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Abstract

The antisymmetrized geminal power (AGP) wavefunction has a long history and is known
by different names in various chemical and physical problems. There has been recent interest
in using AGP as a starting point for strongly correlated electrons. Here, we show that in a
seniority-conserving regime, different AGP based correlator representations based on gener-
ators of the algebra, killing operators, and geminal replacement operators are all equivalent.
We implement one representation that uses number operators as correlators and has linearly
independent curvilinear metrics to distinguish the regions of Hilbert space. This correla-
tion method called J-CI, provides excellent accuracy in energies when applied to the pairing
Hamiltonian.

1 Introduction

Single reference methods have been one of the
popular choices for simulating correlated elec-
tronic structure. These methods usually choose
a single Slater determinant as their starting
point and then add particle-hole excitations to
describe correlation. It is well known that tra-
ditional single reference methods do not provide
the correct description of strongly correlated
systems and often fail catastrophically when the
mean-field reference determinant is restricted to
respect the symmetries of the Hamiltonian.1–3

To overcome the inadequacies of the single
Slater determinant, a more sophisticated ref-
erence is needed. One way to devise a better
starting point is to break one or more symme-
tries of the system and project them later to
recover the physical part.4–7

While for many problems in chemistry and
physics the relevant symmetry-projected meth-
ods are based on spin, there are other problems
where number-projection is more appropriate.
We wish to use one such wavefunction, the
number projected8,9 Bardeen-Cooper-Schrieffer
(BCS)10 state , as our starting point. Number-
projected BCS is equivalent to the antisym-

metrized geminal power (AGP) wavefunction,11

a product state of identical two-electron build-
ing blocks known as geminals.12,13 Although in-
troduced in chemistry decades ago, AGP has
largely been abandoned in chemical applica-
tions. However, in the last ten years, there has
been a renewed interest in AGP6,14,15 and AGP
based methods16–24 for accurate energy calcu-
lations. AGP has also been used to describe
thermal states25 and implemented in near-term
quantum computers26. Recent work by two of
the present authors has shown that AGP is
a fruitful starting point for the description of
strong pairing correlations.23,24 In this work, we
introduce new correlated models based on AGP
and show that seemingly different post-AGP
models are equivalent in the sense that they all
can be written in a geminal replacement repre-
sentation. The concept of geminal replacement
is extremely useful for chemistry where differ-
ent electron pairs are best described by differ-
ent geminals.27 Indeed, a geminal model more
suitable for different electron pairs than AGP
is the antisymmetrized product of interacting
geminals (APIG).28–30 Our goal is to use AGP
as a starting point to reach the computationally
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complex APIG state.
AGP conserves seniority,31,32 which means

it does not break electron pairs. We will
only discuss seniority-conserving wavefunctions
and systems in this article but it should be
noted that AGP is a reasonable reference for
seniority-breaking systems too.16,17 In other
words, AGP provides an initial approximation
to the seniority-zero sector33 of a generic wave-
function. The description of residual pair-pair
correlations can be achieved by a suitable choice
of correlator acting on AGP.

In section 2, we discuss geminals, geminal
based models, and the pairing model Hamil-
tonian. Section 3 discusses several post-AGP
models and presents numerical results. In sec-
tion 4, we show how these various models can
be described in the language of geminal replace-
ment.

2 Background

To set the stage for adding correlations to AGP,
we first need to describe AGP itself. And as
AGP is a geminal state, we will begin with a
discussion of geminals. We will also discuss the
model Hamiltonian used for all the numerical
results here.

2.1 AGP

A geminal is simply a two-electron wavefunc-
tion and can be written in terms of a geminal
creation operator

Γ† =
∑
pq

ηpq c
†
pc
†
q, (1)

where p and q represent spin-orbitals and η
is their amplitude matrix. In the natural or-
bital representation of the geminal, the anti-
symmetric η matrix is transformed to a block
diagonal form24,34 and the geminal creation op-
erator reduces to

Γ† =
∑
p

ηp P
†
p , (2)

where the pair creation operator is

P †p = c†p c
†
p̄. (3)

Here spin-orbital p̄ is “paired” with orbital p.
The pairing does not necessarily have to be be-
tween the ↑ and ↓ spins of the shared spatial
orbital p, but is defined according to the orbital-
pairing scheme of the natural orbital basis. The
pair creation operator conserves seniority just
like the pair annihilation and number operators

Pp = cp̄ cp, (4a)

Np = c†p cp + c†p̄ cp̄, (4b)

and their commutation relations follow an su(2)
algebra

[Pp, P
†
q ] = δpq (1−Np), (5a)

[Np, P
†
q ] = 2 δpq P

†
q . (5b)

Note that, the mapping of these generators to
fermion pairs guarantees their nilpotency, i.e.,
(P †p )2 = 0.

Geminals are two-electron building blocks
and can be used to construct a many-body
wavefunction. One example of a geminal n-pair
wavefunction is the aforementioned APIG,

|APIG〉 = Γ†1...Γ
†
n |−〉, (6)

where |−〉 is the physical vacuum and

Γ†µ =
∑
p

ηµp P
†
p . (7)

APIG is a variationally and conceptually pow-
erful wavefunction but its computational cost
for general Hamiltonians is combinatorial since
its matrix elements lead to permanents29,30. In-
stead, we focus here on the AGP wavefunction
where all the geminals are identical and use it as
the basis for geminal replacement models even-
tually leading to APIG.

The AGP wavefunction of n pairs is the prod-
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uct of n identical geminals

|n〉 =
1

n!

(
Γ†)n |−〉 (8a)

=
∑

p1<...<pn

ηp1 ...ηpn P
†
p1
...P †pn |−〉. (8b)

Thus, AGP approximates the doubly occupied
configuration interaction (DOCI)32,35 wave-
function,

|DOCI〉 =
∑

p1<...<pn

Dp1...pn P
†
p1
...P †pn |−〉, (9)

the most general possible seniority-zero state,
by a simple factorization of the tensor am-
plitude, as can be readily seen by comparing
eqs. (8) and (9). AGP is variationally supe-
rior to Hartree-Fock since the latter is a special
case of AGP, and because AGP is number pro-
jected BCS, it can be optimized with a mean-
field cost. The product structure and low cost
of AGP make it a potentially useful starting
point for more sophisticated methods.

2.2 Pairing Hamiltonian

All of our numerical results concern the pairing
Hamiltonian

H =
∑
p

εp Np −G
∑
pq

P †pPq, (10)

where p and q represent levels. Due to the
nilpotency of the operator P †p , each level can be
occupied by only one pair. Here εp = p and the
interaction G is associated with pair hopping
between any two levels; the interaction may be
repulsive (G < 0) or attractive (G > 0). Even
though the pairing Hamiltonian is simplistic, it
facilitates interesting physics in the attractive
interaction regime, where Hartree-Fock insta-
bility towards a number-broken BCS state is
observed.36

Since the pairing Hamiltonian is seniority-
conserving, the exact ground state is the same
as the DOCI wavefunction. Instead of diago-
nalizing the Hamiltonian in the DOCI space, it
can be solved exactly using a set of nonlinear
equations37–39 instead. This provides us exact

energies and eigenstates of the pairing Hamilto-
nian, even for fairly large systems. The ground
state of the pairing Hamiltonian is an APIG
with the geminal coefficient

ηµp =
1

2 εp −Rµ

, (11)

where Rµ is called the pair energy. The pair-
ing Hamiltonian is part of a family of exactly
solvable Hamiltonians called the Richardson-
Gaudin models with special APIG wavefunc-
tions as their ground state.39

We are interested in the pairing Hamiltonian
primarily because many conventional quantum
chemical methods are unable to describe its
physics in the strongly attractive regime,3,40

where superconductivity emerges. Coupled
cluster methods even fail to yield real-valued
energies after a certain positive G value.36 It
is well known that symmetry adapted coupled
cluster methods fail to describe strongly corre-
lated molecules2 and repulsive models like the
Hubbard Hamiltonian,1 perhaps due to a poor
description of pairing inteactions at strong cor-
relation.33,41 While many methods struggle to
describe the physics of the attractive pairing
Hamiltonian, AGP captures its basic behav-
ior reasonably well.3 Indeed, at extremely large
positive G values when the two-body part of
the Hamiltonian is dominant, extreme AGP11

(identical ηp) is the exact ground state eigen-
function of the pairing Hamiltonian.

2.3 Reduced density matrices

One of the advantages of AGP as a reference
wavefunction is that its expectation values are
easily computed. We define AGP reduced den-
sity matrices (RDMs) in the form Zpqr... =
〈P †p ...Nq...Pr〉, for example

Z1,1
p = 〈Np〉, (12a)

Z0,2
pq = 〈P †pPq〉, (12b)

Z2,2
pq = 〈NpNq〉, (12c)

Z1,3
pqr = 〈P †pNqPr〉, (12d)

where 〈...〉 is short for 〈n|...|n〉. The RDMs can
be evaluated in terms of elementary symmet-
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Figure 1: AGP coefficients (ηp) of a normalized
AGP (〈n|n〉 = 1) for the half-filled 12-level pair-
ing Hamiltonian. Note that AGP expectation
values are invariant to a global sign change of
all ηp.

ric polynomials15,42 or by number projection of
BCS density matrices.43 But the most efficient
way to construct a RDM tensor is to use the
reconstruction formulae,15 which enable us to
write higher-order AGP density matrices as lin-
ear combinations of lower-order density matri-
ces, provided

η2
p 6= η2

q (p 6= q) (13)

is true. The reconstruction formulae can be
used to compute a k-index RDM tensor in
O(mk) time, where m is the number of spatial
orbitals or the number of levels in the pairing
Hamiltonian.

Figure 1 shows the values of geminal coef-
ficients of AGP for the pairing Hamiltonian,
which has only positive values for attractive but
both positive and negative values for repulsive
interactions. At G = 0, when Hartree-Fock is
the ground state of the pairing Hamiltonian, ηp
corresponding to the virtual orbitals will go to
zero. Also at extremely large G values, the ηp
coefficients will slowly approach the same value.
In other words, we can safely assume all the ηp
coefficients are different in our computations,
as long as G 6= 0, which allows us to use the
reconstruction formulae.

3 Correlation on AGP

Here we will discuss configuration interaction
models based on AGP using killer adjoint and
number operators. For the sake of simplicity,
we only consider real-valued coefficients.

3.1 Number operator correlators

Particle-hole excitations create a manifold of
states orthogonal to the reference Slater deter-
minant since their adjoints annihilate it; de-
excitations, in other words, are killing opera-
tors of the reference determinant. AGP also has
killing operators.23,44 The seniority-conserving
killing operator is

Kpq = η2
p P
†
p Pq + η2

q P
†
q Pp (14)

+
1

2
ηp ηq (NpNq −Np −Nq) ,

where p 6= q. Because Kpq annihilates AGP,
its adjoint K†pq creates a manifold of states or-
thogonal to AGP. This leads to an AGP based
configuration interaction (CI),23

|K-CI〉 = (1 +K2) |n〉, (15a)

K2 =
∑
p>q

Cpq K
†
pq, (15b)

where Cpq is symmetric and intermediate nor-
malization is assumed for the above wavefunc-
tion,

〈n|n〉 = 1, (16a)

〈n|K†pq |n〉 = 0. (16b)

Here, we formulate an alternative AGP-CI
model using (Hermitian) number operator cor-
relators, sometimes known as the Hilbert space
Jastrow operators,16 in the form

|Jk-CI〉 =
∑

p1<...<pk

Sp1...pk Np1 ...Npk |n〉. (17)

The symmetric amplitude tensor S is optimized
variationally, leading to a generalized eigen-
value problem,

H S = M S E, (18)
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Figure 2: Total energy errors (Emethod − Eexact) for the half-filled 12-level pairing Hamiltonian.
CID, CCD, and CCDQ are post-Hartree-Fock methods: they are configuration interaction doubles,
coupled cluster doubles, and coupled cluster doubles and quadruples respectively. Note that the
critical G value is Gc ∼ 0.3161.

where for example,

Hpq,rs = 〈NpNq H NrNs〉, (19a)

Mpq,rs = 〈NpNq NrNs〉, (19b)

in the case of J2-CI. Using the differential rep-
resentation of Np on AGP,15

N̂p |n〉 = 2 ηp P̂
†
p |n− 1〉, (20)

and nilpotency of the pair creation operators,
we can also write Jk-CI in terms of pair creation
operators,

|Jk-CI〉 =
∑
p1...pk

S̃p1...pk P
†
p1
...P †pk |n− k〉, (21)

where

S̃p1...pk =
(2)k

k!
Sp1...pk (ηp1 ...ηpk). (22)

Although eq. (17) is better suited for the com-
putation of observables, eq. (21) helps to realize
some important points, to be discussed later.

The simplest J-CI wavefunction has one num-
ber operator

|J1-CI〉 =
∑
p

Sp Np |n〉, (23)

and is not particularly interesting for ground
state since it produces no correlation when act-

ing on an optimized AGP state. Figure 2 com-
pares total energy errors of J-CI, AGP, and
post-Hartree-Fock methods like configuration
interaction doubles (CID), coupled cluster dou-
bles (CCD), and coupled cluster doubles and
quadruples (CCDQ),45 for the pairing Hamil-
tonian. J2-CI provides far better ground state
energies for the pairing Hamiltonian than CID,
CCD, and AGP, both for the attractive and
repulsive interactions in the strong correlation
regime. The accuracy can be systematically im-
proved with higher-order J-CI methods. It is
clear that even J3-CI performs better than the
CCDQ method.

Interestingly, J2-CI and K-CI yield identical
energies for the pairing Hamiltonian which calls
for a comparison between these two models.
Both K-CI and J2-CI have curvilinear metrics
but unlike K2, J2 does not create correlated
states orthogonal to AGP. In fact, the k-th or-
der Jk-CI contains the AGP state and all lower-
order J-CI states. It should be noted that al-
though the G-CI correlator (1 +K2) adds AGP
to the orthogonal manifold, it generates the
same number of states as J2-CI since the K-CI
metric always contains one zero mode whereas
the J2-CI metric is positive definite. The higher
order J-CI metrics are also positive definite but
have near-zero modes near the Hartree-Fock
limit (e.g., G → 0). We will discuss the equiv-
alence of K-CI and J2-CI in terms of geminal

5

Rishab
Highlight

Rishab
Highlight



replacements in section 4.

Table 1: Percentage of metric elements > 10−6,
for half-filled 12-level pairing Hamiltonian.

G J2-CI J3-CI J4-CI
-0.60 81 51 18
-0.30 78 44 13
0.30 89 61 22
0.60 100 97 39

The J-CI metrics are different from the Slater
determinant based CI wavefunctions where the
metric is the identity. The J2-CI metric is dense
and although the metrics of higher order J-CI
become less dense (Table 1), they are never the
identity. In Figure 3, we present a visualization
of how metric densities change when we go from
J2-CI to J3-CI. It is clear from the pair creation
operator representation of J-CI (eq. (21)) that
the highest order J-CI,

|Jn-CI〉 =
∑
p1...pn

S̃p1...pn P
†
p1
...P †pn |−〉, (24)

is the same as DOCI but with a diagonal metric.
The diagonal elements of Jn-CI metric

Mp1...pn
p1...pn

=
(
ηp1 ...ηpn

)2
(25)

are a simple function of AGP geminal coeffi-
cients. Note that the J-CI metrics are non-
negative, since the AGP expectation values
only contain Np operators.15

3.2 Excited states

Due to the nature of eigenvalue problems, we
can compute excitation energies by solving Jk-
CI methods using the difference between eigen-
values

Eexc = Eµ − E0 (µ > 0). (26)

Alternatively, we can use the Hermitian opera-
tor method (HOM),46 which is an equation of
motion47 method for excited states tailored to
a Hermitian correlator, e.g., the Jk operators.

Because it may be unfamiliar, let us take a
moment to review the HOM formalism. Con-
sider generating exact excited states |µ〉 by

acting a Hermitian operator Qµ on the exact
ground state |0〉,

Qµ |0〉 = Q†µ |0〉 = |µ〉. (27)

We apply the Schrödinger equation

H Qµ |0〉 = Eµ Qµ |0〉, (28a)

Qµ H |0〉 = E0 Qµ |0〉, (28b)

and take the difference to get

[H,Qµ] |0〉 = (Eµ − E0)Qµ |0〉. (29)

Now we expand Qµ in a Hermitian operator ba-
sis

Qµ =
∑
p

cµp Rp, (30)

left-multiply eq. (29) by Rp and take the exact
ground state expectation value to arrive at∑

q

〈0|Rp [H,Rq] |0〉 cµq (31)

= (Eµ − E0)
∑
q

〈0|Rp Rq |0〉 cµq .

We now take the differences of the adjoints of
eq. (28), right-multiply by Rp and take the ex-
act ground state expectation value to arrive at

−
∑
q

〈0| [H,Rq]Rp |0〉 cµq (32)

= (Eµ − E0)
∑
q

〈0|Rq Rp |0〉 cµq .

Combining eqs. (31) and (32), we get the HOM
equation,∑

q

〈0| [Rp, [H,Rq]] |0〉 cµq (33)

= (Eµ − E0)
∑
q

〈0| {Rp, Rq} |0〉 cµq .

Jk-HOM equations are derived from above by
approximating the exact ground state and exci-
tation operator by AGP and the Jk correlators
respectively. For example, the J1-HOM expres-
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Figure 3: Metric matrix heat-maps for half-filled 12-level pairing Hamiltonian with G = 1.20. The
left and right panels correspond to metrics of J2-CI and J3-CI respectively. Notice the similarity
between the full matrix on the left and the top-left section of the matrix on the right.

sions are

H C = M C Ω, (34a)

Hpq = 〈 [Np, [H,Nq]] 〉, (34b)

Mpq = 2 〈NpNq 〉, (34c)

Ωp = Ep − E0. (34d)

Because of the double commutators, the result-
ing operator rank and RDMs are two orders
lower for the J-HOM matrices than the corre-
sponding J-CI matrices.

Figure 4 compares the first eight seniority-
conserving excitation energies computed using
J1-CI, J2-CI, J1-HOM, and J2-HOM for the
half-filled 8-level pairing Hamiltonian. The rea-
son for choosing a system with 4 pairs is that
the exact eigenvalue spectra can be obtained
from J4-CI. It is evident from Figure 4 plots
that the HOM and CI excitation energies are
similar for the same order of correlation. Al-
though J1-CI and J1-HOM are qualitatively
correct in the attractive regime, the results
are far from the exact values in the repulsive
regime. J2-CI methods consistently perform
well for all the cases shown whereas J2-HOM
results divert from J2-CI for higher excitation
energies.

4 Geminal replacement

In this section, we show the equivalence be-
tween different correlator representations based
on generators of the algebra, killer adjoints, and
geminal replacement operators. Then we dis-
cuss a general geminal replacement model based
on AGP.

4.1 Symmetric tensor decompo-
sition

The Jk-CI (2 ≤ k ≤ n) amplitude S is a k-
index m-dimensional symmetric tensor. Sym-
metric tensors can always be decomposed48 by
the symmetric form of the well-known canonical
polyadic decomposition,49–51 so we may write

Sp1...pk =
R∑
µ=1

λµ s
µ
p1
... sµpk , (35)

where R is the dimension of the auxiliary in-
dex µ and is called the (symmetric) rank of a
tensor. Eq. (35) is also known as Waring de-
composition.52,53 If the s matrix is orthogonal54

then it is the natural extension of the eigen-
decomposition of a symmetric matrix. Note
that for a generic symmetric tensor, the rank
may be too large for practical application.

Using eqs. (7), (21) and (35), we arrive at
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G = −0.40 respectively. The critical G value is Gc ∼ 0.3710.

another representation of Jk-CI on AGP

|Jk-CI〉 =
2k

k!

∑
µ

λµ
(
Γ†µ
)k |n− k〉, (36)

which writes Jk-CI as a linear combination of
k-geminal replacements, where the new geminal
coefficients are defined as

ηµp = ηp s
µ
p . (37)

If k = 2, the exact decomposition of Spq is
known from the eigen-decomposition with the
rank being equal to the number of levels m,

Spq =
m∑
µ=1

λµ s
µ
ps

µ
q , (38a)

|J2-CI〉 = 2
m∑
µ=1

λµ
(
Γ†µ
)2 |n− 2〉. (38b)

If k = n, the wavefunction is

|Jn-CI〉 =
R∑
µ=1

λµ |nµ〉, (39)

where the factor 2n

n!
is absorbed into the λ vector

and the n-pair state |nµ〉 turns out to be AGP,

|nµ〉 =
(
Γ†µ
)n |−〉. (40)

Hence the wavefunction in equation (39) is a
linear combination of AGPs (LC-AGP)18,22 and
is similar to the generalized BCS ansatz.55 The
symmetric tensor decomposition route to LC-
AGP has been studied before,18,56 but to the
best of our knowledge, the natural emergence
of LC-AGP from correlation on a single AGP
has not been discussed before. In principle,
LC-AGP can approach the exact seniority-zero
state with an increasing rank R. We prove in
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appendix A that when R is a combinatorial
number (R = 2n−1), LC-AGP is indeed equiva-
lent to APIG which is exact for the Richardson-
Gaudin models including the pairing Hamilto-
nian. In practice though, LC-AGP may be a
numerically challenging trial wavefunction. For
the pairing Hamiltonian, we have observed con-
vergence issues and strong initial guess depen-
dence when solving LC-AGP variationally, even
for systems with 4 pairs. Nevertheless, for sim-
ple nontrivial cases like 2 pairs in 4 levels for the
pairing Hamiltonian, we were able to converge
LC-AGP to nearly exact answers using the ex-
pected number of terms in the expansion. Nu-
merical issues for LC-AGP were also reported
for seniority-breaking systems.18

4.2 General form

Let us discuss the simplest possible geminal op-
erators. The geminal creation operator was de-
fined in eq. (2) and the AGP state is

|n〉 =
1

n
Γ† |n− 1〉. (41)

We can also define a geminal removal operator

Γ̄ =
∑
p

1

ηp
Pp, (42)

using the differential representation of Pp on
AGP,15

P †pPq |n〉 = ηq P
†
p |n−1〉−η2

q P
†
pP
†
q |n−2〉, (43)

which removes a geminal from AGP,

|n〉 =
1

(m− n)
Γ̄ |n+ 1〉. (44)

Note that Γ̄† 6= Γ and eq. (43) reduces to
eq. (20) when p = q. Hence the simplest gemi-
nal replacement operator would be

Γ†1 Γ̄ |n〉 =
(∑

p

η1
p P

†
p

) (∑
q

1

ηq
Pq
)
|n〉. (45)

If we only consider the diagonal part of the
above equation, then it is the same as J1-
CI since for AGP within a seniority-conserving

space, the relation

Np = 2 P †pPp (46)

is true. If we only consider the off-diagonal
part, then this is equivalent to acting with the
“pair-hopper” operator (P †pPq) on AGP,

Γ†1 Γ̄ |n〉 =
∑
p 6=q

(η1
p

ηq

)
P †pPq |n〉, (47)

but with a factorized amplitude.
We come to an important realization. Cor-

relators based on any generator of the algebra
acting on AGP either add, remove, or replace a
geminal. The number of geminals replaced by
a correlator becomes more important than the
nature of the correlator. This justifies why K-
CI and J2-CI provide identical energies: since
K2 does not contain more than two generators
in each term, it carries out at most 2-geminal re-
placements. For the same reason, a pair-hopper
based CI model

|P-CI〉 =
(
1 +

∑
p>q

tpq P
†
pPq
)
|n〉, (48)

also yields identical energies to K-CI and J2-CI.
Note that both P-CI and K-CI wavefunctions
add the AGP state to the excitations and both
of the metrics contain one zero mode.

It is natural to formulate a general geminal re-
placement model at this point. We define the k-
geminal replacement configuration interaction
state as

|kGR-CI〉 (49)

=
∑
µ1...µk

Cµ1...µk (Γ†µ1 ...Γ
†
µk

) (Γ̄)k |n〉

or alternatively

|kGR-CI〉 (50)

=
∑
µ1...µk

Cµ1...µk (Γ†µ1 ...Γ
†
µk

) |n− k〉,

where the scalars have been absorbed into the
amplitude Cµ1...µk . To show the equivalence of
the above wavefunction with one of the corre-
lated models on AGP, we apply symmetric ten-
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sor decomposition of

Cµ1...µk =
∑
σ

λσ U
σ
µ1
...Uσ

µk
, (51)

and define

S̃p1...pk (52)

=
∑
µ1...µk

∑
σ

λσ (Uσ
µ1
...Uσ

µk
) (ηµ1p1 ...η

µk
pk

),

after we expand eq. (49) in the Slater determi-
nant basis, to finally get

|kGR-CI〉 (53)

=
∑
p1...pk

S̃p1...pk (P †p1 ...P
†
pk

) |n− k〉.

The above equation is nothing but the Jk-CI
wavefunction in the pair creation operator rep-
resentation (eq. (21)).

5 Discussion

In molecular orbital based correlation theories,
excitations on a reference state are achieved
by replacing occupied orbitals of the reference
Slater determinant with virtual orbitals. Like
the one-electron molecular orbitals, geminals
are the two-electron building blocks of a many-
body wavefunction. It is tempting to think of
correlations in geminal based models in terms of
geminal replacements. But formulating a gem-
inal replacement model with a general geminal
reference is complicated.

We have shown how to systematically build
geminal replacement models starting from AGP
by using the generators of the algebra or their
combinations as the correlators. Geminal re-
placements are not easy to define, at least in
terms of simple actions of operators, for other
geminal products. This is a clear advantage of
working with a basis of AGPs. Earlier work on
correlated AGP, where a killer adjoint operator
creates excitations orthogonal to AGP, is also
shown to be equivalent to the second-order cor-
related models using their geminal replacement
representations. Despite the algebra being clear
about the equivalence of all these representa-

tions, we have carried out numerical experi-
ments to verify its correctness. The curvilinear
metrics of AGP-CI wavefunctions distinguish
between different regions of the DOCI space,
a property not observed in the Slater determi-
nant based CI wavefunctions, where the metrics
treat all Slater determinants on an equal foot-
ing.

We have found the J-CI model to be the
most suitable for seniority-conserving systems
because of the absence of linear dependence in
the metric and generalization to any order. J2-
CI provides excellent accuracy for the pairing
Hamiltonian ground state and excitation ener-
gies, and adding higher order correlations sys-
tematically improves the accuracy. But there
is room for improvement in computational ef-
ficiency. Building and diagonalizing the J2-CI
matrices scales reasonably (i.e., O(m6)) but in-
creases exponentially with higher order J-CI
models. The storage cost of J2-CI is O(m4),
but can be reduced if an iterative diagonaliza-
tion scheme is employed. Tensor decomposition
of both the RDM and amplitude tensors will be
necessary to apply the higher order Jk-CI meth-
ods to large systems. We have discussed the
symmetric tensor decomposition of J-CI am-
plitudes (section 4) and decomposition of ir-
reducible RDM tensors (section 2), known as
the reconstruction formulae. We are currently
working on iteratively solving for the decom-
posed amplitudes, based on the ideas described
above.

At the Hartree-Fock limit, Jk operators will
not add any correlation since any Slater de-
terminant is an eigenfunction of the orbital
number operator Np. Although the pairing
Hamiltonian has Hartree-Fock eigenfunctions
at G = 0, this scenario is not observed in re-
alistic Hamiltonians. We have not seen any
inconsistencies with J2-CI at G → 0 but J3-
CI and J4-CI energies do depend on the cut-off
values for the near-zero modes at small G val-
ues (|G| ≤ 0.1 Gc). Note that the pair-hopper
and the AGP killer adjoint correlators reduce to
the traditional particle-hole excitations in the
Hartree-Fock limit.23

Some words about the correlated AGP mod-
els from a symmetry-projection point of view.
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When compared to other ideas developed in our
group in the general area of combining sym-
metry breaking and restoration tools with cor-
relation methods like coupled cluster theory,57

the methods presented in this article fall under
the general category of project-then-correlate,
as opposed to correlate-then-project, an alter-
native that has also been pursued both for num-
ber58 and spin.59 AGP is not size consistent
and the extensive component of the AGP en-
ergy is the same as that of its underlying BCS
wave function. We thus do not expect the meth-
ods discussed here to fully recover extensivity or
size consistency. However, although extensivity
is not well defined for the pairing Hamiltonian
due to the infinite range of its interaction, we
can discuss size consistency, and significant but
incomplete restoration of size consistency with
our post-AGP methods has been observed.24

Note also that Neuscamman has shown that the
exponential of J2 acting on AGP can completely
restore size consistency.14

The tools and ideas developed in this work
apply strictly to seniority-conserving Hamilto-
nians and their eigenfunctions where all gem-
inals, despite being different, share the same
orbital-pairing scheme,30,60 a property we re-
fer to as “coseniority” in loose analogy to
collinearity of spins. The optimal “differ-
ent geminals for different pairs” eigenfunctions
of a seniority-breaking Hamiltonian (e.g., the
molecular Hamiltonian) are bound to be non-
cosenior, a property indicating that different
geminals have different natural orbital bases
(i.e., the orbital-pairing schemes).

Recently, Johnson et al. have shown that the
eigenfunctions of the pairing Hamiltonian can
be used for the molecular Hamiltonian.61 We
believe that the tools and concepts developed in
this work can be extended to describe seniority-
breaking systems. Fundamentally, the onsite
algebra of pair creation and annihilation oper-
ators {p↑, p↓} becomes one of offsite {pσ, qσ′}
generators, which has a much bigger dimension,
but internal structure if split into singlet and
triplet components.2 Although many details are
still under development, we believe that the
prospects of extending the methods presented
in this paper to the molecular Hamiltonian are

quite positive. Work along these lines will be
reported in due time.
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A Equivalence of LC-AGP

and APIG

We express LC-AGP

|Ψ1〉 =
∑
µ

λµ
∑
p1...pn

(ηµp1 ... η
µ
pn) P†n |−〉, (54)

and APIG

|Ψ2〉 =
∑
p1...pn

(g1
p1
...gnpn) P†n |−〉, (55)

in the Slater determinant basis, where

P†n = P †p1 ...P
†
pn . (56)

Here, n is the number of pairs and g1
p and ηµp

are geminal coefficients, i.e., scalars.
Using the work of Fischer,62,63 we can equate

a product of scalars to a linear combination
form

g1
p1
...gnpn =

1

2n−1n!

R∑
µ(L)=1

(−1)|L| F µ(L)
p1...pn

, (57)

where the auxiliary index µ depends on the list
L ⊂ [n] = {2, 3, ..., n} and the length of the list
is bound by 0 ≤ |L| ≤ n− 1. The function F µ

depends on the geminal matrix g,

F µ(L)
p1...pn

=
(
g1
p1

+ τL,2 g
2
p2

+ ...+ τL,n g
n
pn

)n
, (58)

where τL,p = −1 if p ∈ L, or 1 otherwise. We
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now combine eqs. (55) and (57) to get

|Ψ2〉 =
R∑

µ(L)=1

(−1)|L|

2n−1n!

∑
p1...pn

F µ(L)
p1...pn

P†n |−〉. (59)

Comparing the above equation with eq. 54, we
realize that linear combination of R AGPs is
equivalent to an APIG wavefunction if the re-
lations

F µ(L)
p1...pn

= ηµ(L)
p1

... ηµ(L)
pN

(60)

and

λµ(L) =
(−1)|L|

2n−1n!
(61)

are true. The total number of lists L or the
rank is

R =
n−1∑
x=0

(
n− 1
x

)
= 2n−1. (62)

A similar discussion has also been given by
Kawasaki and Sugino.56
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