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Abstract— In some applications of control, the objective is
to optimize the constant asymptotic response of the system by
moving the state of the system from one forced equilibrium to
another. Since suppression of the transient response is not the
main objective, the feedback control law can operate quasi-
statically, that is, extremely slowly relative to the open-loop
dynamics. Although integral control can be used to achieve the
desired setpoint, three issues must be addressed, namely, non-
linearity, uncertainty, and multistability, where multistability
refers to the fact that multiple locally stable equilibria may
exist for the same constant input. In fact, multistability is the
mechanism underlying hysteresis. The present paper applies an
adaptive digital PID controller to achieve quasi-static control
of systems that are nonlinear, uncertain, and multistable. The
approach is demonstrated on multistable systems involving
unmodeled cubic and backlash nonlinearities.

I. INTRODUCTION

Most applications of control, such as aircraft flight control

and active noise and vibration suppression, require sensors

and actuators with sufficient bandwidth, accuracy, and au-

thority to significantly modify the dynamics of the plant,

especially for stabilization. Unfortunately, even with ideal

sensors and actuators, there are inherent limitations on the

achievable closed-loop performance [1], [2].

In some applications, however, the ultimate objective is

not to influence the dynamics of the plant, but rather to

modify its asymptotic behavior. In these cases, stabilization

is not feasible, nor are command following and disturbance

rejection other than for step commands and step disturbances.

In fact, applications of this type can be viewed as online

optimization problems, where the control inputs may be

parameters that can be adjusted to improve the performance

of the system. Since the control algorithm operates at a much

slower rate than the natural dynamics of the system, we

refer to these applications as quasi-static control problems.
A quasi-static controller thus makes no attempt to suppress

the natural dynamics of the system, and certainly has no

ability to stabilize the plant. Instead, the goal of an adaptive

quasi-static controller is to slowly move the system from one

forced equilibrium to another.

There are numerous applications of quasi-static control.

For example, in flight control, it is necessary to move

the aircraft trajectory from one trim state to another trim

state, for example, cruise to descent. Another application

is shape control of structures, such as a flexible membrane

that serves as an optical reflector. Yet another application is
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the power grid, where voltages and power sources can be

adjusted slowly to account for changing loads, and where

fast transients are either ignored or left to separate, fast con-

trollers. In these and other applications, the transient response

is of secondary importance to the asymptotic steady-state

behavior. From a control perspective, the goal is thus to

determine a sequence of constant inputs that move the system

to a desired forced equilibrium.

Since quasi-static control can follow only static com-

mands and reject only constant disturbances, it is natural

to apply integral control, where the integral action provides

both command following and disturbance rejection. This

approach requires consideration of three main issues, namely,

nonlinearity, uncertainty, and multistability. First, adjustable

plant parameters that serve as control “inputs” often appear

nonaffinely in the plant dynamics, and thus the control

problem may be highly nonlinear. Next, the structure of

the forced equilibria may arise from static maps that are

poorly known, thus making the plant uncertain. Finally, for

a given constant control input, the system may have multiple

asymptotically stable forced equilibria. A system of this type

is called multistable [3]–[6].

Multistability is the key property of a hysteretic system,

where the hysteresis loop arising from asymptotically low-

frequency periodic forcing indicates that the state of the

system is attracted to one set of equilibria as the input

slowly increases, and to a different set of equilibria as the

input slowly decreases [7]. In special cases, the hysteresis

loop is identical to the shape of the asymptotic input-output

phase portrait under periodic forcing; this phenomenon is

called “rate-independent hysteresis.” When this is not the

case, the hysteresis is called “rate dependent.” However, the

nomenclature in both cases is misleading since hysteresis per

se is a quasi-DC phenomenon [8], [9].

There are various models of systems that exhibit hys-

teresis, including Preisach, Duhem, Prandtl-Ishlinskii, Bouc-

Wen, and Lur’e (nonlinear feedback) [10]–[15]. These mod-

els can be distinguished by various features, such as reversal

behavior, the presence and properties of minor loops, and

the set of forced equilibria. In particular, the set of forced

equilibria may consist of isolated points or it may be a

continuum.

As might be expected, multistability makes it difficult to

approach quasi-static control as a problem of static function

optimization. In particular, if the system were not multistable,

then it would be feasible to probe the system with constant

inputs and use the resulting asymptotic response to estimate

gradients, which could be used subsequently to determine

search directions for optimization. Multistability, however,
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precludes this possibility since the potential asymptotic

responses corresponding to each constant input define a

multivalued mapping, thus confounding the estimation of

gradients.

Control of systems with hysteresis is addressed in [16]

using inversion techniques; adaptive methods are used in the

case where the hysteretic nonlinear is uncertain. A review

of techniques used to control multistable systems is given in

[17]. Neither [16] nor [17], however, considers the problem

of quasi-static control.

The present paper focuses on quasi-static control of un-

certain multistable systems. Since the goal is to follow

commanded setpoints, integral control is used. In particular,

since the plant dynamics may be uncertain, the present

paper focuses on adaptive quasi-static PID control, which

minimizes the reliance on analytical or empirical modeling

and avoids manual tuning of the PID gains. In particular,

the present paper applies the adaptive digital PID controller

developed in [18]. To illustrate the approach, we consider

multistable systems that have either isolated forced equilibria

or a continuum of forced equilibria.

The next section reviews the adaptive digital PID control

algorithm. In Section III, this algorithm is applied to quasi-

static control of a system with a cubic nonlinearity as well

as systems with a single or double backlash nonlinearity.

II. ADAPTIVE DIGITAL PID CONTROL ALGORITHM

Consider the PID controller

vk = Kp,kzk−1 +Ki,kγk−1 +Kd,k(zk−1 − zk−2), (1)

where Kp,k,Ki,k,Kd,k are time-varying gains to be adapted,

zk is the error variable, and, for all k ≥ 0,

γk
�
=

k∑
i=0

zi. (2)

Note that the integrator state can be computed recursively

using γk = γk−1 + zk. Furthermore, the control (1) can be

written as

vk = φkθk, (3)

where, for all k ≥ 0,

φk
�
= [zk−1 γk−1 zk−1 − zk−2], θk

�
=

⎡
⎣

Kp,k

Ki,k

Kd,k

⎤
⎦ . (4)

To determine the controller gains θk, let θ ∈ R
3, and

consider the retrospective performance variable defined by

ẑk(θ)
�
= zk + σ(φk−1θ − uk−1), (5)

where θ is obtained by optimization shown below, and σ is

either 1 or −1 depending on whether the sign of the leading

numerator coefficient of the transfer function from vk to zk
is positive or negative, respectively. Furthermore, define the

retrospective cost function Jk : R
3 → [0,∞) by

Jk(θ)
�
=

k∑
i=0

ẑk(θ)
2 + (θ − θ0)

TP−1
0 (θ − θ0), (6)

where θ0 ∈ R
3 is the initial vector of PID gains and P0 ∈

R
3×3 is positive definite. For all examples in this paper, we

set θ0 = 0; however, θ0 can be initialized to nonzero gains

in practice if desired.

Proposition 2.1: Consider (3)–(6), where θ0 ∈ R
3 and

P0 ∈ R
3×3 is positive definite. Furthermore, for all k ≥ 0,

denote the minimizer (6) of Jk by

θk+1
�
= argmin

θ∈Rn

Jk(θ). (7)

Then, for all k ≥ 0, θk+1 is given by

θk+1 = θk + Pk+1φ
T
k−1[zk + σ(φk−1θk − uk−1)], (8)

where

Pk+1 = Pk − Pkφ
T
k−1φk−1Pk

1 + φk−1PkφT
k−1

. (9)

III. ADAPTIVE QUASI-STATIC CONTROL OF

MULTISTABLE SYSTEMS

This section investigates the performance of the adaptive

digital PID controller applied to adaptive quasi-static control

(AQC). Three illustrative examples are considered, namely,

a cubic system, a single-backlash system, and a double-

backlash system. The first example has isolated forced equi-

libria, whereas the remaining examples have a continuum of

forced equilibria.

For each example, the sample time Ts of the digital

controller is chosen to be significantly longer than the slowest

time constant of the continuous-time system. In addition, the

command for AQC is a step-dwell, where the length of time

of each step is longer than Ts.

For all simulations of the sampled-data closed-loop sys-

tems, the fixed-step integration time is chosen to be 10−6 sec

in order to capture the intersample response of the system.

A. AQC of the Cubic System

Consider the cubic system

q̇(t) = q(t)− q3(t) + u(t), (10)

where q(t) and u(t) are scalar signals. For a constant input

u(t) ≡ u, the system has forced equilibria at the roots

of q − q3 + u = 0. In particular, for all u < −0.42
and u > 0.42, (10) has one forced asymptotically stable

equilibrium; for u = −0.42 and u = 0.42, (10) has two

locally asymptotically forced equilibria; and, for all u ∈
(−0.42, 0.42), (10) has three forced equilibria, two of which

are locally asymptotically stable and the third is unstable.

Because of the existence of multiple asymptotically stable

equilibria for a given value of u, the system is multistable,

and thus the forced equilibrium that q approaches depends

on the input and the state history.

Let q(0) = 0 and let u be given by

u(t) =

⎧⎪⎪⎨
⎪⎪⎩

−1.5 + 0.1
⌊ t

Td

⌋
, t ≤ 30Td,

1.5− 0.1
⌊ t− 30Td

Td

⌋
, t > 30Td,

(11)
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where �x	 is the largest integer smaller than x. Note that (11)

is a sequence of steps, where each step is applied with dwell

time Td = 2 sec. Figure 1 shows the equilibria achieved by

(10) with the excitation (11). It can be seen that (10) has two

asymptotically stable equilibria when the magnitude of u(t)
is between −0.42 and 0.42.

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

-1.3 -1.25 -1.2
-1.42

-1.4

-1.38

-1.36

Fig. 1: Open-loop response of the cubic system (10) obtained with the
step-dwell excitation u(t) given by (11). The solid curve shows the forced
equilibria of (10), which are the roots of q−q3+u = 0 for the corresponding
constant value of u. Each point on the green curves corresponds to a unique
asymptotically stable forced equilibrium. In addition, each point on the
blue and red curves corresponds to a locally asymptotically stable forced
equilibrium. The black curve indicates unstable equilibria of the system.
The dashed vertical segments indicate jumps of the quasi-static system for
either increasing or decreasing quasi-static inputs. The colored vertical line
segments show the trajectory of q for each value of the step. Note that each
trajectory converges to one of the forced equilibria. The large vertical line
segment near −1.5 is due to the initial condition of the cubic system. The
inset shows details of the transient response.

Figure 2 shows the zoomed-in open-loop response of (10)

with the step-dwell excitation (11). Note that q converges for

each step.

Next, consider adaptive quasi-static PI control of the

cubic system (10). In this and the following examples, the

derivative feedback gain Kd is set to zero. The step-dwell

command r(t) is given by

r(t) =

⎧⎪⎨
⎪⎩
−1.5 + 0.3

⌊ t

Td

⌋
, t ≤ 10Td,

1.5− 0.3
⌊ t− 10Td

Td

⌋
, t > 10Td,

(12)

with dwell time Td = 1000 sec. The control u(t) is updated

with sample time Ts = 2 sec, that is, for t ∈ {k, k + Ts},
u(t) = vk, (13)

where vk is given by (1) and

zk = r(kTs)− q(kTs). (14)

Figure 3 shows the closed-loop response of the cubic

system (10) under quasi-static control. Note that the adaptive

quasi-static controller cannot stabilize the system but rather

focuses on moving the state from one asymptotically stable

equilibrium to another. Consequently, q does not converge in
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Fig. 2: Open-loop transient response of the cubic system (10) with step-
dwell excitation. Each step is applied with dwell time Td = 2 sec, and the
state q converges for each step.

the case where, for all constant values of u, the commanded

state of (10) is not an asymptotically stable equilibrium.

-1

0

1

0 0.5 1 1.5 2

104

-1

0

1

2000 4000 6000 8000 10000
0

5

10

10-12

10-8

10-4

100

Fig. 3: Closed-loop response of the cubic system (10) with the step-dwell
command (11) using adaptive quasi-static PI control. (a) shows the state
q(t), (b) shows the error variable zk , (c) shows u(t) given by the adaptive
PI controller, and (d) shows the evolution of the gains Kp,k and Ki,k .

Finally, Figure 4 shows the input-output phase portrait of

closed-loop response of the cubic system (10) under quasi-

static control. The converged values of q are shown in large

colored dots.

B. AQC of the Single-Backlash System

The equation of motion for single-backlash system shown

in Figure 5 is given by

mq̈(t) + cq̇(t) + kd2w(u(t)− q(t)) = 0, (15)

where

d2w(x)
�
=

⎧⎪⎨
⎪⎩

x− w, x > w,

0, |x| ≤ w,

x+ w, x < −w.

(16)
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Fig. 4: Closed-loop response of the cubic system (10) with the step-
dwell command (11) using adaptive quasi-static PI control. The forced
equilibria are indicated by the black dashed line. The small dots indicate the
sampled closed-loop response for each step, while the large dots indicate
the converged values of q(t) and u(t).

Fig. 5: Single-backlash system. The input u is the position of the right-hand
endpoint of the spring, and the output q is the position of the right-hand
edge of the mass. The width of the backlash is 2w.

Let m = 1 kg, c = 10 N-s/m, and k = 100 N/m, w = 0.5
m, and q(0) = q̇(0) = 0, and let u be given by the step-dwell

signal

u(t) =

⎧⎪⎨
⎪⎩
0.15

⌊ t

Td

⌋
, t ≤ 20Td,

1.5− 0.15
⌊ t− 20Td

Td

⌋
, t > 20Td.

(17)

Figure 6 shows the equilibria achieved by (15) with step-

dwell excitation (17), and Figure 7 shows the zoomed-in

open-loop response of q and u versus time. Note that q
converges for each step.

Next, we consider adaptive quasi-static PI control of the

single-backlash system with the step-dwell command

r(t) =

⎧⎪⎨
⎪⎩
0.1

⌊ t

Td

⌋
, t < 10Td,

1− 0.1
⌊ t− 10Td

Td

⌋
, t > 10Td,

(18)

with Td = 1000 sec. The control u(t) is updated with sample
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Fig. 6: Open-loop response of the single-backlash system (15) obtained with
the step-dwell excitation (17). Each point on the blue curves corresponds to
a Lyapunov- stable forced equilibrium and satisfies d2w(q − u) = 0. The
colored vertical line segments show the trajectory of q for each step. The
lower three points on the bottom left are due to the initial conditions of the
single-backlash system.

time Ts = 2 sec, that is, for t ∈ {k, k + Ts},

u(t) = vk, (19)

where vk is given by (1) and

zk = r(kTs)− q(kTs). (20)

Figure 8 shows the closed-loop response and the evolution

of the adaptive PI gains. Finally, Figure 9 shows the input-

output phase portrait of closed-loop response of the single-

backlash system (15) under quasi-static control. The con-

verged values of q are shown in large colored dots.
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Fig. 7: Open-loop response of the single-backlash system (21)–(23) with
the step-dwell excitation (18). Each step is applied with dwell time Td, and
the state q converges for each step.
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Fig. 8: Closed-loop response of the single-backlash system (15) with
adaptive quasi-static PI control. (a) shows the state q, (b) shows the error
variable zk , (c) shows u(t) given by the adaptive PI controller, and (d)
shows the evolution of the PI gains Kp,k and Ki,k .
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Fig. 9: Closed-loop response of the single-blacklash system (15) with the
step-dwell command (18) using adaptive quasi-static PI control. The small
colored dots indicate the sampled closed-loop response for each step, while
the large dots in the corresponding color indicate the converged values of
q(t) and u(t).

C. AQC of the Double-Backlash System

The equations of motion for the double-blacklash system

shown in Figure 10 are given by

m1q̈1 + c1q̇1 − k1d2w1(q3 − q1) = 0, (21)

m2q̈2 + k1d2w1(q3 − q1)− k2d2w2(u− q2) = 0, (22)

c2q̇3 − c2q̇2 − k1d2w1(q3 − q1) = 0, (23)

where d2w1
and d2w2

are given by (16). Let m1 = m2 = 1
kg, c1 = c2 = 10 N-s/m, k1 = k2 = 100 N/m, w1 = w2 =
0.1 m, q1(0) = q2(0) = q̇1(0) = q̇2(0) = 0, and let u be

given by

u(t) =

⎧⎪⎨
⎪⎩
0.1

⌊ t

Td

⌋
, t ≤ 10Td,

1− 0.1
⌊ t− 10Td

Td

⌋
, t > 10Td,

(24)

where each step is applied with dwell time Td. Figure 10

shows the equilibria achieved by (21)–(23) with the step-

dwell excitation (24).

Next, we consider adaptive quasi-static PI control of the

double-backlash system with the step-dwell command

r(t) =

⎧⎪⎨
⎪⎩
0.1

⌊ t

Td

⌋
, t ≤ 10Td,

1− 0.1
⌊ t− 10Td

Td

⌋
, t > 10Td,

(25)

with Td = 1000 sec. The control u(t) is updated with sample

time Ts = 2 sec, that is, for t ∈ {k, k + Ts},
u(t) = vk, (26)

where vk is given by (1) and

zk = r(kTs)− q(kTs). (27)

Figure 13 shows the closed-loop response and the evolution

of the adaptive PI gains. Finally, Figure 14 shows the input-

output phase portrait of closed-loop response of the single-

backlash system (21)–(23) under quasi-static control. The

converged values of q1 are shown in large colored dots.

Fig. 10: Double-backlash system. The input u is the position of the right-
hand endpoint of k2, and the output q1 is the position of the right-hand
edge of m1. The deadzone widths are 2w1 and 2w2.

IV. CONCLUSIONS

This paper applied adaptive digital PID control to quasi-

static control of systems that are nonlinear, uncertain, and

multistable. The approach was demonstrated on multistable

systems involving unmodeled cubic and backlash nonlinear-

ities having isolated equilibria or a continuum of equilibria.

These examples suggest that adaptive digital PID control is

a viable approach to quasi-static control of systems that are

nonlinear, uncertain, and multistable. Future research will

apply this technique to physical applications, such as aircraft

flight control for trimmed flight and drag reduction, structural

shape control, and process control.
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