, 12, 33, 34])
for explanations.

6 CONCLUSION

In this paper, we proposed to leverage external memory networks
integrated with collaborative filtering for sequential recommenda-
tion. To do so, we designed the RUM sequential recommendation
framework, and provided the item-level and feature-level specifica-
tions of the framework. Quantitative experimental analyses verified
the effectiveness of our framework, and qualitative analyses verified
the intuition behind our framework.

Technical Presentation

5 » i
- 0
2 H = plln -1
1
(15,14) | »
20 - e al
e, 1 Lo | i
i - 0 10
15 T -
e 1
1
10 1
1
5 1
- |
R R
200
s
imEm-
1
150
= 1
=
= s
5
B w00
S 1
ey 75 -
&
2 0
e
g las
5
2
00
5 3 o
I—

Purchasing order (x) One to multiple

Examples: @*@ priy) R

Crib

Patterns:

Protector Mosquito net Crib bell Infant formula Feeding bottle Nipple Nipple cleaner

Figure 4: Illustration of item-to-item transitions. Each sub-
plot is a sampled user, the x-axis and y-axis represent the
user’s purchased items orderly. The diagonal strip repre-
sents the current items. The color of an element (i, j)(j < i) is
proportional to the attention on previous item j when pur-
chasing current i. For example, in the purple box of the sec-
ond subplot, the darkest grid (15, 14) means that the 14-th
item is the most influential one among the most recent five
for the 15-th purchase. Two types of user behavior patterns
(one-to-one and one-to-multiple) as well as their examples
are illustrated in the bottom.

This is a first step towards our goal for recommendation based
on explicit user memory modeling, and there is much room for
further improvements. By introducing side information such as
user reviews and product images, we can align the memory units
in feature-level RUM with different semantics, and thus we can
build a more explainable recommender system. Besides, our RUM
model is a framework with the ability of flexible generalizations, as
a result, we can study other types of memory network designs to
adapt our framework to different application scenarios.

ACKNOWLEDGMENT

This work was supported in part by NSF IIS-1639792, NSF IIS-
1717916 and NSF CMMI-1745382. Any opinions, findings and con-
clusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect those of the sponsor.

REFERENCES

[1] Shuo Chen, Josh L Moore, Douglas Turnbull, and Thorsten Joachims. 2012. Playlist
prediction via metric embedding. In KDD.

[2] Xu Chen, Zheng Qin, Yongfeng Zhang, and Tao Xu. 2016. Learning to rank
features for recommendation over multiple categories. In SIGIR.

[3] Chen Cheng, Haigin Yang, Michael R Lyu, and Irwin King. 2013. Where You Like
to Go Next: Successive Point-of-Interest Recommendation.. In IJCAL

[4] Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee, and Quan
Yuan. 2015. Personalized Ranking Metric Embedding for Next New POI Recom-
mendation.. In IJCAL

116

[5]

== =
&N =

=
&

S
=

Y
=

~
5,

)
£

&
)

&
=

@
=

S W
LN

&
=)

i~
&

WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural turing machines.

arXiv preprint arXiv:1410.5401 (2014).
Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Ag-

nieszka Grabska-Barwinska, Sergio Gomez Colmenarejo, Edward Grefenstette,
Tiago Ramalho, John Agapiou, et al. 2016. Hybrid computing using a neural
network with dynamic external memory. (2016).

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom.
2015. Learning to transduce with unbounded memory. In NIPS.

Negar Hariri, Bamshad Mobasher, and Robin Burke. 2012. Context-aware music
recommendation based on latent topic sequential patterns. In RecSys.

Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based
recommendation. Recsys (2017).

Ruining He and Julian McAuley. 2016. Fusing Similarity Models with Markov
Chains for Sparse Sequential Recommendation. In ICDM.

Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In WWW.
Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. 2015. Trirank: Review-
aware explainable recommendation by modeling aspects. In CIKM.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW.

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based recommendations with recurrent neural networks. ICLR
(2016).

Kalervo Jarvelin and Jaana Kekalainen. 2000. IR evaluation methods for retrieving
highly relevant documents. In SIGIR.

George Karypis. 2001. Evaluation of item-based top-n recommendation algo-
rithms. In CIKM.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer (2009).

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. 2016. Ask me
anything: Dynamic memory networks for natural language processing. In ICML.
Qiang Liu, Shu Wu, Diyi Wang, Zhaokang Li, and Liang Wang. 2016. Context-
aware sequential recommendation. In ICDM.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In SIGIR.
Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bor-
des, and Jason Weston. 2016. Key-value memory networks for directly reading
documents. EMNLP (2016).

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAL
Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalized markov chains for next-basket recommendation. In WWW.
Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy
Lillicrap. 2016. Meta-learning with memory-augmented neural networks. In
ICML.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. 2015. End-to-end memory
networks. In NIPS.

Yong Kiam Tan, Xinxing Xu, and Yong Liu. 2016. Improved recurrent neural
networks for session-based recommendations. In Proceedings of the 1st Workshop
on DLRS.

Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi
Cheng. 2015. Learning hierarchical representation model for nextbasket recom-
mendation. In SIGIR.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2015. Memory Networks.
ICLR (2015).

Xiang Wu, Qi Liu, Enhong Chen, Liang He, Jingsong Lv, Can Cao, and Guoping
Hu. 2013. Personalized next-song recommendation in online karaokes. In Recsys.
Liang Xiang, Quan Yuan, Shiwan Zhao, Li Chen, Xiatian Zhang, Qing Yang, and
Jimeng Sun. 2010. Temporal recommendation on graphs via long-and short-term
preference fusion. In KDD.

Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. A dynamic
recurrent model for next basket recommendation. In SIGIR.

Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. 2017. Dynamic Key-
Value Memory Networks for Knowledge Tracing. In WWW.

Yongfeng Zhang. 2015. Incorporating phrase-level sentiment analysis on textual
reviews for personalized recommendation. In WSDM.

Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping
Ma. 2014. Explicit factor models for explainable recommendation based on
phrase-level sentiment analysis. In SIGIR.

Yongfeng Zhang, Min Zhang, Yiqun Liu, Chua Tat-Seng, Yi Zhang, and Shaoping
Ma. 2015. Task-based recommendation on a web-scale. In BigData.

	Abstract
	1 INTRODUCTION
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Memory-Augmented Neural Networks

	3 RUM: Recommendation with User Memory Networks
	3.1 General Framework
	3.2 Item-level RUM
	3.3 Feature-level RUM

	4 Discussions and Further Analysis
	4.1 Item- v.s. Feature-level RUM
	4.2 Relationship between RUM and MF
	4.3 Relationship between RUM and FPMC

	5 Experiments
	5.1 Experimental Setup
	5.2 Overall Performance of Our Models
	5.3 Influence of the Weighting Parameter
	5.4 Intuition of Attention Weights in Item-level RUM

	6 Conclusion
	References

