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ABSTRACT 
There exist two intrinsic shortcomings on model predictive 

control (MPC) strategy, namely the extensive online calculation 
burden and the complex tuning process, which prevent MPC 
from being applied to a wider extent. To tackle these two 
drawbacks, different methods were proposed with majority of 
them treating these two issues independently. However, 
parameter tuning in fact has double-sided effects on both 
controller performance as well as real-time computational 
burden. Due to the lack of theoretical tools for globally analyzing 
the complex conflicts among MPC parameter tuning, controller 
performance optimization as well as computational burden 
easement, a look-up table based online parameter selection 
method is proposed in this paper to help a vehicle track its 
reference path under both the stability and computational 
capacity constraints. Matlab-CarSim conjoint simulation shows 
the effectiveness of the proposed strategy. 

  
1    INTRODUCTION 
 Due to its ability of systematical handling states and inputs 
constraints, model predictive control (MPC) gained a great 
attention in automotive applications recently [1][2][3][4][5][6] 
[7]. Even with the prevalence of MPC, two inherent drawbacks 
of this optimization-based control law, which indeed impede its 
real-time implementation, remain. On the one hand, the 
receding-horizon characteristic of MPC necessitates in solving a 
constrained optimization problem within each sampling interval, 
which leads to an extensive calculation burden. On the other 
hand, an MPC controller typically includes a considerable 
number of parameters to be tuned, which can be a laborious task 
especially when multiple competing objectives exist. To tackle 

these two aforementioned issues, substantial efforts have been 
made. To alleviate the huge computational burden of MPC, the 
explicit MPC [8] solves the optimization problem offline and 
exploits a look-up table to realize online evaluation. However, 
explicit MPC can only treat the optimization problem with a 
relative small dimension and cannot handle time-varying 
systems [9]. Besides, several mechanisms have been proposed to 
decrease the dimension of the constrained optimization problem 
and consequently to mitigate the computational burden 
[10][11][12][13]. Roughly speaking, existing MPC tuning 
methods in the literature could be divided into three groups: 
thumb rules, auto-tuning strategies and analytical approaches. 
Exhaustive tuning guidelines for MPC controller were 
introduced in [14]. However, a common weakness of these 
general tuning rules lies in the fact that they may become invalid 
when any system constraints become active. In contrast to the 
thumb rules, auto-tuning strategies grounded on genetic 
algorithms (GA) [15], particle swarm optimization (PSO) [16] or 
fuzzy logic [17] change tuning parameters in a self-adaptive 
manner, which could handle constraint violation easily. 
However, the auto-tuning strategies make the computational 
burden issue of MPC even more pronounced since at each time 
step, an extra optimization problem needs to be solved to 
simultaneously determine the tuning parameters. Finally, 
analytical approaches [18] study the effect of parameter values 
from a control theory point of view, which create some new 
tuning guidelines for MPC.  

Even though both the methods that can adequately alleviate 
MPC real-time computational burden and the approaches leading 
to effective parameter tunings exist in the literature, there are few 
methodologies treating these two problems within a unified 
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framework. A group of tuning parameters, which ensures a better 
controller performance, generally renders the optimization 
problem to be solved at each time step more complicated, and 
such complicatedness entails a more marked computational 
burden of the MPC control law. By virtue of the fact that MPC 
performance and computational burden are closely coupled with 
each other, they should be handled dependently instead of 
separately when tuning parameters are selected. Due to the lack 
of theoretical tools that could analyze the entangled difficulties 
among efficient MPC parameter tuning, controller performance 
optimization as well as computational burden easement, a look-
up table based online parameter selection method of a LTV-MPC 
controller for vehicle path tracking is proposed in this paper. The 
selected parameters assure the highest tracking performance, 
attainable in the look-up table, of the MPC controller while 
satisfying a specific minimal stability metric, under a given 
available central process unit (CPU) computational capacity.   

The rest of the paper is organized as follow. System 
modeling and a classical AFS MPC controller are introduced in 
Section 2. Insignificant parameter setting strategies are 
illustrated and verified in Section 3. The definition of 
‘significant’ and ‘insignificant’ parameters will be given in this 
section. Definitions of controller performance index are given in 
Section 4, followed by the generation of performance maps. 
Subsequently, based on the generated performance maps, an on-
line parameter selection algorithm is proposed and validated in 
Section 5. Section 6 concludes this paper.     

2    AFS MPC CONTROLLER DESIGN FOR VEHICLE 
PATH TRACKING 

Since the focus of this paper is to propose a systematic 
parameter selection approach for extant MPC controllers rather 
than designing new ones, a classical LTV-MPC AFS controller 
in [4] is utilized here with only minor improvements.   

2.1    SYSTEM MODELING 
The three degrees-of-freedom bicycle model of a front-

steering vehicle is used here to represent the dynamics of the 
system, as: 
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with m  being the mass of the vehicle, zI  as the yaw inertia, 
, ,x yv v representing vehicle’s longitudinal velocity, lateral 

velocity and yaw rate at the center of gravity (CG), , ,X Y  
demonstrating separately the position of vehicle’s CG in the 
inertial coordinate as well as the yaw angle of the vehicle. 
Besides, , ,y x zF F M represent the total lateral tire force, 
longitudinal tire force and yaw moment acting on the CG, as: 
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with , ,f r dl l l  representing the distances from the CG to the 
front/rear axle and the half of the vehicle width, f  as the front 
road steering angle of the vehicle, which serves as the unique 
output of the MPC controller, , ,x y i jF ,( { , }i f ront r ear , 

,j l eft r ight ) exhibiting the longitudinal/lateral tire 
force acting on each wheel. 

To describe the longitudinal and lateral tire forces, different 
tire force models have been proposed [19].  In this paper, the 
Brush tire model in [20] is applied. The expression of the 
longitudinal and lateral tire forces ,x yF at each wheel reads: 
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with ,x yC  as the longitudinal and cornering tire stiffness of a 
single tire,  representing the tire-road friction coefficient 
(TRFC), zF  the vertical tire force, s  and  being separately the 
tire slip ratio and the tire sideslip angle.  

The vertical tire force acting on each tire can be calculated 
as: 
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with h  as the height of CG and g  the gravity constant.  
In equation (2), the tire sideslip angles and tire slip ratios 

read: 
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with wR  as the effective wheel rolling radius, ,i j being the 

wheel spinning angular velocity and ,x i jv  representing the 
longitudinal velocity at wheel center, as: 
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Equations (1)-(8) constitute the whole dynamics of the 
system, and an equivalent compact form can be represented as: 
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with , , , , ,y xv v Y X , , , , , ,fl fr rl rrY  along 

with fu as separately the state vector, output vector as well 
as the unique system input. To apply a standard MPC, equation 
(9) needs to be discretized and successively linearized online to 
produce an approximated linear time-varying discrete system 
[4], as: 
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where 1k t t Nt Nt N , and ,k td , ,k te  correspond to the 
linearization residual items.  
 
2.2    MPC CONTROLLER DESIGN 

Grounded on the discrete system (10), a constrained 
optimization problem can be formulated as: 

 min , ,tJ t
tU ,ε

U   (12) 

such that, 
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with  
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where , 1,...
ct t t t H tu uU  acts as the major manipulated 

variable vector along the control horizon cH at the time instant 

t , , , ,
ˆ ˆˆ

T

t i t t i t t i tYh representing a part of the predictive 

system output vector , which shall be converged to their 
corresponding reference vector *

,t i th  along the prediction 

horizon pH . Then, ,i j  represents the slack variable of the soft 
constraints on the tire sideslip angle ,i j , which constitutes the 

rest part of the manipulated variables. As a final point, 
, , ,Q S R  serve as positive-definite weighting matrix. In 

addition, two implicit constraints include p cH H and

, 0,t j t cu j H . After solving the constrained optimization 
problem described in (12)-(14), the first element of tU  will be 
used to construct the controller output at the time instant t  as:  

 ,1 .t tu t u t u   (15) 
At the next time step 1t , the same constrained optimization 

problem will be solved again with updated system measurements
1t . 

3    INSIGNIFICANT PARAMETER SETTINGS 
There are a bunch of parameters to be tuned in the MPC 

controller, including the prediction horizon pH , the control 
horizon cH , the sampling period sT  that is implicitly used for the 
system discretization in (10), the weighting matrix , , ,Q S R , 
the upper- and lower-bounds of control/control changing rate 
magnitude min min, , ,max maxu u u u , as well as the upper- and 
lower-bounds on the soft constraints , max , min,i j i j . 

In this paper, more attention will be paid to the parameters 
which directly affect both controller performance and 
computational load. As indicated in [21], [22], the performance 
and computational load of a digitally implemented MPC 
controller are essentially influenced by the prediction horizon

pH , the control horizon cH  and the sampling period sT . 
Actually, pH and cH govern the complexity of the constrained 
optimization problem to be solved at each time instant. As pH

and cH  become longer, both the number of manipulated 
variables as well as the number of constraints boost, which 
substantially increases the necessary CPU execution time to find 
the optimal solution, and this execution time is rigorously 
bounded by the sampling period sT . Accordingly, pH cH and sT  
are regarded as the significant parameters in this paper due to 
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their conspicuous double-sided effects on both controller 
performance and computational burden. All other parameters are 
regarded as insignificant parameters.  

To make the conclusion of this paper more universally valid, 
instead of arbitrarily fixing these insignificant parameters as 
constants, a group of methodical parameter-tuning strategies will 
be used to assign them with reasonable values.  

3.1    OUTPUT WEIGHTING MATRIX 
The output weighting-matrix Q  indicates the relative 

importance of different tracking objectives. A larger weight on a 
specific tracked variable implies that more control effort will be 
conducted to minimize the corresponding tracking error. A 
popular approach to fix Q  is to take variable scaling and 
normalization into account [23]. Consequently, the matrix Q  is 
fixed as: 

 max

max

1/
,

1/
Q

Y
  (16) 

with max and maxY corresponding to the maximal heading angle 
and maximal ordinate of the reference path in the inertial 
coordinate system.   

3.2    INPUT/INPUT RATE WEIGHTING MATRIX 
Similarly, to normalize control effort, the input weighting 

matrix as well as the input changing-rate weighting matrix are 
separately settled as: 

 1 max , 1 max ,f s fR T Sf s , S,   (17) 

where max f  and max ff  are individually the mechanical 
range limit of the front road steering angle and the maximal 
angular velocity of f . sT  is the sampling period whose 
selection method will be shown later. Further, equation (17) 
indeed suggests that the upper- and lower-bounds of the 
control/control changing-rate shall be accordingly fixed as: 
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3.3    BOUNDS ON THE SOFT CONSTRAINTS  
Soft constraints on four wheel’s sideslip angles are crucial 

to establish the stability of the vehicle. In [4], the upper- and 
lower-bounds of ,i j  were constantly fixed as 3  degrees. 
Virtually, the allowable limits of tire sideslip angles are radically 
determined by vehicle states, tire’s proper characteristics as well 
as road condition. Therefore, adaptive constraint bounds on tire 
sideslip angles inspired by [24] will be adopted here. According 
to the Brush tire model described in (2)-(4), the lateral tire force 
will saturate if the absolute value of tire sideslip angle becomes 
excessive. Hence, the bounds of tire sideslip angle , max , min,i j i j  
must ensure that the lateral force of each tire are restricted within 
a region where its extreme value is not totally saturated in near 

future. Consequently, the procedure to find , max , min,i j i j can be 
summarized as: 
1) Linearize the tire force curve around the current tire slip angle.   
2) Then, find the intersection between the tangent and the upper 
bound of the lateral tire force if the current sideslip angle is 
negative.  
3) The abscissa of this intersection point, named lim , represents 
the lower-bound of the tire sideslip angle within prediction 
horizon, and the reciprocal upper-bound of the tire sideslip angle 
is simply the opposite number of the lower-bound.  

For a positive sideslip angle, the procedure is similar.  
Fig. 1 illustrates this idea, with parameters fixed as: 0s ,
0.8 , 4000zF N , 62700 /yC N rad . 

 
Fig. 1. Bounds on tire slip angle. 

 
3.4    SLACK VARIABLE WEIGHTING MATRIX 

The slack variables ,i j  were introduced in the soft-
constraints on the tire sideslip angles to ensure the feasibility of 
the constrained optimization problem (12)-(14). It is preferable 
if the magnitude of ,i j  could remain as small as possible to rend 
these constraints, which are pivotal to ensure the stability of the 
vehicle, still valid. In this paper, ,i j is defined as: 
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The function of such an adaptive penalty is twofold. Firstly, 
if the sideslip angle is small, the weight on the slack variable 
is negligible, which in turn encourages more control effort to 
achieve a better path-tracking result. Instead, if approaches the 
critical value leading to a saturated lateral tire force, then the 
weight on the slack variable drastically rises into infinity, which 
prevents the sideslip angle further enlarging and consequently 
maintains the stability of the vehicle.   
 
3.5    VERIFICATION 

In Sections 3.1-3.4, all the insignificant parameters are fixed 
and only three significant parameters, namely, the prediction 
horizon pH , the control horizon cH  and the sampling period sT  
are left for tuning. Before entering into the next phase to show 
the online selection strategy with respect to these three 
significant parameters, it is necessary to verify the proposed 
tuning methods of these insignificant parameters. Thus, 
simulations of a typical double lane changing (DLC) scenario on 
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the Matlab-Carsim conjoint simulation platform were conducted. 
The vehicle configurations and other constant parameters used 
during the simulation were fixed as: 1.232fl , 1.468rl ,

0.77dl , 0.54h , 1723m , 0.3wR , 1960zI ,
66900xC N , 62700 /yC N rad , max 0.1489 , 0.8,

max 2.8921Y , max 17.5deg/f s17.5df , max 20degf . Unless 
indicated, all parameters are in SI units. And the three significant 
parameters were arbitrarily fixed as: 30pH , 10cH ,

0.05sT . The vehicle longitudinal velocity remained 108km/h 
during the simulation.  

Fig. 2 shows the path-tracking result. Fig. 3 presents the 
front road steering angle and Fig. 4 demonstrates the sideslip 
angle of each tire.   

 
Fig. 2. Path tracking result. 

 
Fig. 3. Front steering angle. 

 
Fig. 4. Four tire sideslip angles. 

According to Fig. 2-4, conclusion can be drawn that the 
proposed systematic insignificant parameter tuning strategies 
can successfully realize the path-tracking task without violating 
neither the hard constraints on actuators output nor the soft 
constraints on sideslip angles.   

4    PERFORMANCE MAP  
Fixing all insignificant parameters adequately decreases the 

degrees of freedom for MPC controller tuning. In this section, a 
look-up table based online parameter selection method will be 
utilized to set the rest three significant parameters.  As mentioned 
in Section 1, the selected significant parameters should produce 
the highest attainable tracking performance while satisfying the 
minimal stability metric under a given CPU computational 
capacity. Hence, all three aspects, namely, tracking performance, 
vehicle stability and computational load need to be analyzed and 
further quantified to show the overlapping effects of the 
significant parameters.  

 
4.1    PERFORMANCE INDEX DEFINITION 

Three fundamental performance indices include tracking 
index, stability index, as well as computational load index. To 
begin with, tracking index reflects the capacity of a vehicle to 
maintain itself along the centerline of the reference path in order 
to stay away from road boundaries. In other word, the larger the 
minimal distance between vehicle body and road boundaries, the 
higher the tracking performance shall be. The concept of the safe 
driving envelop in [25] is utilized here to quantify the tracking 
performance. Instead of treating vehicle as a mass point at its 
CG, vehicle’s physical dimension is taken into consideration to 
calculate the minimal distance between vehicle body and road 
boundaries. The ordinates of vehicle’s four wheels in an inertial 
coordinate can be calculated as: 
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  (20) 

where cgY  indicates the ordinate of vehicle’s CG, and  
shows vehicle’s yaw error with respect to the reference path. 
Further, the ordinate of road boundaries can be formulated as: 

 * *
* *

, ,
2cos 2cosupper lower

W WY Y Y Y   (21) 

with *Y and *  representing the reference ordinate and heading 
angle of a point on path centerline whose abscissa is the same as 
vehicle CG’s. In addition, W is the width of the reference lane, 
fixed as 3.6m [25]. Consequently, the minimum margin between 
vehicle body and path boundaries can be calculated as: 

 
max , , , ,

min .
min , , ,

upper fl fr rl rr

fl fr rl rr lower

Y Y Y Y Y
MT

Y Y Y Y Y
  (22) 
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Clearly, a path tracking that avoids collision between vehicle and 
road boundaries always needs 0MT  and the maximal possible 
value max / 2 dMT W l  can be attainable only when the 
vehicle’s CG lays exactly on the centerline of the reference path 
with zero yaw error.  

Afterward, stability index reflects the margin between 
vehicle’s current state from the critical ones under which the 
vehicle may spin, drift or roll over. To remain stable, both the 
body sideslip angle  as well as the yaw rate of vehicle need 
to be constrained within reasonable ranges. According to [26], 
empirical thresholds about sideslip angle and yaw rate which 
lead to a critical instability are: * 1tan 0.02 g  and  

* 0.85 .xg v  
Hence, the stability margin can be defined as: 

 * *min min 1 , min 1 .MS   (23) 

Naturally, ( ) 0MS t  implies that both the sideslip angle and the 
yaw rate are under their respective critical threshold.  In addition, 
the most stable case occurs when both and  are zero, which 
leads to max 1MS . In general, max maxMT MS . Hence, after 
obtaining MT  and MS , two smooth hyperbolic tangent 
functions will be used to normalize separately MT and MS  at 
each time instant, which lead to the normalized minimum margin 
between vehicle body and path boundaries nMT  and the 
normalized stability margin as nMS , both within the range 0,1
. Eventually, the overall tracking index and stability index for a 
complete simulation are designated as: 

 0 0, ,
f fT T

n n

f f

MT dt MS dt
TI SI

T T
  (24) 

with fT  being the end of simulation time.  
Finally, the computational load index of the MPC controller 

is defined as [22]: 
 ,c sCI T T   (25) 

where cT is the total execution time to find the optimal solution 
of problem (12)-(14). Intuitively, a higher CI implies a higher 
CPU load entailed from the MPC controller and the upper-
threshold of CI is one.  

 
4.2    PERFORMANCE MAP GENERATION 

After defining all three fundamental performance indices, 
extensive simulations with various combination of pH , cH  and 

sT  can be effected to generate three performance maps with 
respect to the three performance indices TI, SI and CI.   Precisely 
speaking, for a given triplet , ,p c sH H T , a double lane change 
(DLC) scenario identical to the one in Section 3.5 was used to 
evaluate the three fundamental performance indices. The range 
of cH used for simulations expanded from one to nine with an 

increment as one, and the range of pH satisfied 45c pH H  
with an identical increment as one. Finally, the range of sT  for 
given pH and cH started from 0.01s and ended at 0.05s with an 
increment of 0.005s. A total number of 3321 simulations were 
realized. Based on the three generated performance maps, 
reverse look-ups can be utilized to find the optimal triplets of 

* * *, ,p c sH H T among the total 3321 possible combinations 
according to the proposed parameter selection algorithm 
illustrated in Section 5.  
Remark: The simulations were implemented on a standard 
Hewlett-Packard (HP) desktop with an Intel i7-4790 processor 
whose clock rate is 3.60GHz. The optimization solver was the 
default Matlab QP solver with an ‘active-set’ method. 

5    ONLINE PARAMETER SELECTION 
To help a vehicle achieve the highest attainable tracking 

performance while consider the minimal requirement of stability 
index minSI  under a given upper threshold of computational load 
index maxCI , a straightforward parameter selection algorithm is 
proposed as: 

Algorithm : Constrained optimal tracking parameter selection 
Input : minSI , maxCI  

Output : * * *, ,p c sH H T  

1:   max
, ,s p cT H H
find CI CI   

2:   if  then     
3:        * * *max , min , mins p p c cT Ts H H H H  
4:   endif 
5:   min

, ,s p cT H H
find SI SI            

6:   if ||  then     
7:        * * *

, ,
, , max

s p c

s p c
T H H

T H H find SI SI  

8:   else 
9:        * * *

, ,
, , max

s p c

s p c
T H H

T H H find TI TI  

10: end 
At the beginning, find all the possible combinations of 

, ,c p sH H T  satisfying the computational load constraint

maxCI CI . However, if the given available computational 
index maxCI  is too low, the configuration of , ,c p sH H T is 
designed to reduce as much the computational load as possible. 
Instead, find the combinations of , ,c p sH H T  which further 
satisfy the minimum stability index constraint minSI SI . If such 
combinations cannot be found due to an extremely high stability 
index threshold minSI  (under the given computational load 
constraint), then just find the combination of , ,c p sH H T which 
rends the stability index as high as possible. Nonetheless, in this 
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case, the path-tracking objective is totally ignored. Finally, if 
both the given stability index constraint as well as the 
computational load index constraint can be met, then find the 
optimal combination of , ,c p sH H T which leads to the highest 
tracking index. 

To demonstrate persuasively the improvement introduced 
by the algorithm, simulations with a double lane change (DLC) 
scenario identical to the one in Section 3.5 were conducted. An 
MPC controller with a dynamic parameter setting, named the 
dynamic MPC, along with another constant parameter setting 
MPC controller, named the static MPC, was equipped 
individually, on two identical simulation vehicles with the same 
configurations in Section 3.5. Both the dynamic MPC as well as 
the static MPC selected their significant parameters according to 
the proposed constrained optimal-tracking parameter selection 
algorithm. Nonetheless, the difference was that the available 

maxCI  for the dynamic MPC, denoted as max
dCI , changed along 

the simulation, while the maxCI for the static MPC, denoted as 

max
sCI  remained as the minimum value of max

dCI . The minimum 
stability index minSI for both controllers was fixed as 0.4.  

Fig. 5 demonstrates both max
dCI  and max

sCI  as well as the 
actual computational load index of the dynamic MPC ( dCI ) and 
the static MPC ( sCI ). Clearly, both the dynamic and the static 
MPC controller operate under their individual available upper 
threshold of computational load. Fig. 6 shows the three 
significant parameters of the dynamic MPC as well as the static 
MPC. Clearly, the proposed algorithm can synchronously adjust 
the three significant parameters according to the given maximum 
available computational index. For instance, as max

dCI decreased 
during 2-4s, both cH and pH  of the dynamic MPC shrunk to 
reduce the computational burden of the constrained optimization 
problem, while sT extended to ensure that an optimal solution 
could be found within the sampling period. Finally, Fig. 7 shows 
the comparison of the path tracking result, where the green-
dashed lines correspond to the reference path; the blue-dotted 
lines represent the tracking result of the static MPC while the 
red-solid lines exhibit the tracking result of the dynamic MPC. 

 
Fig. 5 Computational load index. 

 
Fig. 6 Constant and dynamic parameter settings. 

 
Fig. 7 Path tracking result. 

Hence, compared with the static MPC, dynamic MPC 
induced an overall better path-tracking result and this 
improvement of path tracking is further expressed in Fig. 8 
where the normalized minimum margin between vehicle body 
and path boundaries ( nMT defined in Section 4.1) is represented.  

 
Fig. 8 Normalized margin between vehicle and boundaries. 

Clearly, between 4-5s, the static MPC led nMT  equal to 
zero, which implies that the vehicle collided with the upper 
boundary of the reference path. In contrast, the dynamic MPC 
insured the minimal value of nMT  as high as 0.98. 
Remark: After the online parameter selection methods 
integrated with the original MPC controller, the overall 
computational burden shall increase accordingly. However, 
simulations showed that the average extra computational burden 
introduced by this online parameter selection strategy was less 
1%. Hence, this extra computational load was disregarded.    
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6    CONCLUSIONS 
To negotiate the inherent conflict between the controller 

performance optimization and the striking computational 
burden, a systematic online parameter selection approach for a 
classical LTV MPC controller for vehicle path tracking was 
proposed. Various tuning parameters were divided into two 
groups, namely the insignificant parameters and the significant 
parameters, according to whether they had a direct influence on 
both the control performance and the entailed computational 
load. Then, to realize online tuning of the three significant 
parameters, extensive simulations were carried out to generate 
three performance maps with respect to the tracking index, 
stability index, and the computational load index. Based on the 
three performance maps, a straightforward constrained optimal 
path-tracking parameter selection algorithm was generated. The 
proposed parameter selection algorithm induced the highest 
attainable tracking performance while avoided violating the 
minimal stability index constraint under a given available central 
process unit (CPU) computational capacity. Matlab-CarSim 
conjoint simulations demonstrated the effectiveness of the 
proposed online parameter selection method.  
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