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Sparse Sensing and Optimal Precision: An Integrated Framework for
H,/H,. Optimal Observer Design

Vedang M. Deshpande! and Raktim Bhattacharya®?3

Abstract—1In this paper, we simultaneously determine the
optimal sensor precision and the observer gain, which achieves
the specified accuracy in the state estimates. Along with the
unknown observer gain, the formulation parameterizes the
scaling of the exogenous inputs that correspond to the sensor
noise. Reciprocal of this scaling is defined as the sensor
precision, and sparseness is achieved by minimizing the /; norm
of the precision vector. The optimization is performed with
constraints guaranteeing specified accuracy in state estimates,
which are defined in terms of 7> or H., norms of the error
dynamics. The results presented in this paper are applied to
the linearized longitudinal model of an F-16 aircraft.

Index Terms—Sparse sensing, H. and 7., optimal ob-
servers, optimal precision, convex optimization.

I. INTRODUCTION

The conventional observer design deals with the problem
of determining observer gain for a system, given the set of
sensors with pre-specified precision, to achieve the desired
performance index. Here the precision is related to the sensor
noise signal, and can be quantified by the inverse of variance
or Lo-norm of the signal. Often in control system design the
sensors are pre-selected and the performance of control and
estimation algorithms are limited by this choice. Therefore,
it may be possible that unnecessarily precise sensors are
included in the system, for a required performance. Or if
more performance is desired, it is unclear which sensors to
improve, or even where to add new sensors. For large-scale
systems, this question becomes difficult and non trivial. We
address this problem in the context of state-estimation for
LTI (linear time invariant) systems.

In this paper, we consider the problem of selecting a sparse
set of sensors and simultaneously determining the minimum
required precision, for observer design for LTI systems.
The problem is formulated in Hs/Hoo optimal estimation
framework, and posed as a convex optimization problem.
This problem is not new and considerable amount of work
exists in the literature [1]-[16].

In [1], authors formulated the sensor selection problem
as a Boolean convex optimization problem and relaxed it by
allowing parameters to vary continuously between 0 and 1. A
parameter is set to zero if it comes out to be less than a pre-
specified value while maximizing the confidence ellipsoid of
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the unbiased estimate. A framework for simultaneous sensor
and actuator selection while ensuring stability in terms of
Boolean variables was proposed in [2].

The formulations presented in [3]-[5], [7], [9] augment
the cost function with sparsity-promoting penalty on the
columns of observer gain matrix (rows of controller gain
matrix) to get a sparse set of sensors (actuators). Works
in [8]-[12] considered minimal sensor selection for discrete
time systems. A discussion on system level approach to
control/sensing architecture design with sparsity constraints
can be found in [15], [16].

Aforementioned papers [1]-[10] assume that the precision
of sensors is known or fixed. On the other hand, the frame-
work proposed in [13] treats the sensor and actuator precision
as design variables to be determined, while guaranteeing
the optimal controller performance. The work in [13] was
extended for models with parametric uncertainty in [14].

Contribution and novelty: The primary focus of this paper
is to present an integrated theoretical framework to design
Ho/Ho optimal observers with sparse sensor configura-
tions, while simultaneously minimizing the required sensor
precision. Motivated by [13], in this paper, we treat sensor
precision as an unknown variable, unlike existing sparse sen-
sor selection frameworks discussed above. We consider the
Hs/H o~ optimal observer design problem for continuous LTI
systems with a specified performance criterion. The objective
here is twofold. First, we are interested in minimizing the
sensor precision, and second, we want to obtain a sparse
sensor configuration. The optimal precision for sensors is
determined by minimizing the sparsity-promoting [ -norm of
the precision vector. The aforementioned frameworks obtain
sparse sensor configuration by inducing column-sparseness
in the observer gain, assuming that the sensor precisions
are given. In our work we induce sparseness by directly
scaling the individual sensor channels, and simultaneously
determine the observer gain for those precisions. To the best
of our knowledge, this is the first integrated formulation for
designing Ho/H o, optimal observers.

The paper is organized as follows. The sparse Ho/Hoo
observer design problems are formulated in §II. Solutions
to the observer design problems are presented in §III as
Theorems 1 and 2. In §IV, we consider a numerical example,
followed by the concluding remarks in §V.

II. PROBLEM FORMULATION

A. Notation

The set of real numbers is denoted by R. Matrices (vec-
tors) are denoted by bold uppercase (lowercase) letters e.g.
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A, B, (z, y). AT denotes the transpose of A. We define
sym (A) := A+ AT We use the notation A > 0 (A < 0)
for symmetric positive (negative) definite matrices. For an
integer N > 0, Iy denotes the N x N identity matrix.
Zero matrix of suitable dimensions is denoted by 0. For
any r € R, " denotes the vector with element-wise powers
raised to 7. A diagonal matrix constructed from « is denoted
by diag(x). Similarly, diag (A1, As,--- , Ay) denotes the
block diagonal matrix.

B. System and observer

Consider the following LTI system

z(t) = Ax(t) + Byu(t) + Byw(t), (la)
y(t) = Cyx(t) + Dyu(t) + Dyw(t), (1b)
z(t) = CLx(t), (Ic)

where, € RN=, Y € RNy, z € RN= are respectively the
state vector, the vector of measured outputs, and the output
vector of interest. The vector of control inputs is denoted as
u € RN+, and w € RV is the vector of disturbance signals
partitioned as

where, d € RN is the process noise, and n € RNy s
the sensor noise. The real matrices A, B,,, B,,,C,,,C, D,
and D,, are system matrices of appropriate dimensions.

Let us consider the full-order state observer for the system
(1) given by

@(t) = (A+ LC,) &(t) — Ly(t)

+ (B, + LD,)u(t),
’%(t) :Cz'%(t)v

(22)
(2b)
where, & € RM= is the estimate of the state vector, 2 €
R™= is the estimate of the output vector of interest, and the

L € RN+xNy i5 the observer gain. Let us define the error
vectors as

e(t) :=x(t) — &(t), and e(t) := z(t) — 2(¢).

Therefore, from equations (1) and (2), the observation error
system can be written as

(3a)
(3b)

et)y=(A+LCy)e(t)+ (B, + LD,)w(t),
e(t) = C.e(t).
The objective is to determine the gain matrix L € R™=*Nv
such that (A + LC) is stable, and the effect of w on € is

minimal.
The matrices B,, and D,, in (3) can be partitioned as

B, = [Bd Bn] ’ and D, = [Dd Dn] . (4)

The process is assumed to be independent of sensor noise,
i.e. B, = 0, and individual sensor channels are independent

of each other, i.e. D, = I N,- Now, we define the scaled
disturbance signal w(t) as

B(t) = [i(éﬂ such that, w(t) — ﬁ)d SO] (), (5)

=:Su

where, Sy € RNexNa § c RNvXNy are constant diagonal
scaling matrices with non-negative elements.

The plant (P) and estimator (£) system given by equations
(1) and (2) with scaled disturbance is shown in Fig. (1).

w(t) s, 'w(t)V th)
p
]y(t)
uft)
Floap
Fig. 1. The plant and estimator system.

Let k = [/11, . ,NN?/]T € RMv such that
diag(k) := S,' = (5,5,,)" = diag(x®). (6)
Combining equations (3), (4) and (5) yields
e(t) =(A+LCy)e(t)
+ ( [ByS4 0] +L[DySy S.] )ﬂ;(t), (Ta)

=:Bw

e(t) =C.e(t).

=:Dw
(7b)

The transfer function of the system (7) is given by
-1
Gu—e(s) :=C.(sIny, —A—LC,) (Bw+ LDv),
where, s is the complex variable.

C. Sensor precision

In this work, we model d(t) and n(t) as either zero-mean
stationary stochastic processes, or norm bounded signals.

First, let us consider the case when d(t) and n(t) are
power signals modeled as zero-mean stationary stochastic
processes. Let us define auto-correlation matrix of ()
as 3,(r) := E[n(t+7)n"(t)], where E[] denotes the
expectation operator. Since individual sensor channels are
independent of each other,

3 (7) = diag(57 (7). 73(7), -+, 53, (7))

is a diagonal matrix. Using (6), the auto-correlation matrix
of n(t) = S,n(t) becomes

= =2 6.2 T
(1) = Snzn(T)Sg = diag <O-1/£(27-) e, Ny( )> .

2
1 KN,

The signal variance or power of i sensor noise channel is

given by 2(0)/k2. Therefore, the precision of i sensor
channel, which is defined to be the inverse of the signal



2, where, without loss of

1. Therefore, k2 is the

= K

)
0) =

variance, becomes 2 /52(0
generality, we assume &2(
precision vector.

Now, let us consider another case when d(t) and 7(t) are
norm bounded but arbitrary signals. Let 72;(¢) denote the i
component of the noise vector 7(t). Therefore, using (6),
Lo-norm of the i component of the noise vector n(t) =
S,n(t) becomes ||n;(t)|, = [|7i(t)||y /. In this case, we
define sensor precision as the inverse of square of L£-norm
of the noise signal, i.e. the precision of i sensor channel is
defined as 1/ [|n;(¢)||2 = 2/ || (t)||5 = k2, where, without
loss of generality, we assume ||72;(¢)||, = 1. Again, k? is the
precision vector.

D. Observer design problem

A sparse sensor configuration can be obtained by making
k2 sparse, since a sensor with zero precision is equivalent to
removing that sensor from the system. Ideally, minimizing
||n2’ ,» I-. number of non-zero elements in k2, will yield the
sparsest sensor configuration. Minimization of ||-||, is a non-
convex problem and the computational cost can be very high.
Moreover, ||-||, does not penalize the magnitude of elements
of k2, therefore, as shown in §IV, the sensor precision to
realize the sparsest configuration can be prohibitively large.

Generally, higher sensor precision implies higher eco-
nomic cost. Therefore, economic cost can be characterized
by l;-norm of k2, i.e. |I<.‘,2 ||1 Moreover, minimization of /-
norm promotes sparsity in the sensor configuration. There-
fore, in the proposed approach where sensor precision k2 is
treated as an unknown variable, we minimize ||x?| ,> or in
a general setting, weighted /;-norm of 2. For any arbitrary
vector 3 € RV, its weighted [;-norm is defined as

N
1Bl = pilBil
i=1

where p := [p1,p2, -, pn]T > 0 are pre-defined weights.

We are interested in determining the sparse set of sensors
and associated minimum precision to design the observer
given by (2), such that the effect of w on e is minimal.
Therefore, the Ho optimal observer design problem for a
given attenuation level v > 0, is then stated as:

determine optimal k and L s.t. [|Gg—e(s)|l, <7v. (8)
Similarly, the H., optimal observer design problem for a
given v > 0 is:

determine optimal x and L s.t. ||Gop—e(s)| o <7v- (9)
In (8) and (9), ‘optimal x and L’ minimize ||n2||1 » which
serves a dual purpose as discussed above. Next, we formally
present the solution of observer design problems as theorems.

III. SPARSE Hy/Hoo OBSERVERS
A. Main result

The following theorem solves the H, optimal observer
design problem with sparse sensing.

Theorem 1: The solution of sparse Ho observer design
problem (8) is determined by solving the following opti-
mization problem. The solution is given by xk = ﬂl/ 2, and
L=X"'Y.

nin I8, such that

Y,Q>5,X>O,B>O
My = (XA+YC,) +(XA+YC,)",
My = XB;S;+YD;S,,

My M, Y (10)
M7T, —Iy, 0 <0,
Yy’ 0  —diag(B)
7Q Cz
[cz ] <o

trace (Q) < 7°.

Proof: The condition ||Gg—e(s)]l, < 7 in (8) is
equivalent to the existence of a symmetric matrix P > 0
such that [17]

(A+LC,)P+P(A+LC,)"
+ (Bw + LDyw) (Bw + LDg)" <0,
trace (CZPC;F) <72

(11a)
(11b)
Pre- and post-multiplying (11a) by P~ 'gives
P (A+LC,) +(A+LC,) P!
+ P~ (Bg + LDw)(Bw + LDyw) P~ <0,

Let us substitute X := P~' and Y := X L in the previous
equation to get

(XA+YC,) +(XA+YC,) +
+ (XBw+ YDg)(XBw+YDg)' <0. (12)

Using the definitions of B and Dy from (7a), and defining
My = (XA+YC,) + (XA+YC,)", and My, :=
XB;S,;+YD,S,, inequality (12) can be written as

M.
M11 —+ [M12 st] l:ST;?T] <0
Iy, 0 7[MF,
or, M11 + [Mlg Y} 0 S ST YT < 0.

Then using Schur complement lemma, equation (6), and the
substitution 3 := k2, the previous inequality becomes

M, M, Y
ML, Iy, 0 < 0. (13)
Yy’ 0 —diag(3)

Now consider the inequality (11b), which is equivalent to
C.PCT —-Q <0, trace(Q) <>

for a matrix @ > 0. Again using Schur complement lemma,
and substituting P~! = X, we get

|:_Q Cz

ol _x (14)

] <0, trace(Q) <>



The set of inequalities given by (13) and (14) define the
LMI feasibility conditions for the problem (8). Therefore,
the solution to the problem (8) is given by solving the
optimization problem

N L 1Bll, , subject to (13), (14) .

|

We next present the result for solving the H., optimal
observer design problem with sparse sensing.

Theorem 2: The solution of sparse H, observer design
problem (9) is determined by solving the following optimiza-
tion problem. The solution is given by xk = v~ /282, and
L=X"Y.

i h that
v IBl;, such tha

M, = (XA+YC,)+(XA+YC,)",
M, =XB;S;+YD;S,,

15
My M, CI Y (1
M{2 N, 0 0 <0
Cz 0 —’}/INZ 0 '
Y’ 0 0 —diag(B)
Proof: The condition |Gg—e(s)|l,, < 7 in (9) is

equivalent to the existence of a symmetric matrix X > 0
such that [18]

sym(XA+ XLC,)+C.C,

X (Bw + LDy)
(Bw + LDw)" X

) <0.
= I(N.+nN,)

Define Y := XL to get

lsym(XA +YC,) +ClC.

XBy+YDy|
(XBw +YDg)" '

772I(Nd+Ny)

Using Schur complement lemma, it can be written as

(XA+YC,) + (XA+YC,) +CTC.+

(XBaw + Y Dg)y Iy, n, (XBw+YDg)' <0.
(16)

Using the definitions of Bz and D+ from (7a), and defining
M11 = sym(XA + ch)7 and M12 = XBde +
Y D;S,, the inequality (16) becomes

M,
My +[M; CI Y|R|C.
YT

<0,

where, R := diag (7*211%, In., ’y*QSnSZ). Using (6),
and Schur complement lemma again, we get

My, My, ct Y

Mr{2 _72INd 0 0

c. o I 0 <0. (7
Yy” 0 0 —~2diag(k?)

Define X' :=~77'X, Y’ := X'L, M}, := sym(X'A +
Y/Cy), M/12 = X'Bde + Y’Dde, and

1 1
= ﬁINy).

Then pre- and post-multiply (17) by F' and FT respectively,
and substitute 3 = yk? to get

1
F::diag( Iy,, —In,, V7IN.,
Y

My M, D Y’
(M/12) —In, 0 0
= o™ Iy o | <0 a®
¥ o 0  —diag(3)

Clearly, inequality (18) is equivalent to the one in (15).
Similar to Theorem 1, the solution to sparse H., observer
is determined by minimizing the weighted I1-norm [|8]], ,
subject to (18), which concludes the proof. |

B. Iterative refinement

In general, solving semi-definite programs (SDPs) given
by (10) or (15) does not result in exactly sparse 3, i.e.
some elements of 3 would be relatively small but not
exactly zero. However, iterative techniques with weighted
l1-norm minimization [3], [19] can be employed to ensure
that the elements of 3 are close to zero within specified
tolerance. To achieve the sparse configuration, (10) and
(15) are solved multiple times and weights are updated as

p(-kﬂ) = (e+ /\\ﬁi(k)D_l, where Bfk)is the solution at the

end of k™ iteration, a small number ¢ > 0 and a constant
A > 0 are used to ensure that the weights are well-defined at
each step. Initial weights are chosen to be unity, i.e. pl(-o) =1.

Similar to [5], [20], once we have the sparse structure, the
final refined or polished solution is obtained by removing the
sensor channels with small precision and re-solving (10) or
(15) with unit weights, i.e. p; = 1.

Solutions of SDPs, in general, do not scale well as
dimension of the problem is increased. Solution algorithms
based on proximal gradient method or ADMM [21] such as
presented in [3]-[5] might provide an efficient and scalable
alternative for solving such problems. However, development
of such customized algorithms is out of the scope of this
paper, and will be addressed in our future work.

C. Normalized system

The control inputs, exogenous signals, and outputs of a
plant are generally multiplied by weighting matrices for
normalization. Such system with normalizing weights can
be written as

&(t) = Az(t) + BJW, a(t) + ByW, w(t), (19)
R{_/ &:_/
=:B, =:By,
y(t) = Cyx(t) + D W, u(t) + D, W, w(t), (19b)
=D, D,
2(t) = 1
Z(t) WZ~CZ x(t), (19¢)
=:C,

where, @, w, z are normalized vectors, and W,,, W, and
W , are the corresponding weighting matrices. It is clear that



the results of Theorems 1 and 2 can be used for a system
given by (19) with augmented system matrices Bu, Bw, ﬁu,
Du,, and C’Z. Next, we consider an example to demonstrate
the application of results presented in this section.

D. Augmented cost function

The results presented in Theorems 1 and 2 are derived for

a given value of v. In practice, we are also concerned with

determining the minimum level of attenuation ~. This can
be done easily by augmenting the cost function as

min |8, , + ¢y (20)

where ¢ > 0 is a known weighting constant. Needless to say,

any linear constraints in terms of 3, e.g. upper bounds, can
be easily incorporated in the optimization problem.

1V. EXAMPLE

Let us consider the longitudinal model of an F-16 air-
craft [22]. The states are velocity V'(ft/s), angle of attack
a(rad), pitch angle 6(rad), and pitch rate ¢(rad/s). The
engine thrust force F'(Ib) and elevator angle J.(deg) are the
control inputs. On board sensors measure body acceleration
1 (ft/s?) along roll axis, body acceleration i (ft/s?) along
yaw axis, angle of attack «(rad), pitch rate ¢(rad/s), and
dynamic pressure § := paimV2/2 (Ib/ ft?), where paim is
the atmospheric density. Therefore, state @, control w, and
measured output y vectors are defined as

[V a 60 q
F 6",
Y= [u w o oa q q]T

z: )

b

u

The dynamic equations and outputs are non-linear func-
tions of the states and controls. The linearized model is
obtained at an equilibrium or trim point for steady-level flight
condition, with trim velocity V* = 1000 ft/s at an altitude
of 10,000 ft. The states and controls at the trim point are

9

z* = [1000, —3.02x 1073, —3.02x 1073, 0]"

u* = [6041.20 —1.38]" .

System matrices for the linearized model, and weighting
matrices are given in the appendix. We assume that the
process noise enters the linearized plant due to fluctuations
in the elevator setting. Therefore, By = B, [0 1]7. We
also assume that C, = I, and since we are interested in
determining scaling for sensors only, we set constant Sy = 1.

Next, we utilize the results from Theorems 1 and 2 to
determine the sparse sensor configuration and their precision
for the system under consideration represented by (19). The
SDPs (10) and (15) are solved using the solver SDPT3 [23]
with CVX [24] as a parser.

—1.00 ~010 ~ 001
0.08 il 0.04 15 il 1 1500 i 100

I 300
‘ I

0.06 0.03

10 1000

e 0.04 0.02

o
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0.02 0.01 1 100

0 ]l) 0
uw oW oo q q

0 0
uw W oo q q

0
U W oo q q
Fig. 2. Iterative solution: Hz (blue) and Hoo (red) optimal precision K2,

V* =1000ft/s, ||&2||, = 2.

Iterative solution: The optimization problems are solved
iteratively as discussed in §III-B for different values of
~ = 1,0.1,0.01, with no bounds on k2. The refined
sensor precision, k2, of different sensors obtained for s
(H~) sparse observer design are shown in Fig. (2) on
left (right) y-axis in blue (red) color. The precision x?
associated with u, «, and ¢ sensors is zero in all cases.
Thus, it implies that, to design the Ho/H, observer for
the plant under consideration, we need w and ¢ sensors
only, and |[&?||, = 2. As one would expect, it can be
observed from Fig. (2) that the minimum required precision
for sensors increases as the specified value of v is decreased.

Sensor configurations for different linearized models: The
numerical results shown in Fig. (2) are obtained for the trim
velocity V* = 1000ft/s. We performed numerical tests for
different trim velocities ranging from 600f¢/s to 1600ft/s,
and observed that the sparse sensor configuration is same in
all cases, i.e. k2 is zero for sensors 1, ¢, and ¢. As one would
expect, the values of non-zero x2 for sensors  and ¢ are
different for different linearized plants. The optimal precision
values for different linearized plants are shown in Tables I
and II. We can select sensors with maximum precision that
will work for all linearized plants. However, we also note
that the scope of this paper is limited to linear time invariant
(LTI) systems. Sparse sensing for non-linear systems is our
future research focus.

We compare the iterative solution shown in Fig. (2)
with the solution obtained by exhaustive search, which is
discussed next.

Exhaustive search: The globally sparsest 2 is determined
via exhaustive search as follows. First assume that HK‘,QHO =
r. This gives us 5!/r!(5—r)! cases since there are 5 sensors.
Problems (10) and (15) are solved for each scenario retaining
r sensors and removing the other 5 — r, with p; = 1.
Select sensor configuration with the minimum r. If there are
multiple feasible solutions for such r, then select one with
the minimum |||, as the optimal solution.

The H, optimal sensor precision obtained via exhaustive
search is identical to the iterative solution shown in Fig. (2).
Therefore, for the system under consideration, the proposed
approach produces the globally sparsest configuration with
the least Hn2H1 for the Hy optimal observer.

The H ., optimal sensor precision obtained via exhaustive
search is shown in Table III, which is evidently different from



TABLE I
ITERATIVE SOLUTION OF (10): 2 OPTIMAL PRECISION k2 OBTAINED
FOR LINEARIZED MODELS AT DIFFERENT TRIM VELOCITIES V* (ft/s).

V] 7 (R ] AW [ R E@] 2@
1 0 0.0418 0 0 0.0117
600 0.1 0 18.2490 0 0 2.9759
0.01 0 1888.3814 0 0 295.7141
1 0 0.0686 0 0 0.0170
800 0.1 0 15.1956 0 0 2.6149
0.01 0 1539.7173 0 0 261.1855
1 0 0.0733 0 0 0.0186
1000 0.1 0 11.5177 0 0 1.9002
0.01 0 1160.0183 0 0 189.6549
1 0 0.0739 0 0 0.0169
1200 0.1 0 9.8970 0 0 1.6838
0.01 0 993.6162 0 0 168.2124
1 0 0.0723 0 0 0.0154
1400 0.1 0 8.7747 0 0 1.5313
0.01 0 879.5519 0 0 153.0527
1 0 0.0699 0 0 0.0143
1600 | 0.1 0 7.9630 0 0 1.4194
0.01 0 797.5027 0 0 141.9043
TABLE II

ITERATIVE SOLUTION OF (15): Hoo OPTIMAL PRECISION k2 OBTAINED
FOR LINEARIZED MODELS AT DIFFERENT TRIM VELOCITIES V* (ft/s).

V] 7 [ M@ B [ [ @] 2@
1 0 0.0071 0 0 0.0263
600 | 0.1 0 6.2214 0 0 5.7935
0.01 0 628.1772 0 0 582.4734
1 0 0.0305 0 0 0.0375
800 | 0.1 0 6.6973 0 0 5.3845
0.01 0 673.4359 0 0 540.0908
1 0 0.0304 0 0 0.0289
1000 | 0.1 0 3.5216 0 0 3.1227
0.01 0 352.6480 0 0 312.5102
1 0 0.0302 0 0 0.0264
1200 | 0.1 0 3.3316 0 0 2.7850
0.01 0 333.4735 0 0 278.6482
1 0 0.0303 0 0 0.0246
1400 | 0.1 0 3.2458 0 0 2.5562
0.01 0 324.8010 0 0 255.7163
1 0 0.0307 0 0 0.0233
1600 | 0.1 0 3.2287 0 0 2.3957
0.01 0 323.0274 0 0 239.6375
TABLE III
EXHAUSTIVE SEARCH: Hoo OPTIMAL PRECISION k2, V* = 1000 ft/s,
l?lly =1
v [ AT (@) [ K3 ) | #3(a) [ 7 (q) K2 (q)
1 0 0 0 0 1.2922x103
Hoo | 0.1 0 0 0 0 2.5533x10°
0.01 0 0 0 0 2.5662x 107

the iterative solution shown in Fig. (2). Note, the required
precision or HH2H1 to realize the configuration obtained by
iterative solution (Fig. (2)) is orders of magnitude smaller
than the globally sparsest configuration (Table III). This is
due to the fact that the proposed framework minimizes the
individual sensor precision while simultaneously promoting
a sparse configuration, whereas the exhaustive search en-
forces the sparse configuration first and then determines the
corresponding sensor precision. This also exposes a trade-
off between a sparse configuration and the sensor precision

required to realize it.

Although we considered unbounded k2 for the purpose
of numerical experiments, in practice, there will be
upper bounds on k2 arising due to physical constraints.
Upper bounds on k2 (i.e. linear constraints on [3) can be
easily incorporated in the optimization problems (10) and
(15). Upper bounds on k2 can avoid configurations with
potentially prohibitive precision such as shown in Table III.

Simulation of error dynamics: To analyze the performance
of observers, we simulate the error dynamics given in (3)
with non-zero initial condition. The scaled disturbances w
in (5) are assumed to be mutually independent unit variance
band-limited Gaussian stationary processes. A comparison of
‘Ho observers with sparse and full sensor configurations for
~ = 0.1 is shown in Fig. (3). The sensor precision for full
configuration is obtained by solving (10) once with p; = 1,
while sensor precision for sparse configuration is shown in
Fig. (2). From Fig. (3), we see that the performance of
observers with sparse and full configurations are comparable.
The reason is that, in full configuration, the sensor precision
for w and g are very close to values in Fig. (2), and the
precision for 1, c, g sensors is order of magnitude of 10710
(not shown here), i.e. sensor precision in sparse and full
configurations are very similar.

A similar comparison for H., observers is shown in Fig.
(4), and again, we see that the performance of observers with
sparse and full configurations are comparable.

0.2 1
Sparse

G0 \\h &0
-0.2 -1

0 10 20 30 0 10 20 30

S0 /\__,__ S0 T\______________
-5 -5

0 10 20 30 0 10 20 30

Time, s Time, s

Fig. 3. H2 observer performance for sparse and full sensor configurations.
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Fig. 4. H o observer performance for sparse and full sensor configurations.

Augmented cost: Next, we consider the augmented cost
function defined in (20), with upper bound on k2. Let us
assume that the upper bound is

K2<K2,=[1 1 001 001 225",



and the inequality is elementwise. Such a constraint on
x? may arise due to real world limitations, e.g. maximum
possible precision with which a sensor can be manufactured.
Therefore, the constraint in terms of 3, which is the opti-

mization parameter, can be written as

B8 — k2 <0 for Hs, and,

max
B— k2, <0 for Heo.

The cost function (20) is minimized for the sparse config-
uration identified in Fig. (2) with bounds on 3 as defined
above. The optimal k2 obtained for different values of ¢,
for Ho and H., observer design are shown in Fig. (5) and
Fig. (6) respectively. The titles of subplots also show the
corresponding optimal  obtained for the specified c.

From Fig. (5), it is clear that, as more weight is given to
minimizing + in the optimization problem, the optimal value
of v decreases (i.e. performance of the observer improves),
and the values of 2 increase (i.e. better performance requires
higher precision). We also observe that in the last plot cor-
responding to ¢ = 1000, the precision bounds are saturated,
which means that v = 0.29 is the best performance that
can be achieved with this sensor configuration and the upper
bounds k2. If better performance is desired, one should
allow higher sensor precision or a sensor configuration with
more number of sensors. This exposes a trade-off between
the performance 7y, and the minimal precision and sparse
configuration quantified by the /;-norm. Similar observations
can be made for Fig. (6) as well.
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" ¢ =100,v = 0.3013 3 c = 1000, = 0.2900
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Fig. 5. Ho optimal precision, k2 < k2.
c=1,7=0.2588 c=5,7=0.1609 c=50,7=0.1518
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Fig. 6. Hoo optimal precision, k2 < k2.

V. CONCLUSION

This paper presents an integrated theoretical framework
to design Hs/Ho, optimal observers with sparse sensor
configurations, while simultaneously minimizing the required

sensor precision. The precision of sensor is treated as an
optimization variable. A convex optimization problem is
posed to minimize the sparsity-promoting l;-norm of the
sensor precision vector subject to linear matrix inequalities,
and the sparse solution is obtained iteratively. Application
of the proposed approach is demonstrated on a linearized
model of an F-16 aircraft. We also showed that the upper
bounds on precision of sensors can be easily incorporated
in the optimization problem, and the minimum possible
attenuation level « can also be determined by augmenting
the cost function. For brevity of discussion, the development
of customized algorithms to solve the optimization problem
efficiently for large-scale systems was not discussed in this
paper, and will be a topic of our future work.

APPENDIX
System matrices for the linearized F-16 model:
—1.8969e—02 —0.40518 —32.17 0.89146
A —6.4397e—05 —1.61760 0 0.93254
- 0 0 0 1
0 —2.36830 0 —1.9696
B _ [15700e=03  4.7404e=09 0 0 g
“ 7 16.6374e—01 —3.1441e—03 0 —5.3433e — 01

B,=B,[01]". B, =0cR*>5 B, =[By; B,]

b [15700e=03 0 0 0 0"
“ = [6.5425e—01 —3.1461 0 0 0

D,;=D,0 1", D, =1I5D,=[Dy D,),C.=1,
—0.019164  —5.2803  —32.17  3.7071
—0.064340 —1.6176¢-+03 0.09713 932.5332

C, = 0 1 0 0

0 0 0 1

1.7578 0 0 0

W, = diag(500,5), W, = diag(0.5, I'5),
W, =15, W;=0.5, W, =diag(W,4,W,),

W . = diag(1/100, 180/5, 180/57, 180,/2).
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