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Robust Kalman Filtering with Probabilistic Uncertainty in System
Parameters

Sunsoo Kim'#, Vedang M. Deshpande®#, and Raktim Bhattacharya®*

Abstract—In this paper, we propose a robust Kalman filtering
framework for systems with probabilistic uncertainty in system
parameters. We consider two cases, namely discrete time systems,
and continuous time systems with discrete measurements. The
uncertainty, characterized by mean and variance of the states, is
propagated using conditional expectations and polynomial chaos
expansion framework. The results obtained using the proposed
filter are compared with existing robust filters in the literature.
The proposed filter demonstrates better performance in terms of
estimation error and rate of convergence.

Index Terms—Robust Kalman filter, estimation of uncertain
systems, probabilistic uncertainty, polynomial chaos.

I. INTRODUCTION

OBUST filtering algorithms such as Hs/Hoo filters and

robust Kalman filters, have been developed to address
uncertainty in system models. In the Ho/H ., framework, fil-
ters are designed to minimize the impact of exogenous signals,
i.e. process and sensor noise, on the estimation error [1]-[5]. A
robust Kalman filter is an extension of the well known Kalman
filter, which can handle uncertainties in the system [6]. In this
framework, the filter is designed to minimize an upper bound
on the estimation error variance [7]-[12], or the worst-case
error variance [13]-[15]. Our work falls in the category of
robust Kalman framework.

Existing robust Kalman filter algorithms can be categorized
based on how system uncertainty is represented, which is
assumed to be parametric. The uncertainty is either represented
as norm bounded parameter uncertainty [6]-[12], or polytopic
parametric uncertainty [5], [16]. In this work, we model para-
metric uncertainty as random variables with known probability
density function (PDF). To the best of our knowledge, this is
the first work on robust Kalman filtering with probabilistic
system uncertainty.

We present two robust Kalman filtering algorithms with
probabilistic uncertainty in system parameters. The first algo-
rithm is for discrete-time (DT) system where the dynamics and
measurements are both in discrete time. The second algorithm
is for continuous-time (CT) dynamical systems with discrete-
time measurements. In both these cases, mean and variance
of uncertain states are calculated using a formulation based
on conditional expectation. For the CT system, we apply
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polynomial chaos (PC) framework which provides a determin-
istic and computationally tractable approach to propagate the
uncertainty.

The rest of the paper is organized as follows. We first
present the problem formulation with uncertainty in CT and
DT domain in §II followed by a discussion on polynomial
chaos framework in §III. §IV presents the proposed robust
filter. Simulation results are presented in §V followed by
concluding remarks in §VI.

II. PROBLEM FORMULATION

The objective of filtering is to estimate the state-trajectory
x(t) or x; of a physical process in CT or DT, given noisy
measurements. The uncertainty in the system parameters, in
the external excitation (process noise), and in the measurement
errors (sensor noise), are all treated as probabilistic. The model
for the evolution of the state is assumed to be the following
linear-time-varying sfochastic system,

CT: @(t) = A(Ap_1)a(t) + B(Ap_1)wl(t),
DT: ), = A(Ap_1)xp—1 + B(Ap_1)wi—1,

(1a)
(1b)

where ;1 <t < tg for CT model (la). x,xz; € R" rep-
resent the state vector, w, wg € R™ are zero mean Gaussian
noise processes with covariance E [w(t)w” ()] = Qd(t —7)
and E [ww!]| = Q0;; respectively, where 6(-) and &;; are
delta function and Kronecker delta respectively.

A() : RY — R™™ and B(:) : R? — R™™ are
system matrices with given functional dependence on Ay. The
random vector A € R? represents the uncertain parameters
in the system matrix. In DT model (1b), the parameter vector
Ay, is sampled at every time step. And in CT model (la), Ay
is sampled at discrete time instants ¢, and its realization does
not change within the time span [ty,t;+1). In both cases, the
sequence Ag, A1, Ag,--- is assumed to be an independent
and identically distributed random process with a given PDF.

We also assume, the initial state for (1) is a random variable
with a given PDF that is independent of the process noise w(t)
or wy, and the system parameters Aj.

Measurement from sensors is modeled as

Y, = Cxp + ny, 2

which maps the state x; to the output space vy, and is cor-
rupted by sensor noise 1. In the output model, C € R™*™ is
deterministic and n, is zero mean Gaussian white noise with
E [nln]T] = RJ;;. The process and sensor noise are assumed
to be uncorrelated with known @ and R.

The objective here is to determine the unbiased estimate of
x(t) or x with minimum error-variance, using the model

defined by (1) and (2). This is achieved by extending the
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formulation for standard Kalman filtering, to systems with
probabilistic uncertainty in system parameters, which is dis-
cussed in §IV. However before that, we briefly discuss the
polynomial chaos framework that is used for propagation of
uncertainty in CT systems.

III. POLYNOMIAL CHAOS THEORY

Polynomial chaos is a deterministic framework to determine
the evolution of a stochastic process &£(t,A), where A €
Da C R represents the parameter space with known PDF
p(A). Differential equations with probabilistic parameters e.g.

E(t,A) = F(t,&(t),A), 3)

are examples of such stochastic processes that are amenable
for analysis using polynomial chaos theory. Assuming &(¢, A)
to be a second-order process, it can be expanded, with Lo
convergence [17], [18], as

o0

> &ihei(A),

=0

£t A) =

where &,;(t) are time varying coefficients, and ¢;(A) are
known basis polynomials. For exponential convergence, ¢;(A)
are chosen to be orthogonal with respect to the PDF p(A),
ie.
El0i(A)0; (A)i= [ (A
Da

where h; = fDA #?p(A) dA. For computational purposes,
we truncate the expansion to a finite number of terms, i.e.
the solution of (3) is approximated by the polynomial chaos
expansion as

)b (A

) P(A) dA = h;d;;,

N

=) &) (A). )

=0

£(t, A) = €(t, A)

For a more compact representation of the ensuing expressions,
we define ®(A) to be

(60 (A), -, on(A)]", and (5
(A @I, ©6)

P(A) =
®,(A) =
where I,, € R™*" is identity matrix. We define matrix = €

R (N+1) " with polynomial chaos coefficients &;, as E :
(€0 -, &y . Therefore, £(t, A) can be written as

E(t,A) = E(1)®(A). (7)
Noting that é = vec (é), (7) becomes,

£ = vec (é) = vec (EB(A)) = vee (I,EB(A))
= (®7(A) ® I)vec (§) = @, (A, ®)

where &, := vec (E), and vec (-) is the vectorization operator.

The unknown coefficients &, are determined using one
of many methods including Galerkin projection [19], [20],
stochastic collocation [21], [22], and least-square minimization
[23], [24]. In this work, we pursue the Galerkin projection
approach to determine the coefficients £, (¢) by first defining

error e(t, A) = £(t,A) — @Z(A)ﬁpc(t). The optimal co-
efficients £pc(t) are then determined by setting projection of
e(t,A) against each basis to zero ensuring that the error is
orthogonal to the basis polynomials, i.e.

/D elt, A)o;(A)p(A)dA =0,

for ¢ = 0,---,N. This results in a system of algebraic
equations which can be solved for £, (¢). If £(¢, A) is solution
of a differential equation (3), then the error is defined in terms
of the equation error, as shown in (22).

In general, polynomial chaos does not scale well with state-
space and parameter dimension. The number of basis functions
for a given order r with d independent random variables is
(ddfrr,)!. With large number of parameters (increasing d), the
number of basis functions, for a given order of approximation,
will increase factorially and the computational cost will be
prohibitive. This limits how large both d and r can be. Recent
development in sparse polynomial chaos may scale better [25],
[26]. However, usually we can get quite good performance
with low order approximations [27]-[30]. Unfortunately, the
order of approximation, for which acceptable accuracy is
achieved, has to be determined empirically.

For d > 1, the polyvariate basis functions are determined
from tensor-products of univariate polynomials, with limit
on the total order of the product using Pascal’s triangle,
the univariate polynomials can be determined from different
distributions. For a given distribution, using polynomials that
are orthogonal with respect to the distribution, is usually
chosen for exponential convergence [18]. Poor scalability of
polynomial chaos is due to the tensor product of the basis
functions. However, anisotropic tensor products [31], [32]
or anisotropic Smolyak cubature methods result in improved
scaling [33].

In this paper, we consider elements of A to be independent.
However, in several applications this assumption may not
valid. For such applications, suitable transformation such as
Rosenblatt [34], Nataf [35] and Box-Cox [36] transformation
can be applied to arrive at a set of independent parameters.
An overview of such techniques is described in the work by
Elred et. al. [37].

IV. ROBUST KALMAN FILTER

In Kalman filtering, state estimation involves two steps: a)
model-based uncertainty propagation to obtain the prior state
uncertainty, and b) incorporation of measurements to update
the prior to posterior state uncertainty by minimizing the error
variance. With probabilistic uncertainty in the system param-
eters, along with process noise, the propagation step becomes
complicated. In this paper, we solve this by computing the
mean and variance of the propagated states using conditional
expectations.

The new robust Kalman filtering algorithms, for uncertain
DT and CT systems, are presented next.



A. Discrete Robust Kalman Filter
Let us consider the DT model given by (1b) and (2) as
xp = A(Ag_1)xp—1 + B(Ag—1)wi_1, (92)
Yy, = Cxp + 1. (9b)
1) Uncertainty propagation: The uncertainty in x (A, w),
the solution of (9a), is due to uncertainty in the initial condition
xo, the uncertainty in the system parameters Ay, and the
process noise wy. It is noteworthy, that due to the uncertainty
in the system matrices, the PDF of state will not be Gaussian,
even if xo is Gaussian. However, we restrict ourselves to
characterizing the first two moments of xx (A, w) as defined

below, since in this paper we are focusing on Kalman filtering.
Let us define

= E[zr(A,w)], and
i = B |(@n(Aw) - ) (@A, w) - )" |
Consequently, the propagation equation for g, is given by

pn, =E [A(Akfl)wkfﬂ +E [B(Akfl)wkfl] .

(10a)
(10b)

We use the conditional expectation with respect to Ap_;
to calculate the quantities in the previous equation. For a
given Aj_;, the propagation equations are similar to those
in standard Kalman filter. Since, the distribution of xg is
given, and update step (16) has no uncertainty, it follows that
the posteriors uLl and E;r_l have no uncertainty, which is
typical in robust filtering [13]-[15]. Therefore, we can write
the propagation equation for conditional mean and variance as

py (Ag—1) = A(Ap_1)p)_y, (11a)
T (Ar1) = A(Ap 1)) AT (A1)
+B(A,1)Q@B" (A1),  (11b)

where p, (Ap—1) and 3, (Ay_1) are stochastic since they
depend on Aj_;. The fotal mean and variance of @ (A, w)
can be computed from the conditional mean and variance as

pr =E [pyg (Ar-1)], (12a)
3, =E[S; (Ak_1)] + Var (u; (Ar—1)).  (12b)
With slight abuse of notation, we represent the conditional
mean and variance as functions of Ajy_q, ie. py (Ag_1)
and X, (Ag_1). Whereas the total mean and variance are
represented without the functional dependence, i.e. p, and
3.
Since the posterior /J,L1 is independent of Aj_q, the total
prior mean is calculated as

pr = E [ (Ag1)] = E[A(Ap-)py ] = Ay,
(13)

where A := E[A(A}_1)]. The variance of conditional mean,
Var (u;(Ak,l)), can be determined as

Var (u;; (Ag-1))
=E [(u;(AzH) — ;) (g, (Bg—1) — u;)T}
= B[ (A1)~ A) (") (A1) - 4)7]

(14)

Therefore, the total prior variance follows from (11b), (12b),
and (14) as

X, =E[Z; (Ar-1)] + Var (p; (Ar-1)) 15)

_E [A(Ak_l)z;;_lAT(Ak_l)}
+E {B(Akfl)QBT(Akfl)}
TE [(AAe) - A) (") (AAe) - 4)"].

2) Update: Since we have assumed the matrix C' in the
measurement model (9b) to be independent of Ay, we can
simply follow the standard Kalman update equations. For the
brevity of discussion, we omit the step by step derivation of
the well known Kalman gain and update equations, which
can be found in many textbooks, e.g. [38]. Once we have the
propagated priors from equations (13) and (15), the posteriors
are given by

ph =, +Ki(y, — Cpy), (16a)
S=(I-K,0)%, (16b)
where y, is the sensor measurement, and K := X, C”

[C=,; C" + R]! is the optimal Kalman gain.

B. Continuous-Discrete Robust Kalman Filter

The continuous-discrete filter, also known as the hybrid
Kalman filter, is more practical than other filters as it is suitable
for most physical dynamical systems that are governed by
continuous time ODEs, and sensor measurements are available
only at discrete time instants. The system and sensor equations
follow from (la) and (2) for ¢ € [tx_1, tx),

#(1) = A(Ae_)a(t) + B(Ag_)uwlt),
y(tk) = Cw(tk) + n(tk).

(17a)
(17b)

Hereafter, for notational convenience, we drop the subscript
k — 1, and denote A;_; by A, since it does not vary in the
interval [tg_1,g).

1) Uncertainty Propagation: Determining the moments of
x(t, A, w), the solution of (17a), is nontrivial in this case,
particularly due to A. This can be shown by first defining
mean and covariance as

u(t) == E[z(t, A, w)], and
(1) 1= E [(e(t, A, w) — (1)) (x(t, A, w) — ()]
The propagation equation for p(t) is given by
flt) = E[A(A)z(1)] + E[B(A)w(1)],

which presents a challenge in solving the differential equation
due to uncertain matrices A(A) and B(A). Similar difficulty
is faced in the propagation equation for 3(¢). We next
present an approach based on the polynomial chaos theory
to determine the first two moments of x(t, A, w).

As in the previous section, we adopt the formulation based
on the conditional expectation with respect to A. For a given



A, we can write the propagation equation for conditional mean
and variance as

[J,(L A) = A(A)N(t7 A)> (18a)
3(t,A) = A(A)S(t,A) + 2(t, A)AT(A)
+ B(A)QB"(A), (18b)

The total mean and variance of (¢, A, w) can be computed
as

w(t) :=E[u(t, A),
2(t) ;= E[2(t, A)] + Var(u(t, A)).

(19a)
(19b)

Stochastic processes pu(t, A) and X (¢, A) are expanded with
polynomial chaos basis functions as follows.

Polynomial chaos expansions: The expansion for p(t,A)
follows from (8) as

N
it A) = pi(t)di(A) = [po(t) ()] B(A)
i=0

= fipe®n(A) = B (A) e, (20)

where, fipe = [p(t) py)] € RN+ and
e = vee (fige) € RPNV,

Since ¥(t,A) > 0, the stochastic process X(t,A) is
expanded using quadratic basis functions constructed from ¢;.
We adopt the expansion presented in [27], i.e.

Yoo Yon
S(tA) = 2l(A) | S ENN)
Yno YNN
Since 3(t, A) is symmetric and 2(72’ A) >0, it follows that
3= Ez; = 3;; > 0. Therefore, X(¢, A) can be expanded
as

X(t,A) = Z i (t)gi(A)p;(A).

Moreover, we note that the quadratic basis functions,
{¢:(A)¢;(A)}, are not linearly independent. Therefore, the
PC expansion for 3(¢, A) can be effectively written as

M

B(tA) =) Sit)6(A) = [Zo(t), -, Zu(t)]O(A)
=0

= (07(8) @ L) By = ©,,(A) By,

where, M :=2(N — 1), 0 < X;(t) € R™*™ and

S (t)} T c Rn(hf—i—l)xn.

21

Epc = [EO (t)

The basis functions 6;(A) are linearly independent polynomi-
als chosen from quadratic terms resu12ting from the expansion
of (po(A)+¢1(A)+---+dn(A))7, ie. 0;(A) are linearly
independent basis functions selected from the following set

Bo(A)po(A)
2¢0(A)p1(A)

261 (A)én (A)
On(A)PN(A)

)

and, O(A) := [0y(A),0:1(A), -, 00 (A)]" € RMFL, With
this mean and variance approximation, the error equations in
(18a) and (18b) are

eu(t,A) == (A)f,. — A(A)B](A)p,, and  (22a)
ex(t,A) = 0 (A), — A(A)O; (A) T
- 0(A)Z,AT(A) - B(A)QBT(A).  (22b)

The differential equations for fi;(t) and 3;(t) are obtained
by setting

Elen(t, A)pi(A)] =0, and E [ex(t, A)0;(A)] =0,

fori=0,---,N;and j =0,--- , M,
resulting in

ftoe = Appty., and 3y = Fx + Bx, where,  (23)

Au=E |2 ()20 (a)] B [B.A)Aa)2T(A)],

Fy = _G,L(A)@Z;(A)}_l x
E[©,(A)A(A)0](A), + ©,(A)0] ()T, AT(A)] |

Bg =K

:@n(A)GZ(A)] g [@n(A)B(A)QBT(A)] .

Computation of the prior: Given the posteriors p* (tx_1)
and X7 (t;_1), at time instant ¢,_,, the evolution of the state
uncertainty is determined by integrating (23) over [tx_1, k]
to arrive at p~ (tx, A) and X7 (¢x, A), the conditional prior
mean and the conditional prior variance of the state. The total
mean and covariance priors, i.e. = (tx) and X~ (¢), are then
determined from (19).

Integration of (23) requires initial conditions gt (1) and
E;rc(tk_l), which are determined by projecting ™t (t,_1)
and X7 (t;_;) on the basis functions {¢;(A)}Y,, and
{0;(A)}M respectively. Noting that pu (¢),_1) and B (¢;,_1)
are A independent, initial conditions pt,, (tx—1) and X (tx—1)
are given by

() = [“+<)<Zv_1)] pelti) = Fo:(;x: ﬂ |

With these initial conditions, linear ODEs (23) can be inte-
grated to calculate pup (ty;) and 3 (t)) at time #.

Therefore, conditional mean and covariance priors at ¢
follow from (20) and (21) as

p (b, A) = D7 (A) ppe(tr),
27 (th, A) = O, (AT (1)

The total mean and covariance priors p~ (t;) and X~ (¢) are
calculated using (19) as follows.

o (t) = E [@F(A)] ppelte),
= (0) =B |©F(A)] Zr(t)
+ fige (b) (Var (@(A)) ) (e ()

where, Var (B(A)) := E [(@(A) —F)(®(A) - E)T} , and
T.—E[®(A).



2) Update: Since the measurements are obtained at discrete
time instants, we can use the Kalman update equations from
§IV-A2. The updated posteriors are given by

(k) = p (tr) + K, (y(te) — Cu™ (t))
() = (I - K(t)C)= (),

where, y(tx) is the sensor measurement, and

K(ty) = 2 (tp)CT[CE (tx)CT + R

V. NUMERICAL RESULTS

Performance of the proposed robust Kalman filter is tested
with two cases of simulation: 1) Case I: Initial mean, pg =
[0 0]7, for checking steady state error, 2) Case II: Initial
mean, ji # [0 0]T, for checking convergence rate with initial
uncertainty.We compare the performance of the filter in terms
of the estimation accuracy characterized by the mean and
standard deviation (SD) of absolute error, and the rate of
convergence.

A. Discrete Robust Kalman filter

The proposed discrete robust Kalman filter discussed in
§IV-A is applied to the example (25) that was previously
considered as a test problem in [6], [7].

10 =05 i —6
Ty = 1 146 Th—1 1 Wg—1,

Y = [7100 10] Ty + ng.

(25a)

(25b)

where 0 is a uniformly distributed random parameter in
[—0.3 0.3], and the variance of process and measurement noise
is assumed to be unity, i.e. @ =1, R=1.

We choose uniformly spaced 10 points in [—0.3 0.3] as
samples for §. Then, mean and standard deviation of absolute
error obtained for different realizations of the plant corre-
sponding to different values of §, are considered as metrics for
the estimation accuracy. We compare the performance of the
proposed filter with standard Kalman filter with nominal plant
realization corresponding to § = 0. As claimed by the authors
of [7], and verified by us, the filter presented in [7] performs
better than the one discussed in [6]. Therefore, herein, we
compare the performance of the proposed filter only with [7].

The simulation results for the proposed discrete robust
Kalman filter, the nominal Kalman filter, and the filter from
[7], are shown in Fig. 1 and TABLE I. In both simulation Cases
I and II, the proposed robust Kalman filter has the least mean
error than the other filters, as shown in TABLE 1. Moreover, for
Case II as shown in Fig. 1, the proposed filter converges faster
than the nominal KF, and its convergence rate is comparable
to the filter from [7]. We also note that the computational
time required for the proposed filter is comparable to that of
nominal KF and the filter from [7].

20F i B
Ret.[7]

Nominal KF
Proposed Robust KF | 7

Ref[7]
Nominal KF

60 - Proposed Robust KF ]

State X,

- ; 4
0 5 10 15 20 25 30
Time (s)

Fig. 1. DT robust filter: Mean and standard deviation of the absolute error
with initial condition 2 = [20 20]7, for Case IL

TABLE I
COMPARISON OF ERROR IN DISCRETE TIME FILTERS.
. . Case 1 Case 11
Filter Algorithm
Mean / SD Mean / SD
z1 || 27325/ 17518 | 3.4675 /2.0216
Ref. [7]
zo || 43049 /29640 | 6.0837 / 3.5487
Nominal z1 || 0.4438/0.4136 | 2.4085 / 1.0595
KF zo || 4.4418/4.1355 | 24.0821 / 10.5982
Proposed z1 || 0.3182/0.2914 | 0.5666 / 0.4314
Robust KF | || 3.1846 / 2.9114 | 5.6669 / 4.3099

B. Continuous-Discrete Robust Kalman Filter

The proposed hybrid robust Kalman filter in §IV-B is
applied to the example (26) and its performance is compared
with the nominal Kalman filter.

o) =] o] e+ | 7] wer,

y(ty) = [-100  —100] @(t) + n(ty),

where § is uniformly distributed in the interval [—0.95 0.95],
and the variances of process and measurement noise are @@ = 1
and R = 1. We use the similar performance metrics discussed
in the previous subsection.

The proposed robust Kalman filter is 2 times more accurate
than the nominal KF in steady state as shown in TABLE II.
Moreover, it shows faster convergence than the nominal KF
as shown in Fig.2. Again, we note that the computational time
required for the proposed filter is comparable to the nominal
KF.

(26a)

(26b)

TABLE 11
COMPARISON OF ERROR IN HYBRID FILTERS.
. . Case 1 Case 11
Filter Algorithm
Mean / SD Mean / SD

0.2052 / 0.1694
0.2038 / 0.1695
0.1833 / 0.0783
0.1822 / 0.0782

Nominal z1 || 0.0223 /0.0204
KF z || 0.0195/0.0211
Proposed z1 || 0.0155 / 0.0092
Robust KF | || 0.0137 / 0.0077




State X,

o
(5]
3
a

Nominal KF
Proposed Robust KF

0.1

Time (s)

{-] 0.2 4

0.1

o
o
o
2

Time (s)

Fig. 2. Hybrid robust filter: Mean and standard deviation of the absolute error
with initial condition z = [3 3]7, for Case IL

VI. CONCLUSION

In this paper, we proposed robust Kalman filter with prob-
abilistic uncertainty in system parameters. Mean and variance
of the uncertain system are propagated using conditional
probability and the polynomial chaos (PC) expansion frame-
work. The empirical results in this preliminary work show

that

the proposed approach which exploits the information

about probability distribution of the uncertain parameters,
demonstrates better performance than the existing frameworks
which are designed for the worst case scenarios that occur
with the vanishing probability. This serves as a motivation to
pursue a theoretical treatment of the performance guarantees
for the proposed approach, which is a topic of our ongoing
research.
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