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ABSTRACT

There exist two intrinsic shortcomings on model predictive
control (MPC) strategy, namely the extensive online calculation
burden and the complex tuning process, which prevent MPC
from being applied to a wider extent. To tackle these two
drawbacks, different methods were proposed with majority of
them treating these two issues independently. However,
parameter tuning in fact has double-sided effects on both
controller performance as well as real-time computational
burden. Due to the lack of theoretical tools for globally analyzing
the complex conflicts among MPC parameter tuning, controller
performance optimization as well as computational burden
easement, a look-up table based online parameter selection
method is proposed in this paper to help a vehicle track its
reference path under both the stability and computational
capacity constraints. Matlab-CarSim conjoint simulation shows
the effectiveness of the proposed strategy.

1 INTRODUCTION

Due to its ability of systematical handling states and inputs
constraints, model predictive control (MPC) gained a great
attention in automotive applications recently [1][2][3][4][5][6]
[7]. Even with the prevalence of MPC, two inherent drawbacks
of this optimization-based control law, which indeed impede its
real-time implementation, remain. On the one hand, the
receding-horizon characteristic of MPC necessitates in solving a
constrained optimization problem within each sampling interval,
which leads to an extensive calculation burden. On the other
hand, an MPC controller typically includes a considerable
number of parameters to be tuned, which can be a laborious task
especially when multiple competing objectives exist. To tackle
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these two aforementioned issues, substantial efforts have been
made. To alleviate the huge computational burden of MPC, the
explicit MPC [8] solves the optimization problem offline and
exploits a look-up table to realize online evaluation. However,
explicit MPC can only treat the optimization problem with a
relative small dimension and cannot handle time-varying
systems [9]. Besides, several mechanisms have been proposed to
decrease the dimension of the constrained optimization problem
and consequently to mitigate the computational burden
[10][11][12][13]. Roughly speaking, existing MPC tuning
methods in the literature could be divided into three groups:
thumb rules, auto-tuning strategies and analytical approaches.
Exhaustive tuning guidelines for MPC controller were
introduced in [14]. However, a common weakness of these
general tuning rules lies in the fact that they may become invalid
when any system constraints become active. In contrast to the
thumb rules, auto-tuning strategies grounded on genetic
algorithms (GA) [15], particle swarm optimization (PSO) [16] or
fuzzy logic [17] change tuning parameters in a self-adaptive
manner, which could handle constraint violation -easily.
However, the auto-tuning strategies make the computational
burden issue of MPC even more pronounced since at each time
step, an extra optimization problem needs to be solved to
simultaneously determine the tuning parameters. Finally,
analytical approaches [18] study the effect of parameter values
from a control theory point of view, which create some new
tuning guidelines for MPC.

Even though both the methods that can adequately alleviate
MPC real-time computational burden and the approaches leading
to effective parameter tunings exist in the literature, there are few
methodologies treating these two problems within a unified
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framework. A group of tuning parameters, which ensures a better
controller performance, generally renders the optimization
problem to be solved at each time step more complicated, and
such complicatedness entails a more marked computational
burden of the MPC control law. By virtue of the fact that MPC
performance and computational burden are closely coupled with
each other, they should be handled dependently instead of
separately when tuning parameters are selected. Due to the lack
of theoretical tools that could analyze the entangled difficulties
among efficient MPC parameter tuning, controller performance
optimization as well as computational burden easement, a look-
up table based online parameter selection method of a LTV-MPC
controller for vehicle path tracking is proposed in this paper. The
selected parameters assure the highest tracking performance,
attainable in the look-up table, of the MPC controller while
satisfying a specific minimal stability metric, under a given
available central process unit (CPU) computational capacity.

The rest of the paper is organized as follow. System
modeling and a classical AFS MPC controller are introduced in
Section 2. Insignificant parameter setting strategies are
illustrated and verified in Section 3. The definition of
‘significant’ and ‘insignificant’ parameters will be given in this
section. Definitions of controller performance index are given in
Section 4, followed by the generation of performance maps.
Subsequently, based on the generated performance maps, an on-
line parameter selection algorithm is proposed and validated in
Section 5. Section 6 concludes this paper.

2 AFS MPC CONTROLLER DESIGN FOR VEHICLE
PATH TRACKING

Since the focus of this paper is to propose a systematic
parameter selection approach for extant MPC controllers rather
than designing new ones, a classical LTV-MPC AFS controller
in [4] is utilized here with only minor improvements.

21 SYSTEM MODELING
The three degrees-of-freedom bicycle model of a front-
steering vehicle is used here to represent the dynamics of the

system, as:
F F
N Vi3 iy X
m m
Y=v, sin(y)+v, cos(y), w=y, (1

. M

X =v cos(y)-v,sin(y), 7= ZI z,

with m being the mass of the vehicle, 7, as the yaw inertia,
v,,V,,y representing vehicle’s longitudinal velocity, lateral

velocity and yaw rate at the center of gravity (CG), X,Y,yw

demonstrating separately the position of vehicle’s CG in the
inertial coordinate as well as the yaw angle of the vehicle.

Besides, ZF} R ZE , ZM _ represent the total lateral tire force,
longitudinal tire force and yaw moment acting on the CG, as:

ZF;':(FW *fr) (f)+<F +Fyﬁ)cos(5f)+Fy,+FW,
2F = ( T rﬂ) ( /) (F,»ﬂ+Fyﬁ')Sin(5 )+F;r/+Frrr’
ZMzzl/.[(Fxﬂ+F ) n(‘s) (F1,,+Fm) (&)J

(FL —Fy )Sm(5 ) Fo+
l |:F;rl+F;rr:|+ld (Fﬂ F )008(5 )+Fl

xfr xrr

with /,,1,,[, representing the distances from the CG to the
front/rear axle and the half of the vehicle width, 5 , as the front

road steering angle of the vehicle, which serves as the unique
output of the MPC controller, F, ., (i € {(f)ront,(r)ear},

e{(l)eft,(r)ight}) exhibiting the longitudinal/lateral tire

force acting on each wheel.

To describe the longitudinal and lateral tire forces, different
tire force models have been proposed [19]. In this paper, the
Brush tire model in [20] is applied. The expression of the
longitudinal and lateral tire forces F,  at each wheel reads:

2 2
tan o
=l 2|+ , 2
4 \/x(s+lj 'V(S-i-lj @
1 3
- + R <3uF.,
Fe S 3 Ff 27#2ij S S3uF, 3)

uF.,  f>3ufF,

s\, [ tana ),
(e e)-(e)efr e (S]] o

with C,, as the longitudinal and cornering tire stiffness of a

single tire, u representing the tire-road friction coefficient

(TRFC), F. the vertical tire force, s and o being separately the

tire slip ratio and the tire sideslip angle.
The vertical tire force acting on each tire can be calculated
as:

Fy=m(l.g-ah)/2(l,+1 )~lma,h/2l, (1, +1),
F,=m(L.g-ah)/2(l,+1)+lmah/21, (1, +1)
F, ( g+a, h)/Z( f,+l)

1,ma,h /21, (1, +z)’
F, =m(l,g+ah)/2(l, +1,)+1,ma,h/21, (I, +1 ),

with 7 as the height of CG and g the gravity constant.

In equation (2), the tire sideslip angles and tire slip ratios
read:

v +1 v o+,
a, =tan™'| = 7 ~6,,0, =tan”' | = 7 -5,
. vx_ldy ‘ ‘ vx+ld}/

a, =tan™ v 2Ly ,a,, =tan™ Y by ,
vx _ld}/ Vx +ld7/

(6)
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Wl
with R as the effective wheel rolling radius, @, belng the
wheel spinning angular velocity and Vo) representing the

longitudinal velocity at wheel center, as:
v, = (v'v + lf;/)sin(5/. ) +(v, — ldy)cos(df ),

v = (v, 4Ly )sin(8, )+ (v, +1,7)cos(5, ), (8)
Ver =V, =175

err = Vx + ld 7/ .

Equations (1)-(8) constitute the whole dynamics of the
system, and an equivalent compact form can be represented as:

{é(r)=f<c<z>,u<t>), o
n(e)=h(<(0),u()),
with é’:[v_v,\{Y,l//,y,Y,XJ, n:[l//,Y,aﬂ,q a,.a ] along

with u =&, as separately the state vector, output vector as well

as the unique system input. To apply a standard MPC, equation
(9) needs to be discretized and successively linearized online to
produce an approximated linear time-varying discrete system

[4], as

)=4
n(k+1)=C ¢ k)+DkJu(k)+ek,t, (10)
u(k)=u(k—l)+Au(k),

with
_J _ 9
veg ¢ (k1) v Ouly i) a1

Ck,t = Z_h s kot % s

Sl ugeen Ol uiam

where k=t...t+N-1, and d,,, e, correspond to the

t

linearization residual items.

2.2 MPC CONTROLLER DESIGN
Grounded on the discrete system (10), a constrained
optimization problem can be formulated as:

min J(<(2).AU,), (12)
such that,
S(k+1)=4, ¢ (k)+B,, (u(k=1)+Au(k))+d,,,
n(k+1)=C, ¢ (k)+D,, (u(k-1)+Au(k))+e,,.
u <usu., (13)
Au, <Au<Au,,
O inin — & <a <0¢l imax T €

with

( ) AU Z||ht+l r f+lt | +
(14)
>l +Z||Auw|| +3 3 el
=right j=fror
where AUt =[ Au, .. Au,, 4,:] acts as the major manipulated

variable vector along the control horizon H_ at the time instant

A

T
t,h, = [l/?,w YMJ representing a part of the predictive

A

system output vector 77, which shall be converged to their

corresponding reference vector h) along the prediction

t+i,t
horizon H,. Then, ¢, ; represents the slack variable of the soft

constraints on the tire sideslip angle ¢, ;, which constitutes the

rest part of the manipulated variables. As a final point,
O,S,R,p serve as positive-definite weighting matrix. In

addition, two implicit constraints include H, > H, and

Au, ., =0,Vj 2 H, . After solving the constrained optimization

oy

problem described in (12)-(14), the first element of AU, will be
used to construct the controller output at the time instant f as:

u(t)=u(t-1)+Au,,. (15)

At the next time step ¢+ 1, the same constrained optimization

problem will be solved again with updated system measurements

é/t+] :

3 INSIGNIFICANT PARAMETER SETTINGS
There are a bunch of parameters to be tuned in the MPC
controller, including the prediction horizon //,, the control

horizon H_ , the sampling period 7, that is implicitly used for the
system discretization in (10), the weighting matrix O,S,R, p,

the upper- and lower-bounds of control/control changing rate
magnitude u Au, _,Au as well as the upper- and

max U min > max > min ?

lower-bounds on the soft constraints «, a

i,jmax > i, jmin *

In this paper, more attention will be paid to the parameters
which directly affect both controller performance and
computational load. As indicated in [21], [22], the performance
and computational load of a digitally implemented MPC
controller are essentially influenced by the prediction horizon
H,, the control horizon H, and the sampling period7; .
Actually, H, and H_govern the complexity of the constrained
optimization problem to be solved at each time instant. As H,
and H,Z become longer, both the number of manipulated

variables as well as the number of constraints boost, which
substantially increases the necessary CPU execution time to find
the optimal solution, and this execution time is rigorously
bounded by the sampling period 7 . Accordingly, H, H_ and T,

are regarded as the significant parameters in this paper due to
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their conspicuous double-sided effects on both controller
performance and computational burden. All other parameters are
regarded as insignificant parameters.

To make the conclusion of this paper more universally valid,
instead of arbitrarily fixing these insignificant parameters as
constants, a group of methodical parameter-tuning strategies will
be used to assign them with reasonable values.

3.1 OUTPUT WEIGHTING MATRIX

The output weighting-matrix (@ indicates the relative
importance of different tracking objectives. A larger weight on a
specific tracked variable implies that more control effort will be
conducted to minimize the corresponding tracking error. A
popular approach to fix Q is to take variable scaling and
normalization into account [23]. Consequently, the matrix Q is
fixed as:

0=

{l/y/max (16)

1Y, } ’
with y__and Y corresponding to the maximal heading angle

max

and maximal ordinate of the reference path in the inertial
coordinate system.

3.2 INPUT/INPUT RATE WEIGHTING MATRIX

Similarly, to normalize control effort, the input weighting
matrix as well as the input changing-rate weighting matrix are
separately settled as:

R:l/(max(a*f)TS), S =1/max(s,), (17)

where max(é'f) and rnax(éf
range limit of the front road steering angle and the maximal
angular velocity of o,. 7, is the sampling period whose

) are individually the mechanical

selection method will be shown later. Further, equation (17)
indeed suggests that the upper- and lower-bounds of the
control/control changing-rate shall be accordingly fixed as:

U, = max(é'f), Au,, = max(é‘f )TS,

(18)

u :—max(é‘f), Au :—max(ﬁf.)ﬂ.

min min

3.3 BOUNDS ON THE SOFT CONSTRAINTS

Soft constraints on four wheel’s sideslip angles are crucial
to establish the stability of the vehicle. In [4], the upper- and
lower-bounds of ¢, were constantly fixed as +3 degrees.

Virtually, the allowable limits of tire sideslip angles are radically
determined by vehicle states, tire’s proper characteristics as well
as road condition. Therefore, adaptive constraint bounds on tire
sideslip angles inspired by [24] will be adopted here. According
to the Brush tire model described in (2)-(4), the lateral tire force
will saturate if the absolute value of tire sideslip angle becomes
excessive. Hence, the bounds of tire sideslip angle «, o

i,jmax > i, jmin
must ensure that the lateral force of each tire are restricted within
a region where its extreme value is not totally saturated in near

future. Consequently, the procedure to find «, a can be

i,jmax > %i, jmin
summarized as:
1) Linearize the tire force curve around the current tire slip angle.
2) Then, find the intersection between the tangent and the upper
bound of the lateral tire force if the current sideslip angle is
negative.
3) The abscissa of this intersection point, named ¢, , represents
the lower-bound of the tire sideslip angle within prediction
horizon, and the reciprocal upper-bound of the tire sideslip angle
is simply the opposite number of the lower-bound.

For a positive sideslip angle, the procedure is similar.

Fig. 1 illustrates this idea, with parameters fixed as: s =0,
1=08,F =4000N,C =62700N /rad .

4000

2000

y

Lateral tire force F_ (N)
=1

-2000

-4000
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Sideslip angle « (rad)

Fig. 1. Bounds on tire slip angle.

3.4 SLACK VARIABLE WEIGHTING MATRIX

The slack variables &, were introduced in the soft-

constraints on the tire sideslip angles to ensure the feasibility of
the constrained optimization problem (12)-(14). It is preferable
if the magnitude of ¢, ; could remain as small as possible to rend

these constraints, which are pivotal to ensure the stability of the
vehicle, still valid. In this paper, p, ; is defined as:

_ 1
Pij = ‘6

7 (19)
F /6a,-,-

Yirj

@ ;=4 jlim

The function of such an adaptive penalty is twofold. Firstly,
if the sideslip angle « is small, the weight on the slack variable
is negligible, which in turn encourages more control effort to
achieve a better path-tracking result. Instead, if & approaches the
critical value leading to a saturated lateral tire force, then the
weight on the slack variable drastically rises into infinity, which
prevents the sideslip angle further enlarging and consequently
maintains the stability of the vehicle.

3.5 VERIFICATION

In Sections 3.1-3.4, all the insignificant parameters are fixed
and only three significant parameters, namely, the prediction
horizon H ,, the control horizon /, and the sampling period 7}

are left for tuning. Before entering into the next phase to show
the online selection strategy with respect to these three
significant parameters, it is necessary to verify the proposed
tuning methods of these insignificant parameters. Thus,
simulations of a typical double lane changing (DLC) scenario on
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the Matlab-Carsim conjoint simulation platform were conducted.
The vehicle configurations and other constant parameters used
during the simulation were fixed as: l ;= 1.232,1 =1.468,
1,=0.77,h=054,m=1723,R =0.3,/ =1960,

C, =66900N ,C, =62700N /rad ,y, . =0.1489, 11=0.8,

Y .. =2.8921, max§ =17.5deg/ s ,max 6, =20deg. Unless

indicated, all parameters are in SI units. And the three significant
parameters were arbitrarily fixed as: H,=30,H, =10,

T. =0.05 . The vehicle longitudinal velocity remained 108km/h

during the simulation.

Fig. 2 shows the path-tracking result. Fig. 3 presents the
front road steering angle and Fig. 4 demonstrates the sideslip
angle of each tire.

T T T T T T
<
0.1+ D3 —y |
. 3 EEEy*

Yaw (rad)
=1

Time (s)
Fig. 2. Path tracking result.
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m
L
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Fig. 3. Front steering angle.
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Fig. 4. Four tire sideslip angles.

According to Fig. 2-4, conclusion can be drawn that the
proposed systematic insignificant parameter tuning strategies
can successfully realize the path-tracking task without violating
neither the hard constraints on actuators output nor the soft
constraints on sideslip angles.

4 PERFORMANCE MAP

Fixing all insignificant parameters adequately decreases the
degrees of freedom for MPC controller tuning. In this section, a
look-up table based online parameter selection method will be
utilized to set the rest three significant parameters. As mentioned
in Section 1, the selected significant parameters should produce
the highest attainable tracking performance while satisfying the
minimal stability metric under a given CPU computational
capacity. Hence, all three aspects, namely, tracking performance,
vehicle stability and computational load need to be analyzed and
further quantified to show the overlapping effects of the
significant parameters.

41 PERFORMANCE INDEX DEFINITION

Three fundamental performance indices include tracking
index, stability index, as well as computational load index. To
begin with, tracking index reflects the capacity of a vehicle to
maintain itself along the centerline of the reference path in order
to stay away from road boundaries. In other word, the larger the
minimal distance between vehicle body and road boundaries, the
higher the tracking performance shall be. The concept of the safe
driving envelop in [25] is utilized here to quantify the tracking
performance. Instead of treating vehicle as a mass point at its
CQG, vehicle’s physical dimension is taken into consideration to
calculate the minimal distance between vehicle body and road
boundaries. The ordinates of vehicle’s four wheels in an inertial
coordinate can be calculated as:

Y =Y —i—aflz—i-l2 sin

(
Y,=Y, - ( Ay +tan™ l /1 ))

Y, :Yug+,flf+lj sm(—A!//+tan (1,71, ))
Y, =Y, I+ sin(Ay +tan” (1, /1)),
where Y, indicates the ordinate of vehicle’s CG, and Ay

Al//+tan l /1 ))

1> +1? sin
L (20)

shows vehicle’s yaw error with respect to the reference path.
Further, the ordinate of road boundaries can be formulated as:

. w . w
Yper =Y +Wa Yipwor =Y —Wa (21)

with Y"and y" representing the reference ordinate and heading

angle of a point on path centerline whose abscissa is the same as
vehicle CG’s. In addition, W is the width of the reference lane,
fixed as 3.6m [25]. Consequently, the minimum margin between

vehicle body and path boundaries can be calculated as:
Yy  —max(Y, Y Y, Y
upper ST fro el T
MT = min (%o ( ) .2
(min(Y,.7,.%,.,)-¥,,,)

S % frotrl> T
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Clearly, a path tracking that avoids collision between vehicle and
road boundaries always needs MT > 0 and the maximal possible
value MT =W /2—1, can be attainable only when the
vehicle’s CG lays exactly on the centerline of the reference path
with zero yaw error.

Afterward, stability index reflects the margin between
vehicle’s current state from the critical ones under which the
vehicle may spin, drift or roll over. To remain stable, both the
body sideslip angle /S as well as the yaw rate y of vehicle need
to be constrained within reasonable ranges. According to [26],
empirical thresholds about sideslip angle and yaw rate which

lead to a critical instability are: |ﬂ*|:tan"(0.02yg) and

|}/*| =0.85ug/v,.
Hence, the stability margin can be defined as:

MS :min(min{li ﬁ j,min[li P D (23)
B Y

Naturally, MS(¢) >0 implies that both the sideslip angle and the
yaw rate are under their respective critical threshold. In addition,
the most stable case occurs when both £ and y are zero, which
leads to MS,, =1. In general, MT _ #MS_ . Hence, after
obtaining MT and MS, two smooth hyperbolic tangent
functions will be used to normalize separately MT and MS at
each time instant, which lead to the normalized minimum margin
between vehicle body and path boundaries M7, and the

normalized stability margin as MS, , both within the range [0,1]

. Eventually, the overall tracking index and stability index for a
complete simulation are designated as:

Ty Ty
[/ mr,at [ ms,dt
I ==° , SI=2° , (24)
f T)"

with T, being the end of simulation time.

Finally, the computational load index of the MPC controller

is defined as [22]:
CI=T]T,, (25)
where 7 is the total execution time to find the optimal solution

of problem (12)-(14). Intuitively, a higher CI implies a higher
CPU load entailed from the MPC controller and the upper-
threshold of C/ is one.

4.2 PERFORMANCE MAP GENERATION
After defining all three fundamental performance indices,
extensive simulations with various combination of H,, H, and

T, can be effected to generate three performance maps with
respect to the three performance indices 77, ST and CI. Precisely
speaking, for a given triplet {HP,HC,TY } , a double lane change

(DLC) scenario identical to the one in Section 3.5 was used to
evaluate the three fundamental performance indices. The range
of H, used for simulations expanded from one to nine with an

increment as one, and the range of H  satisfied H, < H K <45
with an identical increment as one. Finally, the range of 7, for
given H and H_ started from 0.01s and ended at 0.05s with an
increment of 0.005s. A total number of 3321 simulations were
realized. Based on the three generated performance maps,
reverse look-ups can be utilized to find the optimal triplets of
{H;,H:,Y; } among the total 3321 possible combinations

according to the proposed parameter selection algorithm
illustrated in Section 5.

Remark: The simulations were implemented on a standard
Hewlett-Packard (HP) desktop with an Intel 17-4790 processor
whose clock rate is 3.60GHz. The optimization solver was the
default Matlab QP solver with an ‘active-set’ method.

5 ONLINE PARAMETER SELECTION

To help a vehicle achieve the highest attainable tracking
performance while consider the minimal requirement of stability
index S7 . under a given upper threshold of computational load

index CI_, ,
proposed as:
Algorithm : Constrained optimal tracking parameter selection

Input: SI .., CI_..

Output : {H;,H;,]f}

1: A= find (CI<CI,)
T.H, 0,

2: if A= then

3 T <max(T5),H, < min(H, ), H, < min(H,)

4: endif

5: Q= find (SI=SI,,)

T,.H,.H,
6: if Q=D QNA=Q then

7. (T', H,, H )« find (SI==max(SI))

K

a straightforward parameter selection algorithm is

(7y,H,,H, )eA

8: else

9: (7. H,, Hj)<— find  (TI ==max (77))
(1,.H,,H, )eAnQ

10: end

At the beginning, find all the possible combinations of
H,.,H,T, satisfying the computational load constraint

cr<ci

max *

However, if the given available computational
index (I, is too low, the configuration of H ,H,T,is
designed to reduce as much the computational load as possible.
Instead, find the combinations of H ,H,,7, which further

K]

satisfy the minimum stability index constraint S7 > S7 . . Ifsuch
combinations cannot be found due to an extremely high stability
index threshold S7, .. (under the given computational load

constraint), then just find the combination of # , H ,,T, which

rends the stability index as high as possible. Nonetheless, in this
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case, the path-tracking objective is totally ignored. Finally, if
both the given stability index constraint as well as the
computational load index constraint can be met, then find the
optimal combination of H_,H ,,T, which leads to the highest

tracking index.

To demonstrate persuasively the improvement introduced
by the algorithm, simulations with a double lane change (DLC)
scenario identical to the one in Section 3.5 were conducted. An
MPC controller with a dynamic parameter setting, named the
dynamic MPC, along with another constant parameter setting
MPC controller, named the static MPC, was equipped
individually, on two identical simulation vehicles with the same
configurations in Section 3.5. Both the dynamic MPC as well as
the static MPC selected their significant parameters according to
the proposed constrained optimal-tracking parameter selection
algorithm. Nonetheless, the difference was that the available
CI __ for the dynamic MPC, denoted as CI? , changed along

max max ?

the simulation, while the CI , for the static MPC, denoted as

CrI’, remained as the minimum value of C7¢_ . The minimum

X max

stability index S/, for both controllers was fixed as 0.4.
Fig. 5 demonstrates both CI?

max

and CI;  as well as the

actual computational load index of the dynamic MPC ( CI?) and
the static MPC ( CI*). Clearly, both the dynamic and the static
MPC controller operate under their individual available upper
threshold of computational load. Fig. 6 shows the three
significant parameters of the dynamic MPC as well as the static
MPC. Clearly, the proposed algorithm can synchronously adjust
the three significant parameters according to the given maximum
available computational index. For instance, as CI?, _decreased

during 2-4s, both H_ and H, of the dynamic MPC shrunk to

reduce the computational burden of the constrained optimization
problem, while 7, extended to ensure that an optimal solution

could be found within the sampling period. Finally, Fig. 7 shows
the comparison of the path tracking result, where the green-
dashed lines correspond to the reference path; the blue-dotted
lines represent the tracking result of the static MPC while the
red-solid lines exhibit the tracking result of the dynamic MPC.

1 T T T T

0.8

0.6

CPU Load

0.4

0.3
0.29

0 1 1.61.7,5 3 4

wn b
o=
-1

Time (s)
Fig. 5 Computational load index.
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(s)

> 0.045

0.04
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: : 0035 -
0 2 4 6 0 2 4 [ 0 2 4 6
Time (s) Time (s) Time (s)

Fig. 6 Constant and dynamic parameter settings.
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==== Static MPC tracking

Y ordinate (m)
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Fig. 7 Path tracking result.

Hence, compared with the static MPC, dynamic MPC
induced an overall better path-tracking result and this
improvement of path tracking is further expressed in Fig. 8
where the normalized minimum margin between vehicle body
and path boundaries ( M7, defined in Section 4.1) is represented.
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Fig. 8 Normalized margin between vehicle and boundaries.
Clearly, between 4-5s, the static MPC led MT, equal to

zero, which implies that the vehicle collided with the upper
boundary of the reference path. In contrast, the dynamic MPC
insured the minimal value of M7, as high as 0.98.

Remark: After the online parameter selection methods
integrated with the original MPC controller, the overall
computational burden shall increase accordingly. However,
simulations showed that the average extra computational burden
introduced by this online parameter selection strategy was less
1%. Hence, this extra computational load was disregarded.
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6 CONCLUSIONS

To negotiate the inherent conflict between the controller
performance optimization and the striking computational
burden, a systematic online parameter selection approach for a
classical LTV MPC controller for vehicle path tracking was
proposed. Various tuning parameters were divided into two
groups, namely the insignificant parameters and the significant
parameters, according to whether they had a direct influence on
both the control performance and the entailed computational
load. Then, to realize online tuning of the three significant
parameters, extensive simulations were carried out to generate
three performance maps with respect to the tracking index,
stability index, and the computational load index. Based on the
three performance maps, a straightforward constrained optimal
path-tracking parameter selection algorithm was generated. The
proposed parameter selection algorithm induced the highest
attainable tracking performance while avoided violating the
minimal stability index constraint under a given available central
process unit (CPU) computational capacity. Matlab-CarSim
conjoint simulations demonstrated the effectiveness of the
proposed online parameter selection method.
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