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Abstract: Large scale coherent structures in the atmospheric boundary layer (ABL) are known to
contribute to the power generation in wind farms. In order to understand the dynamics of large
scale structures, we perform proper orthogonal decomposition (POD) analysis of a finite sized wind
turbine array canopy in the current paper. The POD analysis sheds light on the dynamics of large
scale coherent modes as well as on the scaling of the eigenspectra in the heterogeneous wind farm.
We also propose adapting a novel Fourier-POD (FPOD) modal decomposition which performs POD
analysis of spanwise Fourier-transformed velocity. The FPOD methodology helps us in decoupling
the length scales in the spanwise and streamwise direction when studying the 3D energetic coherent
modes. Additionally, the FPOD eigenspectra also provide deeper insights for understanding the
scaling trends of the three-dimensional POD eigenspectra and its convergence, which is inherently
tied to turbulent dynamics. Understanding the behaviour of large scale structures in wind farm
flows would not only help better assess reduced order models (ROM) for forecasting the flow and
power generation but would also play a vital role in improving the decision making abilities in wind
farm optimization algorithms in future. Additionally, this study also provides guidance for better
understanding of the POD analysis in the turbulence and wind farm community.

Keywords: proper orthogonal decomposition; wind farms; eigenspectra; counter-rotating roll cells

1. Introduction

Wind farms in the atmospheric boundary layer (ABL) pose a complex dynamical system with
turbulent phenomenology occurring at multiple length scales, mainly due to the interaction of
atmospheric boundary layer turbulent eddies [1] and the turbulence generated by the wind turbine
wakes [2—4]. These interactions are manifested not only in the small scale structures (of the order
or smaller than the turbine rotor diameter) but also in the large scale structures (one or two orders
of magnitude larger than the turbine rotor diameter) [5]. In the current paper, we are concerned
with the understanding of these large turbulent structures which arguably can serve as mediators
to the generation of large scale motions or very large scale motions [6] (LSMs or VLSMs) which
has significant contribution to wind farm power [4,7]. Several researchers have shown before that
large scale counter-rotating roll cell structures are formed in the atmospheric boundary layer [8,9].
From the perspective of understanding the phenomenology, Chauhan et al. [10] predicted the
dynamics of such large structures using two-point correlations from field experiments in Utah’s
western desert. Hutchins et al. [11] predicted the universality of these structures in laboratory
scale and an atmospheric surface layer. In particular, Ref. [11] also illustrated the similarity of
neutrally-stratified atmospheric surface layer flows and canonical wall-bounded turbulence and
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the formation of large-scale counter rotating roll vortices in both flows. Further details of the roll-cells
in planetary boundary layers can be found in the work of Etling et al. [8] and Yong et al. [9]. In
the presence of wind farms, the ABL modulates such structures in and around the turbine rotors as
illustrated in the field [12], laboratory-scale experiments [7,13] as well as LES simulations [2,5,14].
Proper orthogonal decomposition (POD) [15-17], has been popularly used by the community to
perform detailed analysis of these large scale roll structures [15], because of its inherent nature to
“rank” the coherent turbulent eddies based on their kinetic energy content (POD eigenvalues). In the
current manuscript we are primarily interested in the POD analysis of a finite-sized wind farm
where the flow is heterogeneous in the streamwise direction. Finite sized wind farms have multiple
applications, e.g., fundamentally understanding the entrance region of very large wind farms [18]
without being restrained by computational expense. These finite sized turbine arrays also find their
place in utility scale farms e.g., in a distributed wind setup aimed for powering rural or remote
sub-urban community [19]. One of the key problems, in the snapshot-based POD analysis [20,21]
(more popular because it is computationally cheap), is that the snapshots need to be quite far spaced
(more than three flow though times apart), such that the snapshots are linearly independent of
each other for the generation of the correlation matrix in POD, and hence capture the large scale
structures/modes (having large decorrelation times). Restrained by the computational expense,
the number of snapshots in such a case involving finite sized wind farm canopy will be quite limited,
which will detrimentally impact the scaling and the convergence of the POD eigenspectra. Previous
work by turbulence/wind community have not addressed this issue explicitly [22]. This problem was
circumvented by performing the analysis on a periodic wind farm [15]. In this way even though very
few distant spaced (3 flow through times apart) snapshots are generated by solving the Navier-Stokes
equation, the number can be artificially amplified by “shifting” the snapshot data across the streamwise
and spanwise distance between the turbines. The shifting method only works if the wind farms are
arranged in a completely matrix setting (ny x ny turbines) in a horizontally periodic framework.
In this case the total number of snapshots generated for POD would be 7,1, times the snapshots
obtained from simulations. In the finite sized wind farm, as in the current manuscript, due to the
heterogeneity of the farm layout and the geometry of the domain, such shifting is not possible, and at
most we can increase the number of snapshots by two times by reflecting the data across the xz
plane of symmetry passing through the middle row of turbines. Thus the data from finite-sized wind
farm simulation serves as a perfect candidate for performing such POD analysis studies. As we will
see later, this creates a limitation on the total number of snapshots we can generate that impacts
negatively on the convergence of the POD eigenspectra. Additionally after performing detailed
analysis of the eigenspectra and understanding the dynamics of the 3D eigenmodes, we adapt a
Fourier-POD (FPOD)-based framework for better understanding of the eigenspectra (most importantly
their convergence) as well as the modes. In this methodology, we perform POD analysis of
laterally /spanwise Fourier transformed snapshots rather than the 3D snapshots themselves. As will
be discussed in the subsequent section, we see that the FPOD modes can provide better insights to
the scaling laws of the eigenspectra as well as elucidate on the turbulent structures which contribute
to the problem of “slower convergence” of the spectra. Ideas for computing POD with a similar
spirit exists in the literature, e.g., spectral POD (SPOD) by Towne and coworkers [23], where the
temporal Fourier transform of the correlation function is used for POD eigendecomposition problem in
order to understand the modal frequency content. Towne and coworkers also showed the connection
between SPOD and dynamic mode decomposition (DMD) [24]. Recently, Zhang et al. [17] have
utilized SPOD analysis specifically for the wind farm problem. Hamilton and coworkers [25,26]
have introduced methodologies like dual POD as well as 2D-POD at each streamwise location in an
effort to understand the streamwise dependencies of the coherent structures for wind farms. Glegg
and Devenport [27] have also shown that for a problem involving turbulence-acoustics interference,
POD can be performed in combination with linear stochastic estimator in the homogeneous direction
(space or time for homogeneous/stationary flows) to describe flows and that such analysis requires less
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modes for a flow representation than the conventional 3D POD. The methods described above have
utilized POD such that additional information of length scale dynamics and/or decoupling streamwise
and spanwise length scales is possible. The concept of Fourier-POD itself is not uncommon in the
turbulence community and can be found in many canonical flows having a homogeneous direction,
the most recent being Rayleigh Benard convection [28,29]. Contrary to the previous methods, the FPOD
methodology (operated on complex-valued two dimensional fields) and its novelty in the current
work lies in its introduction to: (1) gaining physical insight to the convergence of the 3D eigenspectra
and (2) showing a comparison of the reconstructed physical modes from both FPOD and 3D POD
decomposition. Additionally, FPOD also helps us decouple length scales of the energetic eddies based
on the spanwise and streamwise direction of the flow.

The aim of the current work is to understand the dynamics of the coherent structures in a
finite-sized wind farm using POD analysis. In this context, we first evaluate a traditional 3D POD
methodology in the form of a method of snapshots, and then propose an improvement to the traditional
methodology, the so-called Fourier-POD method, which demonstrates a faster convergence of the
eigenspectra owing to an imposition of analytically optimum modes (Fourier modes) in a periodic
direction. The second objective of the manuscript is to propose a physical interpretation of the FPOD
modes and compare them with the corresponding 3D-POD results. This work would help us better
assess the potential of reduced order models (ROM) for a compact representation of the complex wind
farm flow physics, and their ultimate utilization for a forecasting the flow and power generation in
heterogeneous wind farms.

The paper is organized as follows. First, we briefly discuss the numerical setup with regards to
the large eddy simulation (LES) framework used for the wind farm simulations. Second, we introduce
the mathematical formulation of both 3D-POD, and a novel 2D Fourier-POD analysis framework.
Subsequently, we present the results of 3D-POD and 2D FPOD methodology. Finally, we conclude by
highlighting the merits of a 2D Fourier-POD methodology in understanding the physics of wind farm
flows as compared to its 3D POD counterpart.

2. Numerical Setup

The database for the finite sized wind farm was obtained from spectral element simulations in
LES carried out in our previous work [5,30,31]. In particular, we used the open-source exponentially
accurate spectral element code Nek5000 [32,33] for setting up the LES simulation. Nek5000 solves
the incompressible Navier-Stokes equation in a variational /weak formulation with tessellating the
domain into 3D hexahedral elements. The variables, velocity, pressure etc., are expanded as higher
order Legendre polynomials within each element and the gridpoints where the polynomials are
defined correspond to the roots of the polynomials. For the velocity, Gauss-Lobatto-Legendre (GLL)
points were used within each element while for pressure, Gauss-Lobatto (GL) points were used in the
current formulation.

The domain consisted of a 3 x 3, finite-sized, wind turbine array (WT) layout in an
inflow-outflow [30,34] setup. (Please see Figure 1 for the 3 dimensional schematic of the layout).
The inter-turbine streamwise and spanwise distances were 7d and 3d respectively. The wind turbine
rotors in the finite sized array, d were set to be 20% of the ABL thickness, H: d = 0.2H, and the
hub-height being zj,, = d = 0.2H. Such a setup of hub-heights is consistent with the wind-tunnel
laboratory scale wind turbine tests carried out in the past [7,35]. The vertical height of the domain was
H = 5d. The LES framework involved wall-modeled large eddy simulation with the subgrid scale
closure designed as an algebraic wall-damped Mason and Thompson model [36-38] and the bottom
wall boundary condition prescribed as a wall shear-stress (corresponding to the log-law of the wall).
The validation of the wall-modeled LES framework for the precursor neutral ABL [5] (used as an inflow
boundary condition to the WT array) compared against experimental data is illustrated in Figure 2.
The streamwise velocity, streamwise variance and the integral length scale for the neutral ABL showed
expected trends when compared against experimental data obtained from both wind tunnel [39,40]
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and field experiments [41], as well as high-fidelity numerical simulations [42]. Additionally, our LES
model tested in a neutral ABL framework manifested correct logarithmic trends of the velocity profile
at the log-layer and inverse scaling laws of the energy spectra [37] at large wavenumbers.
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Figure 1. Schematic of the 3 x 3 wind turbine array. Inter-turbine distance, sy = 7d, sy, = 3d.
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Figure 2. Flow characteristics and validation with experiments of a simulated neutral atmospheric
boundary layer (ABL) profile (Rer ~ 5 x 108) using wall-modeled large eddy simulation (LES).

(a) Normalized streamwise mean velocity, U/Up,,, (b) turbulence intensity, oy, /Uy, and (c)

Normalized integral length scale A"/ A} ,. The horizontal lines represent turbine hub-height location.
Expt-Hayat et al. 2019 [39], (Rer ~ 9.3 x 10%); HExpt, wind tunnel experiment from Hutchins et al.

(2009) [40] (Rer ~ 1.9 x 10*), Channel-Channel flow DNS by Sillerro et al. (2014) [42] (Rer ~ 2 x 10%)
and LWP-Leipzig wind profile, Lettau (1950) [41].

For more details related to the validation of the LES framework of neutral ABL and wind farm
simulations in spectral elements, please refer to the authors’ previous work [5,43]. The wind turbines
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are modeled as actuator-line (AL) models [39,44-46] without having to resolve the blades. In the
current AL simulations, Tjeereborg turbines have been used [44]. The lift and drag coefficients for
the blades were taken from the NACA 44xx series aerofoil wind tunnel measurements performed
on NACA airfoils at a chord Reynolds number, Re; = 6 x 10°. The equivalent time-varying thrust
coefficient of the turbines is in the range of Ct ~ 0.7-0.8, which is similar to Cr = 0.75 used in the
actuator disk model of [2]. Each actuator line is discretized using 30 uniformly sized blade elements (i.e.,
per rotor radius) as in [44]. The AL model is of a higher fidelity than the actuator-disc model ([2,15,47])
commonly used in numerical computations of wind farms, in its capability to capture the tip vortices
being shed in the near wake ([44,45]).

Moreover, the finite-sized layout is inherently heterogeneous due to the streamwise growth of the
internal boundary layer, wake impingement effects etc. The top boundary condition of the finite-sized
wind farm array is “symmetry” or no mass transport in nature which mimics an inversion layer as in
a conventionally neutral boundary layer [48,49]. For the current setup, the artificial inversion layer
is five times the hub-height (equivalently, five times the rotor diameter) of the turbines and can be
thought of as low-lying [48]. From the perspective of canopy turbulence, it is apparent that the ABL
above the wind turbine canopy is essentially the “canopy sub-layer” (vertical domain size 5d = 5zp,;).
(The canopy sublayer is where the turbulent eddy effects of the canopy are still felt and is roughly five
times the canopy height or even larger, see [50-52] for details of recent canopy/roughness sublayer
fundamentals). Table 1 shows the specification of the domain size of the wind turbine array as well
as the precursor neutral ABL which is concurrently simulated to generate inflow conditions [30,31].
Additionally, the grid counts and the average normalized grid sizes for the farm layout as well as
neutral ABL (turbulent scales fed to the inflow) can be found in Table 2. This illustrates that the
smallest resolved length scales is an order of magnitude smaller than the turbine rotor size, 4. Note,
here that the definition of lengthscales or wavelength resolved is based on the Nyquist limit of the
coarsest grid size (twice the coarsest grid size). For more details of how the grid sizes were defined,
see [5,46]. From Table 1 it is apparent that the precursor neutral ABL has a much uniform distribution
of grids compared to the wind turbine (WT) domain. This is primarily because of the fact that the WT
domain grids were build on top of the ABL domain, with grid refinements around the turbine rotors
(~30 gridpoints per actuator line blade) for capturing the wake turbulence accurately [30,34,46,53].

Table 1. Details of the computational grids for the precursor ABL and the wind turbine array domain.
Nj, is the number of spectral elements in the 7 direction. Eight Gauss-Lobatto-Legendre (GLL) nodes
(Legendre polynomial order 7) have been used per element per Cartesian direction.

Case Geometry Inter-Turbine Distance Ny X Ny X N7  Grid Points
Neutral ABL  107td x 57td x 5d - == 30 x 20 x 24 5.06 x 10°
WT Array 157td x 57td x 5d 7d x 3d 48 x 32 x 24 1.281 x 107

Table 2. Maximum, minimum and average wavelengths captured, for the ABL and the wind turbine
array domain. d is the turbine rotor diameter.

Neutral ABL WT Array
Direction Ar/,res max Aq,res min X17,1‘95 Aq,res max /\q,res min X11,;’:35
X 0.2992d 0.2992d 0.2992d 0.3366d 0.0944d 0.2804d
y 0.2240d 0.2240d 0.2240d 0.3316d 0.03584 0.1402d
z 0.0596d 0.0596d 0.05964 0.09424 0.0476d 0.0596d

The number of snapshots obtained from the simulations was 3285, which were spaced 1/57, apart
(T, = 157td/ Uw is the flow-through time). Since, the domain/layout is symmetric about y = 2.57td,
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we created 2 x 3285 = 6570 snapshots by reflecting and shifting of the snapshot data about xz plane at
y = 2.57d (similar to the shifting method by Verhulst et al. [15]).

In the subsequent section we discuss the mathematical details of the 3D POD and the Fourier-POD
methodology that we use in our analysis in the manuscript.

3. Analysis Methods—Proper Orthogonal Decomposition

3.1. 3D POD—Mlethod of Snapshots

The POD analysis was carried out using the method of snapshots [20] developed in the spectral
element code Nek5000. The 3D velocity vector field was represented as

u(x,t) = u;(x,y,z,t) Vi=1,...,3. Here, u;(x,y,z,t) € Q(R3,[0,00) N Ly(R3)), R3 is the 3D real
space, L, (IR?) is the space of square-integral functions in the 3D real space, for which the L, or energy
norm, can be defined. The velocity field can be decomposed into a set of orthonormal basis functions
@ e V=0(R N L(R3)),

[e)

u'(x,t) = Zaj(t>q’j(x) @
=0
where the turbulent velocity fluctuation field /(x,t) = wu(x,t) — (u(x,t))r, and (u(x,t))7 is

the time average of the velocity field, (¢;, ¢;) = J;; Vi, j. The POD problem can be cast as a
constrained variational problem (See [54] for details), with the maximization of the objective function

(@) = (|, 9)|>)T — Allp||*> — 1), ()1 is a temporal averaging procedure. A necessary condition
of the extrema dictates that the functional derivative vanish for all variations ¢ +¢egp € V, € € R,

ie, %3@ + ep)|le=o0 = 0. The method of snapshots is an approximation to the solution of

ij (@ + €y)|.—0 = 0 [55] using temporal correlation instead of a spatial correlation. Mathematically,

the POD method of snapshots [20] of the velocity field dataset arises when solving for the projection
N;—1

of the dataset P, : V — V; of fixed rank r, minimizing the error ) ||u; — Pru}| |? in the least-squares
j=0
sense with the constraint ||¢|| = 1 (||.|| is the norm corresponding to the inner product (,) € V).

The temporal snapshots of the velocity field u(x, ;) Vj = 1,..., Ni have been written as u; in the error
expression for brevity. The projection P, can be written as

r—1 r—1
Pru;n = Z((P]’/ u;n)ﬁoj = Z aj(tm)¢j(x)/ r < Nt ()
j=0 j=0

The correlation matrix in indicial notation can be obtained from the inner product of the snapshots
and is given as

1 / /
Cun = ﬁt(u (x, tm), (1’ (x, 1)) (3)

This method ensures that the eigenvalue problem arising is independent of the size of V which
is equal to Q(R3) (k: number of coordinates in u(x,t) at discrete grid points). In the eigenvalue
problem in Equation (4) below, A is the eigenvalue corresponding to the turbulent kinetic energy and
v is the eigenvector.

[Clv = Av 4)

The POD eigenmode can be constructed from the eigenvalues and eigenvectors as
N;—1
@(x) = ) be(tp)u' (x, 1)) ©)
j=0

for some coefficients by. Using Equation (2) for u’(x, t;), Equation (5) can be expanded as
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—1N;—1 6)

Zzbk @ (x)

Since, (@, ¢;) = Jy, it is straightforward to see from Equation (6) that by(t;)a;(t;) = o/ Nt Vj.
Mathematical details analysing the relation of by, a; can be found in [15]. It is important to note,
that Parseval’s identity can be applied in POD (orthonormal basis functions) which from the inner

Ni—1
product (taken in spatial domain, defined in V) gives rise to ||u'(x,t)||> = Z a;( 2, and hence
(aj(t)a k( )t =Aidi Vj=0,...,Nt — 1. Thus, since bya; = &/ Ny, the coeff1c1ent bk can be defined as

by =

Addltlonally, the eigenvector vy = is consistent with the orthonormality of ¢.

ax
)\th \% Ath

3.2. Fourier-POD Methodology

For the Fourier-POD methods, analogous to the projections methods of 3D POD, we can write the
projection Py, as

Pf,um = / )(p elkyydy = / Za] ky, tm)go](x z,ky)e lkyydy r < N; (7)

In a similar spirit, the correlation matrix can be written as

A 1

Cmn = ﬁ/ x,ky,z,tm), (ﬁ/(x,ky,z,tn)) (8)

N @
where #’ is the Fourier transform in the lateral/spanwise y direction of the velocity fluctuation vector
u (x,t).

' (x,ky,z,ty) = = / (x,9,2,tm)e"*¥dy 9)

Since the snapshots in FPOD methods are complex valued rather than being real-valued as
in the 3D POD case, the modes are expected to be complex in nature as well. Note, however that
the correlation coefficient (3D POD as well as 2D Fourier-POD) are based on the inner products of
snapshots. If x is a matrix containing columns of snapshot x; = [x1, X2, X3,- - -, Xn), then the correlation
matrix can be written as xx while for complex snapshots (e.g., 2D FPOD), the inner product can be
written as xx'!, where []T and [| represent transpose and Hermitian (complex conjugate transpose)
respectively. Subsequently, it is apparent that while the eigenvectors and hence the modes can be
complex for FPOD, the eigenvalues (or the diagonal eigenvalue matrix) are given by diag(A) = TxH
(since svd can be complex for real systems ), where ¥ is the matrix containing singular values at
diagonal entries from the SVD of the snapshot matrix x. Consequently, the eigenvalues of 3D POD
as well as complex 2D Fourier-POD are always real-valued and represent kinetic energy content the
mode. The FPOD analysis has been carried out in an open-source python code MODRED [56] written
as a high-level class interface using spectral methods.
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4. Results

4.1. 3D POD

In this section we present the results obtained from the POD analysis of a finite-sized wind turbine
array. Unless otherwise mentioned, the results (also shown in the plot labels) were normalized with
the free-stream velocity scale, U and rotor diameter d as deemed necessary. The snapshots for the
layout were each T, /5 (T is the flow through time) snapshots apart, which were much frequent than
the snapshots “3T, apart” as reported in Ref. [15]. This essentially means that the current POD analysis
were carried out in the framework of “smaller time scales”. The snapshots ~ 3T, apart in the previous
literature [15] in the context of asymptotic wind farms ensure that the temporal autocorrelation of the
velocities completely decay to zero. In the current manuscript we resorted to snapshots separated by
time T, /5, when the velocity correlations were roughly ~0.2. However, we also used snapshots which
were 2T, /5,3T, /5 and 4T, /5 times apart to test the convergence of the eigenspectra. The time extent of
600T, was used for the analysis of the LES database. Note, that during convergence study, we chose to
keep the time extent of the database for POD analysis fixed and only varied the time spacing between
the two snapshots. Ref. [15] performed POD analysis on periodic wind farm layout, and hence after
generating a set of snapshots, 3T, apart, artificially increased the number of snapshots by an order of
magnitude by exploiting the stationarity of the flow and the large scale statistical symmetry of the
flow around every turbines in the streamwise and spanwise direction (method of “shifting”). Figure 3
shows the normalized eigenspectra of the finite-sized farm layout compared with the spectra of a
periodic 8 x 6 array with domain size 207td x 107td x 10d (27tH x wH x H) [5], 3D POD modes were
calculated using one shifting due to a spanwise symmetry to increase the number of snapshots.

10%4

100 10! 102 107 100 10! 102 103
m m

@ (b)

Figure 3. (a) Eigenvalue spectrum normalized by the first eigenvalue (highest energy) for
different wind turbine layouts. Lines: Blue—periodic wind farm (asymptotically infinite) with
8 x 6 array, 207td x 107td x 10d [5], Magenta—current finite sized wind farm (3 x 3 array, 3tH X
mH x H). Black circle—periodic wind farm (4 x 6 array, 107td x 107td x 10d), LES simulation
by Verhulst et al. [15]. Red triangle—periodic wind farm (16 x 12 array, 407td x 207td x 10d),
LES simulation by Zhang et al. [17]. Blue square—developing wind farm (12 x 12 array,
407td x 207td x 10d) [17]. H is the boundary layer thickness. (b) Spectral convergence of the eignevalue
spectrum A, /A1 for the current finite sized wind farm. Snapshot separation, black—4T, /5, red—3T, /5,
blue—2T, /5 and magenta—T./5.

The eigenspectra of the 3D POD modes was validated for the periodic and developing wind farm
simulations with the results from the previous literature in Figure 3a. In particular, we considered the
periodic wind farm layout from Verhulst et al. [15], and periodic as well as developing large wind
farms from Zhang et al. [17]. The geometry for all three reference simulations is summarized in Table 3.
The developing wind farm geometry of Zhang et al. [17] was the same as the geometry of their periodic
wind farm simulations cited in Table 3, albeit with a lesser number of turbines (12 versus 16) in a
streamwise direction. Note that the inter-turbine distance was the same for all three references [5,15,17]
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but different from the current finite-sized wind farm study. Additionally, the turbine diameter d was
set as d = 0.1H, and the hub-height z,, = d = 0.1H, for all the three studies [5,15,17].

We note that our periodic wind farm case matches better with the periodic case of Zhang et al. [17],
underscoring the fact that both these studies performed the POD eigendecomposition with similar
number of snapshots. We also illustrate the convergence behaviour of the eigenspectra for the finite
sized farm in Figure 3b. Note, instead of comparing the eigenvalues for different POD problems A,
we compared the normalized eigenvalues A, /A1 (m is the number of mode), which ensured better
convergence of the scaling trends.The current convergence plots were shown for a POD computed for a
same time extent of 600T,, but the snapshots were spaced for different fractions of flow-through times
apart. However, similar trends in convergence could be observed when performed with the POD for
fixed spacing of the snapshots (T, /5) and progressively adding more snapshots with each case (results
not added for brevity). The eigenspectra and their convergence trends clearly indicated the following
features, (i) convergence is observed by increasing N;, the number of snapshots, (ii) with increasing
number of snapshots, the scaling law of the modes for m > 10, clearly changed from m~%2 [16] to
m~ %8 which is extremely close to m %7
number of snapshots, Zhang et al. [17] also illustrated the m %% scaling for the m ~ 10! — 102 for

periodic farms and m > 10 for developing farms. Additionally we can also comment that obtaining the
-0.9

as observed by the periodic wind farms in [15]. For the same

convergence of m
spacing of the snapshots. Incidentally, a similar scaling law m
studies, particularly for 2D POD eigenspectra performed at different streamwise locations of wind

scaling law iwas primarily dependent on the number of snapshots rather than the

~12 was also observed in experimental

turbine array by Hamilton and coworkers [26]. We hypothesize that with increasingly more number
of snapshots, the scaling law for modes m > 10, should approach m~%°. However, restrained by the
bottleneck of the computational expense we cannot add further snapshots from simulation or take
advantage of the symmetric shifting to generate more “artificial” snapshots. Consequently, in order to
gain more insights on the scaling law of the eigenspectra and their convergence, we propose a different
methodology based on Fourier-POD analysis, which essentially deals with the POD of the snapshots
of the lateral /spanwise Fourier transformed velocities for different wavenumbers instead of the 3D
snapshots themselves. We provide a dedicated section (Section 3.2) for introducing the mathematical
formulation and the results and insights of the FPOD analysis, but for now we continue our discussion
related to the results of the 3D POD analysis.

The first 3D-POD mode of the periodic wind farm case (8 x 6 array [5]) is shown in Figure 4
for validation purposes. The mode illustrates 2 pairs of counter-rotating roll-cells (global sweeps
and ejections) as the most energetic features in the periodic farm. Similar roll-cell features were also
observed in the periodic farm POD computations in [15,17]. Verhulst et al. [15] noticed that the gap
between the roll-cells depends on the global dynamics of wall-bounded turbulence and is independent
of the domain size. We observe the most energetic mode in [15] had 1 pair of counter-rotating rolls
for a domain size of 107td x 107td x 10d, and 3 pair of rolls (or features reminiscent of rolls) in [17] for
a domain size of 407td x 207td x 10d. Note, the differences in the energy contribution of the modes
having 1 and 2 pairs of roll-cells were < 1%, as reported by [15]. Table 3 describes the roll shape and
the features observed in the POD computation of the periodic wind farms in the literature as well as
the current authors [5], manifesting good similarity in their topology. Additionally, we also observed
that the roll cells approximately covered around two turbine columns similar to the observation by [17],
and the value of the streamwise modal velocity was on par with [15].
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Figure 4. yz plane of the most energetic normalized proper orthogonal decomposition (POD) mode
for the periodic wind farm case (8 x 6 array) [5] for the mode m = 0. Red-blue contours indicate the
normalized streamwise velocity modes, ¢} v/Ar/Uc, overlayed with in-plane spanwise and vertical
modes, ¢}, VAm/ Uso, o vV/Am /U as vectors. Green circles—turbine locations.

Analyzing the number of roll cells per domain width and their size obtained for different
simulations [5,15,17], we can conclude it was unlikely that the domain width played a role in
determination of these quantities, similar to the conclusion of [15]. Again, our simulations [5] were
closer to that of [17] rather than that of [15], due to a closer similarity in the number of snapshots used
in both [5] and [17] studies. The fact that the energy difference between the mode-1 and mode-2 (in
terms of the number of counter-rotating vortex pairs) was less than 1% further testifies to a relatively
equal importance of these two most dominant modes in the wind farm energetics.

Table 3. Roll features in POD computation of the periodic wind farms, d = 0.1H. Roll-size denotes
spanwise extent from center to center of roll vortices (zero crossing of streamwise modes). Roll density
is number of roll pairs/L,. Roll-height—height of the center of roll-vortices above ground.

Geometry (Ly X Ly X L;) Inter-Turbine Distance, sy X s Roll Size Roll Density  Roll Height

207td x 107td x 10d [5] 7.85d x 5.24d ~ 8d 0.06/d 4d
107td x 107td x 10d [15] 7.85d x 5.24d ~15.7d 0.03/d 6d
407td x 207td x 104 [17] 7.85d x 5.24d 5.23d-10.47d 0.0477/d 5d

Here we discuss the results of the finite-sized wind array. Figure 5 shows the frontal (yz plane)
picture of the POD modes for the first eight eigenvalues. In particular, the figures illustrate the
colour contours of the streamwise modes overlayed on the top of in-plane (vertical, spanwise)
modes represented as vectors. The modes clearly manifested circulatory features, reminiscent of the
counter-rotating roll-cell structures and the downdrafts and updrafts of these circulations coincide with
the positive (higher energy) and negative (lower energy) streamwise modal structures. Interestingly,
the finite-sized layout also showed the most energetic mode containing two pairs of roll-cells similar to
the periodic computations by the authors [5]. Additionally, the roll-cells in the finite-sized turbine array
also manifested the “mode-pairing” feature [15] where two modes with the same number of roll-cell
paired with similar energy content can be observed. The number of roll-cells observed in the layout
was related to the modes and hence the eigenvalues/kinetic energy of the flow domain. The height
of the roll cells for m = 0,1 mode was ~ 2.5d = 0.5H, which was similar to ~ 4d = 0.4H observed
in periodic wind farms. Additionally, we note that the height of the roll-cells was not constant and
varied with the mode rank and the number of roll-cells in the layout. Figure 6 gives a 3D perspective
to the circulatory roll-cell features we discussed above, in particular, mode m = 0. The isosurface of
the streamwise velocity modes indeed showed the long counter rotating roll-cell feature spanning the
whole domain. This is corroborative of the fact that these roll-cell features are a phenomenology of the
atmospheric boundary layer turbulence [11,15]. The streamtube picture depicted in Figure 6b further
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illustrates the three-dimensional nature of the large-scale structure manifested by the most dominant
POD mode. The three sets of the circulatory features depicted by the streamtubes are formed in and
around the 3 columns of the turbines.

2z/d

z/d

z/d

-0.025 0.00 0.025 -0.025 0.00 0.025
i — i —

z/d

Figure 5. Normalized POD mode for (a) m = 0, (b)ym =1, (¢ m = 2, (d)m = 3, (e) m = 4,
(f)m =5, (g) m = 6, (h) m = 7 for finite-sized wind turbine array. Red-blue contours indicate the
normalized streamwise velocity modes, ¢ v/Ar/Uc overlayed with in-plane spanwise and vertical
modes, ¢}, A/ Uso, o V/Am/ U as vectors. Yellow circles— turbine locations.

In order to get a better understanding of how the wind farm modulates these large scale structures
we took a closer look at the streamwise variation of the modes in Figure 7 illustrated as the contour
plots of the POD mode velocity magnitude. As we will see later that the streamwise plots also assisted
us to make a one-to-one comparison with the Fourier-POD modes discussed in the subsequent sections.
We observed the streamwise (almost) homogeneous streaks which were essentially footprints of the
roll-structures for lower modes. Interestingly, in those footprints we could observe “wake like features”
which were clearly manifestation from the wind turbine array. For modes m < 3, we observed that the
wake like features (velocity-deficits) extended for scales ~ 74 (inter-turbine distances) embedded in
the roll-cell footprints. Particularly, for mode m = 3, the “wake” footprints could be conspicuously
observed with high-velocity regions near the turbine wake rotors and is a clear manifestation of the
modulation of the flow structure modes by wake-turbulence. This is reminiscent of the generation of

turbulent kinetic energy at the wakes due to vertical entrainment at the inner layer. The mode m = 3
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was a clear example of the mode that was entirely due to wind-farm-ABL interactions and would
not form in a pure ABL case. Apart from the rolls, at higher modes (m g 7), we also observed large
structures starting from the wall and inclined at an angle of 15-20 degrees [57,58]. We believe that
these inclined structures were footprints of clusters of hairpin vortices which together formed the
framework of “attached eddies” [59,60].

(a
Figure 6. 3D normalized POD mode, m = 0 (a) Isosurface levels of streamwise POD mode for
@ /A / Uss (b) Streamtubes of vector streamwise POD mode for ¢3;;”“ /Ay, / Uco.

0.0 0.005 0.01 0.0 U~92 0.04

x/d

Figure 7. Normalized POD mode for (a) m = 0, (b)m =1, (c)m = 2, (d) m = 3, (e) m = 4, (f)
m=2>5,(gym=6,(h)ym=7,({i)m=8,(j) m =9. Red-blue contours indicate the normalized velocity
magnitude modes, |¢% /Ay, /U |. Thick black vertical lines—turbine locations.

The dynamics or the temporal Variation of the modes are imprinted in the projection coefficients
illustrated in Figure 8. Since, ||/ (x, t)||> = Z aj(t)”, as explained in the mathematical formulation

owing to Parseval’s theorem, the coeff1c1ents ax(t) bore the temporal/dynamical footprints of
the kinetic energy contained in the velocity fluctuations. Expectedly, the projection coefficients
corresponding to the lower order modes (0-3) showed low frequency fluctuations compared to
the projection coefficients corresponding to modes 4 or more, indicating the fact that larger scales of
motion are supposedly made by eddies of larger time scales. Additionally, the power spectral density
of the projection coefficients (in frequency space) of the large scale modes (m < 5) manifested a f 3
scaling law (f is the frequency) which was attributed to the phenomenon of “merging of eddies” by
previous literature [61,62] (Figure 8c). Note, we started observing the f~5/3 law for modes m = 9 (and
higher) manifesting energy cascade. Consequently, it can be argued that the low-time scale dynamics
of the structures comprising of the lower 3D POD modes are predominantly governed by merging
of eddies.
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Figure 8. (a,b) Projection coefficient of 3D POD modes, 4., (t) vs time normalized by flow-through time,
Te = 1571d / U (c) Power spectral density of the projection coefficients vs normalized frequency, fTe.

In the next section, we discuss the results from the Fourier-POD methodology for complex
Fourier-transformed velocity snapshots.

4.2. Fourier-POD

Before moving into the results related to Fourier-POD analysis, we present the spanwise Fourier
energy spectra of the velocity snapshots (Figure 9).

10~ 10° 10!
A,/ D

Figure 9. u (solid), w (dashed) energy spectra and their variability (+ twice the standard deviation;
transparent blue and red). Energy spectra computed in spanwise wavenumber space, averaged
temporally and in the streamwise, wall normal direction.

The spanwise spectra (averaged in the streamwise, vertical direction as well as time) can be

given as
3 1 Tuvg 1 Xmax
B = [ [ [
< ul/,>x,Z,Tavg Tzwg /O LyL, Jx z

min

Zmax
ui(x, Ay, z, t)*ui(x, Ay, z, t)dydz} dt, (10)

min
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where x, y are the streamwise and spanwise direction respectively. Note the presence of the A;l/ 3
or ky 11/3 Jaw near the tail of the spectrum. This appears to be a filtering of the k, 5/3 spectrum,
as G(ky)k, 5/3, with G(ky) =k, 2 spectrum. Such filtering is possibly an outcome of vertical averaging
of the spectra, streamwise averaging of the heterogeneity owing to wind turbine array and is mainly
an observational documentation. Note for performing the Fourier transform a total of 512 uniform grid
points are chosen in the spanwise/lateral direction which ensures a total of lateral resolved length scale
(Nyquist limit) of 57td /256 = 0.06d, which is lower than what the LES simulation with Navier-Stokes
solver could resolve (1). Such a high number of grid points for the FFT ensures that the aliasing error
could be avoided during the reconstruction of the 3D POD mode from the 2D complex Fourier-POD
modes. Figure 9 not only indicates energy cascade from the larger to the smaller length scales in the
spanwise spectra, but also illustrates that the larger length scales were associated with higher degrees
of uncertainties (larger decorrelation time scales) than their smaller scale counterpart.

Figure 10 manifesting the Fourier-transformed velocity magnitude serves as a sanity test of
the Fourier-transform itself, with the snapshot at k,d = 0 representing the temporal snapshot of
spanwise averaged velocity magnitude, while the same for kyd = 2, manifests wake-imprints from
finer scale fluctuations.

0.55 0.‘75 0.95 0.0009 0.05 0.1
| |

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
@ x/d (b)

Figure 10. Snapshots of Fourier-transformed velocity magnitude, ||u|| for spanwise wavenumbers,
(a) kyd = 0 and (b) kyd = 2.0. Thick black vertical lines - turbine locations.

From Equations (2) and (7), we can define the complex velocity magnitude mode from the POD
analysis as ||u|| = \/|ﬁ|2 + |92 + |®|? and |#;| = [R(#;)? + Z(;)?]Y/?,¥i = 1,2,3... Additionally,
the phase of the complex POD mode can also be defined as y,; = arctan(Z(11;) /R (11;))

Figure 11a illustrates the eigenspectra of the 2D complex field snapshots (spanwise Fourier

transformed velocity) documented at different wave numbers. Expectedly, we observed that the
eigenspectra had a slower decay with modes as we moved to higher wavenumbers or smaller spanwise
length scales (laterally thin structures). This manifested by the spectra getting flatter for higher
wavenumbers. This indicated that for turbulent structures which were laterally thin (higher k),
the energy content did not vary significantly based on the POD ranks and approached towards a
uniform distribution of eigenspectra at k,, — oo (isotropization of small scales). Figure 11b shows the
convergence of the Fourier-POD modes for a representative wavenumber of k,d = 2. While similar
results can be obtained for other wavenumbers, it is striking to note that the FPOD eigenspectra
converged much better than the 3D POD eigenspectra at all modes. Since the number of snapshots
and the spacing between the snapshots are the same for the 3D POD and 2D Fourier-POD analysis,
the only way this was possible was when most of the uncertainty manifested at the larger length
scales are contained in the Fourier energy spectra as is evident in Figure 9. It is worth noting that the
Fourier-modes are analytical descriptors of the POD modes with periodic boundary conditions [55].
Consequently, a FPOD type of decomposition for a wind farm with spanwise periodic boundary
conditions, by construction, picked up the correct spanwise modes without running into convergence
issues. The 3D POD modes were supposed to converge to the FPOD modes asymptotically with the
increase in the number of snapshots.
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Figure 11. (a) Normalized eigenspectra A, /Aq for different wavenumbers ky, for the Fourier-POD
modes. (b) Convergence of the normalized eigenspectra A, /A1 for wavenumber k,d = 2. Different
snapshot spacing, T,/5—green, 2T, /5—Dblack, 4T,/5—blue, 4T./5 (not considering the reflected
data)—red square.

In Figure 12a—c, we illustrate the behaviour of the FPOD eigenspectra for lower and higher
wavenumbers. What is striking, is that we could capture a m~! scaling law for modes spanning
a decade from m = 10-100 for wavenumbers k,d < 2.0. For the number of snapshots considered,
we observed a scaling law of m~%8 in the 3D POD eigenspectra. Interestingly, we also observed
this scaling of FPOD eigenspectra at 25% of the total number of snapshots (~ 1600 snapshots)
used in eigen-decomposition, where we were only able to capture m %% scaling for the 3D POD
eigenspectra [16]. This was one of our most crucial observations in the whole analysis. We observed
that the scaling exponent gradually decayed as we consider the eigenspectra at higher wavenumbers
indicating a flatter spectral tail as was discussed above (more isotropization of structures). The results
have two implications; (i) The m~! (m~%9 [15].) scaling is not an “artifact of the lack of convergence”
and is observed in laterally wide turbulent structures for FPOD modes m > 10. Interestingly, similar
scaling laws (m~12) were also noted by Hamilton and coworkers [26] for 2D POD of wind turbine
arrays at different streamwise locations. (ii) For FPOD eigenspectra, as the turbulent eddies become
thinner, the scaling exponents become larger and tend closer to zero (for higher wavenumbers).
Note, in 3D POD we were not able to capture scaling laws of m~! or m~%?, owing to the lack of
enough number of snapshots to cover several decorrelation times of the larger scales of interest (higher
uncertainties in the larger coherent scales). In the FPOD analysis, we were not only able to decouple the
length scales in the spanwise (Fourier) and streamwise(POD) direction, but were also able to decouple
the uncertainties—with the Fourier energy spectra carrying most of the uncertainty. Consequently we
were able to capture the scaling laws of the FPOD modes (less uncertainty due to better convergence)
accurately. This analysis shows that while FPOD expectedly cannot essentially improve the POD
results, they have the potential to provide crucial insights to the lack of convergence in the 3D POD
eigenspectra and hence their scaling laws.
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Figure 12. Premultiplied normalized eigenspectra for different wavenumbers k, for the Fourier-POD
modes. (a) mAy/Aq, for kyd = 0,0.4,0.8,1.2. (b) mAy /Ay, for kyd = 1.6,2,2.4,2.8 (c) m>/*Ay, /Ay,
for kyd = 3.2,3.6,4.0,44,4.8,5.2.

In Figures 13-16, we illustrate the Fourier-POD eigenmodes for wavenumbers k,d = 0,0.4,0.8,1.2.
Interestingly, for all modes m = 0, Vk,, we saw homogeneous/quasi-homogeneous streaks in the
streamwise direction which were evidently the footprints of the “roll-cells” modulated by wake
turbulence. Apart from the “roll cells”, modes m > 0, Vk, > 0.8 also displayed large scale inclined
structures (k,d = 0.8, m = 2-5, ky, = 1.2, m = 2-5) which are essentially manifestations of “attached
eddies” [6,59]. The FPOD’s manifest that the attached eddies form at some threshold spanwise
wavenumbers which could not be identified in 3D POD modes. These structures also display similarity
to the modes computed from the 3D POD eigen decomposition. Additional to the “roll-cells” and
“attached eddy” foot-prints, we observe another type of mode, which are reminiscent of wave like
teatures (k,d = 0.4, m g 4, kyd = 0.8-1.2, m = 6). The feature is most conspicuous for k, =
0.4,m = 4. Such modes might be manifestation of wave modulation of large turbulent structures
at the particular wavenumber k;, = 4, but further studies are needed to speculate the hypothesis.
Interestingly, we also observe that as k,d increases (laterally thin structures) the streamwise size of
the inclined structures/attached eddies remain approximately the same for a fixed mode number
and the streamwise length scale progressively decreases with increasing mode size. This manifests
disintegration/cascading of larger eddies to their smaller counterpart.

Figure 17 illustrate the phase of the complex streamwise FPOD modes for mode m < 4.
The streamwise FPOD modes are dominant compared to their lateral and vertical counterparts. It is
interesting to observe that the mode phase ¢ changes sign at the edge/boundaries of the large scale
eddies and hence is expectedly a great method to visualize the edges of the turbulent structures.
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Figure 13. Normalized Fourier-POD mode for wave-number (POD of spanwise averaged snapshot
data), kyd = 0.(aym =0,(b)ym=1,(c)m=2,(d)m=3,(eym=4,f) m=5,(gm=6,(h)ym=7,
(i) m = 8. Red-blue contours indicate the normalized velocity magnitude modes, |@}+/Ax/Uc|. Thick

Z/d

yellow vertical lines—turbine locations.
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Figure 14. Normalized Fourier-POD mode for wave-number, kyd = 0.4. (ay m =0, (b) m =1, (c) m = 2,
dm=3,(eym=4, f)m=25,(g)m =6,(hym =7, (i) m = 8 Red-blue contours indicate the
normalized velocity magnitude modes, |(p,’c’ V/Ax/Uw|. Thick yellow vertical lines—turbine locations.
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Figure 15. Normalized Fourier-POD mode for wave-number, kyd = 0.8. (a) m = 0,(b)m = 1,(c) m = 2,
dm=3,(eym=4 f)m =25,(g)m =6,(hym =7, (i) m = 8 Red-blue contours indicate the
normalized velocity magnitude modes, |9} \/Ar/Uc|. Thick yellow vertical lines—turbine locations.
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Figure 16. Normalized Fourier-POD mode for wave-number, kyd = 1.2. (aym = 0,(b)m =1, (c) m = 2,
dm=3,(eym=4,f)m=>5,(gm==6,(h)ym =7, (i) m = 8. Red-blue contours indicate the
normalized velocity magnitude modes, |¢¥+/A;/Uc|. Thick yellow vertical lines—turbine locations.
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Figure 17. Phase of streamwise Fourier-POD mode for wave-number k,d = 04. (a) m = 1,

(b)y m=2,(c)m = 3, (d) m = 4. Red-blue contours indicate the phase of the streamwise modes,
Y = tan(Z(@})R(¢@})). Thick yellow vertical lines—turbine locations.

4.3. Reconstruction of 3D Modes from Fourier-POD

In this final section we deal with the reconstruction of the three-dimensional modes obtained by
performing inverse Fourier transform of the complex Fourier-POD 2D modes. The three dimensional
reconstruction of the modes, (ﬁj (x,y,z) can be obtained as

. 1 Kimax R .
Pi(x,y,2z) = E/ q)j(x,ky,z)e’kyydy. (11)

_kmax

Note mathematically, ¢ # ¢ (3D POD) as will be established later from the structure of the
correlation matrix.
The correlation matrix for FPOD can be written as

Cmn = (u(x,ky,z, tm), u(x,ky,z, ti’l))

:/Qu(x,ky,z,tm)u*(x,ky,z,tn)dV (12)
Kimax . kmax .t
—( / 1(x,ky, 2, )MV dk, / 2 (x, ky, 2, ty)e VAR
7kmax 7kmax

Note for the inner-product in the physical space ([, () () *dV), the complex conjugate (denoted by *)
of the real velocity snapshot is the velocity snapshot itself. For brevity of analysis, we use the symbol k
instead of k,, for spanwise wavenumbers in subsequent derivations.

Com = ( / /_ /Q 0(x, ky, 2, b %3, Ky, 2, 1) e E KV AR V)

kmux

_ (// max [‘/Q u"]-(x,ky,z, tm)ﬁ*](x’ ky,Z, tn)ei(k_k/)]/dV]dkdkl) (13)

kmax

Ly rL, L, A
Since / dv = / / ! / dxdydz and [ 0% (2, K, 2, b )it (2,k, 2, t)dxdy = Coun(k, k), we
Q 0 0 0

have a relation between Cy,;;, and C, as follows.
Ly p e A I i (k=K' /
Con = / / / " ol Ktk dy (14)
0 —Rmax

Realizing Cmn(k) = émn (k, k' = k), with the assumption that the temporal correlation of the
snapshots are the strongest when the wavenumbers k = k’. Equation (14) can be simplified as

Co (k) ~ / / e () (eEr — 1) /irk ) dkdK (15)

7km11x
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Note, the integration does not have a closed form. However, the function in the integrand
( DKLy 1)/ iAk) is bounded between 0 (kj;qx — o0 and finite complex constant Ly[1 + i]. Thus, we

can comment that Cmn(k) is bounded if Cy,;, is bounded as well. Additionally, since the (x, z) spatial
structure of Cy,, and Gy, are the same (from Equation (13)), the eigenvalue scaling laws for the FPOD
modes are similar to its 3D counterpart indicating that the scaling laws are a manifestation of the
streamwise dominance of the large scale eddies. We present the reconstruction of the 3D POD modes
by inverse Fourier transform (IFFT) of the FPOD modes as illustrated in Equation (11). Figure 18
represents the reconstructed mode by IFFT of FPOD modes, m = 0, m = 1 for kyd = 0.8 (k, = 2).
Figure 19 illustrates similar such reconstruction, but for k, = 1.6 (ky = 4). Finally, Figure 20 illustrates
the reconstructed modes by performing IFFT of m = 1, for a set of wavenumbers kyd = 0-1.2 (ky, =
0-4) and kyd = 0-1.6 (ky = 0-5). From a more quantitative perspective, the reconstructed 3D POD
modes from the FPOD that are illustrated in this paper, can be given as

Knnax )
Pi(x,y,2) = % /f o (%, Ky, )W (ky eV dlk, (16)

Here, W(k,) is a weight function of wavenumbers which act as a filter to the Fourier transform.
For Figures 18 and 19, W(k,) = 1 for k, = £2 and k, = %4, respectively, while W(k,) = 0 for
all other wavenumbers. For Figure 20, W(ky) = 1V-B < ky < B (B = 3, for Figure 20a, B =
4, for Figure 20b) and W(k,) = 0 for all other wavenumbers. In other words, while Figures 18
and 19 illustrate single spanwise modes, Figure 20 represents summation of the first several most
dominant spanwise modes for a particular m. The reconstruction methodology is motivated by the
fact that the first two dominant modes (highest contributors of kinetic energy) have two-pairs of
counter-rotating roll-cells or four vortical structures corresponding to an “apparent wavenumber”
of 2 [15]. The partial reconstructions (via IFFT), shown in Figure 20, further illustrate the importance
of the 3—4 pairs (ky, = 3,4) of counter-rotating roll-cells in the dominant mode shapes contributing to
the reconstruction, despite having a dominant Fourier mode k, = 2 identified as the most energetic
POD mode. Note, also that the partial reconstructions give rise to variable size and shape of the
modes as opposed to reconstructions by IFFT involving a single wave number or modes obtained from
the 3D POD decomposition. This can be probably attributed to the exponential premultiplier term
(eiAkLy -1)/ iAk) referred in Equation (15) that alter the y variation of the FPOD correlation matrix as
opposed to the 3D-POD correlation matrix. While examining the m = 0 and m = 1 mode composition
for kyd = 0.8 and ky d = 1.6 that correspond to the most dominant 3D POD modes (Figures 18 and 19),
an interesting fact can be observed. It can be seen that the modes m = 0 illustrate the global mechanisms
of momentum transfer via ejections and sweeps (updrafts and downdrafts) across the entire boundary
layer depth, i.e., the global interactions between the inner and outer layer, as 3D POD modes capture as
well. However, m = 1 modes illustrate a “bi-layer” structure, corresponding to a momentum transfer
between the wind turbine wake region and the inner/outer layer respectively. These modes, which
characterize the important energetic mechanisms in wind-farm/ABL interactions, are not picked
up by the 3D POD decomposition, while they are by FPOD. The analysis involving the 3D-POD,
2D Fourier-POD and the reconstruction of the 3D modes from FPOD reveals that, while one-to-one
mapping of the 3D POD modes and the reconstructed 3D modes by the mode ranks, m, is difficult
at this stage, it shows the importance of counter-rotating roll-cell structures involving ejections and
sweeps in wind farms and the atmospheric boundary layers in general.
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Figure 18. Reconstructed 3D POD modes from 2D Fourier-POD modes at yz plane, x = 7.85d, (a) m = 0,
inverse FFT Vk,d = 0.8, (b) m = 1, inverse FFT, Vk,d = 0.8. Contours—¢", in-plane vectors—¢?, ¢*
Thick yellow circles—turbine locations.

Figure 19. Reconstructed 3D POD modes from 2D Fourier-POD modes at yz plane, x = 7.85d, (a) m = 0,
inverse FFT Vk,d = 1.6, (b) m = 1, inverse FFT, Yk,d = 1.6. Contours—¢", in-plane vectors—¢*, $*.
Thick yellow circles—turbine locations.
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Figure 20. Reconstructed 3D POD modes from 2D Fourier-POD modes at yz plane, x = 7.85d,

(a) m = 0, inverse FFT Vkyd = 0 — 1.2, (b) m = 0, inverse FFT, Vk,d = 0 — 1.6. Contours—¢", in-plane

vectors—¢?, ™. Thick yellow circles—turbine locations.

5. Conclusions

In the current manuscript we have analysed the dynamics of large turbulent structures in a
heterogeneous finite-sized wind canopy using three-dimensional proper orthogonal decomposition.
Large counter-rotating roll-cell structures as well as inclined wall-attached structures have been
identified in this analysis. The current analysis further reveals that substantial number of snapshots
are required to obtain the convergence of the scaling trends of the POD eigenspectra, or in
particular, the m %9 law. In a heterogeneous wind-farm, where artificial snapshots cannot be created
exploiting the domain homogeneity (shifting in periodic wind farms) [15], the eigenspectra does
not converge well beyond mode m > 10. The lack of convergence is attributed to the uncertainty
(higher decorrelation times) in the large scale structures which are still present even in high-order
POD modes m > 10 (cf., e.g., Figure 3). Consequently, the scaling trend is slightly deviated to m~08.
This led us to adapt a novel Fourier-POD methodology (FPOD), to gain further insights on the
convergence of eigenspectra as well as the dynamics of large scale modes. FPOD essentially performs
the POD eigendecomposition of the laterally Fourier-tranformed two dimensional complex velocity
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snapshots at each wavenumber as opposed to the three dimensional physical velocity for the 3D POD.
The Fourier-POD analysis helps us gain valuable insights on the convergence of the eigenspectra by
decoupling the length scales in the spanwise and streamwise direction. In particular it shows that
the laterally wider structures are responsible for the m =% /m~! scaling laws, while the spanwise
thinner structures manifest m~f where B < 0.9. Additionally, we show excellent convergence of
the Fourier-POD eigenspectra, indicating that the uncertainty of the larger turbulent scales are
mostly contained in the Fourier energy spectra, rather than the FPOD modes. Finally, we look
into the reconstruction of the 3D modal structures by performing inverse FFT operations on the
2D FPOD modes. From the mathematical analysis of the functional form of the correlation matrix,
we provide deep insights about the similarities in the eigenspectra scaling and the modal shapes
of the FPOD and 3D-POD. Eventually, our study reconstructs 3D POD modes from the 2D FPOD
modes, which further provides guidance towards the understanding of the modal structure in wind
farms. From the fundamental perspective, we have seen that the roll-cells are phenomenologically
rudimentary structures contributing to the global sweeps and ejections. While [15] have predicted the
contribution of such structures towards the kinetic energy entertainment in infinite wind farms, our
studies corroborate such structures to be rather a fundamental property of rough ABL flows [17] and
are modulated by the wind turbines at rotor scales. Finally, even though our study was performed in
the context of a finite-sized wind turbine array, it introduces a novel framework of Fourier-POD modal
analysis, which can be useful for analysis of turbulent flows in other flow domains and configurations,
as long as they possess a periodic direction. Future work could include development of reduced-order
dynamic models based on either 3D-POD or FPOD decomposition and adapting them to a prediction
of flow and power generation in wind farms. Additionally, machine learning techniques [63] could
potentially be utilized to generalize the ROMs to varying wind conditions.
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Nomenclature
d Turbine rotor diameter
Sx1 Kronecker delta

Zhub Turbine hub-height
H Atmospheric boundary layer thickness

@ 3D - POD mode

N Number of snapshots used for POD

A 3D - POD diagonal eigenvalue matrix

Am 3D - POD eigenvalue corresponding to m" mode

Ayres  Resolved length scale in the wind farm LES in # direction

uj Velocity in the j direction

u;. Velocity fluctuations in the j* direction

12; Fourier-transform of velocity fluctuations in the j* direction
P, Projection operation on a variable in a reduced order space

Py, Projection operation on a spanwise Fourier-transformed variable in a reduced order space
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le’l
Ciun
2
1]

m, n index of correlation matrix in 3D - POD

m, n index of correlation matrix in Fourier - POD
Summation

L, norm

Xmin, Xmax ~ lower, upper limit of the streamwise size of the domain

Ymin,Ymax  lower, upper limit of the spanwise size of the domain

Zmin,Zmax ~ lower, upper limit of the vertical size of the domain

ky Spanwise wavenumber

T, flow through time

Ly Domain size in x direction

L, Domain size in z direction

Ly Domain size in y direction

Ueo Freestream velocity at the top of the ABL

Upup Velocity at the hub-height

f Temporal frequency

E, Energy spectra of the fluctuating velocity u]

Tavg Extent of averaging time span, = 6007,

R3 3D real space

L,(R3) Space of square-integrable functions defined in 3D real space

Q)] Topological manifold in which the N-S equations are solved

Or time averaging operator

Kimax Maximum wavenumber used in the Fourier-reconstruction

() Inner product

W(ky) Wavenumber dependent weight functions acting as filters to fourier transforms
?; 3D j" POD mode vector from velocity snapshot

?; 2D " Fourier-POD mode vector from Fourier-transformed velocity snapshot
?; Reconstructed 3D POD mode vector from 2D j** Fourier-POD mode

wow Superscripts used in POD modes denoting streamwise, spanwise and wall-normal direction

Yy, Phase of the complex 2D Fourier-POD mode for streamwise component u;

R(4]) Real component of the Fourier transform of velocity fluctuations, u;

(i Imaginary component of the Fourier transform of velocity fluctuations, u/

Ou streamwise root mean square of velocity fluctuations

A¥ integral length scale

A integral length scale at hub-height

Re, Reynolds number based on free-stream velocity and chord length

Cr Thrust coefficient in wind turbine rotor

Rer Reynolds number based on friction velocity
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