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A B S T R A C T

Subject-specific, functionally defined areas are conventionally estimated with functional localizers and a simple
contrast analysis between responses to different stimulus categories. Compared with functional localizers, natu-
ralistic stimuli provide several advantages such as stronger and widespread brain activation, greater engagement,
and increased subject compliance. In this study we demonstrate that a subject’s idiosyncratic functional topog-
raphy can be estimated with high fidelity from that subject’s fMRI data obtained while watching a naturalistic
movie using hyperalignment to project other subjects’ localizer data into that subject’s idiosyncratic cortical
anatomy. These findings lay the foundation for developing an efficient tool for mapping functional topographies
for a wide range of perceptual and cognitive functions in new subjects based only on fMRI data collected while
watching an engaging, naturalistic stimulus and other subjects’ localizer data from a normative sample.
1. Introduction

The topographies of category-selective areas are mostly distributed
similarly across individuals, but great individual variability exists in the
locus, the size, and the shape of the category-selective areas (Zhen et al.,
2015, 2017). For example, faces selectively activate areas in the lateral
occipital cortex (the occipital face area, OFA), ventral temporal cortex
(the fusiform face area, FFA, and the anterior temporal face area, ATFA),
along the superior temporal sulcus (the posterior and anterior superior
temporal face areas, pSTS and aSTS), and in lateral prefrontal cortex (the
right inferior frontal face area, rIFFA) (Guntupalli et al., 2017; Haxby and
Gobbini, 2011; Haxby et al., 1994, 2000; Visconti di Oleggio Castello
et al., 2017). To deal with the idiosyncratic topography of functional
areas, category-selective areas are identified separately in each individ-
ual using a “functional localizer” fMRI scan. Functional localizers use a
simple contrast between responses to different categories of stimuli, such
as responses to faces versus responses to objects, to identify
category-selective areas or to map a category-selectivity topography
(Saxe et al., 2006).

We have shown that idiosyncratic topographies for category-
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selectivity and retinotopy can be estimated in individual brains with
high fidelity using hyperalignment to project other subjects’ functional
localizer data into a target subject’s ventral temporal and occipital
cortical anatomy (Guntupalli et al., 2016; Haxby et al., 2011). Hyper-
alignment derives individual transformation matrices to project infor-
mation encoded in idiosyncratic topographies into a common model
information space. These matrices are derived based either on responses
to a naturalistic stimulus, such as a movie, or on functional connectivity
(Guntupalli et al., 2018). Our findings show that individually-tailored
maps estimated from other subjects’ data after hyperalignment corre-
late much more highly with maps estimated from that subject’s own
localizer data than does a group average map based on anatomical
normalization.

There are many potential advantages to using data collected during
movie-viewing for estimating category-selective topographies. Movies
are more engaging and result in better compliance (Vanderwal et al.,
2015). Movie viewing can also be used in subject populations, such as
children (Richardson et al., 2018) or patients, that may have trouble
maintaining attention during repetitions of a tedious localizer task.
Movies engage multiple brain systems in parallel. From a single movie
December 2019

ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:mariaida.gobbini@unibo.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2019.116458&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2019.116458
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2019.116458


G. Jiahui et al. NeuroImage 216 (2020) 116458
dataset multiple functional topographies can be estimated (Guntupalli
et al., 2016), whereas different localizers are typically required to map
different functional topographies, making a thorough mapping of selec-
tive topographies time-consuming and inefficient. Movies also simulate
better the statistics of natural viewing and listening and may provide
more ecologically valid maps. Analogously, the introduction of dynamic
videos of faces and control categories to localize face-selective topogra-
phies provides more reliable maps and better estimate the extent of
face-selective regions than do localizers with still image stimuli (Fox
et al., 2009; Pitcher et al., 2011). Similarly, naturalistic stimuli may
better sample the full range of responses to faces and other stimuli that
contribute to face-selective topographies.

Here, we show that precise mapping of functional topographies in a
new subject can be achieved using hyperalignment and a database of
movie and localizer data from other subjects. We present a proof-of-
concept analysis of two different data sets with different movies and
different face-selectivity localizers. We used an optimized hyperalign-
ment procedure for this application that directly projects all other sub-
jects’ data into a target subject’s cortical anatomy (one-step algorithm)
without the intermediate step of projecting individual data into a group
common information space and then projecting data from the common
space into a new subject’s cortical anatomy (two-step algorithm). The
results replicate our earlier findings with both datasets, expanding pre-
vious analysis from ventral temporal cortex to the whole cortex, showing
strong correlations of face-selectivity topographic maps derived from a
subject’s own localizer data with maps derived from other subjects’
localizer data projected into that subject’s cortical anatomy. Both the
two-step algorithm and the new one-step algorithm, which we introduce
here, produce high-fidelity, individualized topographic maps, but the
new one-step algorithm maps were superior.

These results lay a foundation for building a computational tool with
a database that could allow others to map multiple functional topogra-
phies in new subjects using only data collected during movie viewing.
Functional localizers are inefficient because they only estimate one or a
few topographies for each localizer. Movies, by contrast, engage in par-
allel multiple neural systems for vision, audition, language, person
perception, social cognition, and other functions. Consequently, movies
have the potential to estimate selective topographies in all of these do-
mains. Such a tool would require a database of data for movies and a
range of functional localizers in a normative group of subjects. A new
subject’s functional topographies could be estimated based only on that
subject’s movie data and other subjects’ localizer data from the norma-
tive database that could be projected into that subject’s cortical anatomy
using hyperalignment transformation matrices derived from movie data.
Such a resource would be more efficient and replace tedious functional
localizers with an engaging movie and could enable mapping of multiple
functional topographies with data from a single fMRI using a naturalistic
stimulus.

2. Materials and methods

2.1. Participants

2.1.1. StudyForrest
This dataset is publicly available at http://www.studyforrest.or

g/(Hanke et al., 2014). Fifteen adults (mean age 29.4 years, range
21–39, 6 females) were recruited. Data were collected at the
Otto-von-Guericke University in Germany and the native language of all
participants was German (Hanke et al., 2016; Sengupta et al., 2016).

2.1.2. Grand Budapest Hotel
Twenty-one student participants (mean age 27.3 years, range 22–31,

11 females) were recruited at Dartmouth. All participants had normal
hearing and normal or corrected-to-normal vision, and no known history
of neurological illness. The study was approved by the Dartmouth
Committee for the Protection of Human Subjects.
2

2.2. Naturalistic movie watching and localizers

2.2.1. StudyForrest
Participants watched the audio-visual feature movie Forrest Gump

while fMRI data were collected (Hanke et al., 2016). The Forrest Gump
movie was divided into eight parts with each part lasting approximately
15 min.

A four-run block-design static localizer was included in the study
(Sengupta et al., 2016). There were six stimulus categories: human faces,
human bodies without heads, small objects, houses and outdoor scenes
comprised of nature and street scenes, and phase scrambled images. Each
category had 24 Gray-scale images and their mirrored views. Each block
had 16 images (900 ms display þ 100 ms intertrial interval each) and
lasted 16 s. Participants were asked to press a button when they saw a
repetition of an image to maintain attention. Each category was repeated
twice in each of four 312 s runs, for a total of 2004800 of scan time.

2.2.2. Grand Budapest Hotel
The full-length of the Grand Budapest Hotel movie was divided into

six parts. Parts were divided at scene changes to keep the narrative of the
movie intact. Participants watched the first part of the movie (~45 min)
outside the scanner. Immediately thereafter, participants watched the
remaining five parts of the movie in the scanner (~50 min, each part
lasting 9–13 min each) with audio.

In a separate scanning section, participants performed a dynamic
localizer task (Pitcher et al., 2011). Participants watched 3 s clips of faces,
bodies, scenes, objects, and scrambled objects. The clips were presented
continuously in 18 s blocks of each category, without blank periods be-
tween blocks. Participants were required to press a button whenever they
saw a repetition of a clip. The blocks followed this order: an 18 s fixation
block, five blocks of different categories (each lasting 18 s) in random
order, an 18 s fixation block, five blocks of the categories in reversed
order, and a final 18 s fixation block. Thus, if the order in the first part of
the run was B-S-F-O-Sc, in the second part would be Sc-O-F-S-B (Pitcher
et al., 2011). Four 234 s runs were collected for a total of 1504400 of scan
time.

2.3. MRI data acquisition

2.3.1. StudyForrest
Scanning was done with a whole-body 3 T Philips Achieva dStream

MRI scanner equipped with a 32 channel head coil. Data were collected
with gradient-echo, 2 s repetition time (TR), 30 ms echo time, 90� flip
angle, 1943 Hz/px bandwidth, and parallel acquisition with sensitivity
encoding (SENSE) reduction factor 2. Each volume comprised 35 axial
slices with anterior-to-posterior phase-encoding direction that were
collected in ascending order, which mostly covered the entire brain. Each
slice was 3.0 mm thick with a 10% inter-slice gap, and had a 240 mm �
240 mm field-of-view comprising 80 � 80 3 mm isotropic voxels. Please
see Hanke et al. (2016) and Sengupta et al. (2016) for more detailed MRI
data acquisition parameters.

2.3.2. Grand Budapest Hotel
All scans in the Grand Budapest Hotel dataset were acquired using a 3

T S Magnetom Prisma MRI scanner with a 32 channel head coil at the
Dartmouth Brain Imaging Center. CaseForge headcases (https://case
forge.co/) were used to minimize head motion. BOLD images were ac-
quired in an interleaved fashion using gradient-echo echo-planar imag-
ing with pre-scan normalization, fat suppression, multiband (i.e.,
simultaneous multi-slice; SMS) acceleration factor of 4 (using blipped
CAIPIRINHA), and no in-plane acceleration (i.e., GRAPPA acceleration
factor of one): TR/TE ¼ 1000/33 ms, flip angle ¼ 59�, resolution ¼ 2.5
mm3 isotropic voxels, matrix size ¼ 96 � 96, FoV ¼ 240 � 240 mm, 52
axial slices with full brain coverage and no gap, anterior–posterior phase
encoding. At the beginning of each run, three dummy scans were ac-
quired to allow for signal stabilization. The T1-weighted structural scan
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was acquired using a high-resolution single-shot MPRAGE sequence with
an in-plane acceleration factor of 2 using GRAPPA: TR/TE/TI ¼ 2300/
2.32/933 ms, flip angle ¼ 8�, resolution ¼ 0.9375 � 0.9375 � 0.9 mm
voxels, matrix size ¼ 256 � 256, FoV ¼ 240 � 240 � 172.8 mm, 192
sagittal slices, ascending acquisition, anterior–posterior phase encoding,
no fat suppression, and with 5 min 21 s total acquisition time. A T2-
weighted structural scan was acquired with an in-plane acceleration
factor of 2 using GRAPPA: TR/TE ¼ 3200/563 ms, flip angle ¼ 120�,
resolution¼ 0.9375� 0.9375� 0.9 mm voxels, matrix size¼ 256� 256,
FoV ¼ 240 � 240 � 172.8 mm, 192 sagittal slices, ascending acquisition,
anterior–posterior phase encoding, no fat suppression, and lasted for 3
min 21 s. At the beginning of each session (movie and localizer), a
fieldmap scan was collected for distortion correction.
2.4. Data analysis

2.4.1. Preprocessing

2.4.1.1. StudyForrest. We started with cortical surfaces reconstructed by
FreeSurfer, available at https://github.com/psychoinformatics-de/
studyforrest-data-freesurfer, and fMRI data pre-aligned to a subject-
specific template by FSL MCFLIRT available at https://github.com/ps
ychoinformatics-de/studyforrest-data-aligned, which were provided by
the studyforrest group (Hanke et al., 2014, 2016; Sengupta et al., 2016).
We computed mapping between subject-specific templates and cortical
surfaces using boundary-based registration (Greve and Fischl, 2009),
which was used to project these pre-aligned fMRI data to the fsaverage
template (Fischl et al., 1999), such that these data were aligned across
individuals anatomically based on cortical folding patterns.

Further preprocessing were performed using PyMVPA (Hanke et al.,
2009; http://www.pymvpa.org/) to resample data to a standard cortical
mesh and to remove noise from fMRI data using linear regression. The
cortical mesh had 18,742 vertices across both hemispheres (approxi-
mately 3 mm vertex spacing; 20,484 vertices before removing
non-cortical vertices). The nuisance regressors included 6 motion pa-
rameters and their derivatives, 5 principal components from cerebro-
spinal fluid and white matter (https://www.zotero.org/google-docs/?
q9b9WEaCompCor; Behzadi et al., 2007), and polynomial trends up to
second order.

2.4.1.2. Grand Budapest Hotel. MRI data were preprocessed using the
fMRIPrep software version 1.4.1 (Esteban et al., 2019). T1-weighted
images were corrected for intensity non-uniformity (Tustison et al.,
2010) and skullstripped using antsBrainExtraction.sh. High resolution
cortical surfaces were reconstructed with FreeSurfer (Fischl, 2012) using
both T1-weighted and T2-weighted images, and then registered to the
fsaverage template (Fischl et al., 1999). Functional data was slice-time
corrected using 3dTshift (Cox, 1996), motion corrected using MCFLIRT
(Jenkinson et al., 2002), distortion corrected using fieldmap estimate
scans (one for each session), and then resampled to the fsaverage tem-
plate based on boundary-based registration (Greve and Fischl, 2009).
After these steps, functional data were in alignment with the fsaverage
template based on cortical folding patterns.

The data were further preprocessed with Python scripts. Six motion
parameters and their derivatives, global signal, framewise displacement
(Power et al., 2014), 6 principal components from cerebrospinal fluid
and white matter (https://www.zotero.org/google-docs/?ORzJW
DaCompCor; Behzadi et al., 2007), and polynomial trends up to second
order were regressed out from both movie and localizer data for each run
independently.
2.5. Searchlight hyperalignment

We optimized the hyperalignment algorithm (Feilong et al., 2018;
Guntupalli et al., 2016, 2018; Haxby et al., 2011) to predict functional
3

topographies in new subjects. Our new 1-step algorithm, unlike our
previous 2-step method, uses searchlight hyperalignment to directly
transform data from one participant’s cortical anatomy into another
participant’s cortical anatomy, without projecting it through a common
space. In each 15 mm searchlight a given participant’s response pattern
vectors for all time points (TRs) are aligned to the target participant
response patterns using the Procrustes transformation. The resulting
searchlight transformation matrices are then aggregated into a single
transformation matrix for each hemisphere for each pair of participants
(Guntupalli et al., 2016). Our new 1-step algorithm requires the esti-
mation of a transformation matrix for each pair of participants, thus we
computed 105 (15 � 14 � 2) and 210 (21 � 20 � 2) transformation
matrices for the fifteen and the twenty-one participants in each study,
respectively. To estimate one participant’s face-selectivity contrast map
(participant A), all the other participants’ localizer data were projected
directly into participant A’s cortical anatomy using transformation
matrices calculated based only on the movie-viewing data for all pairings
of participant A with each of the other 14 or 20 participants.

Our previously described hyperalignment algorithm (2-step method,
Feilong et al., 2018; Guntupalli et al., 2016, 2018; Haxby et al., 2011)
builds a common model information space where patterns of fMRI re-
sponses to a movie are aligned across subjects. Individual, whole-cortex
transformation matrices are calculated using a searchlight-based algo-
rithm to project each participant’s cortical space into the common in-
formation space. Transformation matrices are calculated for all 15 mm
searchlights in each brain using an iterative procedure and Procrustes
alignment, and then aggregated into a single matrix for each hemisphere.
New data can be projected into any individual brain space by first pro-
jecting data from other brains into the common model space, and then
projecting those data from the common model space into that partici-
pant’s cortical anatomy using the transpose of his or her transformation
matrix. The reader is referred to the original papers for details (Feilong
et al., 2018; Guntupalli et al., 2016, 2018; Haxby et al., 2011). To esti-
mate one participant’s (participant A) face-selectivity map using this
algorithm, all the other participants’ localizer data were projected into
the common model space, and then mapped to participant A’s space
using the transpose of his or her hyperalignment transformation matrix.

2.6. Predicting individual contrast map

We estimated each participant’s face-selectivity map based on that
participant’s localizer data and based on other participants’ localizer data
projected into that participant’s cortical anatomy using hyperalignment
and anatomical surface alignment (see Fig. 1). We then calculated cor-
relations between the map based on a participant’s own data and the
maps estimated from other participants’ data and compared these cor-
relations to the reliability of the participant’s map, indexed with Cron-
bach’s Alpha. We estimated the face-selectivity map for a participant
from his or her own localizer data by calculating the GLM univariate
contrast map of faces vs. all the other categories (e.g., body, place) for
each run and averaging t-values across the four maps. We estimated a
participant’s map from other participants’ data by first projecting all
other participants’ localizer data into that participant’s cortical anatomy
and calculating the GLM univariate contrast map of faces versus all other
categories for each run in each other participant then averaging t-values
across the maps (56 maps for StudyForrest, 14 subjects x 4 runs for each;
80 maps for Grand Budapest, 20 subjects x 4 runs each). We projected
other participants’ localizer data into each individual participant’s
cortical anatomy using hyperalignment with either direct projection or
via the commonmodel space, as described above. We also estimated each
participant’s face-selectivity map based on other participants’ anatomi-
cally aligned localizer data by simply averaging across the maps based on
anatomically-normalized data for each N-1 set of 14 (StudyForrest) or 20
(Grand Budapest) participants. Thus, the map estimated from other
participants’ localizer data was a map of average t-values across 56 or 80
maps (four runs per participant) for the contrast faces vs all. The analysis
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Fig. 1. Schematic of data analysis procedures. A. Transformation matrices were calculated by hyperaligning training participants’movie data to the left out testing
participant’s representational space. B. Transformation matrix for each training participant was applied to the localizer runs. The surface alignment predicted map was
calculated by calculating the contrast map in each training participant and then averaging them across all the training participants. The hyperalignment predicted map
was calculated by doing the same steps as above but using training participants’ hyperaligned localizer time series.
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pipeline was the same across conditions, and the only difference was
whether the N-1 participants’ data were aligned to the left-out partici-
pant’s space using anatomical alignment, hyperalignment with direct
projection (1-step), or hyperalignment via the common model space (2-
4

step). We tested the quality of the maps estimated from other partici-
pants’ data by calculating the correlation of each with the map estimated
from a participant’s own data. We also gauged the reliability of the es-
timates based on participants’ own data by calculating Cronbach’s alpha



Fig. 3. Correlation values after hyperalignment and surface alignment in
individual participants. The Pearson correlation values between face selec-
tivity maps estimated from a participant’s own data and data projected into that
participant’s cortical anatomy using anatomical surface alignment (x-axis) and
hyperalignment (y-axis, 1-step algorithm). Individuals in the StudyForrest
dataset are indicated with blue dots and those in the Grand Budapest dataset
with orange dots. Hyperalignment greatly improved performance for all par-
ticipants individually.
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based on variability across runs. To examine local performance and
reliability, we did the same analyses with correlations between maps and
Cronbach’s Alpha in a searchlight analysis with a radius of 15 mm. To
test the applicability of our procedure to other category-selective to-
pographies, we extended our analyses to other contrasts (scenes, bodies,
and objects).

3. Results

We correlated the whole-cortex contrast map (faces-vs-all) based on a
participant’s own data with the maps estimated from other participants’
data separately for the StudyForrest and Grand Budapest datasets. After
1-step hyperalignment, the mean Pearson correlation values across par-
ticipants were 0.58 (StudyForrest, N ¼ 15, S.D. ¼ 0.08) and 0.69 (Grand
Budapest, N ¼ 21, S.D. ¼ 0.08) (Fig. 2).

Hyperalignment greatly improved the prediction performance
compared with anatomical surface alignment. With surface alignment,
the average Pearson correlation values across participants were 0.40 (N
¼ 15, S.D.¼ 0.08) and 0.50 (N¼ 21, S.D.¼ 0.06) in the StudyForrest and
Grand Budapest datasets, respectively (Fig. 3). The difference between
the hyperaligned and the surface-aligned mean correlation values was
highly significant (StudyForrest: t(14) ¼ 17.39, p < 0.001; Grand
Budapest: t(20) ¼ 25.49, p < 0.001).

We also estimated each participant’s topography with the 2-step
hyperalignment algorithm that projects other participants’ localizer
data into a common model information space then uses the transpose of
the target participant’s transformation matrix to project other partici-
pants’ data from the common model space into his or her cortical anat-
omy. With this 2-step method, we found similar but slightly weaker
results. The mean Pearson correlation values between face-selectivity
maps based on a participant’s own localizer data and the predicted
map after hyperalignment were 0.55 (StudyForrest, N ¼ 15, S.D. ¼ 0.08)
and 0.67 (Grand Budapest, N ¼ 21, S.D. ¼ 0.08). These correlations after
hyperalignment were significantly better than the correlations after
surface alignment (StudyForrest: t(14) ¼ 15.78, p < 0.001; Grand
Budapest: t(20) ¼ 16.61, p < 0.001), but the estimates with the 1-step
procedure were significantly better than estimates with the 2-step pro-
cedure (StudyForrest: t(14) ¼ 11.30, p< 0.001; Grand Budapest: t(20) ¼
6.98, p < 0.001).

We compared the correlations between maps estimated from a par-
ticipant’s own data and maps estimated from other participants’ data to
the reliability of the localizer. We computed the reliability of the contrast
Fig. 2. Cronbach’s alpha, mean correlation values after hyperalignment and s
The mean Pearson correlation values across participants with 1-step (light green bars
method (gray bar) were plotted for the StudyForrest (Panel A) and Grand Budapest
plotted as the red dotted line in both panels. In both datasets, 1-step and 2-step hype
t(14) ¼ 17.39, p < 0.001; Grand Budapest: t(20) ¼ 25.49, p < 0.001; 2-step: StudyFor
step method had significantly better prediction performance than the 2-step metho
0.001). The difference between Cronbach’s alpha and the mean correlation after 1-s
step: t(14) ¼ 0.61, p ¼ 0.55; 2-step: t(14) ¼ 1.99, p ¼ 0.07). But the differences were
t(20) ¼ 5.07, p < 0.001). HA: hyperalignment, SA: surface alignment. ***p < 0.001

5

maps with Cronbach’s Alpha based on variability across the four localizer
runs for each set. The mean Cronbach’s Alpha between the four localizer
runs was 0.60 (N ¼ 15, S.D. ¼ 0.14) in the StudyForrest dataset and was
0.74 (N ¼ 21, S.D. ¼ 0.09) in the Grand Budapest dataset (Fig. 2). These
results mean that if we scan each participant for another 4 localizer runs,
and compute the correlation between the two maps (4 runs vs. 4 runs),
the correlation would be 0.60 and 0.74 on average in the StudyForrest
and Grand Budapest datasets, respectively. The dynamic localizer (in
Grand Budapest data set) was significantly more reliable than the static
localizer (in StudyForrest data set) (t(34) ¼ 3.76, p < 0.001) despite its
urface alignment.
), 2-step (dark green bars) hyperalignment methods, and with surface alignment
dataset (Panel B) respectively. Cronbach’s Alpha of total four localizer runs was
ralignment significantly improved the prediction accuracy (1-step: StudyForrest:
rest: t(14) ¼ 15.78, p < 0.001; Grand Budapest: t(20) ¼ 16.61, p < 0.001). The 1-
d (StudyForrest: t(14) ¼ 11.30, p < 0.001; Grand Budapest: t(20) ¼ 6.98, p <

tep or 2-step hyperalignment was not significant in the StudyForrest dataset (1-
significant in the Grand Budapest dataset (1-step: t(20) ¼ 3.02, p ¼ 0.01; 2-steps:
.
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shorter length (four 234s runs versus four 312s runs, respectively).
Cronbach’s alpha indicates that the predicted contrast map based on
hyperalignment is close to or as good as the real contrast map based on
four localizer runs (StudyForrest: t(14)¼ 0.61, p¼ 0.55; Grand Budapest:
t(20) ¼ �3.02, p ¼ 0.007). In the StudyForrest dataset, the predicted
contrast map based on hyperalignment was better than the contrast map
based on data from three out of four localizer runs in other participants
(t(14) ¼ 2.36, p ¼ 0.03) and in Grand Budapest, the predicted contrast
map was comparable to the contrast map based on three localizer runs in
other participants (t(20) ¼ 0.48, p ¼ 0.63).

A scatterplot of the individual correlation values with hyperalignment
and with surface alignment (fig 3), shows that predicted maps based on
hyperalignment were more accurate than those based on surface align-
ment in every participant. To further demonstrate how hyperalignment
increases individual prediction performance, we further plotted the
predicted contrast maps with hyperalignment and those with surface
alignment on inflated surface for each participant, together with their
measured contrast maps based on localizers (Figs. 4 & 5 for maps of four
participants and Supplementary Figs. 1 and 2 for all individual maps). It
is striking that hyperalignment was able to recover idiosyncratic
Fig. 4. Contrast maps of sample participants. The whole-brain contrast map for f
their cortical surfaces (leftmost column) in StudyForrest dataset (upper two rows, subj
respectively. The faces-vs-all contrast identified areas that responded selectively to fa
and in the lateral prefrontal cortex. The middle column presents the estimated maps
anatomies with hyperalignment. Contrast maps estimated with surface alignment are
from participants’ own data and the predicted maps with hyperalignment were 0.6
Pearson correlation values between the maps from participants’ own data and the p
0.53, 0.53 (Grand Budapest).

6

topographies (e.g., the location, shape, and size of clusters) in great
detail. By contrast, predicted maps based on anatomical alignment were
smoother and did not reveal idiosyncratic functional topographies as
they are essentially the same for all N-1 groupings of 14 or 20 participants
(Fig. 5).

In a searchlight analysis we calculated local correlations between
maps estimated from each participant’s own data and maps estimated
from other participants’ data. In searchlights that included strongly face-
selective cortical fields (e.g. lateral occipital, ventral temporal, superior
temporal sulcus, right lateral prefrontal) mean correlations with esti-
mates based on hyperaligned data exceeded 0.8 (Fig. 6). The lower mean
correlations across the whole cortex reflects the contribution of low
correlations in cortical areas with low face-selectivity, e.g. sensorimotor
and anterior prefrontal cortex.

In supplementary analyses (Supplementary Figs. S3, S4, S5, and S6)
we applied the same procedure to estimate category-selective topogra-
phies for scenes, bodies, and objects. The results show that these func-
tional topographies also can be estimated from other participants’
hyperaligned data with high fidelity.
aces-vs-all calculated with four individuals’ own localizer runs were plotted on
ects S1 & S2) and in Grand Budapest dataset (lower two rows, subjects B1 & B2),
ces in the lateral temporal cortex, in the ventral temporal cortex, along the STS,
from other participants’ localizer data projected into target participants’ cortical
in the right column. The individual Pearson correlation values between the maps
3, 0.68 (StudyForrest), and were 0.72, 0.70 (Grand Budapest). The individual
redicted maps with surface alignment were 0.40, 0.51 (StudyForrest), and were



Fig. 5. Enlarged sample contrast maps of
ventral temporal cortex. A. Part of the
right ventral temporal cortex of one in-
dividual’s face-vs-all topography estimated
from other participants’ hyperaligned data
is enlarged. This panel shows how the
enlarged images were created in panel B. B.
Enlargement of the same individuals’ face-
vs-all topographies as in Fig. 4 calculated
from their own localizer data, from other
participants’ 1-step hyperaligned and
surface-aligned data in StudyForrest dataset
(subjects S1 & S2) and in Grand Budapest
dataset (subjects B1 & B2). Compared with
surface alignment, hyperalignment was able
to recover idiosyncratic topographies (e.g.,
the location, shape, and size of clusters) in
great detail.
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4. Discussion

In this study, using two datasets with different movies (Forrest Gump
and Grand Budapest Hotel) and different localizers (one static and one
dynamic localizer), we showed that a new subject’s idiosyncratic func-
tional topography can be estimated with high fidelity based only on that
subject’s naturalistic movie data using hyperalignment and other sub-
jects’ movie and localizer data. We also present a new optimized 1-step
hyperalignment procedure for this application that outperforms our
previous algorithm. Instead of projecting information encoded in idio-
syncratic representational spaces into a commonmodel space first (2-step
procedure), the 1-step method directly projects each of the other sub-
jects’ data into the target subject’s cortical space without the interme-
diate step of a group common model space. The optimized method
generated better estimates of individually variable topographic maps
though both procedures produced excellent performance. Importantly,
our findings lay the foundation for developing a computational tool with
a database from a normative group that could allow researchers to esti-
mate new subjects’ functional topographies with high-fidelity by col-
lecting only a movie-viewing data set and then deriving the
individualized topographies with the normative database.

In our earlier work (Guntupalli et al., 2016; Haxby et al., 2011) we
have shown that individual-specific category-selectivity topographies
and retinotopy can be estimated using hyperalignment. Our previous
work on category-selective topographies mainly focused on the analysis
of the posterior ventral temporal cortex. The current results replicated
and expanded the previous findings to the whole cortex with strong
correlations between face-selectivity contrast maps estimated from a
participant’s own localizer data and with contrast maps estimated from
other participants’ data in lateral occipital, superior temporal sulcal, and
right lateral prefrontal cortices. In addition, we used Cronbach’s alpha to
estimate the internal reliability of localizer runs, which is more accurate
than previous split-half correlations. In the previous analysis,
hyperalignment-derived individual transformation matrices projected
localizer data into a common model representational space. When esti-
mating the target participant’s individualized functional map, other
participants’ localizer data were projected into the target subject’s
cortical anatomy from the common space with the transpose of that
participant’s transformation matrix (two-step procedure). By contrast,
the one-step procedure allows other participants’ data to be projected
directly into the target participant’s cortical anatomy, avoiding
7

accumulation of errors over two transformation steps. While the 1-step
method boosts accuracy of estimates of selective topographies, as
shown here, the 2-step method provides a group common model space
that is more appropriate and efficient for other analyses, such as studies
with between-subject multivariate pattern classification (bsMVPC, Gun-
tupalli et al., 2016; Haxby et al., 2011), intersubject and between area
correlation of representational geometries (Guntupalli et al., 2016, 2018;
Nastase et al., 2017; Visconti di Oleggio Castello et al., 2017), modeling
encoding in a common neural representational space (Van Uden et al.,
2018), and investigating individual differences in fine-scale functional
architecture (Feilong et al., 2018). One thing to keep in mind is that the
one-step procedure can be computationally expensive in studies with
large number of participants. The number of pairwise transformation
matrices needed in the one-step method increases with the square of the
sample size whereas in the two-step method the number of trans-
formation matrices increases linearly with sample size.

We found more reliable estimates using the dynamic localizer than
the static localizer, consistent with previous reports on the increased
power of dynamic localizers (Fox et al., 2009; Pitcher et al., 2011). The
maps show that the dynamic localizer better maps face-selectivity in
lateral temporal and prefrontal cortices, and that this is captured well by
the movie-viewing derived transformations. We would predict that the
StudyForrest data also could reveal this more extensive face-selectivity
map with high fidelity if dynamic localizer data were available in those
subjects. The variable results with different localizers indicate that no
localizer should be considered the “ground truth”. Furthermore, the
responsivity of the network defined by “face selectivity” also encom-
passes modulation of responses to nonface information related to the
animacy continuum (Connolly et al., 2012, 2016; Çukur et al., 2013; Sha
et al., 2014; Thorat et al., 2019), biological motion (Beauchamp et al.,
2003; Bonda et al., 1996; Çukur et al., 2013; Gobbini et al., 2007;
Grossman and Blake, 2002), social interaction (Castelli et al., 2002;
Çukur et al., 2013; Gobbini et al., 2007; Schultz et al., 2003), and agentic
behavior (Gobbini et al., 2011; Nastase et al., 2017), suggesting that the
ground truth for the functional selectivity of the system identified by
face-selectivity may extend well beyond face-selectivity per se. Thus, any
functional localizer can provide only an imprecise estimate of a topog-
raphy whose function is only partially defined.

We showed further that transformation matrices derived from
StudyForrest and Grand Budapest also can be applied to estimate indi-
vidual participants’ scene-, body-, and object-selective topographies with



Fig. 6. Searchlight analysis of Cronbach’s alpha, correlations between maps from participant’s own localizer data and data estimated from others’
hyperaligned or surface-aligned data. The upper two rows are results based on the StudyForrest data set, and the bottom two rows are based on the Grand Budapest
data set. Within each dataset, Cronbach’s alpha across four localizer runs, mean correlations between maps from participant’s own localizer data and data estimated
from others’ 1-step hyperaligned or surface-aligned data were calculated in each searchlight (15 mm radius) and plotted on the cortical surface. Histogram plots with
bin size of 0.05 are displayed for Conbach’s alpha and those two maps accordingly.
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high-fidelity. These results show that data collected during movie
viewing can be used to estimate multiple category-selective topogra-
phies. Elsewhere, we also have shown that we can map retinotopy in
early visual areas from other participants’ retinotopy localizer data that
are projected into a new participant’s occipital cortices with
8

hyperalignment transformation matrices based on movie viewing data
(Guntupalli et al., 2016). There are numerous other functional localizers
in other perceptual and cognitive domains, such as simple visual motion,
biological motion, tonotopy, voice perception, music perception, lan-
guage, calculations, working memory, and theory of mind. Because
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naturalistic movies like Forrest Gump and Grand Budapest Hotel include
people, human actions, conversations, social interactions, background
music etc., we predict that hyperalignment transformation matrices
based on these movies also will work for localizers of functional topog-
raphies for audition, language, and social cognition. Some high-level
cognitive processes, such as calculation, working memory, and logical
reasoning, may be less well sampled by movie viewing, and further work
is necessary to test whether hyperalignment based on movie-viewing
data can be used to estimate topographies for these other domains of
high-level cognition. Researchers may need to select or develop movies
that involve more calculations or logical inference-making to afford ac-
curate estimation of topographies in these domains.

Functional topographies are individually variable, making it neces-
sary to estimate a topography for each individual. Functional localizers
are inefficient because they estimate one or, at most, a few topographies
at a time. Hyperalignment, by contrast, models topographies as over-
lapping topographic basis functions (Guntupalli et al., 2016, 2018; Haxby
et al., 2011), giving it the capacity to model multiple topographies as
different mixtures of these basis functions. Basing hyperalignment on
patterns of brain activity elicited by viewing and listening to a natural-
istic, dynamic stimulus lends even more power by engaging multiple
cognitive systems in parallel, better approaching natural cognition. The
result is that the approach we present here has the potential to estimate
an unlimited variety of functional topographies at the individual level
based on the responses to a single naturalistic, dynamic stimulus. A tool
to take advantage of this capacity would require a normative database of
participants who were scanned during movie viewing and during func-
tional localizers for different perceptual and cognitive functions, as well
as a software tool for calculating transformation matrices and projecting
the data from the normative sample into new brains’ cortical anatomies.
This software tool could be used with fMRI data at different resolutions
mapped to the cortical surface or in its original volumetric space.
Hyperalignment can rotate a cortical information space based on cortical
vertices from a normative database into a new brain’s cortical informa-
tion space that is similarly mapped to cortical vertices or that is in voxels
at low or high resolution. Given such a database with a shared software
tool, investigators would need to scan their participants only during
movie viewing and a wide range of idiosyncratic functional topographies
could then be estimated individually based on localizer data projected
from the brains in the normative sample into the new participants’
cortical anatomies.

Extending this approach to other populations, such as children, or
other cultural groups will present further challenges for selecting
appropriate movies and developing databases that allow adjustment for
factors such as age.

The procedure that we present here produces continuous maps of
selectivity that are estimated from other participants’ data. These maps
can be further processed to identify category-selective regions, such as
the OFA or FFA, using the same methods that are used to threshold and
cluster a participant’s own localizer data (see Supplementary Fig. S7).
Because methods vary for identifying category-selective regions, we
refrain from endorsing one method here and leave that step to the in-
vestigators’ discretion.
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