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Abstract

Consider Sym(n) endowed with the normalized Hamming metric d,. A finitely
generated group T is P-stable if every almost homomorphism py, : I' — Sym(ng)
(i.e., for every g,h € I', limg 00 dn; (0n, (gh), pny (&) Pn, (h)) = 0) is close to an
actual homomorphism @, : I' — Sym(ny). Glebsky and Rivera observed that finite
groups are P-stable, while Arzhantseva and Pdunescu showed the same for abelian
groups and raised many questions, especially about the P-stability of amenable
groups. We develop P-stability in general and, in particular, for amenable groups.
Our main tool is the theory of invariant random subgroups, which enables us to give
a characterization of P-stability among amenable groups and to deduce the stability
and instability of various families of amenable groups.

1. Introduction

Let (Gn,dn)52, be a sequence of groups G, equipped with bi-invariant metrics dj,,
and let T' be a finitely presented' group generated by a finite set S = {s1,....,5mn}
subject to the relations £ = {wy,...,w,} CF, where I is the free group on S. In
recent years, there has been some interest in the stability of I" with respect to § =
(Gn,dn)?2 (see [4], [10], [15] and the references therein). Specifically, we have the
following definition.

Definition 1.1

The group T is stable with respect to § if for every € > 0 there exists § > 0 such
that if g = (g1,...,8m) € G satisfies Y |_, d,(w;(),idg,) < &, then Ig' =
(&1 &) €GI with )7L, du(gi.g)) <e€and w;(g') =idforeveryi =1,....m
(i.e., g and g’ are “e-close” and g’ is a “solution” for wy; = 1, ..., w, = 1).
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In other words, every “almost homomorphism” from I' to G, is close to an actual
homomorphism. It is not difficult to show (see [4]) that the stability of I" with respect
to (Gp,dy);2 depends only on the group I, rather than the chosen presentation—so
the notion is well defined.

The roots of this definition lie in some classical questions, asked by Halmos,
Turing, Ulam, and others, about whether “almost solutions” are always just small
deformations of precise solutions. The most popular question of this sort, with origins
in mathematical physics, refers to the case where the G,,’s are some groups of matrices
and the question asks whether “almost commuting matrices” are “near” commuting
matrices (which is the same as the stability of I' = Z x Z defined above). The answer
in this case depends very much on the metrics d,; for example, if G, = U(n) is the
unitary group of degree n, then Z? is stable with respect to the Hilbert—Schmidt norm
but not with respect to the operator norm (see [14], [28]; see also the Introduction of
[4] for a short survey of this problem).

In recent years (starting in [15] and in a more systematic way in [4]), an inter-
est has grown in a discrete version, that is, in the case where G, = Sym(n) is the
symmetric group on [n] ={1,...,n}, where d, is the normalized Hamming distance
dy(o,1) = % -{x € [n] | o(x) # t(x)}|. We will refer to this as permutation sta-
bility (or P-stability for short). One of the motivations to study this comes from the
“local testability” of systems of equations in permutation groups (see [4], [7], [15]).
Another motivation comes from the hope to find a nonsofic group; as was observed in
[15], groups which are P-stable and not residually finite are not sofic. So it is desirable
to have criteria for a group to be P-stable (see [10] for a similar strategy, which led to
the construction of non-Frobenius-approximated groups).

But, as of now, there are very few methods and results for proving the P-stability
of groups. Clearly, free groups are P-stable, Glebsky and Rivera in [15] showed that
finite groups are P-stable, and Arzhantseva and Paunescu in [4] showed the same for
abelian groups. Now, a free product of P-stable groups is P-stable, but this is not
known, in general, for direct products!

In this paper, we develop P-stability and non-P-stability criteria. Some of these
are for general groups, but they are especially effective for amenable groups. Here is
a sample of some conclusions of our work (see Corollaries 8.2, 8.4, and 8.7).

THEOREM 1.2

(1) Every polycyclic-by-finite group is P-stable.

(i)  Foreveryn € Z, the Baumslag—Solitar group BS(1,n) = (x,y | xyx~! = y")
is P-stable.

(iii)  There exists a finitely presented solvable subgroup of GL4(Q) which is not
P-stable.
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Part (i) of the theorem above answers a question raised in [18] (the very special
case of the group BS(1,—1) was previously asked about in [4]; see the paragraph
after [4, Example 7.3]). Part (ii) completes the classification of the P-stability of the
Baumslag—Solitar groups BS(m, n) which was started in [4, Example 7.3], except for
the case |m| = |n| > 2. Part (iii) shows that there is a finitely presented amenable
residually finite group which is not P-stable, answering a question posed in [4] (see,
in [4], the paragraph before Theorem 7.2 and also Theorem 7.2(iii)).

The main novel method in the current paper is the use of the theory of invariant
random subgroups (IRS). This theory, which formally goes back to the seminal work
of Stuck and Zimmer in [27], got new life in recent years starting with the work
of Abert, Glasner, and Virag in [2]: an IRS is defined as a I'-invariant probability
measure on the compact space Sub(I") of all (closed) subgroups of I'. Let IRS(I") be
the space of IRS of I'. Fixing a surjective map 7 : F — I" from the free group on S
onto I', we can think of IRS(T") as a subspace of IRS(IF).

If T is a discrete group, then p € IRS(I") will be called a finite-index IRS if it is
atomic and all of its atoms are finite-index subgroups of I". The IRS which are a limit
of the finite-index ones are called cosofic (see [13, Definition 15]). We then prove the
following (see Theorem 7.10).

THEOREM 1.3

Let w : F — T be as before, and let IRS(I") C IRS(IF). Then the following hold.

(1) If T is P-stable and p € IRS(I") is cosofic in IF, then w is cosofic in T.

(i)  If T is amenable, then T is P-stable if and only if every p € IRS(T') is cosofic
(inT).

Theorem 1.3(ii) gives an “if and only if” criterion for the P-stability of amenable
groups. A crucial ingredient in the proof of this criterion is a result of Newman and
Sohler from [23] and [24] which gives the testability of properties of hyperfinite fam-
ilies of graphs (see [7] for more in this direction). Actually, in the sequel, it will be
more convenient for us to use Elek’s treatment in [11] of the aforementioned theorem.
The amenability assumption in Theorem 1.3(ii) turns out to be essential. Indeed, by
[6], the groups SL, (Z) are not P-stable for n > 3; but, as a corollary of the Stuck—
Zimmer theorem (see [27, Theorem 2.1]), all of their IRSs are supported on finite-
index subgroups (and the trivial subgroup {1} and the center), and, in particular, they
are cosofic.

Let us sketch the argument for the <= direction of Theorem 1.3(ii). We think of
the hypothesis that every IRS of I is cosofic as a “density condition.” Let (X,)5>,
be a sequence of finite sets with almost actions of I', where I" is amenable. Then, as n
tends to infinity, X, converges to a probability measure preserving (pmp.) action of I',
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and hence, one obtains an IRS of I". Now, by assuming the density condition, this IRS
also arises as a limit of finite I"-actions. A little argument ensures that these actions
can happen on the same sets X,,. Both the sequence of actions and the sequence of
almost actions are hyperfinite, since the group I' is amenable. Hence, by the Elek—
Newman—Sohler result (on almost isomorphisms of hyperfinite graphs with almost
the same local statistics), the almost actions are almost conjugate to the actions if n
is large enough, which is the end of the proof. The role of the density condition in
the argument above is to ensure that there are enough actions to model any possible
IRS that could come up. For the = direction, any IRS (if I' is amenable) actually
arises as a limit of almost actions of I" on finite sets, so that the condition of density
of finite-index IRS is also necessary.

In general, it is not easy to check the criterion of Theorem 1.3(ii), but if I" has
only countably many subgroups (see [9] for a characterization of solvable groups with
this property), then every u € IRS(I") is atomic and hence supported only on almost-
normal subgroups, that is, subgroups H for which [I" : Ny (H )] < oo. This enables us
to prove the following (see Proposition 8.1).

THEOREM 1.4

If Sub(I') is countable and every almost-normal subgroup of T is profinitely closed
in T', then every p € IRS(I') is cosofic in T, and if T is also amenable, then T is
P-stable.

The first two points of Theorem 1.2 are deduced from Theorem 1.4. We also
show that if there exists a finitely generated almost-normal subgroup of I which is
not profinitely closed, then I' is not P-stable (assuming that I" is amenable, but also
under a milder condition related to soficity), and this is used to prove part (iii) of
Theorem 1.2.

The present article is organized as follows. In Section 3, we give the definitions
of P-stable equations and groups and explain the relation between the two notions. In
Sections 4 and 5, we review the needed facts regarding IRS and the profinite topology,
respectively. In Section 6, we review the theories of hyperfinite actions and graphs and
adapt the Newman—Sohler theorem to our needs. In Section 7, we prove Theorem 1.3.
Finally, in Section 8, we use Theorem 1.3 to prove Theorems 1.2 and 1.4.

Let us end by saying that, while our results give far-reaching extensions of the
groups for which P-stability or non-P-stability is known, we are still far from having
the complete picture even for amenable groups (or even for solvable groups). We still
cannot answer the question whether, for given P-stable groups I'; and I'p, I'} x I’z is
also P-stable. Is locally extended residually finite (LERF) a sufficient condition? More
specifically, is the Grigorchuk group P-stable? (See Question 8.6 and the discussion
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surrounding it.) Our work gives further motivation to understand and classify the IRS
of various finitely generated groups.

2. Notation and conventions

Throughout the paper, we fix the following. Let I" be a finitely generated group.
Present I' as a quotient of a finitely generated free group F with quotient map 7 : F —
I'. Fix a finite basis S = {s1,...,s5y} for F. Note that every result we prove for I'
applies to I as well as a special case by viewing [F as a quotient of itself with 7 being
the identity map.

Recall that a I'-set is a set X endowed with an action of I', that is, a homomor-
phism p: I' = Sym(X) called the structure homomorphism of the action. When p is
understood from the context, we write g - x for p(g)(x), where g € I" and x € X. We
also write I' ~ X when we want to refer to an action of I on a set X, but suppress
the structure homomorphism p. For a subgroup H of I, we endow the coset space
I'/H, by default, with the action given by g - (g1 H) = (gg1)H.

For a subset A of T': Write A™! = {a"'}4cq and AT = AU A™1. Write (A)
for the subgroup generated by A and {(A)) for the normal closure of 4 in I (i.e.,
the smallest normal subgroup of I" which contains A or, equivalently, the subgroup
consisting of products of I'-conjugates of elements of A*!).

For a I'-set X, define a metric dy on X where dx(x,y) is the length, with
respect to S*!, of the shortest word w € IF for which w - x = y (or oo if no such
word exists, but we shall always work within connected components anyway). For an
element g € I" and a subset A C I", write g - A = {g -a | a € A}. We use the notation
]| for disjoint unions and write X L% for the disjoint union of k copies of X.

For a metric space X, for an integer r > 0 and a point x € X, write By (x,r) =
{y € X | dx(x,y) <r}. Foran integer r > 0 and a subset A C X, write Bx(A,r) =
Ugea Bx(a.r). In the case in which X =T, write Br(r) for Br(Ir.r).

For a logical formula ¢, we write 1, to mean 1 if ¢ holds in the given context and
0 otherwise. For a subgroup H of T', write HT for the set of subgroups of I" which
are conjugate to H , thatis, H' = {H& | g € T'}. Then, |HT| = [ : Nr(H)], and we
say that H is almost normal in T if |H'| < co. For an element x in a measurable
space X, we write &5 for the Dirac measure at x. For n € N, denote [n] = {1,...,n}.

3. Definitions

3.1. P-stable equations

We refer to the elements of the basis S of F as letters and to the elements of
F as words. For a word w € F, an integer n > 1, and a tuple of permutations
(01,...,0m) € Sym(n)™, we write w(oy,...,0y) for the element of Sym(n) result-
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ing from the substitution sy + o7, ..., S, — 0, applied to the word w. That is, if
€ € . . .

w= sil1 "'Si,l for some integers [ > 0, i1,...,i; € [m], and €1,...,¢; € {+1,—1},

then w(o1,...,0m) = 07 ---0; € Sym(n).

Definition 3.1
For n € N, the normalized Hamming distance d, on Sym(n) is defined by d, (o1,
02) = %|{x € [n] | 01(x) # 02(x)}|, where 01,0, € Sym(n).

Note that d,, is a bi-invariant metric on Sym(n).

Definition 3.2

Letn e N, let E CF, and let (01,...,0,) € Sym(n)™. Then the following hold.

(1) The tuple (01, ...,04) is a solution for the system of equations {w = 1}yecg
if w(oy,...,0m) =1foreachw € E.

(i)  Assume that E is a finite set. For § > 0, the tuple (071, ...,0x,) is a §-solution
for the system of equations {w = 1}yef if

> dn(w(on.....om). 1) <8.

weE

Definition 3.3

For n e N and o = (01,...,0m), T = (t1,...,T,) € Sym(n)™, define d,(c,7) =
er'n=1 dy(0i, ;). For e > 0, if d, (0,7T) < €, then we say that & and T are €-close.
Definition 3.4

For E C IF, we say that the system of equations {w = 1}, g is stable in permutations
(or P-stable for short) if for every € > 0 there are § > 0 and a finite subset Eo C E

such that, for every n € N and §-solution (071, ...,0m) € Sym(n)™ for {w = 1}yeE,,
there is a solution (t1,...,T,) € Sym(n)” for {w = l}yeg such that (o1,...,04)
and (tq,..., ) are e-close.

Remark 3.5

The notion of a “stable system,” introduced in [4], is a special case of Definition 3.4
for a finite E C F. Indeed, Definition 3.2 of [4] says that a finite £ C F is a stable
system if, for every € > 0, there is § > 0 such that every §-solution for {w = 1}y g is
e-close to a solution for {w = 1},,cg. This is indeed equivalent to our Definition 3.4
in light of Remark 3.6 below.

Remark 3.6
For E| C E, CF, every solution for {w = 1}yeg, is a solution for {w = 1},ek,.
Moreover, if E, is finite, then for § > 0, every §-solution for {w = 1},¢cE, is a
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d-solution for {w = 1}yeg,. If wi,wy €T, then every simultaneous solution for
{wy = 1} and {w, = 1} is a solution for {w; -w, = 1}.If #, w € I, then every solution
for {w = 1} is a solution for {f - w - t~! = 1}. By the above, if E C F and n € N, then
a tuple (01,...,0p,) € Sym(n)™ is a solution for {w = 1},,cg if and only if it is a
solution for {w = 1}, eqEy-

LEMMA 3.7
Let E CF. Take § > 0, and take a finite subset Eq C ((E)). Then, there are § > 0 and
a finite subset Eo C E such that every §-solution for {w = 1}yeE, is a §-solution for

{w= l}weEO'

Proof
For every w € Ey, write w = ]_[521 tw.i -q;’”i'i -t;li, where [, > 0, {qw,,-}ll-’i1 CE,

{ewi}2y C {1.—1}, and {ty;}j2, CF. Let Eo = {qu. | w € Eo.1 <i <Ly},
and let C =) ly. Define § = é - 8. Take n € N, and take a §-solution

wEE()
(01,...,0m) € Sym(n)™ for {w = 1}yeg,. For every x € [n] and w € F, write
w - x for w(oy,...,0n)(x). For every w € Egy, write Fyy = {x € [n] | w - x # x}.
Then, ZWGEO | Fy| < én. A fortiori, | Fy,| < 8n for each w € Ej.

Letw € Eo. Define Py = M, tw,i- Fy,, ;- Then | Py| < Y0 | Fyy, ;| < Ly -8n.
Forx € [n]and 1 <i <1, ift;}i -x ¢ Fy, ;. then

—1 -1 -1
(tw,i *qu.i 'tw,i) X =Tty Gu,- (tw,i X)) =ty (tw,i ‘X)=x,

and so if x ¢ Py, then

lw
wex = (le,i “Gw,i -t,;’li) X =X.
i=1
Therefore, d,(w(oy,...,0m),1) < rl—l Py < % - ly - én = I - §. Finally,
Zweﬁo dy(w(oy,...,0m),1) <C-§ =4.Inother words, (01, ...,0,,) is a §-solution
for {w:l}wego. O
LEMMA 3.8

Let E CF. Then, {w = 1}yeg is P-stable if and only if {w = 1}y k) is P-stable.

Proof

Assume that {w = 1},cg is P-stable. Let € > 0. Then, there are § > 0 and a finite
subset Eg C E (and so E¢ C ((E))) such that every §-solution for {w = 1}yeE, is
e-close to a solution for {w = 1}, eg. The latter is a solution for {w = 1},c¢ry
as well by Remark 3.6, and so {w = 1},,¢(E) is P-stable. The reverse implication
follows similarly using Lemma 3.7. O
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3.2. P-stable groups

Each I'-set X is naturally an F-set. Conversely, for an [F-set X, if the structure homo-
morphism p: F — Sym(X) factors through I by 7: F — T, then X is naturally a
T"-set. This condition is equivalent to the following: for every w € F and x € X, if
m(w) = 1r, then w - x = x.

Definition 3.9
For § > 0 and a finite subset £y C Ker, a finite F-set X is a (8, Eg)-almost-T"-set if
Y weE o Prxex (w-x # x) <& (where X is endowed with the uniform distribution).

Definition 3.10
Let X and Y be finite F-sets of the same cardinality. For a bijection f: X — Y,
define

1 hen = 75 X B0 5 100),

Finally,
deen(X,Y) = min{|| f |lgen | /: X — Y is a bijection}.

We refer to dgen as the generator metric.

(Definition 3.10 will be generalized by Definition 6.2.)

For n € N and a tuple 6 = (01,...,0m) € Sym(n)™, write F(c) for the F-set
whose point set is [1], with the action given by s; - x = g;(x) for each 1 <i < m.
Note that, for 0,7 € Sym(n)™, |id||gen = dn(0.7), Where id: F(o) — F(7) is the
identity map [n] — [n].

In Definition 3.4, we generalized (see Remark 3.5) the notion of a P-stable sys-
tem of equations from finite systems (as studied in [15] and [4]) to possibly infinite
systems. Analogously, we now generalize the notion of P-stable groups, studied in
the aforementioned papers for finitely presented groups and coinciding with Defini-
tion 1.1 in the Introduction, to finitely generated groups.

Definition 3.11

The group I' is stable in permutations (or P-stable for short) if for every € > 0 there
are § > 0 and a finite subset Eg C Kerm such that, for every finite F-set X, if X isa
(8, Eo)-almost-I"-set, then there is a I'-set Y such that | X | = |V | and den(X,Y) <ee.

LEMMA 3.12
The group T is P-stable if and only if the system of equations {w = 1}y egerrn IS P-
stable.
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Proof

Assume that I' is P-stable. Then, for € > 0, there are § > 0 and Ey C Ker 7 satisfying
the condition in Definition 3.11. Let & € Sym(n)™ be a §-solution for {w = 1}yeE,-
Let X = F(o). Then, X is a (8§, Eg)-almost-I"-set. Therefore, there are a I'-set ¥
and a bijection f: X — Y satisfying || f||gen < €. Define a tuple T = (71,...,7m) €
Sym(n)™ by z;(x) = f~1(s; - f(x)). Then, T is a solution for E, and it is e-close
too.

In the other direction, assume that {w = 1}yekerr iS P-stable. Then, for every
€ > 0, there are § > 0 and Ey C Kerx satisfying the condition in Definition 3.4. Let
X bea (8, Eg)-almost-I"-set. Denote | X | = n, take an arbitrary bijection f : [n] — X,
and define a tuple & = (071, ...,0,) € Sym(n)™ by 0;(x) = f~'(s; - f(x)). Then, &
is a §-solution for Eg. Therefore, there is a solution T € Sym(n)™ for Ker # which is
e-closetoo. Let Y = F(T). Consider f as afunction from Y to X. Then, || f'[|gen < €,

and so dgen(X,Y) <e. O

Remark 3.13

Definition 3.11 introduces the notion of a P-stable group I" using a given presenta-
tion of I' as a quotient of a finitely generated free group. Nevertheless, the defini-
tion depends only on I" as an abstract group. Indeed, consider two finitely generated
free groups Fs and F7 with bases S and 7', respectively. Denote the generator met-
rics on finite Fg-sets and on finite Fr-sets by d;n and dg;n, respectively. Present
I' in two ways: wg: Fs — I and nr: Fr — I'. Forevery t € T, let v; € Fg be a
word for which g (v;) = 77 (¢). Define a homomorphism «: Fr — Fg by extend-
ing the law «(¢) = v;. Then, every Fg-set is naturally an F7-set. There is a constant
C > 0 such that, for every pair X and Y of finite Fg-sets of the same cardinality,
dgTen(X, Y)<C -dgin(X,Y). Moreover, for Eg C Kernr, § > 0, and an Fg-set X,
if X is a (8,®(Ep))-almost-I"-set, then as an Fr-set it is a (8, Eo)-almost-T"-set.
Running the same arguments with S and 7 reversed, we see that I" is P-stable with
respect to g if and only if it is P-stable with respect to 7. More concisely, we have
shown that the metrics dgin and a’gTen are bi-Lipschitz equivalent and that the notions
of almost-I"-sets with respect to Fg and to F7 are essentially equivalent.

4. Invariant random subgroups

We recall the notion of an IRS (see [2], [12], [13]). Write 2 for the set of functions
f: T — {0, 1} and identify 2T with the power set of I" by associating each function
f: T —{0,1} with the set {g € ' | f(g) = 1}. Denote the set of subgroups of I"
by Sub(I"). Endow Sub(I") with the Chabauty topology, which, for discrete groups, is
just the subspace topology induced from the product topology on 2T and the inclusion
Sub(T") c 2T, A sequence (Un)2, in 2T converges if and only if, for every g € T,
either g € U, for all large enough n or g ¢ U, for all large enough n. In this case,
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limsup U, = liminfU,, = U, where U is the limit of the sequence. This also shows
that Sub(T") is a closed subspace of 2T, and so it is compact. The group I' acts on
Sub(I") continuously by conjugation. Write Subs, (I"), Subg; (I'), and Sub, , (I") for
the subspaces of Sub(I") of finitely generated subgroups, finite-index subgroups, and
almost-normal subgroups, respectively.

For an element w € I, define C, = {H < T | w € H}. For an integer r > 0
and a subset W C I", let C,w ={H <T | HN Br(r) = W N Br(r)}. Note that
such sets Cy, and C, i are clopen in Sub(I"), and so their characteristic functions are
continuous. For a given subgroup K < I', the subspace {H <T' | K < H} of Sub(I")
is closed since it equals (g Ck-

We exhibit a metric generating the topology of Sub(I'). Fix an enumeration
(gi);2, of the elements of I'. The metric on 2T defined by dproa(U1, Uz) = Z?il 2.
1y, n{g;}=U,n1g;} induces the product topology on 2T, and so its restriction to Sub(I")
induces the Chabauty topology. Note that, for every € > 0, there is an integer r > 1
such that, for all Ay, H> <T',if H; N Br(r) = H, N Br(r), then dproa(H1, Hz) < €.

Consider the space Prob(Sub(I')) of Borel regular probability measures on
Sub(I"). We shall refer to elements of Prob(Sub(I')) as random subgroups. The
group I acts on Prob(Sub(I")) by conjugation, that is, (g - u)(A4) = (g~ ' Ag). We
write IRS(I") for the subspace of Prob(Sub(I')) of conjugation-invariant random
subgroups, namely, IRS(T") = Prob(Sub(I"))T'. We shall refer to elements of IRS(I")
as IRS. Endow IRS(I') with the weak-* topology. A sequence (i,)5>, in IRS(I")
converges in the weak-# topology to 1 € IRS(T) if and only if [ f du, — [ fdu
for every continuous function f: Sub(I') — R. It follows from the Riesz—Markov
and Banach—Alaoglu theorems that IRS(T") is a compact space. Moreover, under the
weak-* topologies, IRS(T") is metrizable by the Lévy—Prokhorov metric. We shall
only use the metrizability of IRS(I") to identify the closure of a given subset A of
IRS(T") with the set of limits of convergent sequences (rather than nets) in A.

The space Sub(I") enjoys a useful sequence 5, (I") of partitions into finitely many
clopen sets. For n € N, define the partition

Pp =P, () = {Cn,W | W C Br(n),Cyw # ﬂ}'

For a continuous function f: Sub(I") — R, define a sequence of continuous func-
tions fy: Sub(I') = R by fu =3 4cp, f(Ka)- 14, where K4 is an arbitrary ele-
ment of A for each A € #,. Then, since f is uniformly continuous, || f, — f|lco — 0.
This shows that, for u € IRS(I") and a sequence (un)oe, in IRS(I'), up — w1
in the weak-* topology if and only if, for every integer r > 1 and W C Br(r),
Hn(Craw) "= W(Cr).

Let u € IRS(T") be an atomic IRS. Then, all atoms of x must be almost-normal
subgroups of I'. Fix n € N. Take pairwise nonconjugate subgroups Hy,..., Hy of T’
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such that M > 1—1, where M = Zf-;l m; andm; = p(HF). Write A = Ule HE.

Let wu, € IRS(I") be the atomic IRS assigning measure M-rlnlflrl to each conjugate of

H; for every 1 <i <k. Take a continuous function f: Sub(I") — R. Then,

Vfdun—/fdu‘E‘Lfdun—/Afdu‘
" ‘/Sub(F)\A B /Sub(I‘)\A / d,u‘

5§j|;—r| > (Gr-mi)- )

KeHF

v \0 - [ I du’
Sub(T)\ A

< (3:-1)- (imi) W loo 21 lleo

i=1

1
= (=m0 + )11/l

IA

and so u, — . We have thus shown that every atomic IRS p € IRS(T") is the limit
of a sequence (u,)52, of finitely supported atomic IRS with supp(it,) C supp(i).

Recall that a standard Borel space is a measurable space which is isomorphic, as
a measurable space, to a compact metric space with its Borel o-algebra.

Definition 4.1

A probability space is a standard Borel space endowed with a Borel regular proba-
bility measure. A T"-probability space X is a probability space endowed with a Borel
action I' ~ X . If the action is pmp, we say for short that that X is a pmp I'-space.

Let (X, v) be a ['-probability space. Then, the stabilizer map f: X — Sub(I")
defined by f(x) = Stabr(x) is a Borel map, and so we may define the pushfor-
ward measure ;t = fxv € Prob(Sub(I")). By definition, u(A4) = v(f ~!(A)) for every
Borel set A C Sub(T"). If X is a pmp I"-space, then u € IRS(I"), and we refer to u
as the IRS associated with X . For a sequence (X,)52; of pmp I'-spaces with associ-
ated sequence of IRS ()52, if ity — i, then we say that u is the limiting IRS of
(X3
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We will consider both IRS(I") and IRS(F). The discussion above applies to
IRS(FF) as a special case. We identify IRS(I") with the subspace of IRS(F) of mea-
sures supported on subgroups which contain Ker r. With this identification, IRS(I")
is a closed subspace of IRS(IF).

Definition 4.2

A random subgroup u € Prob(Sub(I')) is a finite-index random subgroup if it is
atomic and all of its atoms are finite-index subgroups of I". Write IRS; (I") for the
subspace of IRS(I") consisting of the finite-index IRS.

Definition 4.3
An IRS p € IRS(T") is cosofic if it is the weak-* limit of a sequence (u,)52, in
IRS(T") of finite-index IRS.

By the discussion above regarding approximation of atomic IRS by finitely sup-
ported atomic IRS, and since IRS(T") is metrizable, an IRS p € IRS(T) is cosofic if
and only if it is the limit of a sequence of finitely supported finite-index IRS.

LEMMA 4.4
Let 1 € IRS(I") be a cosofic IRS. Then, there is a sequence (X,)5>, of finite I'-sets

n=
whose associated sequence of IRS (ju,)5>, converges to (L.

Proof

Let (un);2,; be a sequence in IRS(I") of finitely supported finite-index IRS con-
verging to . Fix n € N. Take pairwise nonconjugate subgroups Hi, ..., Hy such
that u, is supported on Ule HiF. Take positive integers [q,...,[; satisfying
|l§’ —m;| < ﬁ, where S = Zf-;l l; and m; = ,u(HiF). Let X,, = ]_[f;l(F/Hi)Uli,
and write v, € IRS(I") for the IRS associated with X,. Take a continuous function
f: Sub(I') — R. Then,

[ ravi— [ s,

() (g 3 0)

ko
<Y1l

i=1
1

== flleo
n

and so v, — W. O
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LEMMA 4.5
Let . € IRS(T") be a cosofic IRS. Then, supp(u) C Subg; (T).

Proof

Let H € supp(jt). Take a sequence (u,)5>, of finite-index IRS converging to . Let
r € N. Since u(Cy, g) > 0, there is n € N for which u,(Cr,g) > 0. Therefore, there
is a finite-index subgroup H, of I' satisfying H, € C, . Then H, — H, and so
H € Subg; (T). O

Given an IRS u € IRS(T"), we say that u is cosofic in F if it is cosofic as an
element of IRS(IF) under the natural inclusion of IRS(I") in IRS(IF), that is, if it is the
limit of a sequence (u,)ae, in IRS(F) of finite-index IRS. Therefore, for emphasis,
we sometimes say “cosofic in I'” instead of “cosofic.”

5. Remarks on the profinite topology on an abstract group

Recall that the profinite topology on the group I is the topology, making I" a topolog-
ical group, for which the finite-index subgroups form a basis of neighborhoods of 1r.
The closure of a subgroup H of I' under the profinite topology of I" equals the inter-
section of the finite-index subgroups of I containing H. We refer to this closure as
the profinite closure H of H in T, and if H = H, we say that H is profinitely closed
in . If H is normal in ', then H equals the intersection of the normal finite-index
subgroups of I" which contain H. Write Suby, . (I") for the subspace of Sub(I") of
profinitely closed subgroups of I". Note that the trivial subgroup {1} of T is profinitely
closed if and only if T is residually finite.

LEMMA 5.1
We have Subg; (I') N Subgg (I') C Sub,, ¢ (I') C Suby; (I') .

Proof

For the right inclusion, take H € Sub, . (I'). Then, there is a sequence (f,);2, of
finite-index subgroups of T" such that H = (72, H,. Hence, H, — H . For the left
inclusion, take H € Subg; (I') N Subt, (I'). Take a sequence H,, of finite-index sub-
groups of H converging to H. Fix a finite generating set 7' for H. There is ng > 1
such that, for n > ny, T C Hy,; hence, H C H,,. Therefore, H = ﬂ,fino H,,, and so

H is profinitely closed. O

The group I' is LERF if every finitely generated subgroup of I' is profinitely
closed. Equivalently, I" is LERF if every subgroup of I" is a limit in Sub(I") of finite-
index subgroups.
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6. Benjamini-Schramm convergence, hyperfiniteness, and applications
Consider the compact space [0,1]" and the metric dpod on [0, 1]V defined by
doroa((@i)$ 1. (DK)F2 ) = D iey 27% . |ay — bi| and generating the product topol-
ogy of [0,1]N. Fix an enumeration ((pi, Wi))2, of all pairs (p, W) € Z>g x 2oF
satisfying W; C Bp(p;), namely, W; is a subset of the ball of radius p; in F. For
an [F-probability space X, define p;(X) = Pryex (Stabp(x) N Bp(p;) = W;) and
L(X) = (pi(X))2, €0, 1]V, Note that if 1« € IRS(F) is the IRS associated with the
action F ~ X, then p; (X) = u(Cp, w;). For a pair X, Y of F-probability spaces,
define dyo(X,Y) = dproa(L£(X), £(Y)). So, {pi (X)}2, gives the “local statistics”
of the stabilizers of the action of F on X. Note that dy,, defines a pseudometric on
the space of (equivalence classes of) F-probability space, which becomes an actual
metric when restricted to finite F-sets. Convergence under the dg, metric is called
Benjamini—Schramm convergence. (More precisely, it is a directed, edge-labeled
version of Benjamini—Schramm convergence.)

LEMMA 6.1

Let (X,)52, and (Y5,)52, be pmp F-spaces. Write p, and v, for the associated IRS
of Xy and Yy, respectively. Then the following hold.

6) If un — p for some u € IRS(F) and dsa( Xy, Yyn) — 0, then v, — .

(1))  If un = A and vy, — A for some A € IRS(IF), then dy(Xy,Yy) — 0.

Proof

(i) Take 7 > 1 and W C By (r). Under the hypothesis of (i), ftn(Cr.w) — u(Cr.w)

and |n (Cr,w) —vn(Crw)| 0. Hence, v, (Cr.w) gt u(Crw), and so v, — L.
n—oo

(ii) Take r > 1 and W C Bp(r). Under the hypothesis of (ii), u,(Crw) —>

AM(Crw) and vy (Crw) =5 A(Cryp). Hence, |1tn(Crw) — va(Crw)| =3 0, and
SO dyat( Xy, Yy) — 0. O

We now generalize Definition 3.10 and we relate dgen, and dyq.

Definition 6.2
Let (X, n) and (Y, v) be pmp F-spaces. For a measured-space isomorphism f: X —
Y, define

1 lgen = ﬁ-Zu({x eX| fls-x) £ f(0)}).

seS

Finally, let

dgen(X.Y) = inf{|| f lgen | /- X — Yis a measured-space isomorphism}.
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PROPOSITION 6.3
Let {(Xn,vn)}52, and {(Yy,An)}or, be sequences of pmp F-spaces satisfying
doen(Xn, Yy) — 0. Then, dyo(Xp, Yn) — 0.

Proof
Take a sequence { f,}o; of measured-space isomorphisms f,: X, — Y, such that
| /2 llgen = 0. For n € N, let

Py = U{x € Xn } Jn(s-x) # S'fn(x)}’
SES
and for r € N, let Q) = X, \ Bx, (P,.r) (in the notation of Section 2). Then,
{07 }n.ren are Borel sets, and for each r € N,

Va (B, (Pa,r)) < (2-1S) 00 (Py) = 0;

hence, v,(Q0}) putey Furthermore, for each x € QJ, Stabp(x) N Br(r) =
Stabp( f,(x)) N Br(r). Hence, for each i € N, there is r € N such that |p; (X,) —
pi(Yp)| <1 —v,(Q}) for all n € N, and so |p;(X,) — pi(Yn)| "% 0. Thus,
dsai(Xn, Yn) — 0. Ol

In Proposition 6.8 below, we will give a partial converse to Proposition 6.3 in the
context of actions of an amenable group on finite sets.

Let X be a standard Borel space. Let E be a Borel equivalence relation on X
that is, £ C X x X is a Borel set which is an equivalence relation. We write x ~g y
if (x,y) € E. Then, E is finite (resp., countable) if all of its equivalence classes
are finite (resp., countable). A countable equivalence relation E is hyperfinite if it
can be written as an ascending union of finite Borel equivalence relations. If p is a
probability measure on X, then E is hyperfinite -a.e. if there is a p-conull Borel
subset Xo C X, respecting E, such that the restriction of E to Xy is hyperfinite.
A Borel action I' ~ X gives rise to a Borel equivalence relation on X which we
denote by E; If (X,u) is a pmp I'-space, then the action I' ~ (X, u) is called
hyperfinite if the equivalence relation E}; is hyperfinite p-a.e. A well-known theorem
of Ornstein—Weiss (see [8, Theorem 10]) says that every action of an amenable group
is hyperfinite. (For a thorough treatment of Borel equivalence relations, see [17].)

Definition 6.4

Let X be a family of finite graphs. Then, X is hyperfinite if for every € > O there is
K € N such that, for each graph X € X, there isa set Z C V(X), |Z]| <€ - |[V(X)],
such that, after removing from X all edges incident to Z, each component of the
resulting graph is of size at most K.
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PROPOSITION 6.5
Assume that T" is amenable. Then, the sequence { X, }5>, of all finite Schreier graphs
of I is hyperfinite.

Proof

Forn e Nand Z C V(X,), let c,,z be the size of the largest component of the graph
resulting from removing all edges incident to Z from X,. For € > 0, let ¢, =
min{c,,z | Z C V(Xp),|Z| <€ -|V(Xy)|}. Assume, for the sake of contradiction,
that {X,,}°° | is not a hyperfinite family. Then, there are ¢ > 0 and an increasing

k
sequence {ng}5>; such that ¢, ¢ % 0. Write Un € IRS(T") for the IRS associ-

ated with X,. Since IRS(T") is compact, we may further assume that p, gy u for
some p € IRS(T"). By [2, Proposition 13], there is a pmp I"-space X whose associ-
ated IRS is u. By [25], the action I' ~ X is hyperfinite since I" is amenable. Then,
by [26, Theorem 1.1] (see also [11, Theorem 1]), { X, }z":l is a hyperfinite family, a
contradiction. ]

Recall that a bijection f: X — Y between measured spaces (X, ) and (Y, v) is
a measured-space isomorphism if f and f~1 are both Borel maps and, for each Borel
set A C X, u(A) = v(f(A)). It is well known that a Borel bijection between stan-
dard Borel spaces is automatically a measured-space isomorphism (see [16, Corol-
lary 15.2]). A measured-space isomorphism from a measured space to itself is called
a measured-space automorphism.

A well-known question of Aldous—Lyons from [3] is whether every p € IRS(F)
is cosofic. The following proposition shows that if y arises from an amenable quotient
of F, then it is cosofic. Note that the same conclusion can be drawn if p arises from
a quotient which is isomorphic to SL3(Z), since this group is residually finite and all
of its IRS are supported on finite-index subgroups and the trivial subgroup. The same
properties hold for a wide range of other lattices in simple Lie groups of higher rank
(see [13] and the references within).

PROPOSITION 6.6
Assume that T is amenable and 1 € IRS(T"). Then, w is cosofic in F.

Proof

By [2, Proposition 13], there is a pmp I'-space (X, v) for which pu is the associated
IRS. Since I' is amenable, the action I' ~ X is hyperfinite by [25]. From now on,
regard X as an F-probability space, and for each s € S (recall that S is our fixed basis
for F), let fi: X — X be the measured-space automorphism defined by fs(x) =s-x.
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Let n > 1. Since the equivalence relation EgF( is hyperfinite p-a.e., there is a
Borel set Z C X, v(Z) < %, such that all orbits of the restriction of EgF( to X\ Z
are finite (see [20, Section 21.1.2]). Let E = E% |x\z U{(x,x) | x € Z}. For each
s € S, Lemma 6.7 below gives us a measured-space automorphism %z : X — X which
respects the equivalence relation E and agrees with f; on X \ (Z U (f;)71(Z)). Let
X, be the pmp F-space which, as a probability space, equals X, endowed with the
pmp action of IF given by s-x = hy(x) foreach s € S. Then, dgen (Xp, X) — 0, and so,
by Proposition 6.3, dg (X,, X) — 0. Write u,, € IRS(FF) for the IRS associated with
X,. Then pu, is a finite-index IRS since each h; respects the finite Borel equivalence
relation £. By Lemma 6.1(i) applied to the sequence (X,)72, against the constant
sequence (X)°2 ,, Un — [, and so, u is cosofic in IF. O

LEMMA 6.7

Let X be a probability space, let f: X — X be a measured-space automorphism,
and let E C X x X be a finite Borel equivalence relation on X. Write Xg 5 ={x €
X | f(x) ~g x}. Then, there is a measured-space automorphism h: X — X such
that h(x) ~g x for every x € X and h agrees with f on Xg .

Proof
The idea behind the construction of the map 4 is as follows: Since the equivalence
relation E is finite, the space X can be decomposed as a disjoint union of finite f-
cycles and finite maximal f -chains, that is, sets of the form x, f(x), f @ (x),...,
£ (x) for x € X and m > 0 such that £ (x) ~g fE+D(x) foreach 0 <i <m
and such that either 1 (x) = x and £ (x) ~g x (these are the f-cycles) or
7 (x) g x and f(x) g £+ (x) (these are the maximal f-chains). For
each maximal f-chain, as above, we define A(f¥(x)) = f@+D(x) for each 0 <
i <mand h(f“(x)) = x.Onthe f-cycles, we make / identical to f. The resulting
function £ is a bijection. We now formalize this construction in a way that enables us
to see that the resulting map /4 is a Borel measure-preserving automorphism of X .
Foreachn >0,let A, ={x € X \ Xg 7 | (f~H®(x) ~g x}. For each n > 0,
set X, =()i2o Ai \ Ant1. S0, a point x € X \ Xg s satisfies x € X,, if and only if
(fH®(x) ~g x forevery 1 <k <n, but (f~1)@*D(x) <g x. The sets X, are
disjoint by construction. Furthermore, since each equivalence class of E is finite,
every x € X \ Xg, r belongs to X, for some n € N. Therefore, € = {Xg s} U
{X, 152, forms a partition of X into countably many Borel sets. We define h: X —
X:for x € Xg 7, set h(x) = f(x), and for x € X, set h(x) = (f~H™(x). Then,
h is a bijection. By the definition of / and since f is a Borel automorphism, 72 maps
every Borel subset of each set in the partition € to a Borel subset of X. Thus, &
maps every Borel subset of X to a Borel set. This shows that 2~! is a Borel bijection,
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and so, since X is a standard Borel space, & is a Borel bijection as well. Similarly,
h preserves the measure on X because it does so when restricted to each set in the
partition €. O

The following result, which is essential for our needs, gives a converse to Propo-
sition 6.3 in the case in which the F-sets are finite and the actions in one of the
sequences factor through an amenable quotient.

PROPOSITION 6.8

Assume that I is amenable. Let (X,)52, be a sequence of finite F-sets, and let
(Yn)S2, be a sequence of finite I'-sets, satisfying | X,| = |Yy| and dgar(Xp, Yn) — 0.
Then, dgen(Xy,Ys) — 0.

Proof

The statement of this proposition is an adaptation of a theorem of Newman and Sohler
(see [23] and [24, Theorem 3.1]) from the context of finite undirected graphs to the
context of group actions on finite sets. We begin by describing the Newman—Sohler
theorem (see [11, Theorem 5] for this formulation and a different proof). First, we
need some definitions. Fix ¢ € N. Let P, be the collection of finite undirected graphs
for which the degree of each vertex is at most ¢g. We begin by defining the notion of
the statistical distance between finite undirected graphs. For H € P, and a vertex kg
of H, we say that (H, hg) is a pointed graph of radius r if each vertex & € H is at
distance at most r from 4. Write P, , for the set of pointed graphs (H, hg) of radius
r with H € P,. Enumerate the disjoint union [ [,cyPg,r by {H;}?2,. For r € N,
H; €Py,, and G € P, write p;(G) for the probability, under a uniformly random
choice of a vertex v of G, that the ball of radius r, centered at v, is pointed-isomorphic
to H;. Write £(G) = (pi(G))?2, € [0, 1]". For Gy, G, € Py, the statistical distance
between G and G, is defined as dy(G1,G2) = Y 5o 27 - | pi(G1) — pi(G2)|. We
now define another notion of distance between graphs in P,. (The generator metric
dgen is its analogue in the context of group actions.) For G1, G, € Py, n :=|V(Gy)| =
|V(G»)|, and a bijection f : V(G1) — V(G2), let Q s be the set of pairs (vq,v5) of
vertices of G such that (v, v,) is an edge of G, but (f(v1), f(v2)) is not an edge
of G,, or vice versa. Let || f|| = % -|Q r|. Define d(G1, G») as the minimum of || f|,
running over all bijections || f|| between the vertex sets.

The Newman—Sohler theorem says that if G C P is a hyperfinite family, then for
every € > 0, there is f(€) > 0 such that, for every G; € P, and G, € G, if |V(Gy)| =
1V(G2)| and dyu(G1.G2) < f(€), then d(G ., G) < €. In other words, if (G{")22,
is a sequence in P, and (G,(,Z)),‘;":1 is a sequence in the hyperfinite family G, satisfying
1GV| = |G, then dyu(GY, GP) — 0 implies d(GY,GP) — 0.
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To adapt the Newman—Sohler theorem to the context of group actions, we use
a standard encoding of actions of ' by undirected graphs. (The details of this type
of encoding are described, for example, in the proof of [11, Theorem 9].) There are
q € N and a mapping U from the set of actions of IF on finite sets to the set P,
with the following properties: (1) if (X,);2,; and (¥,)52; are sequences of finite
F-sets, then dy. (X, Y,) — 0 if and only if dy. (U(X,), U(Yy)) — 0, and (2) if, in
addition, |X,| = |Yy|, then dgen(Xp,Y,) — 0 if and only if d(U(X,),U(Y,)) — 0.
The proposition follows at once from the Newman—Sohler theorem and the above
properties of the encoding function U . O

Remark 6.9

The assumption that I" is amenable in Proposition 6.8 is essential. Indeed, for d > 2,
take I' = 4, the free group on d generators. Then, there are sequences (A,)52, and
(Ay)g2, of finite quotients of I', [A,| =2 - |A,]|, giving rise to 2d -regular Cayley
graphs X, = Cay(A,) and Y,, = Cay(A,), such that (X,)52, is a family of expander
graphs and such that the girths of both X, and Y, approach infinity as n — oo (see
[21, Theorem 7.3.12] for examples of families of expander graphs with large girth).
Then, dyu(Xy, Yo || Yn) — O since, for every radius r > 1, any ball of radius r in X,
and in Y, is a tree for large enough n. But, since (Y, | [Y,)52, is a highly nonex-
panding family, dgen (X5, Yn) does not approach 0 as n — oo.

7. The main theorem

Definition 7.1
A sequence (X,)52; of finite F-sets is convergent if it has a limiting IRS; that is, the
sequence (i,)52; of IRS associated with (X,)52; converges in IRS(IF).

Definition 7.2
A sequence (X,)52; of finite F-sets is a stability challenge for I if Pryex, (w - x =
x) — 1 for each w € Ker .

Every sofic approximation (X,)52; for I' is a stability challenge. Indeed, a sofic
approximation can be defined as a stability challenge with the following additional
requirement: for every w € I, if w ¢ Ker, then Pryey, (w - x 7 x) — 1. Note that
IRS(IF) is compact, and so every stability challenge for I" has a convergent subse-
quence.

Definition 7.3
Let (X)), be a stability challenge for I'. Then, a sequence (¥,,)52, of finite I"-sets,
satisfying | X, | = |Ya/, is
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n—oo

(1) a solution for (X)) if dgen(Xn, Yn) — 0,

(ii) a statistical solution for (X))o, if dsai(Xn, Yn) 2.

By Proposition 6.3, if (X,)2, is a stability challenge for I', then any solution
for (X,)52, is a statistical solution. By Proposition 6.8, the converse holds as well
if T' is amenable. Note also that I" is P-stable (Definition 3.11) if and only if every
stability challenge for I' has a solution. In fact, it suffices to consider convergent

stability challenges.

LEMMA 7.4
The group T is P-stable if and only if every convergent stability challenge for T has
a solution.

Proof

We only need to prove the “if” direction. Assume that I" is not P-stable. We would like
to show that I" has a convergent stability challenge which does not have a solution.
Take € > 0 and a sequence (X,)5>, such that X, is a (6,, E,)-almost-I"-set for §, =
% and E, = Kernm N Bp(n), but there is no I'-set Y, for which dgen(X;,Y,) < €.
Then, every subsequence of (X;)72, is a stability challenge for I" which has no
solution. Since IRS(IF) is compact, (X,)5; has a subsequence which is a convergent
stability challenge for I' with no solution. O

LEMMA 7.5

Let (X,)52, be a convergent sequence of finite F-sets, and write € IRS(F) for
its limiting IRS. Then, (X,)5>, is a stability challenge for T" if and only if 1 €
IRS(T).

Proof

Let (1n)52, be the sequence of IRS associated with (X,)52 ;. By definition, @, — u.
Then, (1n)5%, is a stability challenge for I' if and only if u,(Cy) — 1 for each
w € Kerm. If u € IRS(T), then w,(Cy) — n(Cy) = 1 for every w € Kerz, which
says that (u,)52, is a stability challenge for I". In the other direction, if (1,)5>, is
a stability challenge for I', then for every w € Kerx, 1, (Cy) — 1, but p,(Cy) —
w(Cy), forcing u(Cy) = 1. Therefore,

/,L({HSFlKeI'JTSH})I/,L< ﬂ Cw)zl,

weKerm

and so u € IRS(T"). O
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The proof of the following lemma is an adaptation of the argument in the proof
of [4, Proposition 6.1].

LEMMA 7.6

Let (Xn)52, be a sequence of finite I'-sets satisfying |X,| — oo, with associated
sequence of IRS (jin)y2y, satisfying wn — p for some p € IRS(T'). Let (my)72,
be a sequence of positive integers satisfying my — o0o. Then, there is a sequence
(Yi)zz, of T'-sets, satisfying |Yi| = my, with associated IRS sequence (v)g—,, such
that vy — W as well.

Proof

For an integer r > 0, write Z, for the I'-set on r points on which T" acts trivially.
Take an increasing sequence (i,)2; of positive integers such that, for every n € N
and i, <k <ipy1, %Zl < % For each k > iy, take the unique n € N for which i, <
k <ip41, write my = qy - | X, | + rx for integers g > n and 0 < ry < | X, |, and let
Yi = (Xp)H4x L1 Z:.So, |Yi| = my.For 1 <k <iy,define Yy = Zy,, . Let (vi)72,
be the sequence of IRS associated with (Yx)?2 ;. We would like to show that vy — p.
Take a continuous function f: Sub(I') — R. Letn € N, and leti,, <k <i,+1. Then,

[ £ave= [ 7w

— o (@ ol [ dn e 1) = [ 1

= (e ol =) [+ (D)

mg

=2 |- [ f dn 1)

=
2
<= flloo-
n
Therefore, [ f dvk — [ f dpu, and so vy — p. O

Definition 7.7
Let (X,)32, be a convergent stability challenge for I' whose limiting IRS is u €
IRS(I"). Then, (X,)52, is cosofic if u is cosofic.

LEMMA 7.8

Let (X,)52, be a convergent stability challenge for T'. Then, (X,);2, is cosofic if
and only if (X,)52, has a statistical solution.

Proof

Write . € IRS(T") for the limiting IRS of (X,)52 ;. Assume that (X,);2, is cosofic.
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By Lemma 4.4, there is a sequence (¥,),~; of finite I'-sets whose associated
sequence of IRS converges to (. By Lemma 7.6, we may assume that | X, | = |Y,| for
all n € N. Then, by Lemma 6.1(ii), (¥;,)52, is a statistical solution for (X,)52

In the other direction, assume that (X,)52, has a statistical solution (Y, )n=1
Write (v,)52, for the sequence of IRS associated with (¥,)52 ;. Then, (v,)52; is a
sequence of finite-index IRS in IRS(T"), which, by Lemma 6.1(i), converges to 1, and
so (X)) is cosofic. O

LEMMA 7.9
Let € IRS(T), and assume that ju is cosofic in F. Then, there is a convergent stabil-
ity challenge for I whose limiting IRS is .

Proof

By Lemma 4.4 applied to F (rather than I'), there is a sequence (X,)5>, of finite
F-sets whose associated sequence of IRS converges to p. But i € IRS(I"), and so, by
Lemma 7.5, (X)), is a stability challenge for I'. O

The following proves Theorem 1.3 of the Introduction.

THEOREM 7.10

6)) Assume that T is P-stable, and assume that p € IRS(I") is cosofic in F. Then,
W is cosoficin T.

(i)  Assume that T is amenable. Then, T" is P-stable if and only if every u € IRS(I")
is cosofic in T.

Proof
(i) By Lemma 7.9, there is a convergent stability challenge (X,)52; for I' whose
limiting IRS is . Then, (X;);2; has a solution; a fortiori, it has a statistical solution.
Thus, by Lemma 7.8, (X,)52, is cosofic, that is, 1 is cosofic in I".

(ii) Assume that I" is P-stable. Let u € IRS(I"). By Proposition 6.6, p is cosofic
in IF. Hence, by (i), i is cosofic in T".

In the other direction, assume that every pu € IRS(I") is cosofic in I'. Let
(Xn)52, be a convergent stability challenge for I". Then, (X})52, is cosofic, and so
by Lemma 7.8, it has a statistical solution (¥,)52 ;. By Proposition 6.8, (¥,)52, is,

in fact, a solution for (X}) and so [ is P—stable by Lemma 7.4. O

o
n=1>
8. Applications of the main theorems

In this section, we give several applications of the results of Section 7 and, in partic-
ular, prove Theorem 1.2. The next proposition proves Theorem 1.4.
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PROPOSITION 8.1
Assume that Sub(T") is countable, and assume that every almost-normal subgroup of
I is profinitely closed. Then, every p € IRS(T") is cosofic. If, further, T is amenable,
then I is P-stable.

Proof

The latter statement follows from the former by Theorem 7.10(ii). We turn to proving
the former. Since Sub(I") is countable, every IRS in IRS(I") is atomic, and so all of
its atoms are almost-normal subgroups. Let 1 € IRS(I"). Take a sequence (it,)52; in
IRS(T") of finitely supported atomic IRS, converging to p. Since IRS(I") is metriz-
able, it suffices to prove that each p, is cosofic. Let H be an almost-normal subgroup
of ', and let v € IRS(T") be the atomic IRS assigning measure ﬁ to each conjugate
of H. It suffices to prove that v is cosofic. Take representatives g1, ..., gk for the left
cosets of Nr(H) in I'. Since H is profinitely closed in I" and [I" : Nr(H)] < o0, H
is profinitely closed and normal in Nr(H ). Therefore, there is a sequence (H,)52

of finite-index normal subgroups of Np(H) such that H = (72, H,.For 1 <i <k,
& H, e & H, and so 8, g, e d¢; . Hence, writing v,, = %Zle 82 p,, We
have v, e v, that is, v is a limit of finite-index random subgroups. It remains to
show that each random subgroup v, is an IRS. Take g € I". Let 0 € Sym(k) be the
permutation for which gg; Nr(H) = g(;)Nr(H). Since H, is normal in Np(H),
88i H, =8 H, foreach1 <i <k.So, g-v, = %Zle 8zsi g, = vp, thatis, vy is
an IRS. Hence, v is cosofic. tJ

The following corollary provides a proof for part (i) of Theorem 1.2.

COROLLARY 8.2
Virtually polycyclic groups are P-stable.

Proof

Assume that I" is a virtually polycyclic group. Then, every subgroup of I' is finitely
generated, and so Sub(I") is countable. Furthermore, I is LERF (see [22]) and
amenable. Hence, all of the conditions of Proposition 8.1 are met. O

Remark 8.3
Nevertheless, not every solvable group is P-stable, even if it is residually finite (see

Corollary 8.7).

The following corollary provides a proof for part (ii) of Theorem 1.2.
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COROLLARY 8.4
For every n € Z, the Baumslag—Solitar group BS(1,n) is P-stable.

Proof

Let I' = BS(1,n). Note that I" = Z[%] x Z, where 1 € Z acts on Z[%] by multiplica-
tion by n. We use Proposition 8.1 to show that I" is P-stable. First, I' is amenable since
it is solvable. The group I' is an example of a constructible solvable group. Every con-
structible solvable group is residually finite, and the class of constructible solvable
groups is closed under taking quotients and finite-index subgroups (see [5] or [19,
Section 11.2]). Therefore, every almost-normal subgroup of I' is profinitely closed.
It remains to show that Sub(I") is countable. In general, for a countable group G and
N <G, if G/N is Noetherian (i.e., every subgroup is finitely generated) and Sub(N)
is countable, then Sub(G) is countable. In our case, by taking N = Z[%], I'/N is infi-
nite cyclic, and Sub(/N) is countable. To see that N = Z[}l] indeed has only countably
many subgroups, we argue as follows. Let H be a subgroup of Z[%]. Then, H is deter-
mined by the sequence (H;){2,, where H; = H N %Z. The latter is determined by
the sequence (/;){2,,, where [; = [%Z: HnN #Z]. By assuming H # {0}, each [; is
a positive integer (i.e., [; # 00). For each i > 0, [; = l;41/ ged(n,l;+1). This shows
that (lil#);’io is a nondecreasing sequence of natural numbers which divide #n. In
particulélr, this sequence of quotients stabilizes at some divisor g of n. Let ng be the
minimal natural number for which [, 11 = [, - ¢. Then, [; = I, -q*~" for each
i > ng. The sequence (/;)72 is determined by ng, I, and g. Subsequently, Z[%] has
only countably many subgroups. O

PROPOSITION 8.5

Assume that T is P-stable. Let H be an almost-normal subgroup of I such that the
IRS . € IRS(T"), assigning probability IH—IFI to each conjugate of H, is cosofic in I.
Then, H is a limit in Sub(T") of finite-index subgroups. If, in addition, H is finitely
generated, then H is profinitely closed.

Proof

The latter statement follows from the former by Lemma 5.1. We turn to proving
the former. By Theorem 7.10(i), p is cosofic in I". Since H € supp(u), Lemma 4.5
implies that H € Subg; (). O

Specializing to H = {1} in Proposition 8.5, we see that a sofic P-stable group
must be residually finite, as proved by Glebsky and Rivera in [15, Theorem 2] and
by Arzhantseva and Paunescu in [4, Theorem 7.2(ii)]. By Propositions 8.5 and 6.6,
if ' is amenable and P-stable, then every almost-normal subgroup of I' is a limit in
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Sub(T") of finite-index subgroups. If the converse is true as well (under the amenabil-
ity assumption), it would give a positive answer to the following question.

Question 8.6
Is every amenable LERF group P-stable?

A related question was asked by Arzhantseva and Paunescu (see [4, Conjecture
1.2]): (*) Among finitely presented amenable groups, is P-stability equivalent to the
following: every normal subgroup of I" is profinitely closed? In fact, Conjecture 1.2
in [4] was stated differently, without assuming amenability, but (*) is an equivalent
formulation under the amenability assumption (see [4, Theorem 7.2(iii)]).

Arzhantseva and Paunescu asked whether every finitely presented amenable
residually finite group is P-stable (see the paragraph before Theorem 7.2 of [4] and
Theorem 7.2(iii) of the same paper). We recall the construction of Abels’s groups and
show that they provide a negative answer. Fix a prime p. Abels’s group (for the prime

p)is

mmnel; < GL4(Z[%]).

*
—_ % % ¥

COROLLARY 8.7
Abels’s group A, is finitely presented, amenable, and residually finite, but not P-
stable.

Proof

The group A, is amenable since it is solvable. It is residually finite since it is finitely
generated and linear. In fact, in [1], Abels showed that 4, is finitely presented. By
Proposition 8.5, to show that 4, is not P-stable it suffices to exhibit a finitely gener-
ated almost-normal subgroup H of A, which is not profinitely closed. Note that the
center of A is

1 0
1

0
0

- o O
=
m
N

| —|

| =

| E—
I
N

| —

N |-

| E—

Let
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1 0
1

0
0
H =
1

- o O I

Since H is cyclic and central, we are left with showing that H is not profinitely
closed in A,. In general, if a group G is endowed with its profinite topology, then
the subspace topology on a subgroup L < G is coarser (or equal) to the profinite
topology of L. Therefore, it suffices to prove that H is not closed in the profinite
topology of Z(Ap). Consider the inclusion Z C Z[%]. It suffices to show that the
only finite quotient of L = Z[%] /7Z is the trivial group. Note that, for every x € L,
there is n € N such that p"x = 0, that is, L is a p-group, so a finite quotient of L
must be a finite p-group, and if this finite quotient is nontrivial, then L has a quotient
which is cyclic of order p. At the same time, L is p-divisible (i.e., every element is a
pth multiple), and hence so is every quotient of L. But the cyclic group of order p is
not p-divisible. O
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