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Ramanujan graphs are graphs whose spectrum
is bounded optimally. Such graphs have found
numerous applications in combinatorics and
computer science. In recent years, a high-dimensional
theory has emerged. In this paper, these developments
are surveyed. After explaining their connection to
the Ramanujan conjecture, we will present some
old and new results with an emphasis on random
walks on these discrete objects and on the Euclidean
spheres. The latter lead to ‘golden gates” which are of
importance in quantum computation.

This article is part of a discussion meeting issue
‘Srinivasa Ramanujan: in celebration of the centenary
of his election as FRS'.

1. Introduction

Let X be a finite connected k-regular graph and A its
adjacency matrix. The graph X is called Ramanujan
graph if every eigenvalue A of A satisfies either || =k or
|A] <2+k — 1. This term was coined in [1].

While Ramanujan had an interest in combinatorics
(the partition function etc.), it does not seem as though
he has had a special interest in graph theory. So
why are these graphs named after him? This will be
explained in §2. The explanation will suggest what
should be the definition of a Ramanujan graph, for a
general graph, not necessarily k-regular. Moreover, it
will suggest the definition for directed graphs (digraphs)
and even high-dimensional simplicial complexes (the so-
called Ramanujan complexes), as will be explained in §3
and in §4.

Ramanujan graphs have found plenty of applications
in computer science and pure mathematics. Most of
them have to do with the fact that they provide optimal
expanders (see [2—4] and the references therein). Lately,
Ramanujan complexes and high-dimensional expanders
have also started to be a popular subject of research
(cf. [5,6] and references therein).

© 2019 The Author(s) Published by the Royal Society. All rights reserved.
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Here, we concentrate on describing their aspects which truly use the full power of being
Ramanujan, and not merely expansion. In §5, we will describe random walks on Ramanujan
graphs and complexes and in §6, ‘golden gates’, which is a new and fascinating application of
them to quantum computation.

2. Why Ramanujan?

Let X be a finite connected k-regular graph, k >3, with n vertices, and A its adjacency n x n
matrix. Being symmetric, all its eigenvalues A are real and it is easy to see that [A| <k, k is always
an eigenvalue, and —k is an eigenvalue if and only if X is bi-partite. The graph X is called a
Ramanujan graph if every eigenvalue A satisfies either [A| =k or |A| <24k — 1. The bound 2vk — 1
is significant: by the Alon-Boppana theorem, (cf. [1, prop. 4.2]) this is the best possible bound one
can hope for, for an infinite family of k-regular graphs. The real reason behind it is as follows: the
universal cover of X (in the sense of algebraic topology) is X = Ty—the infinite k-regular tree.
An old result of Kesten asserts that the spectrum of the adjacency operator acting on L%(Ty)
is the interval [ —2Vk—-1,2Vk -1 ] So, being Ramanujan means for X, that all its non-trivial
eigenvalues are in the spectrum of its universal cover X.

Ramanujan graphs are optimal expanders from the spectral point of view. Recall that a finite
k-regular graph X is called e-expander if (X) > ¢ when h(X) is the Cheeger constant of X, namely

YCX, }

IE(Y, V)|
0<ly< &l

h(X) = min { i

when E(Y, Y) is the set of edges between Y and its complement.
Now if we denote A1(X) =max{A | A #k, A e.v. of A}, then

h(X)?
2k

So, Ramanujan graphs are expanders. Expander graphs are of great importance in combinatorics
and computer science (cf. [2] and the references therein) and also in pure mathematics
(cf. [4]). Expander graphs serve as basic building blocks in various network constructions, in
many algorithms and so on. The bound on their eigenvalues ensures that the random walk
on such graphs converges quickly to the uniform distribution and on Ramanujan graphs this
happens in the fastest possible way (see §5). This is one more reason that makes them so
useful.

The existence of Ramanujan graphs is by no means a trivial issue: while it is known that
random k-regular graphs are expanders, it is not known if they are Ramanujan. First examples of
infinite families of such graphs were given by explicit construction in [1,7] for k=¢ + 1, g prime.
In [8], it is shown, by a non-constructive method, that for every k > 3 there exist infinitely many
k-regular bi-partite Ramanujan graphs.

Why are Ramanujan graphs named after Ramanujan? As far as we know, Ramanujan had no
special interest in graph theory. Let us explain the reason for this name which was coined in [1].

Observe the following power series:

A@=q]]0 -V = Tt(m)q" =q — 244> + 252> + - - .

n>1

<k — 2(X) < 2h(X) (cf. [3, §4.2]).

The coefficients (1) define the so-called Ramanujan tau function. Ramanujan conjectured that
1z(p)| <2p11/?) for every prime p. The importance of A comes from the fact that if we write
g=e¥" then A(z) is a cusp form of weight 12 on the upper half plane H={z=x+ iy |x,y €
R, y > 0} with respect to the modular group I =SLy(Z) acting on H by M&bius transformation
(ZZ)(Z) = (az + b)/(cz +d). Now if IH(N)= {(‘C‘s) €I'|c=0 mod N} we denote Si(N) (or more
generally Si(N, w) for a Dirichlet character w of Z/NZ) the space of cusp forms on H w.r.t. I'H(N)
(and w). The Hecke operators T, (p prime, (p, N) =1), act, and commute, on each Si(N,w), and
their common eigenfunctions are the Hecke eigenforms. Now, S12(I” = I'p(1)) is one dimensional
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and so A(z) above is such a Hecke eigenform. Moreover, 7(p) above is equal to the eigenvalue
of Ty acting on S12(I"). A natural and far reaching generalization of the Ramanujan conjecture
mentioned above on the size of t(p) is the so-called Ramanujan-Peterson (RP) conjecture: for
every Hecke eigenform f in Si(N,w), the eigenvalues 1, of Ty, (p, N) =1, satisfy |Ap| < 2pF172,
The reader is referred to [9] for a concise and clear explanation of all these notions.

The modern approach to automorphic functions via representation theory brought in another
point of view on the RP conjecture. Satake [10] showed that the RP conjecture is equivalent to the
assertion: let A = Ag be the ring of adeles of Q, and 7 an irreducible cuspidal GL,-representation
in L2(GL(A)/GL,(Q)), such that its component at infinity 77, is square-integrable, then for every
prime p the local factor at the p-component 7, is a tempered representation. See [9] for exact
definitions. Here, we only mention that a representation of a (simple) p-adic or real Lie group G
is tempered if it is weakly contained in L%(G). The RP conjecture was proved by Deligne (for the
special representations that are relevant to the Ramanujan graphs, the RP conjecture was actually
proven earlier by Eichler). The representation-theoretic formulation suggests vast generalizations
to other algebraic groups.

Let us look at the p-adic group G =PGL(Qp). The Bruhat-Tits building associated with G
is, in this special case, the (p + 1)-regular tree T =T,41 which can be identified as T =G/K
when K is a maximal compact subgroup of G. If I" is a discrete cocompact subgroup of G, then
X =I\T=TI\G/KIis a finite (p + 1)-regular graph. One can show (see [3]) that X is a Ramanujan
graph if and only if every infinite-dimensional K-spherical G-sub-representation of L?(I"\G) is
tempered. Deligne theorem, combined with the so-called Jacquet-Langlands correspondence,
enables the construction of such arithmetic subgroups I for which the temperedness condition is
satisfied and hence Ramanujan graphs are obtained. This was the method of [1,7]. Let us mention
that for every k, if G is the full automorphism group of Ty and I" a discrete cocompact subgroup of
G, then X = I'\T} is k-regular Ramanujan graph if and only if the same temperedness condition is
satisfied: in other words, every non-trivial eigenvalue of X = I'\T is coming from the spectrum
of Ty if and only if every non-trivial spherical subrepresentation of L?(I"\G) is coming from
L*(G). This illustrates the connection between the notion of Ramanujan graph and the Ramanujan
conjecture.

As mentioned above, the RP conjecture was generalized to other groups, and some of its
generalizations to GL; (instead of only GL;) led to higher dimensional versions of Ramanujan
graphs, the so-called Ramanujan complexes. We will see more on it in §4.

Finally, another interesting hint to a connection with number theory: Ihara defined the notion
of Zeta function of a k-regular graph X, and Sunada observed that X is Ramanujan if and only
if this Zeta function satisfies ‘the Riemann hypothesis’. We refer the reader to the survey [11] for
more details.

3. General graphs and digraphs

The first paragraph of §2 suggests what should be the general definition of Ramanujan graphs.
This was carried out for the first time in the Greenberg thesis ([12], which is unfortunately not
published and available only in Hebrew), and was vastly generalized in [13].

Here is the main point. Let X be any finite connected graph and X its universal cover. Let
Az be the adjacency operator acting on Lz(y() by Az(f)(x) =D, f(x') where x’ runs over the
nelghbours of x in X. Now, it is shown in [12] that there exists a positive real number « depending
only on X, such that if Y is a finite graph covered by X, then « is the largest (Perron-Frobenius)
eigenvalue of the adjacency matrix Ay of Y. When X is k-regular « =k, and when X is bipartite

(k1,ky)-biregular, k = /k1kz.

Definition 3.1 ([12]). The graph X is called Ramanujan if every eigenvalue A of Ax satisfies
either || =k or 1 € Spec(ALz(g)).

This recovers the classical definition of Ramanujan graphs for k-regular graphs since
Spec(A| LZ(Tk)) = [ 2k —1,24/k ] For bipartite (k1, kp)-biregular graphs X with ky <kp, the
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universal cover is the (k1, ky)-biregular tree Ty, r, and

Spec(A 2r, )= [—\/kz 1V =1,k — 1+ ki — 1}

U{O}U[\/kz—l—\/kl—1,\/k2—1+\/k1—1].

It is known that for every 3 <k eN, there exist infinitely many k-regular Ramanujan graphs
(explicit constructions for every k=p° + 1, p prime [14], and non explicit for every k [8]). But
for (kq, k)-biregular, it is known only for special values:

Theorem 3.2 ([15,16]). Let p be a prime, ky =p + 1 and ky = p3 + 1, then there exist infinitely many
bipartite (k1, kp)-biregular Ramanujan graphs.

In [15] existence was shown as the quotients of the bi-regular tree associated with a rank one
simple p-adic Lie group. Explicit constructions (in the sense of computer science) are given for
p=23 mod (4) in [16].

Let us mention that [8] gives existence of ‘weak-Ramanujan’ (k1, k»)-biregular graphs in the
following sense: every eigenvalue A is either [A| =« = vkiky or |A| < vkp — 1+ ky — 1.

In [17] it was shown that there exist finite graphs X for which X does not cover any Ramanujan
graph. This was put in a more general framework in [18].

Turning to digraphs (directed graph), denote by A = Ap the adjacency matrix of the digraph
D, namely A, » =1if v > win D and A, = 0 otherwise. We say that D is k-regular if every vertex
has k incoming edges, and k outgoing ones. The notion of Ramanujan digraphs (directed graphs)
was considered only quite recently [19-21]. A main reason for this is that the adjacency matrix of
a digraph can be non-normal, in which case its spectrum reveals much less information on the
graph.

Definition 3.3. A k-regular digraph is a Ramanujan digraph if every eigenvalue of Ax satisfies
either |A| =k or [A] < Vk.

Here the trivial eigenvalues can be eZri/my for any m € N, indicating that the digraph is m-
periodic: its vertices can be partitioned into m sets Vy,..., V1, with every edge starting in
V; terminating in V(j;1 mod m)- Once again, the non-trivial spectrum agrees with the “directed
universal cover’ Tki, which is the 2k-regular tree, directed to have constant in-degree and
out-degree k. Indeed, Spec(Al2(r=)) = {zeCllz| = vk} by [22].

A general example of a Ramanujan digraph arises from Hashimoto’s approach to Ihara’s
zeta function [23]. Given a (k + 1)-regular (undirected) graph X, define the k-regular digraph
Dx, whose vertices correspond to directed edges in X, and whose edges correspond to non-
backtracking steps in X. Namely, ¢ — ¢’ in Dy iff e¢,¢’ form a non-backtracking path in X.
Hashimoto’s work shows that Dy is a Ramanujan digraph if and only if X is a Ramanujan graph.

It is interesting to note that the Alon-Boppana theorem fails for digraphs: the De-Bruijn
digraphs (cf. [21, §3.4]) are k-regular digraphs, of arbitrarily large size, whose non-trivial spectrum
consists entirely of zeros! However, these graphs have non-normal adjacency matrices. It turns
out that normality, and even ‘almost-normality” recovers an Alon-Boppana bound, for which
Ramanujan digraphs are again optimal. We say that a family of digraphs is almost-normal if the
adjacency matrices of its members are unitarily equivalent to block-diagonal matrices with blocks
of globally bounded size.

Theorem 3.4 ([21]). The smallest upper bound for the non-trivial spectrum of an infinite almost-normal
family of k-reqular, m-periodic digraphs, is V/k.

It turns out that almost-normality appears naturally in the context of digraphs which arise
from Ramanujan graphs and complexes (see §4), and that it serves as a substitute for normality in
the spectral analysis of these digraphs.
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4. Ramanujan complexes

Combinatorial graphs are one-dimensional simplicial complexes, and it is natural to ask for
analogues of expanders and Ramanujan graphs in higher dimension. Here even the definition is
not straightforward, as there is no clear counterpart to the k-regular tree T in general dimension.
The explicit construction of Ramanujan graphs suggests one answer: since for k=p + 1 the tree
Ty arose as the Bruhat-Tits building of G =PGL(Qy), one can replace it with the Bruhat-Tits
building B = B(G) of G =PGL;;1(Qp), which is an infinite, contractible, d-dimensional complex.
This is indeed the approach taken in [24,25], except for the replacement of Q, by F,((t))—the
reason being that the Ramanujan conjecture for PGL; over Q is still open for d > 3, whereas for
PGLy over Fy(t) it was proved by Lafforgue in [26]. A more general approach is to look at any
non-Archimedean local field F, and G = G(F), where G is a simple F-algebraic group. Bruhat-Tits
theory associates with G a building B (the so-called Bruhat-Tits building) which is a contractible
simplicial complex of dimension d equal to the F-rank of G. The group G acts on B, transitively on
the d-cells. Every torsion-free discrete cocompact subgroup I" of G gives rise to a finite complex
X = I'\B, which can then be compared to its universal cover X=8.

For this comparison, one should decide which adjacency operator should one look at, as the
standard adjacency relation between vertices depends only on the 1-skeleton of the complex, and
does not capture the high-dimensional structure. One can ask, for example, about operators such
as the discrete j-dimensional Laplacian, which acts on cells in dimension j and detects the presence
of real j-th cohomology. We take an inclusive approach: we call an operator T on (a subset of) the
cells of the building B(G) geometric if it commutes with the action of G. If X is a finite quotient of
B, this implies that T descends to a well-defined operator T|x on X, and we define:

Definition 4.1. Let F be a non-archimedean local field, B the Bruhat-Tits building associated
with PGL441(F), and X a quotient of 5.

(1) For a geometric operator T, an eigenvalue of T|x is trivial if the associated eigenfunction
on X lifts to a PSLy1(F)-invariant function on 5.

(2) The complex X is a Ramanujan complex if for every geometric operator T on B, the non-
trivial spectrum of T|x is contained in the Lz-spectrum of T on B.

The definition generalizes to other groups than PGL,, once we understand which are the trivial
eigenfunctions—see [19] for the case of simple algebraic groups, and [27] for a more general one.

We remark that the original definition of Ramanujan complexes in [24,25] only requires (2) for
geometric operators on the vertices of B. However, all the known constructions of Ramanujan
complexes [16,24,27-29] satisfy the stronger definition!

As in the case of graphs, the Ramanujan property can be related to representation theory:
The Iwahori group of G is the pointwise stabilizer of a cell of maximal dimension in B, and
the complex X = I'\ B is Ramanujan if and only if every infinite dimensional, Iwahori-spherical,
irreducible G-sub-representation of L2(I'\G) is tempered [19,27,30].

5. Random walks

A highly useful property of expanders is that random walks on them converge rapidly to the
stationary distribution: let X be a non-bipartite k-regular graph, {v:};°, a simple random walk
(SRW) process on X, and Pg(: v > Prob[vs = v] the distribution of the walk at time t. It is a standard
exercise to show that ||P§( — ul|y, the L2-distance of P& from the uniform distribution, is bounded
by (1/k)f, where A is the largest non-trivial eigenvalue of Ax (in absolute value).

It turns out, however, that Ramanujan graphs are optimally mixing not only in L?-norm but
also in L? for all 1 <p <oco. Furthermore, they manifest a cut-off phenomena: the LP-distance
| P%; — ull, drops abruptly from being near-maximal to being near zero, over a short interval of
time called the cut-off window. We focus on L1, the total-variation norm, which is hardest to bound,
and the most useful for many purposes (see [31]).
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Theorem 5.1 ([32]). Let X be a k-regular Ramanujan graph on n vertices.

(1) The SRW on X has L -cut-off at time (k/k — 2)log;_, n.
(2) The non-backtracking random walk (NBRW) on X has L'-cut-off at time log,_, n.

Note that the location of cut-off for NBRW is optimal: a non-backtracking walker on a k-regular
graph sees at most k — 1 new vertices at every step, with the exception of the first one. Thus, a
walk of length (1 — 8)log;_; n can reach only a small fraction of the graph for § > 0 (and even
for § =loglogn/logn), resulting in L!-distance 1 — o(1) from equilibrium. In a similar manner
one can show that the first bound is optimal when taking into account the hindrance caused by
backtracking.

In [32], the authors first prove the bound for NBRW on X, and then show that it implies the
bound for SRW. Let us give a glimpse of how the bound for NBRW is proved. Recall the digraph
Dx from §3: this is a (k—1)-regular Ramanujan digraph, and by its construction SRW on Dy is
equivalent to NBRW on X. If the adjacency matrix Ap, was symmetric, or even normal, then we
would have ||PtDX —ullp < (k — 1)~*/2 as for undirected expanders, and a standard L2 to L! bound
would then give the desired result. However, Ap, is not normal when k > 3. The main step in [32]
is to show that Dy is 2-normal, namely, Ap, is unitarily equivalent to a block-diagonal matrix with
blocks of size 2 x 2. This is then shown to imply the bound ||Pf)X —ufp <(t+ 1)k —1)~E+D/2
which only differs by a logarithmic factor, and suffices to prove cut-off.

Let us stress that the work of Lubetzky & Peres [32] uses the full strength of the Ramanujan
property to deduce the cut-off phenomenon. It is still a widely open conjecture of Peres that such
phenomena happens in all transitive expander graphs. It is known that it is not always the case
for general expanders [33].

In Ramanujan complexes of higher dimension, it turns out that the digraph Dx induced by
NBRW is not a Ramanujan digraph anymore. However, it is shown in [19] that other operators
on the cells of these complexes do induce Ramanujan digraphs. The crucial property is that these
operators should describe collision-free walks on the building: this means that all the paths which
descend from a fixed starting cell never meet one another (for example, non-backtracking walk
on a tree has this property). It is shown in [19] that if a geometric operator induces a collision-
free walk on B, and X is a Ramanujan quotient of 5, then the digraph which represents the walk
by T on X is a Ramanujan digraph. Furthermore, it is shown that the digraphs which arise from
quotients of a fixed building are almost-normal, which leading again to cut-off at the optimal
time:

Theorem 5.2 ([19]). Let T be a geometric, k-regular, collision-free operator on B, the Bruhat-Tits
building of a simple p-adic group G. Then the walk induced by T on a Ramanujan complex X =I'\B
has L -cut-off at time logy. |X|.

In addition, it is shown in [19] that such walks do exist: for G = PGLy1(F), a collision-free walk
on j-cells is exhibited for each 1 <j < d, the so-called geodesic j-flow. For example, geodesic 1-flow
goes from a (coloured) edge v — w to w — u if the cell {v, w, u} does not belong to the complex.
The situation when j =0 is different: due to commutativity of the Hecke algebra, no geometric
operator on vertices induces a Ramanujan digraph (see [21, Rem. 3.5(b)]). However, it is shown
in [34] that by combining the optimal cut-off result for the j-flow operators in all dimensions, it is
possible to recover cut-off for SRW on vertices.

Theorem 5.3 ([34]). SRW on the vertices of Ramanujan complexes associated with PGL;(F) exhibit
L'-cut-off.

Once again, the proof requires the strength of the Ramanujan property, and not merely
expansion. Moreover, it needs the full high dimensional structure of X, even when we study the
SRW only on the vertices.

Finally, we mention that in [35] a different direction is taken: replacing PGL>(Qy) with PGL2(R),
the authors suggest the notion of Ramanujan surfaces, which are hyperbolic Riemann surfaces
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which spectrally behave like their universal cover, the hyperbolic plane. It is then shown that a
discrete random walk with constant-length steps on these surfaces exhibits Ll-cut-off.

6. Golden gates

Recently, Ramanujan graphs and complexes have found a surprising application to the theory of
quantum computation. In classical computation, one decomposes any function into basic logical
gates such as XOR, AND, NOT. In quantum computation, the classical bits are replaced by qubits,
which are vectors in projective Hilbert space CP”, and the logical gates are all the elements of
the projective unitary group G = PU(n). In the real world, one must implement some finite set of
these gates, and use them to approximate the others. Denoting by 5¢) the set of ¢-wise products
of elements in S C G, we say that S is universal if (S) = UQOS(Z) is dense in G (with respect to
the standard bi-invariant metric d2(4, B) =1 — (|trace(A*B)|/2)). This means that any gate can be
approximated with arbitrary precision as a product of elements of S. The notion of Golden Gates
is a much stronger one, loosely requiring the following (see [16,20] for precise definitions):

(1) The covering rate of G by (S) is (almost) optimal. Namely, for every ¢ the set S()
distributes in G as a perfect sphere packing (or randomly placed points) would, up to
a negligible factor.

(2) Approximation: given A € PU(n) and ¢ > 0, there is an efficient algorithm to find some
A’ € B¢(A) (the e-ball around A) such that A’ € S() with ¢ (almost) minimal.

(3) Compiling: given A € (S) as a matrix, there is an efficient algorithm to write A as a word
in S of the smallest possible length.

These requirements ensure that any gate can be approximated and compiled as an efficient circuit
using the gates in S.

To see the connection between covering and spectral expansion, denote by Ts the S-adjacency
operator on L2(G), namely, (Tsf)(g) =D csf(sg). Clearly, Ts(1)=1S|- 1, and we denote As=
I Tsly1l, where 1+ = {f| Jcfdu =0} and p is the normalized Haar measure on G.

Theorem 6.1 ([20, §3]). Denoting by . = u(Bg(1)) the volume of an e-ball in G, the e-neighbourhood
of S satisfies

)"2
® (UseS Be (S)) z1- |s|25,LE‘

Thus, as in the case of expander graphs, one aims to minimize the non-trivial eigenvalues of
an adjacency operator. It turns out that the spectral bounds for Ramanujan graphs reappear in
these settings.

Theorem 6.2 ([36,37]).

(1) If S C PU(2) is a symmetric set of size k, then Ag > 2k — 1.
(2) For prime p=1 (mod 4), there is an explicit symmetric set S, C PU(2) of size k=p + 1 such

that )\.SP =2vk—1.

In fact, the connection to Ramanujan graphs runs deeper than the spectral bound. The
construction of Sy, and of the (p + 1)-regular Ramanujan graphs in [1], can be described using
a single subgroup of PU>(Q), which acts simply-transitively on the Bruhat-Tits tree of PU>(Q) =
PGL(Qp) (this isomorphism follows from p =1 (mod 4)). This also solves the compiling problem:
by writing any A € (S,) in p-adic coordinates, one recovers its decomposition in (Sp) by following
the (unique) path leading from A to the root of the tree (cf. [20]).

The proof of the spectral bound g, =2vk —1 uses again the RP conjecture (Deligne’s
theorem), but while [1] uses the RP conjecture for automorphic representations of weight two and
arbitrary level, [36,37] use the conjecture for representations of level two and arbitrary weight. To
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see that the gates of [36,37] are optimally covering (compared with random ones), one needs to
bound A S for general £; we refer the reader to [20] for a full account, which addresses also the
P

approximation problem for these gates by the Ross—Selinger algorithm [38].

As Ramanujan graphs appear when studying PU(2), one expects Ramanujan complexes to
appear when moving to general PU(n). This is indeed so, but the direction taken in §4, of replacing
Q by Fy(t), cannot be used anymore, since the latter does not embed in R. The task also becomes
more complicated due to the fact that the naive generalization of RP conjecture to PGL; fails, due
to the appearance of functorial lifts (cf. [39]). For general 1, this is still work in progress, but for
PU(3) (which corresponds to quantum computation on a single qutrit), a complete solution exists:

Theorem 6.3 ([16]). For p=1 (mod 4), there is an explicit Golden Gate set S, C PU3(Q), such that
(Sp) acts simply transitively on the Bruhat-Tits building of PGL3(Qp).

The compiling problem for these gates is solved by studying their action on the two-
dimensional building of PGL3(Qp). The optimal covering rate is obtained by showing that
the spectral bound As, is the same as the maximal non-trivial adjacency eigenvalue of a two-
dimensional Ramanujan complex! Let us mention that the proof of this bound uses Rogawski’s
work [40], as well as some state-of-the-art results of the Langlands program, in particular, Ng6’s
proof of the Fundamental Lemma, which enabled Shin to prove the RP conjecture for cuspidal
self-dual representations of PGL; over CM fields [41].
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