
109

Program Sketching with Live Bidirectional Evaluation

JUSTIN LUBIN, University of Chicago, USA
NICK COLLINS, University of Chicago, USA
CYRUS OMAR, University of Michigan, USA
RAVI CHUGH, University of Chicago, USA

We present a system called Smyth for program sketching in a typed functional language whereby the concrete
evaluation of ordinary assertions gives rise to input-output examples, which are then used to guide the search
to complete the holes. The key innovation, called live bidirectional evaluation, propagates examples “backward”
through partially evaluated sketches. Live bidirectional evaluation enables Smyth to (a) synthesize recursive
functions without trace-complete sets of examples and (b) specify and solve interdependent synthesis goals.
Eliminating the trace-completeness requirement resolves a significant limitation faced by prior synthesis
techniques when given partial specifications in the form of input-output examples.

To assess the practical implications of our techniques, we ran several experiments on benchmarks used to
evaluateMyth, a state-of-the-art example-based synthesis tool. First, given expert examples (and no partial
implementations), we find that Smyth requires on average 66% of the number of expert examples required
byMyth. Second, we find that Smyth is robust to randomly-generated examples, synthesizing many tasks
with relatively few more random examples than those provided by an expert. Third, we create a suite of small
sketching tasks by systematically employing a simple sketching strategy to theMyth benchmarks; we find that
user-provided sketches in Smyth often further reduce the total specification burden (i.e. the combination of
partial implementations and examples). Lastly, we find that Leon and Synqid, two state-of-the-art logic-based
synthesis tools, fail to complete several tasks on which Smyth succeeds.

CCS Concepts: • Software and its engineering→General programming languages; Programming by example;
Search-based software engineering; Automatic programming; • Theory of computation→ Type theory.

Additional Key Words and Phrases: Program Synthesis, Sketches, Examples, Bidirectional Evaluation

ACM Reference Format:

Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program Sketching with Live Bidirectional
Evaluation. Proc. ACM Program. Lang. 4, ICFP, Article 109 (August 2020), 29 pages. https://doi.org/10.1145/
3408991

1 INTRODUCTION

Program synthesis is closer than ever tomaking its way into theworking programmer’s toolbox. Syn-
thesis techniques that operate on fine-grained logical specifications—such as Sketch [Solar-Lezama
2008], Rosette [Torlak and Bodik 2013], Leon [Kneuss et al. 2013], and Synqid [Polikarpova et al.
2016]—as well as techniques that operate on input-output examples—such as Escher [Albarghouthi
et al. 2013], λ2 [Feser et al. 2015]Myth [Osera and Zdancewic 2015], and “Myth2” [Frankle et al.
2016]—can synthesize a variety of challenging tasks, from subtle bit-manipulating computations in
imperative languages to recursive functions over inductive datatypes in functional languages.

Authors’ addresses: Justin Lubin, University of Chicago, USA, justinlubin@uchicago.edu; Nick Collins, University of Chicago,
USA, nickmc@uchicago.edu; Cyrus Omar, University of Michigan, USA, comar@umich.edu; Ravi Chugh, University of
Chicago, USA, rchugh@cs.uchicago.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/8-ART109
https://doi.org/10.1145/3408991

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

https://doi.org/10.1145/3408991
https://doi.org/10.1145/3408991
https://doi.org/10.1145/3408991

109:2 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

stutter_n : Nat -> NatList -> NatList

stutter_n n xs =

case xs of

[] -> []

x::xs’ -> replicate n x ++ stutter_n n xs’

assert (stutter_n 1 [1, 0] == [1, 0])

assert (stutter_n 2 [3] == [3, 3])

replicate : Nat -> Nat -> NatList

replicate n x =

case n of

Z -> ??

S n’ -> ??

Fig. 1. A program sketch in Smyth to “stutter” each element of a list n times. The desired solutions for the

holes in replicate are [] for the Z branch and x :: replicate n’ x for the S branch.

However, there remain commonplace program synthesis tasks that cannot be completed by state-
of-the-art techniques. Figure 1 shows an incomplete program (a.k.a. “program sketch”), written in
an ML-style functional language. The implementation of the stutter_n function itself—which is
intended to “stutter” each element of a given list n times—is complete. However, it depends on an
incomplete helper function replicatewith holes (written ??) denoting missing expressions that the
programmer might hope to automatically synthesize. The two assert statements provide simple
test cases that constrain the behavior of stutter_n. Because stutter_n applies replicate, these
assertions indirectly constrain the holes in replicate as well. Unfortunately, the aforementioned
synthesis techniques are not able to synthesize the desired hole completions shown in blue boxes
in Figure 1. In what ways do the prior techniques fall short for this task?

Logic-Based Program Synthesis. Leon [Kneuss et al. 2013] and Synqid [Polikarpova et al. 2016]
support sketching for richly-typed, general-purpose functional languages (as used in Figure 1). As
pioneered in Sketch [Solar-Lezama 2008], Leon and Synqid are solver-based techniques that
fill holes such that given specifications are satisfied. Both systems synthesize many challenging
benchmarks involving complex data invariants, yet neither can complete the task in Figure 1.

The approach to synthesis and verification in Leon does not decompose the assert constraints
on stutter_n into constraints on replicate, so the holes remain unspecified. By using an approach
based on liquid types [Rondon et al. 2008; Vazou et al. 2013], Synqid is able to systematically
decompose the given constraints into the following specification:

replicate :: (n : Nat) -> (x : Nat)

-> { out : NatList | (n = 1 ∧ x = 0⇒ out = [0])

∧ (n = 1 ∧ x = 1⇒ out = [1])

∧ (n = 2 ∧ x = 3⇒ out = [3, 3]) }

However, because this specification is not inductive—it provides no information about replicate 0 0,
replicate 0 1, replicate 1 3, or replicate 0 3—Synqid cannot type check the desired solu-
tion for replicate, let alone synthesize it.

Evaluator-Based Program Synthesis. In contrast to logic-based techniques, another class of
techniques operate on input-output examples and rely on concrete evaluation to “guess-and-check”
candidate terms. We choose the term evaluator-based to describe such techniques—rather than
example-based or programming-by-example—to distinguish how the underlying algorithms work
(using concrete evaluation) from the specification mechanism they provide to users (examples).
Examples can also be encoded as partial logical specifications, as just discussed.
Among evaluator-based techniques, Escher [Albarghouthi et al. 2013] and Myth [Osera and

Zdancewic 2015] can synthesize recursive functions, and Myth employs several type-directed

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

Program Sketching with Live Bidirectional Evaluation 109:3

optimizations to navigate the search space. (We discuss the remaining systems in §7.) However,
there are two fundamental reasons why these tools cannot complete the task in Figure 1.

Limitation A: Trace-Complete Examples. The user must provide input-output examples for recursive
calls internal to the eventual solution—this is the “example analog” to Synqid’s requirement for
inductive logical specifications. Osera and Zdancewic [2015] acknowledge that providing trace-
complete examples (i.e. serving as an oracle [Albarghouthi et al. 2013]) “proved to be difficult initially”
even for experts, and “discovering ways to get around this restriction ... would greatly help in
converting this type-directed synthesis style into a usable tool.” Miltner et al. [2020] also observe
the need to “manageMyth’s requirement for trace completeness.”

Limitation B: Independent, Top-Level Goals. The user must factor all synthesis tasks into completely
unimplemented top-level functions, each of which must be equipped directly with (trace-complete)
example sets. The system attempts to synthesize each of these functions separately. Granular
sketching, where holes appear in arbitrary positions and are simultaneously solved, is not supported.

Our Approach: Live Bidirectional Evaluation. In this paper, we present a new evaluator-based
synthesis technique that addresses Limitations A and B. Holes can appear in arbitrary expression
positions and are constrained by types and assert statements which give rise to example con-
straints. Given the sketch in Figure 1, our implementation—called Smyth—synthesizes the desired
expressions to fill the holes. (Our exposition employs certain syntactic conveniences not currently
implemented. These are described in §5.)
In order to make evaluator-based synthesis techniques compatible with sketching, we must

formulate hole-aware notions of (1) concrete evaluation and (2) example satisfaction—which form
the central term enumeration search strategy (i.e. guess-and-check) for evaluator-based synthesis.
Our solution, called live bidirectional evaluation, comprises two parts:
(1) A live evaluator e ⇒ r that partially evaluates a sketch e by proceeding around holes, producing

a result r which is either a value or a “paused” expression that, when the necessary holes are
filled, will “resume” evaluating; and

(2) A live unevaluator r ⇐ ex ⊣ K that, given a result r to be checked against example ex , computes
constraints K (over possibly many holes in the sketch) that, if satisfied, ensure the result will
eventually produce a value satisfying ex .

Live evaluation is adapted from Omar et al. [2019] to our setting and is not a technical contribution
of our work. Live unevaluation is the key novel mechanism that—together with live evaluation—
enables us to “combine sketching with Myth-style synthesis” (hence the name Smyth). Compared
to the aforementioned logic-based and other symbolic evaluation techniques (e.g. [Bornholt and
Torlak 2018; Feng et al. 2017a; Wang et al. 2020]), live bidirectional evaluation employs concrete
evaluation to collect example constraints “globally” across multiple holes in the sketch.

Contributions. This paper generalizes the theory of Myth [Osera and Zdancewic 2015]—the
state-of-the-art in type-directed, evaluator-based program synthesis—to support sketches and live
bidirectional evaluation. Formally, we present a calculus of recursive functions, algebraic datatypes,
and holes—called Core Smyth—which includes the following technical contributions:
• We present live unevaluation, a novel technique that checks example satisfaction of sketches.
The combination of live evaluation to partially evaluate sketches [Omar et al. 2019] and live
unevaluation—whichwe call live bidirectional evaluation—forms a core guess-and-check strategy
for programs with holes. Our formulation generalizesMyth, but the notion of live bidirectional
evaluation can also be developed for other evaluator-based synthesizers. (§3.5)

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

109:4 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

• We use live bidirectional evaluation to simplify program assertions into input-output constraints
and generalize the Myth hole synthesis algorithm to employ live bidirectional evaluation. The
resulting synthesis algorithm (a) alleviates the trace-completeness requirement and (b) globally
solves the examples that arise from multiple interdependent tasks. (§4)

For simplicity, our formal system accounts only for top-level asserts, but we describe how subse-
quent work may extend our approach to allow assertions in arbitrary program positions.

To empirically evaluate our approach, we implement Smyth and perform several experiments:
• We synthesize 38 of 43 tasks from theMyth benchmark suite [Osera 2015; Osera and Zdancewic
2015] in Smyth. Given expert examples (without sketches), Smyth requires 66% of the number
of expert examples required byMyth. Moreover, Smyth typically requires only a slightly larger
set of examples if they are generated randomly, rather than by an expert. (§6.2)
• To create a suite of sketching tasks, we identify a simple base case sketching strategy and apply
it systematically to the Myth benchmarks. As expected, base case sketches further reduce
the number of examples that Smyth requires to complete many tasks. Furthermore, the total
specification size with sketching (partial implementation plus examples) is often smaller than
without (just examples). (§6.3)
• We identify a handful of additional sketching tasks, similar in size and flavor to stutter_n,
which Smyth can complete. (§2)
• To situate our experimental results in a broader context, we run Leon and Synqid on our
benchmarks. We find several tasks for which Smyth succeeds but these tools do not. (§6.4)

The experimental results demonstrate (i) that the theoretical advances in Smyth address Limitations
A and B of prior evaluator-based synthesizers, and (ii) that even though examples can generally be
encoded as logical specifications, current logic-based synthesizers are not necessarily strictly more
powerful than evaluator-based ones.
Because our approach generalizes Myth, we provide comparison throughout the paper. We

further discuss related work in §7. Additional definitions, proofs, and experimental data are available
in an extended technical report [Lubin et al. 2020]; in the rest of the paper, we write §A, §B, and §C
to refer to appendices in the technical report.

2 OVERVIEW

In this section, we work through several small programs to introduce how Smyth: (1) employs
live bidirectional evaluation to check example satisfaction of guessed expressions (which, in our
formulation, may include holes) (§2.1); (2) supports user-defined sketches (§2.2); and (3) derives
examples from asserts in the program (§2.3).
We write holes ??h below with explicit names h; our implementation automatically generates

names for holes as in Figure 1. Literals 0, 1, 2, etc. are syntactic sugar for the corresponding naturals
of type Nat = Z | S Nat. Some judgement forms below are simplified for expositional purposes.

2.1 Synthesis without Trace-Completeness

plus : Nat -> Nat -> Nat

plus = ??

assert (plus 0 1 == 1)

assert (plus 2 0 == 2)

assert (plus 1 2 == 3)

Consider the task to synthesize plus given the three test cases
on the right. Given this specification, the resulting example con-
straint K0 = (− ⊢ •0 |= {0 1→ 1 , 2 0→ 2 , 1 2→ 3}) requires that
??0 (hole name 0 generated for the definition of plus) be filled with
a function expression that, in the empty environment, −, conforms
to the given input-output examples. (We write •h to distinguish the
concrete syntax of constraints from expression holes ??h .)

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

Program Sketching with Live Bidirectional Evaluation 109:5

Given a set of constraints Kh , Smyth employs the hole synthesis search procedure Kh ⇝ eh ⊣ K
′

to fill the hole ??h with an expression eh that is valid assuming new constraints K ′ over other
holes in the program. FollowingMyth [Osera and Zdancewic 2015], hole synthesis begins with
a guess-and-check approach that enumerates increasingly large terms comprising variables and
functions applied to variables. This naïve search is limited to small terms, i.e., starting with AST size
1 in early “stages” of the search and increasing to size 13 in latter stages. When enumerative search
fails to find a solution in a particular stage, hole synthesis performs example-directed refinement and
branching: introductory forms and case analyses are considered, and the examples are distributed
to create subgoals for new holes that arise.

We will describe the following search path—among many that Smyth will consider—that yields
the solution fix plus λm n -> case m of {Z -> n; S m’ -> S (plus m’ n)} for plus.

K0 ⇝ refine ??0 = fix plus (λm n.??1) ⊣ K1
K1 ⇝ branch ??1 = case m {Z→ ??2 ; S m’→ ??3} ⊣ K2, K3
K3 ⇝ refine ??3 = S ??4 ⊣ K4
K4 ⇝ guess ??4 = plus m’ n ⊣ K ′2

K2, K
′
2 ⇝ guess ??2 = n ⊣ −

First, because the goal is a function type, Smyth synthesizes a recursive function literal, with
subgoal ??1 for the body. The constraint setK1 (not shown) consists of three constraints created from
the three input-output examples in K0 by binding the input values to m and n in the environment
and constraining the new subgoal with the corresponding output value.
Second, after guessing-and-checking fails to solve ??1, Smyth attempts to branch by guessing

the scrutinee m. This scrutinee is evaluated in each environment of the three constraints in K1.
One constraint from K1 is distributed to subgoal ??2 for the base case branch (this constraint K2.1
is shown below), and the other two constraints from K1 are distributed to subgoal ??3 for the
recursive case (these constraints K3 are not shown).

Third, Smyth chooses towork on the recursive branch, for which the two constraints inK3 involve
output examples 2 and 3 (i.e. S (S Z) and S (S (S Z))). Smyth refines the task by synthesizing the
literal S ??4; the new subgoal is constrained by two examples (in K4, shown below) obtained by
removing the shared constructor head S from the output examples in K3. (Smyth synthesizes a
literal of the form S (S ??4) along other search paths, but those paths do not yield a solution as
quickly as the one being described.)

K2.1 = ((plus 7→ ..., m 7→ 0, n 7→ 1) ⊢ •2 |= 1)

K4.1 = ((plus 7→ ..., m 7→ 2, n 7→ 0, m’ 7→ 1) ⊢ •4 |= 1)

K4.2 = ((plus 7→ ..., m 7→ 1, n 7→ 2, m’ 7→ 0) ⊢ •4 |= 2)

The remaining two subgoals, ??4 and ??2, are filled via guess-and-check as discussed below.

Live Bidirectional Example Checking. To decide whether a guessed expression e conforms to a
constraint (E ⊢ •h |= ex) in Smyth, the procedure Ee ⇒ r applies the substitution (i.e. environment)
E to the expression and evaluates it to a result r , and the live unevaluation procedure r ⇐ ex ⊣ K
checks satisfaction modulo new constraints K .
Consider guesses to fill ??4. Notice that plus—the function Smyth is working to synthesize—

is recursive and thus bound in the constraint environments above. In addition to variables and
calls to existing functions, Smyth enumerates structurally-decreasing recursive calls (plus m’ n,
plus m n’, and plus m’ n’).

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

109:6 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

When considering plus m’ n, the name plus binds the following value comprising the first
three fillings and the “current” guess:

fix plus (λm n.case m {Z→ ??2 ; S m’→ S (plus m’ n)})

Given the environment in constraint K4.1, the guess evaluates and unevaluates as follows:

plus m’ n →∗ plus 1 0
→∗ S (plus 0 0)
⇒ S ([(plus 7→ ..., m 7→ 0, n 7→ 0)]??2) ⇐ 1 ⊣ K2.2

(We write e →∗ e ′ ⇒ r to display intermediate steps of the big-step evaluation, but e →∗ e ′ does
not appear in the formal system.) Although the function is incomplete, live evaluation [Omar et al.
2019] resolves two recursive calls to plus, before the hole ??2 in the base case reaches evaluation
position; the resulting hole closure, of the form [E]??h , captures the environment at that point.
Comparing the result to 1 (i.e. S Z), unevaluation removes an S from each side and creates a new
constraint K2.2 (shown below) for the base case.

Similarly, the guess checks against constraint K4.2, adding another new constraint K2.3 (shown
below) on the base case.

plus m’ n →∗ plus 0 2
⇒ [(plus 7→ ..., m 7→ 0, n 7→ 2)]??2 ⇐ 2 ⊣ K2.3

Both checks succeed, so the fourth step of the search commits to the guess, returning the two new
constraints in K ′2.

K2.2 = ((plus 7→ ..., m 7→ 0, n 7→ 0) ⊢ •2 |= 0)

K2.3 = ((plus 7→ ..., m 7→ 0, n 7→ 2) ⊢ •2 |= 2)

The fifth and final step is to fill the base case ??2, subject to constraints K2.1, K2.2, and K2.3. The
guess n evaluates to the required values (0, 1, and 2, respectively), without assumption. Together,
the five filled holes comprise the final solution.
Notice that the test cases used to synthesize plus were not trace-complete: live bidirectional

example checking recursively called plus 1 0, plus 0 0, and plus 0 2, none of which were
included in the examples. Instead, Smyth generated additional constraints that the user would be
required to provide in prior systems (i.e. Escher,Myth,Myth2, and Synqid).

2.2 User-Defined Sketches

Smyth is the first evaluator-based synthesis technique to support sketching, thus allowing users to
split domain knowledge naturally across a partial implementation and examples. For instance, if
the user sketches the zero cases for max, as shown in Figure 2, just a few examples are sufficient for
Smyth to complete the recursive case. (The library function spec2 asserts input-output examples
for a binary function, as was written out fully for plus above.)
Sketches from the user are handled in the same way as the sketches, described above, created

internally by the Smyth algorithm.Myth and several other evaluator-based techniques (cf. §7) can
also be described as creating sketches internally, but Smyth uniquely supports concrete evaluation
of sketches—with holes in arbitrary positions—as a way to generate new example constraints.

2.3 Deriving Examples from Assertions

For the plus and max programs so far, evaluating assertions provided examples “directly” on holes.
In general, however, an assertion may involve more complicated results.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

Program Sketching with Live Bidirectional Evaluation 109:7

max m Z = m

max Z n = n

max (S m’) (S n’) = S (max m’ n’)

spec2 max

[(1, 1, 1), (1, 2, 2), (3, 1, 3)]

odd n = unJust mx =

case n of case mx of

Z -> False Nothing -> 0

S Z -> True Just x -> x

S S n’’ -> odd n’’

assert (odd (unJust Just 1) == True)

minus (S a’) (S b’) = minus a’ b’

minus a b = a

spec2 minus

[(2, 0, 2), (3, 2, 1), (3, 1, 2)]

mult p q =

case p of

Z -> Z

S p’ -> plus q (mult p’ q)

spec2 mult

[(2, 1, 2), (3, 2, 6)]

Fig. 2. Smyth fills the holes ?? (not shown) with the code shown in blue boxes.

For instance, consider the definitions of odd : Nat -> Bool and unJust : MaybeNat -> Nat
in Figure 2, and the evaluation of the expression odd (unJust ??5):

odd (unJust ??5) →
∗ odd (unJust ([−]??5))
→∗ odd (case ([−]??5) unJust)
⇒ case (case ([−]??5) unJust) odd

(For clarity, we omit the recursive environment bindings for odd and unJust.) First, evaluation pro-
duces the hole closure [−]??5, which is passed to unJust. Then, the case expression in unJust—we
write unJust to refer to its two branches—scrutinizes the hole closure. The form of the constructor ap-
plication has not yet been determined, so evaluation “pauses” by returning the indeterminate [Omar
et al. 2019] result case ([−]??5) unJust, which records the fact that, when the scrutinee resumes
to a constructor head Nothing or Just, evaluation of the case will proceed down the appropriate
branch. This indeterminate case result is passed to the odd function. Finally, the case inside odd—we
write odd to refer to its three branches—scrutinizes it, building up a nested indeterminate result.

How can we “indirectly” constrain the expression ??5 to ensure that the partially evaluated
expression case (case ([−]??5) unJust) odd evaluates to True as asserted?

Unevaluating Case Expressions. Unevaluation will run each of the three branches of odd “in
reverse,” attempting to reconcile each with the required example, True; we write 1 , 2 , 3 , etc. to
help discuss different branches of the search considered by Smyth:

case (case ([−]??5) unJust) odd ⇐ True ⊣ 1 2 3

1 The first branch expression, False, is inconsistent with True (i.e. False ⇐ True ̸⊣).
2 The second branch expression, True, is equal to the example. However, to take this branch,

unevaluation must ensure that the scrutinee—an indeterminate case result itself—will match
the pattern S Z (i.e. 1); that is, case ([−]??5) unJust ⇐ 1 ⊣ 2a 2b .

2a The first branch expression, 0, is inconsistent with 1.
2b Reasoning about the second branch expression is more involved: the variable x must bind

the argument of Just, but we have not yet ensured that this branch will be taken! To
bridge the gap, we bind x to the symbolic, and indeterminate, inverse constructor application

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

109:8 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

Just −1 ([−]??5) when evaluating the branch expression; unevaluation “transfers” the
resulting example from the symbolic result to the scrutinee:

x ⇒ Just −1 ([−]??5) ⇐ 1 ⊣ (− ⊢ •5 |= Just 1)

This constraint ensures that the case in unJust will resolve to the second branch (Just x)
and that its expression will produce 1, and thus that the case in odd will resolve to the
second branch (S Z) and produce True, as asserted.

3 By recursively unevaluating the third branch, odd n’’, case unevaluation can derive additional
solutions: Just 3, Just 5, etc. Naïvely unevaluating all branches, however, would introduce a
significant degree of non-determinism—even non-termination. Therefore, our formulation and
implementation impose simple restrictions—described in §3 and §5—on case unevaluation to
trade expressiveness for performance.

Altogether, live bidirectional evaluation untangles the interplay between indeterminate branching
and assertions so that Smyth can, for instance, fill the holes in minus and mult in Figure 2.

3 LIVE BIDIRECTIONAL EVALUATION

In this section, we formally define live evaluation E ; F ⊢ e ⇒ r and live unevaluation F ⊢ r ⇐ ex ⊣ K
for a calculus called Core Smyth. We choose a natural semantics (big-step, environment-style)
presentation [Kahn 1987], though our techniques can be re-formulated for a small-step, substitution-
style model. Compared to our earlier notation, here we refer to environments E and F—often typeset
in light gray, because environments would “fade away” in a substitution-style presentation.
Our formulation proceeds as follows. First, in § 3.1 and §3.2, we define the syntax and type

checking judgements of Core Smyth. Next, in §3.3, we present live evaluation, which adapts the
live programming with holes technique [Omar et al. 2019] to our setting; minor differences are
described in §7.1. Lastly, we define example satisfaction in §3.4 and live unevaluation in §3.5. In §4,
we build a synthesis pipeline around the combination of live evaluation and unevaluation.

3.1 Syntax

Figure 3 defines the syntax ofCore Smyth, a calculus of recursive functions, unit, pairs, and (named,
recursive) algebraic datatypes. We say “products” to mean unit and pairs.

Datatypes. We assume a fixed datatype context Σ. A datatypeD has some numbern of constructors
Ci , each of which carries a single argument of type Ti—the type of Ci is Ti→D.

Expressions andHoles. The expression forms on the first three lines are standard function, product,
and constructor forms, respectively. The expressions prj1 e and prj2 e project the first and second
components of a pair. Each case expression has one branch for each of the n constructors Ci
corresponding to the type of the scrutinee e; for simplicity, nested patterns are not supported.
Holes ??h can appear anywhere in expressions (i.e. expressions are sketches). We assume each

hole in a sketch has a unique name h, but we sometimes write ?? when the name is not referred to.
Hole contexts ∆ define a contextual type (Γ ⊢ • : T) to describe the type and the type context that
is available to expressions that can “fill” a given hole [Nanevski et al. 2008; Omar et al. 2019].

Results. We define a separate grammar of results r—with evaluation environments E that map
variables to results—to support the definition of big-step, environment-style evaluation E ⊢ e ⇒ r
below. Because of holes, results are not conventional values. Terminating evaluations produce two
kinds of final results; neither kind of result is stuck (i.e. erroneous).

The four result forms on the first line of the result grammar would—on their own—correspond to
values in a conventional natural semantics (without holes). InCore Smyth, these determinate results

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

Program Sketching with Live Bidirectional Evaluation 109:9

can be eliminated in a type-appropriate position; the appendix (§A.1) defines a simple predicate
r det to identify such results, and type checking is discussed below. Note that a recursive function
closure [E]fix f (λx .e) stores an environment E that binds the free variables of the function body e ,
except the name f of the function itself. We sometimes write λx .e for non-recursive functions.

The four indeterminate result forms on the second line of the grammar are unique to the presence
of holes. Rather than aborting evaluation with an error when a hole reaches elimination position
(e.g., raise "Hole"), an indeterminate result r (defined by the predicate r indet (§A.1)) serves
as a placeholder for where to continue evaluation if and when the hole is later filled (either by
the programmer or synthesis engine) with a well-typed expression. The primordial indetermi-
nate result is a hole closure [E]??h—the environment binds the free variables that a hole-filling
expression may refer to. An indeterminate application r1 r2 appears when the function has not
yet evaluated to a function closure (i.e. r1 indet); we require that r2 be final in accordance with
our eager evaluation semantics, discussed below. An indeterminate projection prj i ∈[2] r appears
when the argument has not yet evaluated to a pair (i.e. r indet). An indeterminate case closure
[E]case r of {Ci xi → ei }

i ∈[n] appears when the scrutinee has not yet evaluated to a constructor
application (i.e. r indet)—like with function and hole closures, the environment E is used when
evaluation resumes with the appropriate branch. Because they record how “paused” expressions
should “resume,” we sometimes refer to indeterminate results as “partially evaluated expressions.”

The inverse constructor application form C −1 r on the third line of the result grammar is internal
to live unevaluation and is discussed in §3.5.

Types T ::= T1→T2 | () | (T1 , T2) | D Datatypes D

Expressions e ::= fix f (λx .e) | e1 e2 | x Variables f ,x

| () | (e1 , e2) | prj i ∈[2] e

| C e | case e of {Ci xi → ei }
i ∈[n]

Constructors C

| ??h Hole Names h

Results r ::= [E]fix f (λx .e) | () | (r1 , r2) | C r

| [E]??h | r1 r2 | prj i ∈[2] r | [E]case r of {Ci xi → ei }
i ∈[n]

| C −1 r

Environments E ::= − | E, x 7→ r

Hole Fillings F ::= − | F , h 7→ e

Type Contexts Γ ::= − | Γ, x :T
Datatype Contexts Σ ::= − | Σ, type D = {Ci Ti }

i ∈[n]

Hole Type Contexts ∆ ::= − | ∆, h 7→ (Γ ⊢ • : T)

Synthesis Goals G ::= − | G, (Γ ⊢ •h : T |= X)

Example Constraints X ::= − | X , (E ⊢ • |= ex)

Simple Values v ::= () | (v1 , v2) | C v

Examples ex ::= () | (ex1 , ex2) | C ex | {v → ex} | ⊤

Unevaluation Constraints K ::= (U ; F)
Unfilled Holes U ::= − | U , h 7→ X

Fig. 3. Syntax of Core Smyth.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

109:10 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

Examples. A synthesis goal (Γ ⊢ •h : T |= X) describes a hole ??h to be filled according to the
contextual type (Γ ⊢ • : T) and example constraints X . Each example constraint (E ⊢ • |= ex)
requires that an expression to fill the hole must, in the environment E, satisfy example ex .

Examples include simple valuesv , which are first-order product values or constructor applications;
input-output examples {v → ex}, which constrain function-typed holes; and top ⊤, which imposes
no constraints. We sometimes refer to example constraints simply as “examples” when the meaning
is clear from context. The coercion ⌊v⌋ “upcasts” a simple value to a result. The coercion ⌈r⌉ = v
“downcasts” a result to a simple value, if possible.

Examples are essentially the same as described by Osera and Zdancewic [2015]. Smyth addition-
ally includes top examples. For simplicity Core Smyth includes only first-order function examples,
though our implementation (§5) supports higher-order function examples likeMyth.

3.2 Type Checking

Type checking Σ ; ∆ ; Γ ⊢ e : T (Figure 4) takes a hole type context ∆ as input, used by the T-Hole
rule to decide valid typings for a hole ??h . The remaining rules are standard (§A.2).

3.3 Live Evaluation

Figure 4 defines live evaluation E ; F ⊢ e ⇒ r , which first uses expression evaluation E ⊢ e ⇒ r to
produce a final result r , and then resumes evaluation F ⊢ r ⇒ r ′ of the result r in positions that
were paused because of holes now filled by F .

Expression Evaluation. Compared to a conventional natural semantics, there are four new rules—
E-Hole, E-App-Indet, E-Prj-Indet, and E-Case-Indet—one for each indeterminate result form.
The E-Hole rule creates a hole closure [E]??h that captures the evaluation environment.

The other three rules, suffixed “-Indet,” are counterparts to rules E-App, E-Prj, and E-Case for
determinate forms. For example, when a function evaluates to a result r1 that is not a function
closure, the E-App-Indet rule creates the indeterminate application result r1 r2. The remaining

Type Checking (excerpt from §A.2) and Live Eval. Σ ; ∆ ; Γ ⊢ e : T E ; F ⊢ e ⇒ r

[T-Hole]

∆(??h) = (Γ ⊢ • : T)
Σ ; ∆ ; Γ ⊢ ??h : T

E ⊢ e ⇒ r F ⊢ r ⇒ r ′

E ; F ⊢ e ⇒ r ′

Expression Evaluation (excerpt from §A.3) E ⊢ e ⇒ r

[E-Hole]

E ⊢ ??h ⇒ [E]??h

[E-App]

E ⊢ e1 ⇒ r1 E ⊢ e2 ⇒ r2
r1 = [Ef]fix f (λx .ef)

Ef , f 7→ r1, x 7→ r2 ⊢ ef ⇒ r

E ⊢ e1 e2 ⇒ r

[E-App-Indet]

E ⊢ e1 ⇒ r1 E ⊢ e2 ⇒ r2
r1 , [Ef]fix f (λx .ef)

E ⊢ e1 e2 ⇒ r1 r2

Resumption (excerpt from §A.4) F ⊢ r ⇒ r ′

[R-Hole-Resume]

F (h) = eh E ⊢ eh ⇒ r F ⊢ r ⇒ r ′

F ⊢ [E]??h ⇒ r ′

[R-Hole-Indet]

h < dom(F) F ⊢ E ⇒ E ′

F ⊢ [E]??h ⇒ [E ′]??h

Fig. 4. Type Checking, Evaluation, and Resumption.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

Program Sketching with Live Bidirectional Evaluation 109:11

rules are similar (§A.3). Evaluation is deterministic and produces final results; the appendix (§A.3)
formally establishes these propositions, as well as a suitable notion of type safety.

Resumption. Result resumption resembles expression evaluation. For closures [E]??h over holes
that F fill with an expression eh , R-Hole-Resume evaluates eh in the closure environment, producing
a result r . Because eh may refer to other holes now filled by F , r is recursively resumed to r ′.

3.4 Example Satisfaction

Live evaluation partially evaluates a sketch to a result, and Figure 5 defines what it means for a result
to satisfy an example. To decide whether expression e satisfies example constraint (E ⊢ • |= ex), the
Sat rule evaluates the expression to a result r and then checks whether r satisfies ex . The XS-Top
rule accepts all results. The remaining rules break down input-output examples (XS-Input-Output)
into equality checks for products and constructors (XS-Unit, XS-Pair, and XS-Ctor).
Hole closures may appear in a satisfying result, but they may not be directly checked against

product, constructor, or input-output examples. The purpose of live unevaluation is to provide a
notion of example consistency to accompany this “ground-truth” notion of example satisfaction.

3.5 Live Unevaluation

Figure 6 defines live unevaluation F ⊢ r ⇐ ex ⊣ K , which produces constraintsK over holes that are
sufficient to ensure example satisfaction F ⊢ r |= ex . The live bidirectional example checking judge-
ment F ⊢ e ⇌ X ⊣ K lifts this notion to example constraints: Live-Check appeals to evaluation
followed by unevaluation to check each constraint in X .

Theorem (Soundness of Live Unevaluation).
If F ⊢ r ⇐ ex ⊣ K and F ⊕ F ′ |= K and F ⊕ F ′ ⊢ r ⇒ r ′, then F ⊕ F ′ ⊢ r ′ |= ex .

Theorem (Soundness of Live Bidirectional Example Checking).
If F ⊢ e ⇌ X ⊣ K and F ⊕ F ′ |= K , then F ⊕ F ′ ⊢ e |= X .

Example Constraint Satisfaction F ⊢ e |= X

[Sat]

{ Ei ; F ⊢ e ⇒ ri F ⊢ ri |= exi }
i ∈[n]

F ⊢ e |= { (Ei ⊢ • |= exi) }
i ∈[n]

Example Satisfaction F ⊢ r |= ex

[XS-Top]

F ⊢ r |= ⊤

[XS-Unit]

F ⊢ () |= ()

[XS-Pair]

{ F ⊢ ri |= exi }
i ∈[2]

F ⊢ (r1 , r2) |= (ex1 , ex2)

[XS-Ctor]

F ⊢ r |= ex

F ⊢ C r |= C ex

[XS-Input-Output]

F ⊢ r1 ⌊v2⌋ ⇒ r F ⊢ r |= ex

F ⊢ r1 |= {v2 → ex}

Unevaluation Constraint Satisfaction F |= K

F ⊇ F0 { F ⊢ ??hi |= Xi }
i ∈[n]

F |= ((h1 7→ X1, . . ., hn 7→ Xn) ; F0)

Fig. 5. Example and Constraint Satisfaction.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

109:12 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

Unevaluation Constraints. Two kinds of constraints K are generated by unevaluation (cf. Fig-
ure 3). The first is a contextU of bindings h 7→ X that maps unfilled holes ??h to setsX of example
constraints (E ⊢ • |= ex). The second is a hole-filling F which, as discussed below, is used to
optimize unevaluation of case expressions. The former are “hole example contexts,” analogous
to hole type contexts ∆; the metavariable U serves as a mnemonic for holes left unfilled by a
hole-filling F . (In the simpler presentation of §2, only example constraints were generated, and
each was annotated with a hole name.)
To define what it means for a filling F to constitute a valid solution for a set of constraints

K = (U ; F0), Figure 5 defines constraint satisfaction F |= K by checking that (i) F subsumes any
fillings F0 in K and (ii) F satisfies the examples Xi for each hole ??hi constrained by K .

When analyzing multiple subexpressions, several unevaluation rules—discussed below—generate
multiple sets of constraints that must be combined. Figure 6 shows the signature of two constraint

Unevaluation Constraint Merging (in §A.5) K1 ⊕ K2 = K Σ ; ∆ ;Merge(K) ▷ K ′

Live Bidirectional Example Checking Σ ; ∆ ; F ⊢ e ⇌ X ⊣ K

[Live-Check]

{ Ei ; F ⊢ e ⇒ ri F ⊢ ri ⇐ exi ⊣ Ki }
i ∈[n]

F ⊢ e ⇌ (E1 ⊢ • |= ex1), . . ., (En ⊢ • |= exn) ⊣ K1 ⊕ · · · ⊕ Kn

Live Unevaluation Σ ; ∆ ; F ⊢ r ⇐ ex ⊣ K
[U-Top]

F ⊢ r ⇐ ⊤ ⊣ −

[U-Unit]

F ⊢ ()⇐ () ⊣ −

[U-Pair]

F ⊢ r1 ⇐ ex1 ⊣ K1 F ⊢ r2 ⇐ ex2 ⊣ K2

F ⊢ (r1 , r2)⇐ (ex1 , ex2) ⊣ K1 ⊕ K2

[U-Ctor]

F ⊢ r ⇐ ex ⊣ K

F ⊢ C r ⇐ C ex ⊣ K

[U-Fix]

F ⊢ e ⇌ (E, f 7→ [E]fix f (λx .e), x 7→ ⌊v⌋ ⊢ • |= ex) ⊣ K

F ⊢ [E]fix f (λx .e) ⇐ {v → ex} ⊣ K

[U-Hole]

U = h 7→ (E ⊢ • |= ex)

F ⊢ [E]??h ⇐ ex ⊣ (U ; −)

[U-App]

⌈r2⌉ = v2 F ⊢ r1 ⇐ {v2 → ex} ⊣ K

F ⊢ r1 r2 ⇐ ex ⊣ K

[U-Prj-1]

F ⊢ r ⇐ (ex , ⊤) ⊣ K

F ⊢ prj1 r ⇐ ex ⊣ K

[U-Prj-2]

F ⊢ r ⇐ (⊤ , ex) ⊣ K

F ⊢ prj2 r ⇐ ex ⊣ K

[U-Case]

j ∈ [1,n] F ⊢ r ⇐ Cj ⊤ ⊣ K1
F ⊢ ej ⇌ (E, x j 7→ Cj

−1 r ⊢ • |= ex) ⊣ K2

F ⊢ [E]case r of {Ci xi → ei }
i ∈[n] ⇐ ex ⊣ K1 ⊕ K2

[U-Inverse-Ctor]

F ⊢ r ⇐ C ex ⊣ K

F ⊢ C −1 r ⇐ ex ⊣ K

[U-Case-Guess]

j ∈ [1,n] F ′ = Guesses(∆, Σ, r) F ⊕ F ′ ⊢ r ⇒ Cj r
′

F ⊕ F ′ ⊢ ej ⇌ (E, x j 7→ r ′ ⊢ • |= ex) ⊣ K

F ⊢ [E]case r of {Ci xi → ei }
i ∈[n] ⇐ ex ⊣ (− ; F ′) ⊕ K

Fig. 6. Live Bidirectional Example Checking via Live Unevaluation.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

Program Sketching with Live Bidirectional Evaluation 109:13

merge operators. The “syntactic” merge operation K1 ⊕ K2 pairwise combines example contextsU
and fillings F in a straightforward way. Syntactically merged constraints may describe holes ??h
both with example constraints X in U and fillings in F ; the “semantic” operation Merge(K) uses
live bidirectional example checking to check consistency in such situations. The full definitions
can be found in the appendix (§A.5).

Simple Unevaluation Rules. Analogous to the five example satisfaction rules (prefixed “XS-” in
Figure 5) are the U-Top rule to unevaluate any result with ⊤ and the U-Unit, U-Pair, U-Ctor,
and U-Fix rules to unevaluate determinate results. The base case in which unevaluation generates
example constraints is for hole closures [E]??h—the U-Hole rule generates the (named) example
constraint h 7→ (E ⊢ • |= ex) .

The U-Fix rule refers to bidirectional example checking—evaluation followed by unevaluation—
to “test” that a function is consistent with an input-output example. For instance, to unevaluate
the function closure [zero 7→ 0]λx .??h with {1 → 2}, first, the function application is evaluated:
the closure environment is extended to bind the input example x 7→ ⌊1⌋, and the function body
is evaluated to result [zero 7→ 0, x 7→ ⌊1⌋]??h . Second, the output example 2 is unevaluated to
this result, for which U-Hole generates the constraint h 7→ (zero 7→ 0, x 7→ ⌊1⌋ ⊢ • |= 2) . (Valid
fillings for ??h include S (S Z), S x, and S (S zero).)

The remaining rules, discussed below, transform “indirect” unevaluation goals for more complex
indeterminate results into “direct” examples on holes.

Indeterminate Function Applications. Consider an indeterminate function application r1 r2,
with the goal to satisfy ex . For results r2 that are simple (first-order) values v2, the U-App rule
unevaluates the indeterminate function r1 with the input-output example {v2 → ex}.
In general, the argument r2 may include holes that would later appear in elimination position

when r1 is filled and the application resumes. For results r2 that are not simple values, it is not
possible to generate sufficient constraints locally to ensure that r1 r2 satisfies ex . For instance, if
r2 is of the form [E]??h , the hypothetical constraint “{([E]??h) → ex}” would not provide any
information about which input values the function r1 must map to results that satisfy ex . As such,
there is no unevaluation rule for arbitrary indeterminate application forms.

Indeterminate Projections. The U-Prj-1 and U-Prj-2 rules use ⊤ for the component to be left
unconstrained. For example, unevaluating prj1 [E]??h with 1 generates h 7→ (E ⊢ • |= (1 , ⊤)) .

Indeterminate Case Expressions. Recall from §2.3 the goal to unevaluate an indeterminate case
expression with the number 1: case [−]??h of {Nothing _→ 0 ; Just x → x } ⇐ 1. Intuitively,
this should require h 7→ (− ⊢ • |= Just 1) .

To compute this constraint, theU-Case rule considers each branch j . The first premise unevaluates
the scrutinee r with Cj ⊤ to the scrutinee r , generating constraints K1 required for r to produce
an application of constructor Cj . If successful, the next step is to evaluate the corresponding
branch expression ej and check that it is consistent with the goal ex . However, the argument to the
constructor will only be available after all constraints are solved and evaluation resumes.
We introduce the inverse constructor application Cj

−1 r (Figure 3) to bridge this gap between
constraint generation and constraint solving. To proceed down the branch expression, we bind the
pattern variable x j toCj

−1 r . Locally, this allows the third premise of U-Case to check whether the
branch expression ej satisfies ex . For the example above, the result of evaluating the second branch
expression, x , is Just −1 ([−]??h). Unevaluating Just −1 ([−]??h) with 1 generates the constraint
h 7→ (− ⊢ • |= Just −1 1). Finally, the U-Inverse-Ctor rule transfers the example from the inverse
constructor application to a constructor application, producing h 7→ (− ⊢ • |= Just 1) .

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

109:14 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

Indeterminate Case Expressions: Guessing Scrutinees. The interplay between U-Case and
U-Inverse-Ctor allows unevaluation to resolve branching decisions by generating constraints
without the obligation to synthesize expressions that satisfy them. A downside of this “lazy”
approach is the significant degree of non-determinism; indeed, many of the generated sets of
constraints may be unsatisfiable.

As a more efficient approach in situations where the full expressiveness of U-Case is not needed,
the U-Case-Guess rule “eagerly” resolves the direction of the branch by guessing a hole-filling
F ′ via a non-deterministic uninterpreted function Guesses(∆, Σ, r), and checking whether this
filling resumes the scrutinee r to an application of a constructor Cj , where Cj is one of the n
data constructors for the datatype D of the scrutinee. If so, the direction of the branch has been
determined, so the last step is to unevaluate the jth branch expression ej with the goal example ex ,
in an appropriately extended environment.
For instance, consider again the goal case [E]??h of {Nothing _→ 0 ; Just x → x } ⇐ 1 but

here with the environment E = nothing 7→ Nothing, just0 7→ Just 0, just1 7→ Just 1. The
Guesses function might choose the filling F ′ = h 7→ just1 , which resumes the scrutinee [E]??h to
Just 1. In the environment extended with x 7→ 1, the corresponding branch expression x evaluates
to the result 1. Unevaluating this result with the example 1 succeeds via U-Ctor and U-Unit
without generating additional constraints. (If guessing fills ??h with nothing or just0, the result,
0, of the branch expression would fail to unevaluate to 1.)

Whereas the U-Hole rule is the source of example constraintsU produced by unevaluation, the
U-Case-Guess rule is the source of hole-filling constraints F . We describe our concrete implemen-
tation of Guesses in §5.

4 SYNTHESIS PIPELINE

Live bidirectional evaluation addresses the challenge of checking example satisfaction for programs
with holes. In this section, we define a synthesis pipeline that uses live bidirectional evaluation to
(1) derive example constraints from asserts and (2) solve the resulting constraints.

Constraint Collection (§4.1)︷ ︸︸ ︷
p ⇒ r ; A Simplify (A) ▷ K

Constraint Solving (§4.2)︷ ︸︸ ︷
Solve(K) ⇝ F

Overview Program: Plus. Before describing each of these components formally, we summarize
how they will fit together to synthesize the plus function in §2.1:

let plus = ??0 in assert ([plus 0 1, plus 2 0, plus 1 2] == [1, 2, 3])

First, when evaluating the program, the left-hand side of the assert produces three nested, indeter-
minate function calls: [([−]??0 0) 1, ([−]??0 2) 0, ([−]??0 1) 2]. Structurally comparing
this list of indeterminate results with the list of values [1, 2, 3] yields three assertion predicates
A as a side-effect (via rules Eval-and-Assert, RC-Ctor, and RC-Assert-1, discussed below):

A = (([−]??0 0) 1) ⇒ 1, (([−]??0 2) 0) ⇒ 2, (([−]??0 1) 2) ⇒ 3

Second, we use live bidirectional example checking (Live-Check) to convert—i.e. Simplify—the
assertions A into example constraintsU (via U-App and U-Hole):

U = 0 7→ ((− ⊢ • |= {0→ {1 → 1}}), (− ⊢ • |= {2→ {0→ 2}}), (− ⊢ • |= {1 → {2→ 3}}))

The simplified constraints K = (U ; −) contain an empty hole-filling because U-Case-Guess is not
invoked to resolve any indeterminate case expressions.

Finally, the holes inU are solved one at a time; here there is only ??0. Solving one hole may gen-
erate new subgoals (Refine and Branch) or new constraints on existing goals (Guess-and-Check).

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

Program Sketching with Live Bidirectional Evaluation 109:15

The search path sketched in § 2.1 produces the solution F below that solves the constraints
K = (U ; −). Each step is annotated with the rules used to conclude the subderivation.

0 7→ fix f1 (λm.fix f2 (λn.??1)) Solve-One, Refine, Refine-Fix (twice)
1 7→ case m {Z→ ??2 ; S m’→ ??3} Solve-One, Branch, Branch-Case
3 7→ S ??4 Solve-One, Refine, Refine-Ctor
4 7→ plus m’ n Solve-One, Guess-and-Check, Live-Check
2 7→ n Solve-One, Guess-and-Check, Live-Check

4.1 Constraint Collection

Figure 7 defines a program to be an expression followed by an assert (e1 = e2) statement. Changes
to allow asserts in arbitrary expressions are discussed in §7.

Assertions via Result Consistency. A typical semantics for assert would require the expression
results r1 and r2 to be equal, otherwise raising an exception. Instead, rather than equality, the
Eval-and-Assert rule in Figure 7 checks result consistency, r1 ≡A r2, a notion of equality modulo
assumptions A about indeterminate results. Determinate results are consistent if structurally equal,
as checked by the RC-Refl, RC-Pair, and RC-Ctor rules. Indeterminate results r are consistent
with simple valuesv—the RC-Assert-1 and RC-Assert-2 rules generate assertion predicates r ⇒ v
in such cases. Figure 7 also defines assertion satisfaction F |= A: for each assertion ri ⇒ vi in A,
the indeterminate result ri should resume under filling F and produce the value vi .

Assertion Simplification. For each assertion ri ⇒ vi , the Simplify procedure in Figure 7 converts
the simple value into an example ⌊vi ⌋ and unevaluates it to ri to generate example constraints.

Theorem (Soundness of Assertion Simplification).
If Simplify (A) ▷ K and F |= K , then F |= A.

Program Evaluation p ⇒ r ; A

Programs p ::= let main = e in assert (e1 = e2)

Assertions A ::= { ri ⇒ vi }
i ∈[n]

[Eval-and-Assert]

− ⊢ e ⇒ r { main 7→ r ⊢ ei ⇒ ri }
i ∈[2] r1 ≡A r2

let main = e in assert (e1 = e2) ⇒ r ; A

Result Consistency r ≡A r ′

[RC-Refl]

r ≡− r

[RC-Pair]

r1 ≡A1 r
′
1 r2 ≡A2 r

′
2

(r1 , r2) ≡A1++A2 (r
′
1 , r

′
2)

[RC-Ctor]

r ≡A r ′

C r ≡A C r ′

[RC-Assert-1]

⌈r2⌉ = v2
A = r1 ⇒ v2

r1 ≡A r2

[RC-Assert-2]

⌈r1⌉ = v1
A = r2 ⇒ v1

r1 ≡A r2

Assertion Satisfaction and Simplification F |= A Simplify (A) ▷ K

{ F ⊢ ri ⇒ r ′i ⌈r ′i ⌉ = vi }
i ∈[n]

F |= { ri ⇒ vi }
i ∈[n]

{ ri final − ⊢ ri ⇐ ⌊vi ⌋ ⊣ Ki }
i ∈[n]

Simplify ({ ri ⇒ vi }
i ∈[n]) ▷ K1 ⊕ · · · ⊕ Kn

Fig. 7. Constraint Collection.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

109:16 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

4.2 Constraint Solving

The constraints K , of the form (U ; F0), include filled holes F0 from constraint simplification
(cf. U-Case-Guess) and a set U of unfilled holes constrained by examples. Figure 8 and Figure 9
define an algorithm to synthesize expressions for unfilled holes, generalizing Myth to use live
bidirectional evaluation and to fill interdependent holes.

The Solve(U ; F) procedure in Figure 8 is the entry point for filling the holes inU . The Solve-Done
rule handles the terminal case, when no unfilled holes remain. Otherwise, the Solve-One rule
chooses an unfilled hole ??h and forms the synthesis goal (Γ ⊢ •h : T |= X) from the hole type
and example contexts ∆ andU . The hole synthesis procedure—discussed next—completes the task,
which, in Smyth, may assume constraints K over other holes. Any such constraints K are combined
with the existing ones using the semantic Merge operation (cf. §3.5), and the resulting constraints
K ′ are recursively solved.

Hole Synthesis. For each unfilled hole, the hole synthesis procedure F ; (Γ ⊢ •h : T |= X) ⇝ fill K ; ∆′
augments guessing-and-checking (Guess-and-Check) with example-directed refinement (Refine)
and branching (Branch); these rules are discussed in turn below.
The structure of hole synthesis in Core Smyth closely follows Myth [Osera and Zdancewic

2015], which presents a novel approach to synthesis by analogy to proof search for bidirectional
type checking [Pierce and Turner 2000]. We refer the reader to their paper for a comprehensive
account of their ideas; we limit our discussion to the most important technical differences.

Constraint Solving Σ ; ∆ ; Solve(K) ⇝ F ; ∆′
[Solve-Done]

Σ ; ∆ ; Solve(− ; F) ⇝ F ; ∆

[Solve-One]

h ∈ dom(U) ∆(h) = (Γ ⊢ • : T) U (h) = X F ; (Γ ⊢ •h : T |= X) ⇝ fill K ; ∆′
Σ ; ∆ ++ ∆′ ;Merge((U \h ; F) ⊕ K) ▷ K ′ Σ ; ∆ ++ ∆′ ; Solve(K ′) ⇝ F ′ ; ∆′′

Σ ; ∆ ; Solve(U ; F) ⇝ F ′ ; ∆′′

Type-and-Example-Directed Hole Synthesis Σ ; ∆ ; F ; (Γ ⊢ •h : T |= X) ⇝ fill K ; ∆′

[Guess-and-Check]

(Γ ⊢ • : T) ⇝ guess e (F , h 7→ e) ⊢ e ⇌ X ⊣ K

F ; (Γ ⊢ •h : T |= X) ⇝ fill (− ; h 7→ e) ⊕ K ; −

[Defer]

X = (E1 ⊢ • |= ⊤), . . ., (En ⊢ • |= ⊤) n > 0
F ; (Γ ⊢ •h : T |= X) ⇝ fill (− ; h 7→ ??h) ; −

[Refine, Branch]

F ; (Γ ⊢ • : X |= T) ⇝ { refine,branch} e ⊣ { (Γi ⊢ •hi : Ti |= Xi) }
i ∈[n] ; K

F ; (Γ ⊢ •h : T |= X) ⇝ fill ((h1 7→ X1 , . . ., hn 7→ Xn) ; h 7→ e) ⊕ K ; {hi 7→ (Γi ⊢ • : Ti) } i ∈[n]

Fig. 8. Constraint Solving with Guessing, Refinement, and Branching. We at once define Refine and Branch

by differentiating the two by color; the signature of the branching judgement extends that of the refinement

judgement with an additional input F and an additional output K .

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

Program Sketching with Live Bidirectional Evaluation 109:17

Besides modifications to notation and organization, the primary differences of our formulation
are that hole synthesis: (i) refers to the filling F from previous synthesis tasks completed by Solve;
(ii) may generate example constraints over other holes in the program; (iii) may fill other holes in
the program besides the goal ??h ; and (iv) includes a rule, Defer, to “fill” the hole with ??h when
all examples are top—these constraints are not imposed directly from program assertions, but are
created internally by unevaluation.

Type-Directed Guessing (in §A.6) Σ ; (Γ ⊢ • : T) ⇝ guess e

Type-and-Example-Directed Refinement Σ ; ∆ ; (Γ ⊢ • : T |= X) ⇝ refine e ⊣ G

Filter (X) = { (E ⊢ • |= ex) ∈ X | ex , ⊤ }

[Refine-Unit]

Filter (X) = (E1 ⊢ • |= ()) , . . . , (En ⊢ • |= ())

(Γ ⊢ • : () |= X) ⇝ refine () ⊣ −

[Refine-Pair]

Filter (X) = { (Ej ⊢ • |= (ex j1 , ex j2)) }
j ∈[m]

New Goals, i = 1, 2

hi fresh Gi = (Γ ⊢ •hi : Ti |= Xi) Xi = (E1 ⊢ • |= ex1i) , . . . , (Em ⊢ • |= exmi)

(Γ ⊢ • : (T1 , T2) |= X) ⇝ refine (??h1 , ??h2) ⊣ G1, G2

[Refine-Ctor]

Filter (X) = { (Ej ⊢ • |= C ex j) }
j ∈[m] Σ(D) (C) = TNew Goal

h1 fresh G1 = (Γ ⊢ •h1 : T |= X1) X1 = (E1 ⊢ • |= ex1) , . . . , (Em ⊢ • |= exm)

(Γ ⊢ • : D |= X) ⇝ refine C ??h1 ⊣ G1

[Refine-Fix]

Filter (X) = (E1 ⊢ • |= {v1 → ex1}), . . ., (Em ⊢ • |= {vm → exm})New Goal

h1 fresh e = fix f (λx .??h1) G1 = (Γ, f :T1→T2, x :T1 ⊢ •h1 : T2 |= X1)
X1 = (E1, f 7→ [E1]e, x 7→ ⌊v1⌋ ⊢ • |= ex1), . . ., (Em , f 7→ [Em]e, x 7→ ⌊vm⌋ ⊢ • |= exm)

(Γ ⊢ • : T1→T2 |= X) ⇝ refine e ⊣ G1

Type-and-Example-Directed Branching Σ ; ∆ ; F ; (Γ ⊢ • : T |= X) ⇝ branch e ⊣ G ; K

[Branch-Case]

Σ(D) = {Ci Ti }
i ∈[n] (Γ ⊢ • : D) ⇝ guess e Filter (X) = { (Ej ⊢ • |= ex j) }

j ∈[m]

{ Ej ⊢ e ⇒ r j Cα j ∈ {C1 , . . . , Cn } F ⊢ e ⇌ (Ej ⊢ • |= Cα j ⊤) ⊣ Kj }
j ∈[m]

New Goals, i = 1, 2, . . . , n

hi fresh Gi = (Γ, xi :Ti ⊢ •hi : T |= Xi)
Xi = { (Ej , xi 7→ ⟦Ci

−1 r j ⟧ ⊢ • |= ex j) | j ∈ [m] ∧Cα j = Ci }

F ; (Γ ⊢ • : T |= X) ⇝ branch case e of {Ci xi → ??hi }
i ∈[n] ⊣ G1, . . ., Gn ; K1 ⊕ . . . ⊕ Km

Fig. 9. Guessing, Refinement, and Branching.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

109:18 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

Guessing-and-Checking. The Guess-and-Check rule uses the procedure (Γ ⊢ • : T) ⇝ guess e
in Figure 9 to guess a well-typed expression without holes. Guessing amounts to straightforward
inversion of expression type checking rules; the appendix (§A.6) provides the full definition.

The candidate expression e is checked for consistency against the examples X using live bidirec-
tional example checking (cf. §3.5 and Figure 6). Whereas example checking inMyth produces a
Boolean outcome, example checking in Core Smyth may assume constraints K over other holes.
The constraints that arise from (live bidirectional) example checking are the source of the afore-
mentioned differences (i), (ii), and (iii) compared to theMyth hole synthesis procedure.

Refinement. The Refine rule refers to the refinement procedure (Γ ⊢ • : T |= X) ⇝ refine e ⊣ G
in Figure 9 to quickly synthesize a partial solution e which refers to freshly created holes ??h1
through ??hn described by subgoals G. Using these results, Refine generates output constraints
comprising the partial solution h 7→ e and the new unfilled holes h1 7→ X1 through hn 7→ Xn . For
the purposes of metatheory, the typings for fresh holes are recorded in the hole type context ∆′.

Each refinement rule first uses Filter (X) to remove top examples and then inspects the structure
of the remaining examples. For unit-type goals, Refine-Unit simply synthesizes the unit expres-
sion (). For pair-type goals, Refine-Pair synthesizes the partial solution (??h1 , ??h2), creating
two subgoals from the type and examples of each component. The Refine-Ctor rule for datatype
goals D works similarly when all of the examples share the same constructor C .
The refinement rules described so far are essentially the same as proposed by Osera and

Zdancewic [2015]. But rather than explicitly naming subgoals G and “sending” them to a top-
level Solve procedure, the refinement rules inMyth recursively call hole synthesis to solve subgoals
immediately. In Core Smyth, we separate the creation of subgoals from solving in order to facilitate
the “global” reasoning necessary to synthesize recursive function literals without trace-complete
examples, discussed next.
For function-type goals, the Refine-Fix rule synthesizes the function sketch fix f (λx .??h1).

The environments inside example constraints X1 for the function body ??h1 bind f to this function
sketch (closed by the appropriate environments Ei). As a result, any recursive calls to f will evaluate
to closures of ??h1 (to be constrained by live bidirectional example checking), thus avoiding the
need for trace-complete examples.1

Branching. Lastly, the Branch rule refers to the procedure F ; (Γ ⊢ • : T |= X) ⇝ branch e ⊣ G ; K
in Figure 9 to guess an expression on which to branch. (As mentioned, the signature of the branching
procedure extends refinement with the additional input F and additional output K .)
The single rule, Branch-Case, chooses an arbitrary expression e (of arbitrary datatype D) to

scrutinize, synthesizing the sketch case e of {Ci xi → ??hi }
i ∈[n] with subgoals hi for each of the

the constructors C1 through Cn for the datatype D. The main task is to distribute the examples X
onto appropriate subgoals. To determine which subgoal should be responsible for the jth example,
the guessed scrutinee e is evaluated under the example constraint environment Ej to a result r j .

Consider the particular scenario in which r j has determinate formCi r
′
j , for some constructorCi .

TheCi branch will surely be taken under environment Ej , so the constraint (Ej , xi 7→ r ′j ⊢ • |= ex j)
is added to the examplesXi for the subgoal of that branch. If r j is indeterminate, however, we cannot
be sure “which way” the scrutinee will evaluate and thus which branch to “assign” the subgoal.

1 For the constraint environments in K4.1 and K4.2 in §2.1, the refinement rule for recursive functions in Myth would
bind plus to trace-complete examples {0 1→ 1 , 2 0→ 2 , 1 2 → 3 , . . .}. In addition to usability obstacles of trace-
completeness, their theory is complicated by a non-standard value compatibility notion [Osera and Zdancewic 2015, §3.3]
to approximate value equality because input-output examples serve as a “lookup table” to resolve recursive calls.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

Program Sketching with Live Bidirectional Evaluation 109:19

Therefore, in general, Branch-Case non-deterministically chooses a branch α j ∈ [n] for each
example j and relies on unevaluation to determine whether r j can satisfy Cα j ⊤ (assuming some
constraints Kj). The constructor simplification operation ⟦r⟧ = (if r = Ci

−1 (Ci r
′) then r ′ else r)

helps streamline the determinate and indeterminate scenarios in the definition of Branch-Case.
This flexibility—analogous to U-Case (cf. Figure 6)—is needed to synthesize several inside-out
recursive functions (without trace-complete examples), as described in the next section.
Theorem (Soundness of Synthesis).

If Σ ; ∆ ⊢ p : T and p ⇒ r ; A and Simplify (A) ▷ K and Σ ; ∆ ; Solve(K) ⇝ F ; ∆′,
then Σ ⊢ F : ∆′ and F |= A.

5 IMPLEMENTATION

We implemented Smyth (https://github.com/UChicago-PL/smyth) in approximately 6,500 lines
of OCaml code, not including the front-end to Smyth nor the experimental setup. Compared
to the core language in Figure 3, our implementation supports Haskell/Elm-like syntax, n-ary
tuples, let-bindings, let-bound recursive function definitions, and user-defined datatypes. Our
implementation also supports higher-order function examples (used in the experiments below) and
polymorphism (not used below, but described in §C) following Osera and Zdancewic [2015] and
Osera [2015], respectively; these features are orthogonal to our contributions.

Our prototype lacks many of the syntactic conveniences used in code listings in §1 and §2 such as
nested pattern matching, infix list operators (::) and (++), and type inference for holes. Following
Myth, we synthesize only structurally decreasing recursive functions, and we further require
that the first argument to a recursive call be structurally decreasing. These are not fundamental
challenges, but they result in slightly different code than shown in the paper.

Optimizations. We adopt two primary optimizations fromMyth. The first is to guess and cache
only proof relevant [Anderson et al. 1992] elimination forms—variables x or calls f e1 · · · en to
variable-bound functions. The second is a staging approach to incrementally increase the maximum
branching depth, the size of terms to guess as scrutinees, and the size of terms to guess in other
goal positions. We generally adopt the same parameters used by Osera [2015], but with additional
intermediate stages to favor small solutions. Furthermore, our parameters are “sketch-sensitive”:
case expressions in the sketch, if any, count against the branching depth budget.

To rein in the non-determinism of case unevaluation, our implementation is configured, first, to
guess only variables and projections for theGuesses(∆, Σ, r) procedure in the “eager”U-Case-Guess
rule and, second, to bound the number of nested uses of the “lazy” U-Case rule.

6 EXPERIMENTS

We consider several questions regarding how our techniques—which address Limitations A and B
of prior evaluator-based synthesis (§1)—translate into practical gains for users of synthesis tools.
• Compared to prior evaluator-based synthesizers, does Smyth reduce the number of examples
required to synthesize top-level, single-hole tasks?
• Unlike prior evaluator-based synthesizers, does Smyth support sketching tasks? Is the total
specification burden less than when using examples alone?
• Can state-of-the-art logic-based synthesizers complete all tasks that Smyth can?

To shed light on these questions, we designed four experiments based on the benchmarks used to
evaluateMyth. Expert examples are the de facto method for evaluating the raw expressiveness of
synthesis techniques (e.g. [Albarghouthi et al. 2013; Feser et al. 2015; Frankle et al. 2016; Osera and
Zdancewic 2015]). A notable exception is how Feser et al. [2015] evaluate the robustness of λ2 using

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

https://github.com/UChicago-PL/smyth

109:20 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

randomly-generated examples as a “‘lower bound’ on a human user ... who has no prior exposure
to program synthesis tools.” Inspired by these approaches, our experiments consider both “expert”
and “random” users to investigate Smyth’s expressiveness and robustness.

We ran each of the Smyth experiments on a Mid 2012 MacBook Pro with a 2.5 GHz Intel Core i5
CPU and 16 GB of RAM. We describe each experimental setup and summarize the results (Figure 10)
in turn, followed by a discussion including limitations.

6.1 Experiment 1: No Sketches + Trace-Complete Examples

As a baseline experiment, we first run Smyth on each Myth benchmark—a top-level, single-hole
task specified with the “full” set of trace-complete expert examples reported by Osera [2015].
Figure 10 (column 1) indicates that Smyth passes 38 of the same 43 benchmarks (without sketches)
in a similar amount of time (cf. [Osera 2015]).

Of the fiveMyth benchmarks that failed in Experiment 1, Smyth produced an over-specialized
solution for one (list_even_parity) and did not terminate within 120 seconds for the remaining
four (list_compress, tree_binsert, tree_nodes_at_level, and tree_postorder). The over-
specialized term Smyth synthesized for list_even_parity was smaller (AST size 14) than the
desired term (size 16), which was correctly synthesized byMyth. (Smyth synthesizes and ranks the
desired term second.) It is unclear whyMyth did not find and return the smaller solution, which is
consistent with the examples provided; nevertheless, we classify this task as a failure. The four
benchmarks for which Smyth did not terminate are discussed further in §6.5.

Our validation process—which checks synthesized terms against a random set of examples from
a reference implementation—revealed that the solution for list_filter reported by Osera [2015,
p.171] is incorrect. As a workaround, we added one more (trace-complete) example to the reported
set of 8 examples and observed that Smyth synthesized a correct solution. We treat these 9 examples
(marked with an asterisk in Figure 10) as the set ofMyth expert examples for this task.

6.2 Experiment 2: No Sketches + Non-Trace-Complete Examples

Second, we measured how many examples—both expert and random—Smyth requires to synthesize
theMyth tasks when not limited to the trace-complete examples from Experiment 1.

Experiment 2a: No Sketches + Expert Examples. To construct expert examples for Smyth on
each of the 38 benchmarks it can synthesize, we manually removed sets of examples from the full
test suite until Smyth no longer synthesized a correct solution, i.e. a solution that conforms to a
reference implementation of the desired solution. As such, there are no corresponding tasks for the
five benchmarks that failed Experiment 1, as indicated by “•1” in Figure 10.
Of the 38 benchmarks, Figure 10 (column 2a) shows that Smyth required fewer examples to

synthesize all but four benchmarks (bool_neg, bool_xor, list_length, and nat_max), requiring
on average 61% of the number of expert examples required byMyth, with similar running times as
in the baseline configuration (timing data not shown). To account for the 5 missing benchmarks, if
we were to assume that Smyth were extended with the Myth-style trace-complete approach to
synthesizing recursive functions as a backup synthesis procedure and that the remaining bench-
marks would require all of the expert examples, then Smyth would require on average 66% of the
number of examples for the entire benchmark suite.

Experiment 2b: No Sketches + Random Examples. To evaluate the robustness of Myth, we im-
plemented a random example generator. For simplicity, our random generator does not support func-
tion types; therefore, we did not consider the 4 higher-order function benchmarks (list_filter,
list_fold, list_map, and tree_map; these are marked “•2” in Figure 10). We also did not consider
the four benchmarks that timed out in Experiment 1.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

Program Sketching with Live Bidirectional Evaluation 109:21

Smyth Leon Synqid

Experiment 1 2a 2b 3a 3b 4 4

Sketch / Objective None / Top-1 None / Top-1 Base Case / Top-1-R
Name Expert Time Expert Random Expert Random 1 2a 1 2a

(50%, 90%) (50%, 90%)

bool_band 4 0.004 3 (75%) (4,4) •3 •3 ✓ ✓ ✓ ✓

bool_bor 4 0.003 3 (75%) (4,4) •3 •3 ✓ ✓ ✓ ✓

bool_impl 4 0.004 3 (75%) (4,4) •3 •3 ✓ ✓ ✓ ✓

bool_neg 2 0.001 2 (100%) (2,2) •3 •3 ✓ •4 ✓ •4

bool_xor 4 0.009 4 (100%) (4,4) •3 •3 ✓ •4 ✓ •4

list_append 6 0.008 4 (67%) (3,4) 1+1 (33%) (1+3,1+4) ✓ ✗1 ✓ ✗1

list_compress 13 timeout •1 •1 •1 •1 •1 •1 •1 •1

list_concat 6 0.010 3 (50%) (2,4) incorrect (1+3,1+5) ✓ ✗1 ✗1 ✗1

list_drop 11 0.092 5 (45%) (6,9) 1+2 (27%) (1+7,↓) ✓ ✓ ✓ ✗0

list_even_parity 7 overspec •1 (—,—) •1 (—,—) •1 •1 •1 •1

list_filter 9* 0.144 5 (56%) •2 1+4 (56%) •2 ✗2 ✗2 ✗2 ✗2

list_fold 9 0.838 3 (33%) •2 1+3 (44%) •2 ✗2 ✗2 ✗2 ✗2

list_hd 3 0.003 2 (67%) (2,3) •3 •3 ✓ ✓ ✓ ✓

list_inc 4 0.018 2 (50%) (2,2) •3 •3 ✓ ✓ ✗0 ✗1

list_last 6 0.007 4 (67%) (5,9) 1+2 (50%) (1+5,1+10) ✓ ✓ ✓ ✗0

list_length 3 0.002 3 (100%) (3,4) 1+1 (67%) (1+2,1+2) ✓ •4 ✓ •4

list_map 8 0.049 4 (50%) •2 1+2 (38%) •2 ✗2 ✗2 ✗2 ✗2

list_nth 13 0.124 5 (38%) (7,14) 1+2 (23%) (1+7,1+15) ✓ ✓ ✓ ✗0

list_pairwise_swap 7 0.634 5 (71%) timeout overspec timeout ✓ ✓ ✗0 ✗0

list_rev_append 5 0.107 3 (60%) (5,8) 1+2 (60%) (1+3,1+4) ✓ ✓ ✗0 ✗0

list_rev_fold 5 0.035 2 (40%) (2,4) •3 •3 ✓ ✓ ✗0 ✗0

list_rev_snoc 5 0.010 3 (60%) (3,6) 1+1 (40%) (1+2,1+4) ✓ ✓ ✗1 ✗0

list_rev_tailcall 8 0.008 3 (38%) (3,4) 1+1 (25%) (1+3,1+5) ✗1 ✓ ✓ ✗1

list_snoc 8 0.012 3 (38%) (3,4) 1+1 (25%) (1+3,1+4) ✓ ✓ ✓ ✗0

list_sort_sorted_insert 7 0.015 3 (43%) (3,6) 1+1 (29%) (1+2,1+4) ✓ ✓ ✗0 ✗1

list_sorted_insert 12 2.902 7 (58%) timeout 1+7 (67%) timeout ✗0 ✗0 ✗0 ✗0

list_stutter 3 0.003 2 (67%) (3,3) 1+1 (67%) (1+2,1+3) ✓ ✓ ✓ ✗1

list_sum 3 0.029 2 (67%) (2,2) •3 •3 ✓ ✗1 ✗0 ✗0

list_take 12 0.065 5 (42%) (6,9) 1+3 (33%) (1+7,1+16) ✓ ✓ ✓ ✗0

list_tl 3 0.002 2 (67%) (2,3) •3 •3 ✓ ✓ ✓ ✓

nat_add 9 0.006 4 (44%) (5,6) 1+1 (22%) (1+3,1+4) ✓ ✓ ✓ ✗1

nat_iseven 4 0.003 3 (75%) (4,4) 1+2 (75%) (1+3,1+4) ✓ ✓ ✓ ✗0

nat_max 9 0.041 9 (100%) (8,12) 1+4 (56%) (1+8,1+12) ✗1 •4 ✓ •4

nat_pred 3 0.001 2 (67%) (2,3) •3 •3 ✓ ✓ ✓ ✓

tree_binsert 20 timeout •1 •1 •1 •1 •1 •1 •1 •1

tree_collect_leaves 6 0.074 3 (50%) (3,4)t=3 1+2 (50%) (1+3,1+3) ✓ ✓ ✗1 ✗1

tree_count_leaves 7 2.660 3 (43%) timeout 1+1 (29%) timeout ✓ ✓ ✗0 ✗0

tree_count_nodes 6 0.351 3 (50%) (4,↓)t=10 1+2 (50%) (1+3,1+5)t=3 ✓ ✓ ✗1 ✗0

tree_inorder 5 0.123 4 (80%) (3,4) 1+2 (60%) (1+3,1+4) ✓ ✓ ✗1 ✗0

tree_map 7 0.061 4 (57%) •2 1+3 (57%) •2 ✗2 ✗2 ✗2 ✗2

tree_nodes_at_level 11 timeout •1 •1 •1 •1 •1 •1 •1 •1

tree_postorder 20 timeout •1 •1 •1 •1 •1 •1 •1 •1

tree_preorder 5 0.153 3 (60%) (3,4)t=3 1+2 (60%) (1+3,1+3) ✓ ✓ ✗1 ✗1

Averages 61%* 46%

Fig. 10. Experiments.

Top-1(-R): 1st (recursive) solution valid. Time: Average of 10 runs, in seconds.

2a Average: 61% for 38 non-blank rows. (*Upper bound: 66% for all 43 rows.)

3a Average: 46% for 25 non-blank, non-error rows.

For each of the remaining 35 tasks, we generatedN =50 sets of k random input examples (where k
ranges from 1 to a reasonable upper bound depending on the benchmark) and used a task reference
implementation to compute the corresponding outputs, thus producing N sets of input-output
example sets of size k for each k . We fixed relatively small upper bounds on the AST sizes of the
input examples generated to ensure the examples could reasonably be provided by a human, and,

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

109:22 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

rather than sampling inputs uniformly at random—in which case, e.g., a list of length 3 would
be twice as likely as a list of length 2—we first sampled different shapes for the data structures
(Lists and Trees) uniformly at random, then filled in base values at the AST leaves uniformly
at random. Furthermore, we required that each set of examples (regardless of size) contains the
unique “minimal input” to the function, that is, the input that consists of the minimal value for
each type of each argument of the function, where, for Nats, the minimal value is 0, for Lists, it is
the empty list, and for Trees, it is a leaf.

Entries in Figure 10 (column 2b) show two values: the minimum k for which Smyth synthesized
the desired solutionwithin a t =1 second timeout for 50% of theN sets of examples, and theminimum
suchk to achieve 90% success; the appendix (§B) includes graphs for each benchmark. Several entries
require explanation. Two benchmarks are marked with a superscript “t =3” (tree_collect_leaves
and tree_preorder) and one benchmark is marked with a superscript “t =10” (tree_count_nodes)
to indicate they they required a longer timeout. For tree_count_nodes, we do not report the
minimum k value for 90% (marked “↓”), because the percentage dips below for subsequent values
of k . One benchmark is marked “(—,—)” (list_even_parity) and did not achieve a 50% success for
reasonably-small values of k . For this benchmark, we hypothesize that our simply-typed approach
cannot glean enough information from its input type, BooleanList.

median k ′p max k ′p
p = 50% 0 2
p = 90% 1 9

To analyze these k-values, we consider the difference
k ′p := kp − kexpert for each benchmark that was successfully syn-
thesized in this experiment, where p is the required success rate
(either 50% or 90%) and kexpert is the number of Smyth expert examples for Experiment 2a. The value
k ′p thus represents how many more examples are needed, compared to the expert set, to achieve
success p% of the time. The adjacent table summarizes the distribution of k ′p for Experiment 2b;
additional statistics and corresponding histograms can be found in the appendix (§B).

6.3 Experiment 3: Base Case Sketching Strategy

Experiments 1 and 2 considered tasks without sketches from the user. As a third experiment, we
systematically converted the Myth benchmarks into a suite of small sketching tasks by employing
a simple base case sketch strategy—performing case analysis on the correct argument of the function,
filling in the base case properly, and leaving a hole in the recursive branch. Of the 38 tasks, 27 are
recursive and thus subject to this strategy. The remaining, non-recursive tasks are marked “•3”.
In Figure 10 and the following, we write 1 + n to denote a specification with n examples in

addition to the base case sketch; our accounting treats the specification burden of the base case
sketching strategy as equivalent to 1 example. (We could report AST sizes of sketches and examples,
but even these would be just a rough proxy for the “complexity” of a specification.)

Experiment 3a: Base Case Sketches + Expert Examples. Analogous to Experiment 2a, we manu-
ally removed sets of examples from the full trace-complete expert examples until Smyth no longer
successfully completed the task. For this experiment, however, because the base case strategy
pertains to recursive functions, we considered a task successful if the smallest recursive solution
was correct, rather than simply the smallest solution overall. Figure 10 (column 3a) shows the
results of this experiment.
For 25 of these 27 tasks that succeeded, Smyth on average required smaller total specifications

with base case sketches than with no sketches. On average, specifications were 46% the size of the
full trace-complete examples—compared to 57% without a sketch (average, not shown, of 25 rows
in the Experiment 2a column). Given the sketches, the average number of examples required was
2.12; list_sorted_insert required 7, while the rest required between 1 and 4.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

Program Sketching with Live Bidirectional Evaluation 109:23

Three tasks that succeeded (list_filter, list_pairwise_swap, and list_sorted_insert)
required sketch-sensitive staging parameters (§5). This is because Smyth’s staging parameters
increase branching depth before scrutinee size, and a relatively large scrutinee is needed for the
desired solution; compared to when no sketch is provided, sketch-insensitive staging parameters
effectively “penalize” the sketch for having introduced a case. Before we accounted for branching
depth in the user-provided sketch, Smyth synthesized overspecialized solutions for these three
tasks even with the full set ofMyth expert examples.

Two of the 27 tasks failed this experiment. For list_even_parity, Smyth synthesized an over-
specialized solution (even with sketch-sensitive staging parameters). For list_concat, Smyth
actually synthesized “list_rev_concat,” which appends together a list of lists in reverse order.
The Myth expert examples are not sufficient to distinguish these two functions; Smyth returns
both, but they have the same AST size and the desired solution is arbitrarily ranked second.

median k ′p max k ′p
p = 50% 2 6
p = 90% 4 14

Experiment 3b: Base Case Sketches + Random Examples.

Analogous to Experiment 2b, we generated random input-output
examples for the benchmarks, this time in addition to providing
the base case sketches. We again consider the difference k ′p := kp − kexpert for each benchmark that
was successfully synthesized in this experiment, where kexpert is now the number of Smyth expert
examples for Experiment 3a rather than for Experiment 2a. The adjacent table summarizes the
distribution of k ′p for Experiment 3b; additional data can be found in the appendix (§B).

6.4 Experiment 4: Programming-by-Example in Leon and Synquid

The previous experiments evaluate the improvements in Smyth compared to prior evaluator-based
techniques. In our final experiment, we run several of our “programming-by-example” tasks on
Leon and Synqid. The goal is to understand whether—from the perspective of a user who wishes
to specify tasks through examples—Leon or Synqid are strictly more powerful than Smyth. That
is, can Leon or Synqid solve every task that Smyth can?
We systematically generated Scala and Haskell versions of our benchmarks to test Leon and

Synqid, respectively. Because this experiment is designed to answer a very simple question, we
did not develop a thorough experimental environment with random examples or multiple trials.
Instead, we used web interfaces to Leon and Synqid to test benchmarks.2
First, we tested the small sketching tasks from §1 and §2. As described in §1, both tools fail to

complete the stutter_n task. We also found that Synqid fails to complete the four sketching
tasks from Figure 2 and that Leon successfully completes max and odd but fails on minus and mult.
We then tested the tools for the top-level, single-hole tasks used in Experiments 1 and 2a with

trace-complete and non-trace-complete expert examples, respectively. Besides the function to
synthesize, we used simple types (without examples or precise logical predicates) for all functions
in the context. Four benchmarks had the same number of expert examples in Experiment 2a as
they did in Experiment 1 and thus do not have corresponding tasks in Experiment 4 (marked “•4”).
Figure 10 (columns 4) show the results. Leon and Synqid successfully completed many tasks

(marked✓), but failed several tasks for a variety of reasons: terminating without producing solutions
or not terminatingwithin a timeout (✗0); returning over-specialized solutions (✗1); and not being able
to directly express higher-order function examples (✗2). As expected, Synqid failed to synthesize
recursive functions without inductive (i.e. trace-complete) specifications (column 4, 2a).3

2 https://leon.epfl.ch/ and http://comcom.csail.mit.edu/comcom/#Synquid. Accessed February 2020 and May 2020.
3 Earlier results from this experiment revealed an implementation issue in Synqid involving the axiomatization of
recursive datatypes in the underlying logic. This issue—which prevented the desired solutions for many benchmarks from
typechecking, even when given trace-complete examples—has since been fixed [Polikarpova 2020].

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

https://leon.epfl.ch/
http://comcom.csail.mit.edu/comcom/#Synquid

109:24 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

These results are not entirely surprising, as the underlying techniques are not necessarily tailored
to the structure of examples encoded as conjunctions-of-implications. This suggests opportunities
for further improvements to both evaluator- and logic-based techniques, for instance, by integrating
live bidirectional evaluation into more fine-grained logic-based techniques.
As a final note, this experiment was not intended to evaluate whether Smyth is “better” than

the logic-based tools. Indeed, many tasks involving complex invariants are beyond the reach of
evaluator-based techniques, Smyth included. Polikarpova et al. [2016, §4.3] provide some empirical
comparison between example-based and logic-based specifications on several common benchmarks.

6.5 Limitations and Discussion

Failing Benchmarks. One major optimization inMyth that we have not implemented is to cache
solutions F—which correspond to Myth’s “refinement trees”—across branches of the search. This
optimization does not directly carry over to our setting because, unlike inMyth, synthesized terms
in Smyth may introduce different, conflicting assumptions across different branches of search.
Thus, our first hypothesis is that suitably extending caching to our setting could help synthesize
the remaining tasks (although the difficulty of this task is unclear).
Of the five benchmarks not successfully synthesized in our implementation,Myth finds four

solutions with inside-out recursion [Osera 2015], which pattern match on a recursive call to the
function being synthesized. Inside-out solutions are smaller than more “natural” ones, and some-
times they are the only solutions to tasks in Myth and Smyth because only elimination forms are
enumerated and let-bindings are not synthesized [Osera 2015]. Although Smyth does synthesize
an inside-out solution for one benchmark (list_pairwise_swap), inside-out recursion relies heav-
ily on the non-determinism of Branch-Case and U-Case. Accordingly, our second hypothesis is
that additional tuning for these sources of non-determinism could help synthesize the necessary
inside-out recursion.

Scalability. Each benchmark in our experiments included the minimal context—as defined in the
Myth benchmarks—required to synthesize the desired solution. In addition to minimal contexts,
the Myth paper also reported results in the presence of a slightly larger context and ran into
scalability issues on some benchmarks. Though we did not run these versions of the benchmarks,
we inherit any scalability issues of the prior techniques.

Moreover, our approach introduces new sources of non-determinism. To scale to much larger
programs with complex control flow, static reasoning (interleaved with concrete evaluation) could
be used to prune unsatisfiable or heuristically “difficult” sets of example constraints. Orthogonal
techniques for scaling to large contexts with additional components [Feng et al. 2017b; Guo et al.
2020; Gvero et al. 2013] might also be incorporated into our approach in future work.

Assertions. Our formulation and thus our benchmarks support only top-level asserts. To allow
asserts in arbitrary expressions (as needed for larger andmore realistic sketching tasks), evaluation
and resumption could be extended to generate assertions A as a side-effect, to be translated by
Simplify into constraints for synthesis. We expect the algorithmic changes to be straightforward,
but the extended definition of assertion satisfaction along with the corresponding correctness
properties and proofs are more delicate; we leave this task for future work.

Polymorphism. Of the 38 tasks that Smyth successfully synthesized in Experiment 1, 23 can be
specified with a polymorphic type signature rather than a monomorphic one. We re-ran Experi-
ments 2 and 3 with polymorphic type signatures, which are supported in our implementation but
are not included in our formal development. As described in the appendix (§C), polymorphic type
signatures lead to a modest reduction in the number of examples needed for synthesis.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

Program Sketching with Live Bidirectional Evaluation 109:25

7 RELATEDWORK

Our work generalizes the theory of evaluator-based synthesis techniques to (a) eliminate the need
for trace-complete examples and (b) to support sketching—addressing Limitations A and B from §1.
We build directly on the work of Osera and Zdancewic [2015], so we discussed Myth throughout
the paper. To conclude, we discuss several additional directions of related work.

7.1 Live Evaluation and Bidirectional Evaluation

The key technical mechanism underlying our approach is live bidirectional evaluation, the com-
bination of live evaluation and live unevaluation. We choose the term “live” to describe partial
evaluation of sketches, following terminology of Omar et al. [2019]. Future work must address
important usability and scalability questions to further develop and deploy our techniques in
interactive, live programming environments [Kubelka et al. 2018; Tanimoto 2013].

Live Evaluation (Hazelnut Live). We adapt the technique for partially evaluating sketches from
Hazelnut Live [Omar et al. 2019]. In contrast to solver-based and symbolic execution techniques
for partially evaluating programs with holes (e.g. [Bornholt and Torlak 2018; Feng et al. 2017a; Wang
et al. 2020]), live evaluation is a form of concrete evaluation, adapting ideas from contextual modal
type theory [Nanevski et al. 2008]. Omar et al. [2019, §5] detail the relationship to related work
on partial evaluation. Hazelnut Live does not offer any form of synthesis; their “fill-and-resume”
feature refers to ordinary program edits by the user.
We note some technical differences in our formulation. We choose a natural semantics pre-

sentation [Kahn 1987] for Core Smyth rather than one based on substitution. Whereas their fill-
and-resume mechanism is defined using contextual substitution, our formulation instead defines
evaluation resumption.Hazelnut Live also includes hole types to support gradual typing [Siek and
Taha 2006; Siek et al. 2015], a language feature orthogonal to the (expression) synthesis motivations
for our work. Finally, Omar et al. [2019] present a bidirectional type system [Chlipala et al. 2005;
Pierce and Turner 2000] that, given type-annotated functions, computes hole environments ∆; the
same approach can be employed in our setting without complication.

Bidirectional Evaluation (Sketch-n-Sketch). Several proposals define unevaluators, or back-
ward evaluators, that allow changes to the output value of an expression (without holes) to affect
changes to the expression [Matsuda and Wang 2018; Mayer et al. 2018; Perera et al. 2012]. Though
related by analogy and terminology, our novel live unevaluation mechanism shares essentially
no technical overlap with the above techniques. The prior backward evaluators essentially only
modify constant literals of base type—which can be thought of as “non-empty” holes that are subject
to replacement—at the leaves of an existing program, whereas our live unevaluator propagates
example constraints to holes of arbitrary type and in arbitrary position.

An environment-style semantics is purposely chosen for each of the above unevaluators, because
value environments provide a sufficient mechanism for tracing value provenance during evaluation.
In contrast, our unevaluator could just as easily be formulated with substitution; in either style,
hole expressions are labeled with unique identifiers, which provide the necessary information to
generate example constraints.

7.2 Program Synthesis

We conclude with a broader discussion of the evaluator- and logic-based synthesis techniques
that we introduced in §1. We use the term “functional programming”—in contrast to “domain-
specific”—to describe languages in which users (and synthesizers) write unrestricted programs in a
richly-typed functional language (i.e. with directly recursive functions on algebraic datatypes).

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

109:26 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

7.2.1 Evaluator-Based Synthesis Techniques. We chose this term in §1 to describe synthesis al-
gorithms in which the core search strategy uses concrete evaluation to “check” candidate terms,
typically against input-output example specifications.

Programming-by-Example (PBE) for Domain-Specific Languages. Programming-by-example
techniques have been developed for numerous domain-specific applications, including string
transformations [Gulwani 2011] (including bidirectional ones [Miltner et al. 2019]), shell script-
ing [Gulwani et al. 2015], web scraping [Chasins et al. 2018], parallel data processing [Smith and
Albarghouthi 2016], and generating vector graphics [Hempel et al. 2019]. See Gulwani et al. [2017]
for a recent survey of developments. These approaches generally synthesize entire programs. To
allow experts to provide partial implementations, it should be possible to formulate notions of live
bidirectional evaluation of these domain-specific techniques.
λ2 [Feser et al. 2015] synthesizes functions in a (first-order) functional programming language

(with higher-order components). λ2 enumerates open hypotheses (i.e. sketches) involving calls to a
fixed set of primitive List and Tree combinators (e.g. filter and map), and relies on axioms for
deductive reasoning to convert examples for a goal into examples for the subgoals. This process is
akin to refinement inMyth, and also helps prune unsatisfiable example constraints (e.g. if a map
hypothesis requires input and output lists of different lengths).
However, function examples are not used used to “refine” the search; their deduction rule for

general recursion essentially falls back on raw term enumeration, and their checking routine
operates only on closed hypotheses (without holes). In other words, examples need not be trace-
complete because they are not used to help synthesize recursive function literals. Although the
language supported by λ2 nominally includes direct recursive function literals [Feser et al. 2015,
§3], in practice, their implementation synthesizes solutions only by composing the primitive data
structure combinators [Feser 2016, 2020], and furthermore does not introduce non-trivial matches
on inductive data [Feser 2020]. λ2 can synthesize a variety of functional programming tasks, similar
to theMyth and Smyth benchmarks, including with randomly-generated examples (cf. §6) and
with significantly larger contexts than used in the Myth and Smyth experiments. But because
λ2 does not search for directly recursive functions, it is fundamentally a more domain-specific
technique thanMyth and Smyth.
For the domain of table transformations, Morpheus extends the approach of λ2 with (i) SMT-

based reasoning to perform more powerful deduction and (ii) partial evaluation of sketches.
Viser [Wang et al. 2020] further improves upon the techniques inMorpheus, by providing backward
reasoning about program sketches using symbolic reasoning over logical and subset constraints.
(Viser also integrates a domain-specific language for visualization, resulting in a visualization-by-
example tool.) Sketches in bothMorpheus and Viser are drawn from a first-order, domain-specific
language of table transformations. In contrast, Smyth performs bidirectional reasoning about
program sketches (a) in a general-purpose richly-typed functional programming language (as op-
posed to domain-specific table transformation languages), (b) using techniques based on concrete
evaluation (rather than SMT solving and other symbolic reasoning techniques).

PBE for Functional Programming. Two prior evaluator-based systems synthesize recursive
functions. Escher [Albarghouthi et al. 2013] does so for an untyped, first-order functional language
(with base types rather than inductive datatypes), relying on run-time type errors to help rule out
candidate terms. Myth [Osera and Zdancewic 2015] pioneered the idea to synthesize recursive
functions over algebraic datatypes using search techniques inspired by bidirectional typing [Pierce
and Turner 2000] and relevant proof search [Anderson et al. 1992; Byrnes 1999]. Both Escher and
Myth require trace-complete examples. As discussed next, the bidirectional typing approach of
Myth has influenced several logic-based approaches to synthesis.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

Program Sketching with Live Bidirectional Evaluation 109:27

7.2.2 Logic-Based Synthesis Techniques. We chose this term in §1 to describe synthesis algorithms
that use symbolic, rather than concrete, evaluation to enumerate terms, and which operate on more
fine-grained, precise logical specifications than examples.

PBE for Functional Programming via Refinement Types. Frankle et al. [2016] reformulate
Myth by recasting concrete examples in a type language of intersection and singleton types.
Rather than employing concrete evaluation, they perform (symbolic) proof search within their rich
type language. Their formal development includes union and negation types, which allows more
than just examples (with concrete input and output values) to be specified. Their implementation
further supports type polymorphism, with symbolic values as examples. The combination of
negation and polymorphism admit what Polikarpova et al. [2016] dub “generalized examples,” which
facilitate smaller specifications for several Myth benchmarks. (Generalized examples resemble the
symbolic input-output examples supported by Leon for program repair [Kneuss et al. 2015].) This
reformulation of (generalized) examples suffers the same Limitations A and B as Escher andMyth.
It would be valuable to extend Smyth in future work with similar typing constructs.

Program Sketching. Sketch [Solar-Lezama 2008; Solar-Lezama 2009; Solar-Lezama et al. 2005,
2006] is an imperative, C-like language that pioneered the approach of program synthesis by
sketching. Rosette [Torlak and Bodik 2013, 2014] further develops this approach within the
untyped functional language Racket. Holes in Sketch and Rosette range only over integers and
booleans, but these can be used to define richer types of expressions. The mechanisms for such
syntax-guided synthesis [Alur et al. 2013] are particularly powerful in Rosette, which leverages
the metaprogramming facilities in Racket. As Inala et al. [2017, § 6] suggest, one could embed
the syntax and semantics of a richly-typed, general-purpose functional programming language
in Rosette. There is no obvious reason to expect recursive functions over user-defined algebraic
datatypes embedded in this way to be readily synthesized, but this approach would be an interesting
experiment.

Solver-Based Techniques for Functional Programming. Synqid [Polikarpova et al. 2016] and
Leon [Kneuss et al. 2013] directly support sketching in richly-typed functional languages using
solver-based techniques driven by logical specifications. Synqid employs bidirectional typing
(likeMyth) in a setting with SMT-based refinement types [Rondon et al. 2008; Vazou et al. 2013].
Synqid furthermore introduces round-trip type checking, which propagates goal types “through”
elimination forms, allowing errors to be localized (i.e. found sooner) during type checking. In a
synthesis context, failing sooner means avoiding costly search paths.

Example-based and logic-based specifications are complementary. Combining support for such
specifications is another interesting direction for future work. It would be interesting to consider
whether live bidirectional evaluation could help eliminate the inductive (i.e. trace-complete) re-
quirement of partial specifications in Synqid, so that its powerful logic-based reasoning could
better operate when given examples as partial specifications.

ACKNOWLEDGMENTS

The authors would like to thank Ian Voysey for guidance regarding proof strategies; Nadia Polikar-
pova, Brian Hempel, Michael Adams, Youyou Cong, and anonymous reviewers for many helpful
suggestions; Aws Albarghouthi, John Feser, Viktor Kunčak, and Nadia Polikarpova for answering
questions about Escher, λ2, Leon, and Synqid; and Robert Rand—who coined the nameMyth—
for suggesting the name Smyth, thus further entangling our work with its predecessor. This work
was supported by NSF grants Semantic Foundations for Hole-Driven Development (CCF-1814900 and
CCF-1817145) and Direct Manipulation Programming Systems (CCF-1651794).

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

109:28 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh

REFERENCES

Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Program Synthesis. In Computer Aided Verification
(CAV).

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh,
Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-Guided Synthesis. In Formal Methods in
Computer-Aided Design (FMCAD).

Alan Ross Anderson, Nuel D. Belnap Jr., and J. Michael Dunn. 1992. Entailment, Vol. II: The Logic of Relevance and Necessity.
Princeton University Press.

James Bornholt and Emina Torlak. 2018. Finding Code That Explodes under Symbolic Evaluation. Proceedings of the ACM
on Programming Languages (PACMPL), Issue OOPSLA (2018).

John Byrnes. 1999. Proof Search and Normal Forms in Natural Deduction. Ph.D. Dissertation. Carnegie Mellon University.
Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scraping Distributed Hierarchical Web Data. In

Symposium on User Interface Software and Technology (UIST).
Adam Chlipala, Leaf Petersen, and Robert Harper. 2005. Strict Bidirectional Type Checking. In Workshop on Types in

Languages Design and Implementation (TLDI).
Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017a. Component-Based Synthesis of

Table Consolidation and Transformation Tasks from Examples. In Conference on Programming Language Design and
Implementation (PLDI).

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017b. Component-Based Synthesis for Complex
APIs. In Symposium on Principles of Programming Languages (POPL).

John Feser. 2016. Inductive Program Synthesis from Input-Output Examples. Master’s Thesis, Rice University.
John Feser. 2020. Personal communication, February 2020.
John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output

Examples. In Conference on Programming Language Design and Implementation (PLDI).
Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-Directed Synthesis: A Type-

Theoretic Interpretation. In Symposium on Principles of Programming Languages (POPL).
Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-Output Examples. In Symposium on

Principles of Programming Languages (POPL).
Sumit Gulwani, Mikaël Mayer, Filip Niksic, and Ruzica Piskac. 2015. StriSynth: Synthesis for Live Programming. In

International Conference on Software Engineering (ICSE).
Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis. Foundations and Trends in Programming

Languages 4, 1-2 (2017), 1–119. https://doi.org/10.1561/2500000010
Zheng Guo, David Justo, Michael James, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia Polikarpova. 2020. Program

Synthesis by Type-Guided Abstraction Refinement. Proceedings of the ACM on Programming Languages (PACMPL), Issue
POPL (2020).

Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013. Complete Completion Using Types and Weights. In
Conference on Programming Language Design and Implementation (PLDI).

Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Output-Directed Programming for SVG. In Symposium on User Interface
Software and Technology (UIST).

Jeevana Priya Inala, Nadia Polikarpova, Xiaokang Qiu, Benjamin S. Lerner, and Armando Solar-Lezama. 2017. Synthesis of
Recursive ADT Transformations from Reusable Templates. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS).

Gilles Kahn. 1987. Natural Semantics. In Symposium on Theoretical Aspects of Computer Sciences (STACS).
Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. 2015. Deductive Program Repair. In Computer Aided Verification

(CAV).
Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013. Synthesis Modulo Recursive Functions. In Conference

on Object-Oriented Programming Languages, Systems, and Applications (OOPSLA).
Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2018. The Road to Live Programming: Insights from the Practice. In

International Conference on Software Engineering (ICSE).
Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program Sketching with Live Bidirectional Evaluation.

Extended version of this ICFP 2020 paper available as CoRR abs/1911.00583 (https://arxiv.org/abs/1911.00583).
Kazutaka Matsuda and Meng Wang. 2018. HOBiT: Programming Lenses Without Using Lens Combinators. In European

Symposium on Programming (ESOP).
Mikaël Mayer, Viktor Kunčak, and Ravi Chugh. 2018. Bidirectional Evaluation with Direct Manipulation. Proceedings of the

ACM on Programming Languages (PACMPL), Issue OOPSLA (2018).
Anders Miltner, SolomonMaina, Kathleen Fisher, Benjamin C. Pierce, DavidWalker, and Steve Zdancewic. 2019. Synthesizing

Symmetric Lenses. Proceedings of the ACM on Programming Languages (PACMPL), Issue ICFP (2019).

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

https://doi.org/10.1561/2500000010
https://arxiv.org/abs/1911.00583

Program Sketching with Live Bidirectional Evaluation 109:29

Anders Miltner, Saswat Padhi, Todd D. Millstein, and DavidWalker. 2020. Data-Driven Inference of Representation Invariants.
In Conference on Programming Language Design and Implementation (PLDI).

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual Modal Type Theory. ACM Transactions on
Computational Logic (TOCL) (2008).

Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019. Live Functional Programming with Typed Holes.
Proceedings of the ACM on Programming Languages (PACMPL), Issue POPL (2019).

Peter-Michael Osera. 2015. Program Synthesis with Types. Ph.D. Dissertation. University of Pennsylvania.
Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-Example-Directed Program Synthesis. In Conference on Program-

ming Language Design and Implementation (PLDI).
Roly Perera, Umut A. Acar, James Cheney, and Paul Blain Levy. 2012. Functional Programs That Explain Their Work. In

International Conference on Functional Programming (ICFP).
Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Transactions on Programming Languages and

Systems (TOPLAS) (2000).
Nadia Polikarpova. 2020. Personal communication, February and May 2020.
Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement Types.

In Conference on Programming Language Design and Implementation (PLDI).
Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid Types. In Conference on Programming Language Design

and Implementation (PLDI).
Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Scheme and Functional Programming

Workshop.
Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined Criteria for Gradual Typing. In

Summit on Advances in Programming Languages (SNAPL).
Calvin Smith and Aws Albarghouthi. 2016. MapReduce Program Synthesis. In Conference on Programming Language Design

and Implementation (PLDI).
Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. Dissertation. UC Berkeley.
Armando Solar-Lezama. 2009. The Sketching Approach to Program Synthesis. In Asian Symposium on Programming

Languages and Systems (APLAS).
Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Kemal Ebcioğlu. 2005. Programming by Sketching for

Bit-Streaming Programs. In Conference on Programming Language Design and Implementation (PLDI).
Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial Sketching for

Finite Programs. In International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

Steven L. Tanimoto. 2013. A Perspective on the Evolution of Live Programming. In Workshop on Live Programming (LIVE).
Emina Torlak and Rastislav Bodik. 2013. Growing Solver-Aided Languages with Rosette. In Symposium on New Ideas, New

Paradigms, and Reflections on Programming & Software (Onward!).
Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual Machine for Solver-Aided Host Languages. In

Conference on Programming Language Design and Implementation (PLDI).
Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. 2013. Abstract rRefinement Types. In European Conference on Programming

Languages and Systems (ESOP).
Chenglong Wang, Yu Feng, Rastislav Bodik, Alvin Cheung, and Isil Dillig. 2020. Visualization by Example. Proceedings of

the ACM on Programming Languages (PACMPL), Issue POPL (2020).

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 109. Publication date: August 2020.

	Abstract
	1 Introduction
	2 Overview
	2.1 Synthesis without Trace-Completeness
	2.2 User-Defined Sketches
	2.3 Deriving Examples from Assertions

	3 Live Bidirectional Evaluation
	3.1 Syntax
	3.2 Type Checking
	3.3 Live Evaluation
	3.4 Example Satisfaction
	3.5 Live Unevaluation

	4 Synthesis Pipeline
	4.1 Constraint Collection
	4.2 Constraint Solving

	5 Implementation
	6 Experiments
	6.1 Experiment 1: No Sketches + Trace-Complete Examples
	6.2 Experiment 2: No Sketches + Non-Trace-Complete Examples
	6.3 Experiment 3: Base Case Sketching Strategy
	6.4 Experiment 4: Programming-by-Example in Leon and Synquid
	6.5 Limitations and Discussion

	7 Related Work
	7.1 Live Evaluation and Bidirectional Evaluation
	7.2 Program Synthesis

	Acknowledgments
	References

