Research 4: Distributed Data Management

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Explaining Wrong Queries Using Small Examples

Zhengjie Miao, Sudeepa Roy, and Jun Yang
Duke University
{zjmiao,sudeepa,junyang}@cs.duke.edu

ABSTRACT

For testing the correctness of SQL queries, a standard prac-
tice is to execute the query in question on some test database
instance and compare its result with that of the correct query.
Given two queries Q; and Q,, we say that a database instance
D is a counterexample (for Q; and Q) if Q1(D) differs from
Q2(D); such a counterexample can serve as an explanation
of why Q; and Q, are not equivalent. While the test database
instance may serve as a counterexample, it may be too large
or complex to understand where the inequivalence arises.
Therefore, in this paper, given a known counterexample D
for Q; and Q,, we aim to find the smallest counterexample
D’ € D where Q;(D’) # Qy(D’). The problem in general
is NP-hard. Drawing techniques from provenance and con-
straint solving, we develop a suite of algorithms for finding
small counterexamples for different classes of queries, includ-
ing those involving negation and aggregation. We evaluate
the effectiveness and scalability of our algorithms on stu-
dent queries from an undergraduate database course, and on
queries from the TPC-H benchmark. We also report a user
study from the course where we deployed our tool to help
students with an assignment on relational algebra.

ACM Reference Format:

Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. Explaining Wrong
Queries Using Small Examples. In 2019 International Conference on
Management of Data (SIGMOD ’19), June 30-July 5, 2019, Amsterdam,
Netherlands. ACM, New York, NY, USA, 18 pages. https://doi.org/
10.1145/3299869.3319866

1 INTRODUCTION

Correctness of database queries is often tested by evaluating
the queries with respect to a reference query and a test data-
base instance. A primary application is in teaching students
how to write SQL and auto-grading their queries. Typically,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD 19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. .. $15.00
https://doi.org/10.1145/3299869.3319866

503

we have a test database instance D and a correct query Q.
The correctness of a student query Q, can be checked by
testing whether Q;(D) = Q2(D). Assuming that Q, is at least
syntactically correct and its output schema is compatible
with that of Q, (which can be easily verified), if Q, does
not solve the intended problem, then there will be at least
one tuple in Q;(D) but not in Q(D), or in Qz(D) but not in
Q1(D). Another application scenario is when people rewrite
complex SQL queries to obtain better performance. One ap-
proach for checking the correctness of complex rewritten
queries is regression testing: execute the rewritten query
Q> on test instances to make sure that Q returns the same
results as the original query Q;. Finding an answer tuple
differentiating two queries and providing an explanation for
its existence helps students or developers understand the
error and fix their queries.

In both applications above, if the test database D is large—
either because it is a large real data set or it is synthesized
to be large enough to test scalability or ensure coverage of
numerous corner cases—it would take much effort to under-
stand where the inequivalence of two queries came from.
Suppose we teach a database course using DBLP data [30] for
an assignment on SQL or relational algebra. The database has
more than 5 million entries, and giving this entire database
(or the full query results) to students as a counterexample to
their query is not very effective. In practice, the mistakes in
most of the queries may be explained by only a small number
of tuples, which is much more useful for debugging.

Of course, one could generate a completely different coun-
terexample D’ altogether, but using the test database instance
D to help generate a counterexample has some distinct advan-
tages. First, it helps to preserve the same context for users by
using the same data values and relationships. Second, know-
ing that the original instance D is already a counterexample
can help create the counterexample D’ more efficiently. This
motivates the problem we study in this paper: given a data-
base instance D, a reference query Q1, and a test query Q,
such that Q1(D) # Q2(D), find a counterexample as a subin-
stance D' C D such that Q1(D’) # Q2(D’) and the size of D’
is minimized. We illustrate the setting with an example.

ExaMPLE 1. Consider relations Student(name, major) and
Registration(name, course, dept, grade) storing informa-
tion about students and course registrations. In a database
course, suppose the instructor asked the students to write a SQL

Research 4: Distributed Data Management

name | course dept grade
Mary 216 [100 1y
name major Mary 230 CS 75 ts
Ma S 7 Mary 208D ECON 95 te
]Oh?l’ FCON tl John 316 cs 90 t7
Jesse s tz John | 208D | ECON 88 I3

3

Jesse 216 CcS 95 ty
(a) Table Student S Jesse 316 cs % f10
Jesse 330 CS 85 t11

(b) Table Registration R

Figure 1: Toy database instance for Example 1. Identifiers are
shown for all tuples.

name | major
name | major Mary CS ra
[John [ECON [[ri | | John | ECON || rs
(a) Result of Oy Jesse (&) Ty

(b) Result of Q,
Figure 2: Results of O, Q2 in Example 1.

query to find students who registered for exactly one Computer
Science (CS) course. The test instance is given in Figure 1. The
following query Qy solves this problem correctly:

— o

Registration r
r.name AND r.dept =

SELECT s.name,s.major
FROM Student s,
WHERE s.name =
EXCEPT

SELECT s.name,s.major

FROM Student s, Registration ri1,
WHERE s.name = rl1.name AND s.name =
rl.course <> r2.course AND r1.dept =

cs!

Registration r2
r2.name AND
'CS' AND r2.dept =

However, one student wrote Qz, which actually finds students
who registered for one or more CS courses.

SELECT s.name,s.major -- Q2
FROM Student s, Registration r
WHERE s.name = r.name AND r.dept =

Figure 2 shows the results of Q1 and Q,. The tuplesr, andry
are in the output of Q, but not in the output of Q;. To convince
the student that his query is wrong, the instructor can provide
the full contents of S, R as a counterexample comprising 11 tu-
ples. However, a smaller and better counterexample can simply
contain three tuples (e.g., t1t4ts5) to illustrate the inequivalence
of Q1 and Q,. The benefit can be much larger if we consider a
real enrollment database from a university, whereas the size of
the counterexample can remain small.

cs!

Prior work in the database community mainly focused
on the theoretical study of decidability [13, 35] or generat-
ing a comprehensive set of test databases to “kill” as many
erroneous queries as possible [10], but does not pay much
attention to explaining why two queries are inequivalent.
There are recent systems that aim to generate counterexam-
ples for SQL queries. Cosette developed by Chu et al. [12]
used formal methods to encode SQL queries as logic formulas
to generate a counterexample proving that two SQL queries
are inequivalent. XData by Chandra et al. [10] generates test
data using mutation techniques. However, counterexamples
generated by such systems can lead to arbitrary values, which
may not be meaningful to the user. Our approach instead

cs!

504

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

ensures that the user sees familiar values and relationships
already present in the test database instances. Moreover, our
approach focuses users on one issue with their query at a
time, while XData gives instances that test multiple issues.
Specifically, this paper makes the following contributions.

e We formally define the smallest counterexample prob-
lem, and connect it to data provenance with the defini-
tion of the smallest witness problem.

We give results (NP-hardness proofs and poly-time
algorithms) in terms of both data and combined com-
plexity for different subclasses of SPJUD queries.

We give practical algorithms for SPJUD queries using
SAT and SMT solvers, and discuss a suite of optimiza-
tions to improve efficiency.

For aggregate queries, we illustrate the challenges and
propose methods to address them, which includes ap-
plying provenance for aggregate queries [2], adapting
the problem definition using the idea of “parameteriz-
ing” the queries, and heuristics to improve efficiency.
We have implemented an end-to-end system called
RATEST, which has seen live deployment and will be
demonstrated at this conference [33].

We evaluate the effectiveness and scalability of our
approach on student queries from an undergraduate
course, and on queries from the TPC-H benchmark.
We provide a case study in a large undergraduate data-
base course at Duke University, where students use
RATEST to debug their queries in a homework. Quanti-
tative analysis of usage statistics and homework scores
show that use of RATEST improved student perfor-
mance; anonymous survey of the students also indi-
cates that they found RATEST helpful to their learning.

2 SPJUD QUERIES

In this section, we consider the class of non-aggregate queries
with Select (S)-Project (P)-Join (J)-Union (U)-Difference (D)
operations expressed as relational algebra (RA) expressions;
queries with aggregates are considered in Section 3. We will
use RA form and SQL form of queries interchangeably. A
subset of these operators using abbreviations will denote the
corresponding subclass of such queries; e.g., PJ queries will
denote queries involving only projection and join operations.
First, Section 2.1 gives a formal problem definition and covers
some preliminaries. Then, Section 2.2 presents complexity
results for different subclasses of SPJUD queries. Finally,
Section 2.3 discusses practical algorithms and optimizations.

2.1 Problem Definition and Preliminaries

For a database instance D (involving one or more relations)
and a query Q, Q(D) denotes the result of Q on D. Let T
denote a set of integrity constraints on the schema of the

Research 4: Distributed Data Management

database instance D. We consider the following standard
integrity constraints: keys, foreign keys, not null, and func-
tional dependencies. If D satisfies T, we write D |= T'. We use
|D| to denote the total number of tuples in D.

We will use unique identifiers to refer to the tuples in the
database and query answers. In our example tables, they are
written in the right-most column (see Figures 1 and 2), e.g.,
in Figure 1, t; refers to the tuple Student(Mary, CS).

2.1.1 Smallest Counterexample Problem. Consider two
queries Q7 and Q, such that Q;(D) # Q2(D) on a database
instance D, where D |= T for a given set of constraints I'. In
other words, D explains why Q; and Q, are not equivalent.
Based on D, we want to find a small counterexample D’ € D
that also explains the inequivalence of Q;, Q.

DEFINITION 1 (COUNTEREXAMPLE AND THE SMALLEST
COUNTEREXAMPLE PROBLEM). Given a database schema with
a set of integrity constraints ' and two queries Q1 and Q,, we
say that a database instance D is a counterexample for Q;
and Q, conforming toT if D |= T and Q1(D) # Q2(D).

Given a counterexample D for Q; and Q, conforming
to I', the goal of the smallest counterexample problem
SCP(D, T, Q1, Q) is to find a counterexample D’ C D for Qy
and Q, conforming toT such that the total number of tuples
in D’ is minimized (i.e., for all counterexamples D" C D,
|D”| = |D’)).

In the above definition, we assume that the query results
are union-compatible (i.e., Q1(D) and Q»(D) have the same
schema), which is easy to check syntactically; otherwise
the difference in their schema provides an explanation of
their inequivalence. From now on, where it is clear from the
context, we will implicitly assume that D’ C D discussed as
a counterexample conforms to the given constraints I'; we
will discuss how constraints are handled in Section 2.3.4.

EXAMPLE 2. In Example 1, the given test instance in Figure 1
is a counterexample for Q1 and Q;. However, some subinstances
are also counterexamples. Among these, two smallest counterex-
amples can be formed with t; in S and tsts in R, or withts in S
and tytyy in R. (Two other subinstances that are smallest coun-
terexamples can be formed by varying the two courses of Jesse,
but no counterexample has fewer than 3 tuples.)

Our goal is to explain the query inequivalence to users by
showing the smallest counterexample over which the two
queries return different results. Even in our running example
with a toy database instance, this reduced the number of
tuples from 11 to only 3, whereas the benefit is likely to be
much more for test database instances in practice as observed
in our experiments. The brute-force method to find the small-
est counterexample is to enumerate all subinstances of D,
and search for the smallest subinstance D’ where Q;(D’)

505

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

and Q,(D’) differ. However, enumerating all possible subin-
stances is inefficient and it does not utilize the fact that D
itself is a counterexample. Therefore, to solve this problem
more efficiently, we relate it to the concepts of witnesses and
data provenance as discussed below.

2.1.2 Smallest Witness Problem. Buneman et al. [9] pro-
posed the concept of witnesses to capture why-provenance
of a query answer. Intuitively, a witness is a collection of
input tuples that provides a proof for a given result tuple.
Formally, given a database instance D, a query Q, and a tu-
ple t € Q(D), a witness for ¢t w.r.t. Q and D is a subinstance
D’ € D where t € Q(D’). For instance, in Example 1, {1, 4},
{t1,ts}, and {1y, t, 15} are three witnesses of the result tuple
r, w.r.t. Qp and D. We use ‘W(Q, D, t) to denote the set of all
witnesses for t € Q(D) w.r.t. Q and D. Since we also consider
non-monotone queries, we extend the definition of witness
with the concept of potential answers. We give the definition
below, and will discuss more details later.

DEFINITION 2 (POTENTIAL ANSWERS). Given a query Q
and a database instance D, we call a tuple t a potential answer
w.r.t. Q and D if there exists D’ C D such that t € Q(D’). Let
A(Q, D) denote the set of all potential answers w.r.t. Q and D.

Intuitively, members of A(Q, D) can be obtained by delet-
ing zero or more tuples from D and evaluating Q. Obviously,
all tuples in Q(D) are potential answers.

For instance, in Example 1, only (John, ECON) is in the
result of Q;. However, other tuples can also be potential
answers. In particular, if we remove some registration records
from R, then (Mary, CS) and (Jesse, CS) may appear in the
query result of Q; over the modified database, so they are
potential answers.

The following proposition states that the number of po-
tential answers is polynomial in data complexity [45] (when
the query is fixed). The proof is by induction on the height
of the operator tree for the query (we defer the proof to the
full version of this paper [32] because of space constraints).

PRrOPOSITION 1. Given a database instance D, an SPFUD
query Q, the number of tuples in A(Q, D) is polynomial in
terms of number of tuples in D.

Recall that witness is previously defined for a tuple in
result of Q over D. With the notion of potential answers, we
now extend the domain of witness so that it is also defined
for any tuple in A(Q, D).

A witness may contain many tuples and is sensitive to
the query structure. Buneman et al. [9] defined minimal
witness as a minimal element of ‘W (Q, D, t); i.e., for a mini-
mal witness w € W(Q, D, t), there exist no other witnesses
w’ € W(Q,D,t) such that w' C w. In Example 1, {t;,1,}
and {1, ts} are minimal witnesses of the result tuple r, w.r.t.

Research 4: Distributed Data Management

Q and D, but {#, t4, 5} is not. Note that a witness with the
smallest cardinality must be a minimal witness.

How do witnesses relate to counterexamples? It turns out
that any counterexample for Q; and Q, is also a witness for
some potential answer w.r.t. either Q; — Q, or Q, — Qy, as
the following proposition shows more formally.

PROPOSITION 2. Given a counterexample D for Q; and Q,
any counterexample D" C D for Q1 and Q; must be in W (Q1—
Q2,D,t) U W(Q2 — Q1,D, t) for somet € A(Q; — Q2,D) U
A(Q2 - Q1, D).

Proor. Since D’ is a counterexample, there exists a tuple
t such that t € (Q; — Q,)(D’) or t € (Q2 — Q1)(D’). Because
D’ C D, by definition of A, t € A(Q;—Q2, D)UA(Q,—Q1, D).
Furthermore, D’ is a witness for t w.r.t. Q; — Q, and D, or a
witness for t w.r.t. O, — Q; and D. O

DEFINITION 3 (SMALLEST WITNESS PROBLEM). Given a
database instance D, two union-compatible queries Q, and
Q> such that Q1(D) # Q.(D), and a tuple t such thatt €
A(Q1 — Q2,D) ort € A(Q, — Q1, D), the goal of the small-
est witness problem SWP(D, Qy,Q,t) is to find a witness
w e W(Q; - Qs,D,t) UW(Q, — Q1, D, t) such that the total

number of tuples in w is minimized.

Using Propositions 1 and 2, we can reduce the smallest
counterexample problem SCP(D, Q1, Q;) to the smallest wit-
ness problem SWP(D, Q;, Qz, t) in polynomial time by enu-
merating every potential answer ¢t w.r.t. Q1 — Q, and D or
w.r.t. Q2 — Q; and D, solving SWP(D, Q1, Q2, t), and finding
the globally minimum witness across all such t’s; i.e.,
PP Q00D = 6,0, D00, my T Q0 Q)
From now on, without loss of generality, we will assume
that in SCP(D, Q1, Q2), there exists a tuple t € Q;(D) but
t ¢ Q2(D). In the rest of the paper, we will mainly focus
on the smallest witness problem SWP(D, Q1, Q,, t) for such a
tuple. We further discuss the connection between SCP and
SWP in Section 2.3.

Discussion. Note that we have to consider Q; and Q jointly
in general when finding counterexamples and witnesses. For
instance, suppose t € Q1(D) — Qz(D), and we want to find a
smallest subset D’ of D such that t € Q;(D’) — Q2(D’). An-
swering “why t is in Q;(D)” is enough only when Q, is mono-
tone. When Q, is non-monotone, a witness w € ‘W(Q1, D, t)
may happen to make ¢ appear in the result of Q,(w), failing
to differentiate Q; and Q,.! Similarly, answering both “why
t is in Q;(D)” and “why t is not in Qy(D)” may also fail—
if we find a witness w; € W(Q1, D, t) and a small subin-
stance w, of D with the help of a why-not approach [21-
23, 29], such that t € Q;(wy) and t ¢ Q,(w,), it is possible

n contrast, if Q, is monotone, ¢ cannot be in Q2(D’) for any D’ € D
because we know ¢ ¢ Q,(D) to begin with.

506

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Query Class [Data Combined

of 01,02 Complexity Complexity

SJ P (Thm. 1) P (Thm. 1)

SPU P (Thm. 2) P (Thm. 2)

PJ P (Thm. 6) NP-hard (Thm. 3)

Ju P (Thm. 6) NP-hard (Thm. 4)

Ju* P (Thm. 5) P (Thm. 5)

SPJUD* P (Thm. 7) NP-hard if falls
into class PJ or JU

PJD NP-hard (Thm. 8) | NP-hard (Thm. 8)

Table 1: Complexity results on SWP. All theorems and proofs
appear in the appendix.

that t ¢ (Q1 — Q2)(w1 U wy): first, t could be missing from
Q1(wy U wy) if Q; is non-monotone; second, ¢ could be in the
result of Qz(w; U wy) even if t € Qs(wy). Therefore, we have
to consider Q; — Q, or Q;, — Q; as a whole.

2.2 Complexity for SPJUD Queries

Table 1 summarizes the complexity of the smallest witness
problem (SWP) for any subclass of SPJUD queries. In terms of
complexity, we consider data complexity (fixed query size),
query complexity (fixed data size), and combined complexity
(in terms of both data and query size) [45]. Thus polynomial
combined complexity indicates polynomial data complexity.
In Table 1, the class JU* has the restriction that all unions
appear after all joins. The class SPJUD" is defined as: Q —
q*|Q — Q, where g* is a SPJU query. Proofs are given in
Appendix A. For queries involving PJ, in general even the
query evaluation problem is NP-hard in query complexity. It
is the same for queries involving JU, however, the problem
is in poly-time for the subclass JU*, because we can directly
look into the join-only parts of a JU* query. For general SPJU
queries, the problem has poly-time data complexity, and thus
we can provide a poly-time algorithm for SPJUD* queries
in data complexity. What is noteworthy is that for the class
of queries involving projection, join, and difference without
any restrictions, it is already NP-hard in data complexity to
find the smallest witness for a result tuple; and the result
holds even when the queries are of bounded sizes and the
database instance only contains two relations. While in the
complexity results, we assume both Q;, Q, belong to the
same query class, if t € Q;1(D) \ Q2(D), for all monotone
cases the exact class of Q, does not matter as long as it is
monotone. We can show that SCP for PJD queries is also
NP-hard in data complexity by a simple reduction from SWP.

2.3 Methods for SPJUD Queries

The smallest witness problem is in general NP-hard even
for queries of bounded size, and the poly-time algorithms in
Table 1 are not efficient for practical purposes. To address
these challenges, we introduce a constraint-based approach

Research 4: Distributed Data Management

to the smallest witness problem. We map the problem into the
min-ones satisfiability problem [28] by tracking the Boolean
provenance of potential answers. The min-ones satisfiabil-
ity problem is an extension of the classic Satisfiability (SAT)
problem: given a Boolean formula ¢, it checks whether ¢ is
satisfiable with at most k variables set to true. This problem
can be solved by either using a SAT solver (e.g., MiniSAT
[43], CaDiCaL [7]), or an SMT Solver (e.g., CVC4 [4]and
Z3 [15]). Satisfiability Modulo Theories (SMT) is a form of
constraint satisfaction problem. It refers to the problem of
determining whether a first-order formula is satisfiable w.r.t.
other background first-order formulas, and is a generaliza-
tion of the SAT problem [6]. SAT and SMT problems are
known to be NP-hard with respect to the number of clauses,
constraints, and undetermined variables. However, there is
a variety of solvers that work very well in practice, and with
these solvers we can find a small solution to a SWP instance.
The rest of this subsection will describe how to encode how-
provenance, and then use a state-of-the-art solver to find the
smallest witness for a potential answer. The implementation
details will be discussed in Section 4.

2.3.1 Boolean How-Provenance. In order to compute the
smallest witness efficiently for general SPJUD queries, we
use the concept of how-provenance or lineage [1, 19] by prove-
nance semirings. How-provenance encodes how a given re-
sult tuple is derived from the given input tuples using a
Boolean expression, and its first use can be traced back to
Imilienski and Lipski [24] who used it to describe incomplete
databases or c-tables. The computation of how-provenance
of atuple t € A(Q, D), denoted by Prvg p(t) or Prv(t) when
clear from the context, is well known and intuitive: tuples in
the given input relations are annotated with unique identi-
fiers (as shown in the right-most columns in Figure 1). As the
query Q executes, for selections or duplicate-preserving pro-
jections, the annotations remain the same; for joint usages
of sub-expressions (joins), their annotations are combined
with conjunction (A or), and for alternative usages of sub-
expressions (de-duplicates or unions), the annotations are
combined with disjunction (V or +). For simplicity, we use
+ for disjunction, and omit symbols for conjunction. For
instance, in Example 1, in Q,(D),

(1)

For set difference operation, the extension of provenance
with potential answers is important. Consider Q = Q; — Q;
where all tuples in A(Q;, D) and A(Q,, D) are annotated
with how-provenance. For a tuple ¢ to appear in A(Q, D), it
must appear in A(Q1, D). Suppose Prvg, p(t) = ¢. If t does
not appear in A(Q;, D), Prvp p(t) = ¢. If t does appear in
A(Qq, D) with Prvg, p(t) = ¢, thenPrvg p(t) = ¢-J, where
J = -/ denotes the negation of the Boolean expression .

PrVQZ’D(rz) = t1ly + lit5 = tl(l’4 + ts) = ¢1(say)

507

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

The tuple t appears in the final result of Q(D) if ¢ appears in
A(Q1, D) but not in A(Qz, D), or if ¢t appears in both of them
and Prvg p(t) is true. The removal of any tuple from D will
make its Boolean variable set to false and thus may affect the
value of Prvg p(t). We consider all potential answers w.r.t.
Q and D when computing the how-provenance for Q(D).

Example 2.1. In Example 1, consider the following RA
expressions for Q; and Q;, using abbreviations S and R for
Students and Registration, where 4 denotes natural join.

(2)

Suppose Q3 = Tnane,major0y(S M R r1 xR r2), where n de-
notes the selection condition: r1.dept = ’CS’ A r2.dept =
"CS’ Arl.course # r2.course. Then Q; = Q, — Q3. Consider
the result tuple r; = (Mary, CS), which is in (Q; — Q1)(D)
(Figure 2). The provenance of r, = (Mary, CS) in Q;(D) is
given in Equation (1). It does not appear in Q;(D) since it
appears in both Q,, Qs in (2). For Qs, Prvp, p(r2) = titsts =
¢2(say). Hence, Prvg, p(r2) = ¢1 - ¢2, and Prvo,_o, p(r2)
= ¢1-[P1- P2l = P1- [h1 + P2l = 1 2 = (1(ta + 15)) - (t11al5)
= t114t5. In other words, the tuple (Mary, CS) can distinguish

the queries Q1, Q; in a small witness with #; in S and 45 in
R, which solves both SWP and SCP problems.

QZ = ﬂname,majoro'dept=’CS’(S > R)

For the above example, the smallest witness or the smallest
counterexample could be found by inspection, since Q1, Q2
are similar. For arbitrary and more complex queries, how-
provenance gives a systematic approach to find a small wit-
ness as we will discuss in the following two sections.

2.3.2 Passing How-Provenance to a Solver. Since Pru(t) is
composed of a combination of Boolean variables annotating
tuples in the input relations, a Boolean variable is true iff the
corresponding tuple is present in the input relation. Then
an instance of the smallest witness problem is mapped to
an instance of the min-ones satisfiability problem: find a
satisfying model to Pro(t) with least number of variables set
to true, and the variables set to true in the satisfying model
indicate tuples in the smallest witness.

The pseudocode of the algorithm to solve SWP and then SCP
can be found in the full version [32]. Briefly, one approach
to solving SWP is by repeated invocation of a SAT solver.
Since the solver will return an arbitrary satisfying model,
to get the minimum model we need to ask the solver to
return a different model every time we rerun it. We set a
maximum number of runs to limit the running time, and the
algorithm stops when there is no more satisfying models or
it has reached the maximum number of runs. It may not find
the minimum model when it stops, but it is likely to find a
small one if given enough time.

To solve SCP, recall from Section 2.1 that it suffices to
consider SWP for all potential answers in Q; —Q; and Q; — Q5.

[I N O

Research 4: Distributed Data Management

Therefore, a basic algorithm for SCP, which we call SCP-
ALL, will compute the provenance for Q; — Q; and Q, — Q4,
identifying all potential answers and their provenance in the
process. Then, for each potential answer, we solve SWP as
described above. The overall smallest witness will be chosen.

2.3.3 Improving the Basic Approach. The basic approach
above has two limitations: 1) for SWP, it cannot find the small-
est witness until it searches all possible models that satisfy
Prv(t); 2) SCP-ALL computes provenance for every potential
answer, resulting in high overhead. Therefore, we propose
two improvements.

The first improvement is to pick only one tuple ¢ from
Q1(D)\Q2(D), and capture only the provenance of t by adding
a selection operator to select tuple ¢ on top of the query tree
of Q; — Q2. During provenance computation, which we im-
plemented by rewriting SQL queries (see Section 4 for more
details), the SQL optimizer is likely to push down the ad-
ditional selection operator, thereby reducing unnecessary
intermediate computation and accelerating provenance com-
putation. We call this strategy SCP-sEL for “selective” prove-
nance, which solves only one instance of SWP. Of course, if
Q1(D) € Q2(D), we would then consider Q,(D) \ Q1(D).

The second improvement is to treat SWP as an optimization
problem instead of finding different models with a SAT solver.
Integer linear programming solvers cannot be applied be-
cause transforming how-provenance into linear constraints
can be exponential. To solve this problem, we use optimizing
SMT solvers that are now available with recent advances in
the programming languages and verification research com-
munity [8, 31]. Given a formula ¢ and an objective function
¥, an optimizing SMT solver finds a satisfying assignment
of ¢ that maximizes or minimizes the value of . In our case,
we encode Prv(t) as the constraint of the optimizing SMT
solver, set the number of true variables as the objective func-
tion, and solve for the optimal model. Our SMT formulation
includes only Boolean variables, so we encode the number of
true variables by first converting the variables into 0 or 1 and
then summing them up. The pseudocode of this improved
algorithm can be found in [32].

As an example, the following listing illustrates how we
encode the provenance in the SMT-LIB standard format [5]
as the input to an SMT solver, which returns a solution to
SWP(D, Q1, Oz, (Jesse,CS)) in Example 1:

(declare-const t1 Bool)

(declare-const t11 Bool)

(define-fun b2i ((x Bool)) Int (ite x 1 0))

(assert (and (or t4 t5) (not (and (or (and t1 t4) (and t1
t5)) (not (and t1 (and t4 t5)))))))

(minimize (+ (b2i t1) (b2i t2) ... (b2i t11)))

Lines 1-3 define Boolean variables for each tuple. Line 4
defines function b2i that converts Boolean variables into 0

508

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

and 1. Line 5 adds the how-provenance as an SMT constraint.
Then with function b2i we take the sum of 0-1 variables to
get the total number of variables set to true, and then set
minimizing this sum as the objective function (Line 6).

2.3.4 Handling Database Constraints. Since we output a
subinstance of the input database instance as the witness,
database constraints like keys, not null, and functional de-
pendencies are trivially satisfied if the input instance is valid.
On the other hand, foreign key constraints can be naturally
represented as Boolean formulas like provenance expres-
sions. For instance, in our running example in Figure 1, the
name column in the Registration table may refer to the
name column in the Student table. So, if we want to keep
any tuple in the Registration table, we must also keep the
tuple with the same name value in the Student table. This
constraint can be expressed in the a = b form, e.g., t; + 14,
ty+ 17, .. etc., corresponding to the constraint that the tuples
in the Registration table cannot exist unless the tuple it
refers to exists in the Student table. Then, for each tuple
that appears in the provenance expression added to the SAT
or SMT solver, we add its foreign key constraint expression
to the solver as a constraint.

3 AGGREGATE QUERIES

So far, we have focused on SPJUD queries. We now extend
our discussion to aggregate queries. We make some assump-
tions on the form of such queries: 1) no aggregate values or
NULL are allowed in group-by attributes; 2) selection pred-
icates involving previously aggregated values (i.e., HAVING
conditions) involve only numeric comparisons; 3) there is
no difference operator above aggregation in either Q; or Qs,
(of course, we handle the top-level difference in Q; — Q, and
Q; — Q1 when Q; and Q, may involve aggregation).

3.1 Challenges of Aggregate Queries

First, (selective) how-provenance does not work well for SCP
for aggregate queries. Recall from Section 2.3 that a practical
heuristic we used for SPJUD queries, SCP-sEL, just picks one
tuple ¢ from the symmetric difference between Q; and Q,
and focuses on computing how-provenance and finding a
witness for t. Unfortunately, this heuristic may not work
for an aggregates result tuple t, because its aggregate value
generally depends on all member tuples in the input group
corresponding to t; removal of any such tuple may change
t’s aggregate value, so there may not exist any proper subset
of tuples in the input group that can serve as a witness for ¢.

ExAMPLE 3 (CHALLENGE OF PRESERVING AGGREGATE VAL-
UES). Suppose we have a reference query Q1 aimed at comput-
ing the average grade of students in CS courses, using the two
tables in Figure 1:

Research 4: Distributed Data Management

SELECT s.name, AVG(r.grade) as avg_grade
FROM Student s, Registration r

WHERE s.name=r.name AND r.dept='CS'
GROUP BY s.name;

Suppose a second query Q, forgets the condition r.dept="CS’.
These two queries would return the following results:

Q:1(D) Q:(D)
name | avg _grade name | avg grade
Mary | 87.5 Mary | 90
John 90 John 89
Fesse 90 Jesse 90

Suppose we pick (Mary, 90) in Q2(D) to focus on. The witness
for this result tuple—which by definition needs to preserve the
aggregate value 90—would have to include all of Mary’s regis-
tration records. In reality, however, to show that Qy returns a
different result from Q, for some counterexample, one regis-
tration record (Mary, 208D, ECON, 88) will suffice: Q1 would
return empty while Q, would return (Mary, 88).

To circumvent the problem, can we resort to consider-
ing witnesses for all potential answers instead of just t, as
in SCP-ALL? Indeed, in the above example, (Mary, 838) is a
potential answer that can be constructed by extending how-
provenance to aggregates, essentially through enumeration
of all possible combinations of tuples in a group [41]. How-
ever, this approach leads to exponential overhead and be-
comes impractical for even moderate-size groups.

Finally, as soon as we consider further selection involving
aggregate values (such as HAVING), there can be cases where
the size of any counterexample is necessarily large by our
formulation of SCP in Definition 1. Consider the following.

ExAMPLE 4 (CHALLENGE OF INHERENTLY LARGE COUN-
TEREXAMPLES). Continuing with Example 3, let us extend both
queries to find the average grade of CS courses of students who
registered for at least 3 CS courses. Basically, both Q; and Q,
get an additional HAVING clause. For example, Q; becomes:

SELECT s.name, AVG(r.grade) as avg_grade
FROM Student s, Registration r

WHERE s.name=r.name AND r.dept='CS'
GROUP BY s.name

HAVING COUNT(r.course) >= 3;

Q1 and Q; would return the following results (recall that Q,
misses the condition r.dept="CS’):

(D) (D)
= name | avg grade
name | avg grade Mar %
Jesse 90 Y
Jesse 90

Because of the HAVING condition, we must include all (3) of
Mary’s registration records in a counterexample, or else the
queries would be indistinguishable because neither would re-
turn Mary’s group.

While the group size in the above example is small, it
is trivial to construct examples where HAVING would force
arbitrarily large groups of input tuples to be included in
a counterexample. No approach (including painstakingly

509

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

name | avg_grade provenance
Mary | val; : avg(ty ® 100, t5 ® 75) prvy s (it +15) (sum(ty ® 1,15 ® 1) > 3)
& John | val, : avg(t; ® 90) prvy : (baty) (1, ®1 > 3)
Jesse | vals : avg(ty ® 95,110 ® 90,11, ® 85) | prvy : (t3 (to + tio + t11)) (sum(ty ® 1,430 ® 1,4, ® 1) > 3)
name | avg_grade provenance
Mary | valy : avg(ts ® 100, t5 ® 75,15 ® 95) | prvy : (ti(ts + t5 + t)) (sum(ty ® 1,15 @ 1,4, ® 1) = 3)
Q John | vals : avg(t; ® 90, t ® 8) prvs « (ta(t7 + 1)) (sum(t; @ 1L, 5 ® 1) > 3)
Jesse | valg : avg(to ® 95,110 ® 90,111 ® 85) | prvg : (ts(to + tio + 1)) (sum(ty ® 1,110 ® 1,1 ® 1) 2 3)

Table 2: Provenance for aggregate queries in Example 4.
Note that instead of infix notations for avg and sum as in [2], we
use prefix notations for readability.

considering all potential answers) would help because the
problem is inherent in the formulation of SCP in Definition 1.

3.2 Methods for Aggregate Queries

We first tackle the ineffectiveness of how-provenance, by
applying provenance semirings for aggregate queries proposed
by Amsterdamer et al. [2] and proposing a baseline method
called AGG-Bast. We further address the inherent limitation
of Definition 1 for handling aggregates by proposing a new
definition based on the ideas of parameterizing queries, and
showing how AGG-BASE can be adapted. Finally, we present a
heuristic method called AGG-1mPR that improves the running
time of AGG-BASE for queries involving a single aggregation
followed by an optional selection.

3.2.1 Applying Provenance for Aggregates. Following the
approach in [2], we encode aggregate values computed by
queries as symbolic expressions using abstract arithmetic
operations and variables corresponding to tuples in the input
relations. Selection conditions involving aggregate values
are then encoded as symbolic logical expressions. Table 2
shows the provenance for aggregate queries for Example 4.
For instance, avg(t; ® 100, t5 ® 75) represents the AVG value
of a group containing two tuples t; and t5 in the result of
Q1, and the value of the attribute of tuple 4 is 100, and for
ts it is 75 . If t4 is removed from the input relations, then
ty ® 100 will not contribute to the aggregate. Like the how-
provenance, (t1(ts + ts5)) (sum(ty ® 1,5 ® 1) > 3) indicates
how the result tuple is derived from the input or intermedi-
ate tuples: t;(t; + t5) means that the group exists iff #; exists
and one of t; and 5 exists; sum(ts ® 1,5 ® 1) > 3 represents
the HAVING criterion: the COUNT (a special case of SUM) value
should be greater or equal to 3. As with how-provenance, ag-
gregate values and provenance expressions can be computed
bottom-up during query evaluation. Unlike how-provenance,
there is no longer a need to enumerate all possible aggregate
values resulting from subsets of a group of tuples; one single
symbolic expression succinctly captures these possibilities.

With this approach, we have a baseline method for finding
counterexamples for aggregate queries, which we call AGG-
BASE. Given Q1(D) and Qz(D) that differ, we pick a group
that exists in one result but not the other, or a group that
exists in both but the aggregate values differ. In either case,

Research 4: Distributed Data Management

we can assert a symbolic Boolean expression derived using
the aggregate provenance expressions, and let an SMT solver
find a satisfying model with minimum number of input tu-
ples included. For example, a counterexample for Q; and
Q; w.r.t. tuple (Mary, 90) can be found by solving the con-
straint (prog ® proy) V (valy # valy). Note that the constraint
only insists that aggregate values produced by Q; and Q; are
different; there is no stipulation that this counterexample
reproduces the same aggregate value 90.

3.2.2 Parameterizing the Problem. To address the problem
that certain queries require large counterexamples by Defi-
nition 1, we modify our problem definition by parameteriz-
ing the queries, thereby allowing extra degrees of freedom
when constructing counterexamples. Specifically, we replace
the constants in selection predicates (such as 3 used in the
HAVING condition of Example 4) by a parameter; a subin-
stance can be a counterexample as long as it differentiates
the two queries for some setting of the parameter, not neces-
sarily the original one.

DEFINITION 4 (SMALLEST PARAMETERIZED COUNTEREX-
AMPLE PROBLEM). Given two queries Q1 and Q, parameter-
ized by A, as well as a database instance D and a setting
A = v, where Q1(v, D) # Q2(v, D), the smallest parameter-
ized counterexample problem (SPCP) is to find a subinstance
D’ of D and a parameter setting A = v’, such that such that
01(v',D’") # Q2(v’, D’), and the total number of tuples in D’
is minimized.

EXAMPLE 5 (SMALLEST PARAMETERIZED COUNTEREXAMPLE).
Continuing with Example 4, we can turn the threshold number
of courses (3) in the HAVING conditions of both Q; and Q, into
a parameter A. For example, Q1 becomes:

SELECT s.name, AVG(r.grade) as avg_grade
FROM Student s, Registration r

WHERE s.name=r.name AND r.dept='CS'
GROUP BY s.name

HAVING COUNT(r.course) >= A;

If we insist on A = 3, the smallest counterexample we can
find would be t114ts5ts (see Example 4). However, with the flexi-

bility of SPCP, we can find a small counterexample t;1, which
differentiates Q; and Q for A = 1.

We can adapt the algorithm AGG-BASE to work for SPCP.
The only change would be that we treat the query param-
eter A as a symbolic variable when computing aggregate
provenance. For example, doing so amounts to replacing oc-
currences of the constant 3 with A in Table 2 for Example 4.
We impose no constraint on this variable to the solver, so
it can find small counterexamples without adhering to the
original parameter setting.

3.2.3 A Heuristic Improvement. AGG-BASE may not scale
very well when a group contains many tuples, because the

510

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

SMT constraints will involve many variables and become
difficult to solve. Thus, we develop a heuristic improvement
called AGG-IMPR, targeting Q; and Q; where both end with
an aggregation operator followed by an optional selection
operator. The key intuition behind AGG-1MmPR is to heuristi-
cally focus on differentiating two corresponding groups of
tuples computed by Q; and Q, before they are aggregated.
A counterexample that differentiates these two groups will
likely lead to different result tuples after aggregation. Recall
Example 3, where Q; and Q; differ in the aggregate value of
result group for Mary (because Q, forgot to restrict to CS
courses). Disregarding aggregation, if we simply focus on
differentiating members in the Mary group, we will obtain a
counterexample t,¢,, which happens to differentiate Q; and
Q, after aggregation.

In more detail, AGG-1MPR works as follows. First, it picks
one group, identified by a specific group-by value a, for which
Q1(D) and Q,(D) differ (either the group is in one result
but not the other, or its aggregate value differs). Then, we
formulate two queries Q] and Q; that compute the members
of group a for Q; and Q, (resp.); they are formed by taking the
subqueries of Q; and Q, below the aggregation operator and
subjecting them to a selection condition setting the group-by
attribute to a. We simply solve SCP on Q;(D) and Q;(D) to
obtain a counterexample C.

Next, AGG-1MmPR tests if C also works for Q; and Q,, and
if not, tries to change any query parameter in the final selec-
tion to make it work. To this end, let Q] and Q; denote the
“remainder” queries that produce the final result tuples for
group a from the results of Q] and Q;,i.e., Q1(C) = Q7 (Q;(0))
and Q;(C) = 03(Q;(C)). Q7 and Q; should involve only
one aggregation followed by a selection parameterized by
A. In general, following an approach similar to earlier sec-
tions, we can derive a Boolean expression from Qj, 07, and
the actual contents of Q](C) and Q;(C) to check whether
Q1(C) # Q,(C), with only one variable 1. We then assert this
expression and solve for a feasible setting of A. In practice,
the cases for various types of final selection conditions are
simple enough that we use a set of hand-coded rules to set A.

Finally, there is still a chance that C does not work for Q
and Q,. In this case, AGG-IMPR can attempt another coun-
terexample for Q] and Q;, and repeat this process a number
of times before giving up.

4 IMPLEMENTATION & EXPERIMENTS

Provenance has been not only studied extensively theo-
retically [2, 9, 19], but also implemented in various sys-
tems [3, 17, 18, 27, 38, 42]. However, to the best of our knowl-
edge, no current system readily meets our need for support-
ing general SPJUD and aggregate queries. We have imple-
mented our system, called RATEST, on top of a SQL-based

Research 4: Distributed Data Management

database system by translating relational queries and prove-
nance computation into SQL for execution. RATEST builds on
an open-source RA interpreter [48] that translates relational
algebra queries (extended with group-by and aggregation)
into SQL, using WITH to build up complex queries one rela-
tional operator at a time. To compute provenance, RATEST
rewrites the SQL fragment generated for each relational oper-
ator with logic to derive output provenance expressions from
its input ones. All input and result (including intermediate)
relations are augmented with an extra string-valued column
for storing provenance expressions (Section 2.3); columns
for aggregate values are replaced with string-valued ones
for storing the corresponding symbolic expressions (Sec-
tion 3.2.1). These expressions are computed using SQL in
a bottom-up fashion through the query tree, by manipulat-
ing the strings encoding these expressions in the SMT-LIB
format [5]. For additional details, see [32].

Once provenance has been computed by evaluating the
rewritten SQL queries, RATEST generates the SMT con-
straints and solves them using Z3 4.7.1, an efficient opti-
mizing SMT Solver by Microsoft Research [8, 15], with the
objective function minimizing the number of Boolean vari-
ables set to true. The satisfying models returned by the solver
represent the counterexamples.

RATEST is implemented mostly in Python, and the exper-
iments in this section ran locally on a 64-bit Ubuntu 16.04
LTS server with 3.60GHz Intel Core i7-4790 CPU and 16GB
1600MHz DDR3 RAM, which also hosts the database (Mi-
crosoft SQLServer 2017). RATEsT additionally features a web-
based interface, described in more detail in [33].

The following experiments focus on evaluating the effi-
ciency and scalability of our algorithms as well as the quality
of the counterexamples they find. Section 4.1 focuses on
SPJUD queries collected from student submissions to a re-
lational algebra assignment in an undergraduate database
course at Duke University; therefore, the wrong queries were
“real”, although test database instances are synthetic. Sec-
tion 4.2 uses TPC-H [14], where we manually created wrong
versions of several benchmark queries.

4.1 Real-World SPJUD Queries

Queries in these experiments come from submissions by
141 students to a relational algebra assignment in Fall 2017,
where they were asked to write SPJUD queries using the RA
interpreter. There were 8 questions, 7 of which are relevant
to our experiments (the first question was so simple that all
students got it correct). These questions are similar (but not
identical) to those used in our user study in Fall 2018 (see
Section 5 for more more details); the database schema is the
same. We use a synthetic test database instance D whose
size can be adjusted. It was designed to catch some corner

511

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

cases but there is no guarantee that it has complete coverage
(in the sense that it can reveal all incorrect queries), and we
observed that as we increase its size, more incorrect queries

were caught:?
tuplesin D | 1,000 | 4,000 | 10,000 | 40,000 | 100,000
incorrect queries found { 111 { 167 { 168 { 169 { 170

Some questions involve very complex queries to find tu-
ples satisfying conditions with universal quantification or
uniqueness quantification requiring multiple uses of differ-
ence (see Section 5 for concrete examples), and elicited some
extremely complex student solutions with scores of oper-
ators; we are not aware of any directly related work that
is able to handle this level of query complexity. We had to
drop two overly complicated student queries that involved
massive cross products.

SCP-ALL vs. SCP-sEL. As discussed in Section 2.3, although
SCP-aLL in theory is better at finding smallest counterex-
amples by considering all potential answers differentiating
Q; and Q», doing so in practice can be expensive and may
not deliver interactive performance — there is one student’s
query for which the solver did not finish in one hour, and
we reported the smallest counterexample returned after one
hour. Instead, SCP-sEL focuses on only one tuple in the sym-
metric difference of Q;(D) and Q,(D) (we always arbitrarily
pick the first one in return order), which is guaranteed to
find a counterexample but not necessarily the smallest one.
We would like to see how SCP-seL compares with SCP-ALL
in terms of speed and quality of their solutions overall. Here,
both approaches uses SMT:

| SCP-aLL | SCP-skL
75.89 3.80
3.52 3.52

average running time (sec)
average size of counterexample

Surprisingly, solutions found by SCP-skL for this workload
have the same size as those found by SCP-a11, even though
SCP-sEL considers only one candidate tuple and runs much
master. Upon closer examination, for 168 out of the 170
wrong queries we discovered, all candidate tuples considered
for the given wrong query have equally sized smallest wit-
nesses. Hence, at least for this real-world query workload,
SCP-skL has a very high probability of finding the global
minimum while being much faster than SCP-ALL.

Solver Strategies. Here we further evaluate the time-quality
trade-off of different solver strategies. SMT uses the optimiz-
ing SMT solver; SAT*A refers to the strategy of repeatedly
invoking a SAT solver to find up to A satisfying models and
report the minimum. Since the SAT solver may return an arbi-
trary model each time, for these experiments we run SAT*A
10 times and report the average minimum. Figure 3a shows
the solution quality of SMT and SAT*128 across queries

%Interestingly, we also found big synthetic test databases to be far more
effective in catching incorrect queries than human graders, who had no
auto-grading support back in Fall 2017.

Research 4: Distributed Data Management

. SMT 8 | SMT A SAT'8
8 B SAT*128 M SCP-all-SMT # SAT*16
[©7 Y SAT*1 SAT*32
N N . *)
36 5 SAT*2 * SAT*64
c c o v SAT*4 ® SAT*128
o c6
S = +
34 =
o o 5-
%] 0 *
2 []
4-
0 . I []
i 2 3 4 5 6 7 102 107" 100 10! 102

Query ID Solver Running Time (sec)
Figure 3: Comparison of solver strategies for student SPJUD
queries. N = 100K. (a) Counterexample size by query. (b) Coun-
terexample size vs. average solver time.

(using SCP-seL). SMT is the clear winner, consistently pro-
ducing smaller counterexamples than SAT*128. For a closer
look at the time-quality trade-off, Figure 3b further compares
the average solver running time and counterexample size
produced by SMT vs. SAT*A for varying A (from 1 to 128);
for comparison, we also show SCP-aLL with SMT. Overall,
we see that SMT offers much better time-quality trade-off—
it is able find counterexamples smaller than any of SAT*A
by spending just a little more time than SAT*4. Of course,
results of these experiments heavily depend on the solver im-
plementation; a comprehensive evaluation would be beyond
the scope of this paper. Here, we simply observe that our
implementation choice of SMT provides good performance
and solution quality in practice, as it cannot be easily beaten
by simply enumerating a number of satisfying models.

Size of Counterexamples vs. Provenance Expressions.
Since our approach to finding counterexamples is based on
provenance, an interesting question is whether provenance
expressions themselves are small enough to serve as expla-
nations instead. To this end, we compare the size of an coun-
terexample given by our approach against the size of the
provenance expression (for the same result tuple targeted
by the counterexample). Here, we define the size of a prove-
nance expression as the number of distinct variables (input
tuples) it contains.? Figure 4 compares the average size of
counterexamples and that of the corresponding provenance
expressions, as we vary the size of the database D. We use
SCP-seL with SMT here. While the counterexample sizes
depend on the particularities of each database instance, the
general trend is that the average size of provenance increases
with the database size, while the average size of counterexam-
ples is much lower and remains stable even as the database
becomes larger.

3We note that the length of the expression can be much greater than this
number because a variable may appear multiple times, and that simply
setting variables to true may not lead to valid counterexample. In other
words, the burden on the user to decipher a provenance expression will be
higher than this particular definition of size implies.

Figure 4: Size of counterex-
amples vs. provenance for stu-
dent SPJUD queries. SCP-sEL
with SMT.

512

15-

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

|

100k

17.5-
—e— raw
15.0-

—*~— prov-all
12.5- prov-sel
10.0-

" EEm Counterexample
- I Provenance

—— solver-sel-SAT*128
solver-sel-SMT
solver-all-SMT

—t =

1k 4k 10k 40k 100k
Tuples in DB

7.5-
5.0-
25-
0.0-

Time (sec

0
1k 4k 10k 40k

Tuples in DB

Figure 5: Breakdown of av-
erage running time vs. data-
base size for student SPJUD
queries.

Running Time Breakdown vs. Database Size. To better
understand the performance of our approach, we vary the
size of the database and study the breakdown of running
times in Figure 5. Here, raw is the time to evaluate the dif-
ference between the student query and the reference query
(without computing any provenance); prov-all is for eval-
uating the rewritten query, which computes all potential
answers and their provenance (a step needed in SCP-ALL);
prov-sel is for evaluating the rewritten query with the ex-
tra selection targeting one specific tuple in the difference
to obtain its provenance (a step used by SCP-seL). We also
show the total times spent on the solver for SCP-seL with
SMT (solver-sel-SMT), SCP-seL with SAT*128 (solver-sel-
SAT*128), and SCP-aLL with SMT (solver-all-SMT). From
the figure, we see that full provenance computation adds sig-
nificant overhead compared with normal query evaluation
(prov-all vs. raw). However, we can drastically reduce this
overhead by focusing on only one tuple in the difference: e.g.,
prov-sel is about 42X faster than prov-all and 29x faster
than raw when |D| = 100K. Also thanks to this focus, solver
time for SCP-seL with SMT becomes negligible in compar-
ison with other components of the running time for large
databases; as shown in earlier experiments, it still produce
small counterexamples comparable to those of SCP-aLL with
SMT, which can be prohibitive for large databases.

Running Time vs. Query Complexity. Focusing on SCP-
seL with SMT, we now study how query complexity affects
the running time (and its breakdown) in Figure 6. Besides the
total running time, we also report its breakdown in terms
of time spent on evaluating the difference between student
and reference queries (raw), computing provenance for the
selected tuple (prov), and solving the SMT (solver). We
consider three measures of query complexity: number of op-
erators, number of difference operators, and the height of the
query tree.* If multiple queries have the same value for some
complexity measure, we report their average running time.

“Here, a “query” refers to one (and only one) of Q; — Q, and Q; — Q that
SCP-sEL chooses to focus on, so the top operator is always a difference.

Research 4: Distributed Data Management

From these plots, we see that the cost of (selective) prove-
nance computation and solving the SMT tends to increase
with query complexity, but the total running time is domi-
nated by just the time of checking the difference between
student and reference queries, which fluctuates more.

4.2 Synthetic Aggregate Queries

We experimented on the TPC-H benchmark database gen-
erated at scale 1 (8.5 million tuples) with queries Q4, Q16,
Q18, Q21, and Q21-S, a modified version of Q21 that ends
with a final selection on aggregate value. We choose these
queries because they do not involve arithmetic operations
on aggregate functions. First we dropped the ORDER BY op-
erator and rewrote these queries using the RA interpreter,
then we experimented both the baseline approach (AGG-
BASE) and the heuristic improvement (AGG-1mpr) discussed
in Section 3. We also experimented with AGG-BASE with
the parameterization extension on Q18 (it has a subquery
involving selection predicate with aggregate value, and ends
with another aggregation operator). We intentionally made
two wrong queries for each query, whose errors include dif-
ferent selection conditions, incorrect use of difference, and
incorrect position of projection. These are common errors
in the students queries from the previous experiment.

Size of Counterexamples vs. Provenance Expressions.
See Figure 7. SC-Base and SC-Impr are the sizes of coun-
terexample returned by AGG-BASE and AGG-IMPR, respec-
tively; Prov-Base and Prov-Impr are the sizes of prove-
nance expressions used in AGG-BASE and AGG-IMPR, respec-
tively. AGG-BASE does not finish running on Q4. The sizes
of the counterexamples by both AGG-BAsE and AGG-IMPR
are significantly smaller than the original provenance for
aggregate queries expressions for most queries (note the
logarithmic scale). For some queries (Q4 and Q16), AGG-
1MPR does not reduce the size of counterexamples over the
how-provenance expression, because these queries are much
simpler in structure compared to those involving multiple
projections and differences in Section 4.1.

For Q18, AGG-BASE with parameterization extension (not
shown in figure) returns counterexamples with 3.5 tuples
on average, reducing by half of the size of counterexamples
by both AGG-BASE and AGG-IMPR, while the solver running
time only increases to 0.0210 seconds. This indicates that the
parameterization extension helps us avoid large counterex-
amples required by selections involving aggregate values.

Running Time. Table 3 reports the running time of our
algorithms for finding the smallest counterexample for each
TPC-H query we experiment with. We present a breakdown
of the execution time into time spent on evaluating the dif-
ference between wrong and reference queries, computing

513

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Raw AGG-BASE AGG-1MPR
Query Query
Eval. Prov. Query Solver Prov. Query Solver
Time Eval. Time Runtime Eval. Time Runtime
Q4 3.6036 4.0403 timeout 0.0029 0.0151
Q16 0.8676 0.1349 0.2471 0.1084 0.0022
Q18 6.8751 0.0086 0.0134 0.0130 0.0039
Q21 21.5184 2.6205 31.1106 0.0577 0.0066
Q21-S 21.5408 2.8034 155.6828 0.0524 0.0061

Table 3: Running time (sec) for TPC-H queries.

provenance for the selected tuples, and solving the SMT con-
straints. We find that the scalability of AGG-1mPR is much
better than AGG-BASE, because it focuses on a single group
member instead of the entire group. The performance of
AGG-BASE is significantly affected by the number of tuples
in the group, as the SMT solver struggles to scale.

5 USER STUDY

Since one motivation of our work is to provide small exam-
ples as explanations of why queries are incorrect, we built our
RATEST system as a web-based teaching tool and deployed it
in an undergraduate database class at Duke University in Fall
2018 with about 170 students. For one homework assignment,
students needed to write relational algebra queries to answer
10 questions against a database of six tables about bars, beers,
drinkers, and their relationships. The difficulties of these 10
problems range from simple to very difficult. The students
had a small sample database instance to try their queries on.
Their submissions were tested by an auto-grader against a
large, hidden database instance designed to exercise more
corner cases and catch more errors; if these answers differed
from those returned by the correct queries (also hidden),
the students would see the failed tests with some additional
information about the error (but not the hidden database
instance or the correct queries). The final submissions were
then graded manually informed by the auto-grader results;
partial credits were given. For the purpose of this user study,
we normalize the student score for each question to [0, 100].

We did not wish to create unfair advantages for or undue
burdens on students with our user study. This consideration
constrained our user study design. For example, we ruled
out the option of dividing students into groups where only
some of them benefit from RATEST; we also ruled out creat-
ing additional homework problems without counting them
towards the course grades. Therefore, we made the use of
RATEST completely optional (and with no extra incentives
other than the help RATEST offers itself). RATEST was given
the correct queries and the same database instance used by
the auto-grader for testing. If a student query returned an in-
correct result, RATEST would show a small database instance
(a subset of the hidden one), together with the results of the
incorrect query and the hidden correct query on this small
instance. We made RATEST available for only 5 out of the 10
problems. Leaving some problems out allowed us to study

Research 4: Distributed Data Management

T —e— raw
—&— prov

solver
—*— total

50 i 2 3 4 5 6 7
Differences in the Query

30 40

20
Operators in the Query

10

Figure 6: Running time and its breakdown vs. various measures of query complexity. SCP-sEL

with SMT. |D| = 100K.

how the same student’s performance on different problems
might be influenced by the use of RATEsT. The 5 problems
were chosen to cover the entire range of difficulties:

(b) Find drinkers who frequent any bar serving Corona.

(d) Find drinkers who frequent both JJ Pub and Satisfaction.

(e) Find bars frequented by either Ben or Dan, but not both.

(g) For each bar, find the drinker who frequents it the great-
est number of times.

(h) Find all drinkers who frequent only those bars that serve
some beers they like.

Students must use basic relational algebra; in particular, they
were not allowed to use aggregation. Problems (g) and (i) are
more challenging than others: (g) involves non-trivial uses
of self-join and difference; (i) involves two uses of difference.

We released RATEST a week in advance of the homework
due date. We collected usage patterns on RATEST, as well as
how students eventually scored on the homework problems.
Ideally, we wanted to answer the following questions: (i) Did
students who used RATEsT do better than those who did
not? (ii) For students who used RATEsT, how did they do
on problems with and without RATEST’s help? We should
note upfront that we expected no simple answers to these
questions, as scores could be impacted by a variety of factors,
including the inherent difficulty of a question itself, individ-
ual students’ abilities and motivation, as well as the learning
effect (where one gets better at writing queries in general
after more exercises). Therefore, to supplement quantitative
analysis of usage patterns and scores, we also gave an op-
tional, anonymous questionnaire to all students after the
homework due date.

Quantitative Analysis of Usage Patterns and
Scores. Before exploring the impact of RATEST on
student scores, let us examine some basic usage statistics,
summarized in Figure 8. Overall, 137 students (more than
80% of the class) attempted a total of 3,146 submissions
to RATEST. The sheer volume of the usage speaks to the
demand for tools like RATEST, and the sustained usage
(across problems) suggests that the students found RATEST
useful. It is also worth noting that the number of attempts

514

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

s SC-Impr
s Prov-Impr

SC-Base
s Prov-Base

Q4 Q16 Q18 Q21 Q21-S
Query ID

Figure 7: Size of counterex-
amples vs. provenance for
TPC-H queries.

10 11

4 5 6 7 8 9
Height of Query Tree

Did the student use RATEST? No Yes
of students 67 102
Problem (b) Mean score 100.00 | 100.00
Std. dev. 0.00 0.00
of students 76 93
Problem (d) Mean score 100.00 | 100.00
Std. dev. 0.00 0.00
of students 69 100
Problem (c) Mean score 99.03 99.67
Std. dev. 5.63 3.33
of students 70 99
Problem (g) Mean score 92.38 97.98
Std. dev. 26.11 14.14
. # of students 49 120
Problem (i) Mean score 89.80 | 94.40
Std. dev. 30.58 19.00

Table 4: Comparison of performance between students who
did not use RATEsT and those who did, on problems for
which RATEsT was available.

reflects problem difficulty; for example, (i), the most difficult
problem, took far more attempts than other problems. We
also note that while RATEsT helped the vast of majority of
its users get the correct queries in the end; some users never
did. We observed in the usage log some unintended uses
of RATEST: e.g., one student made more than a hundred
incorrect attempts on a problem, most of which contained
basic errors (such as syntax); apparently, RATEsT was used
to just try queries out as opposed to debugging queries
after they failed the auto-grader. Such outliers explain the
phenomenon shown in Figure 8 where the overall average #
of attempts were much higher than the average # before a
correct attempt.

Next, we examine how the use of RATEST helps improve
student scores. Table 4 compares the scores achieved by stu-
dents who did not use RATEST versus those who did, on
problem for which we made RATEST available. For simple
problems such as (b), (d), and (e), there is no little or no differ-
ence at all, because nearly everybody got perfect scores with
or without help from RATEsT. However, for more difficult
problems, (g) and (i), students who used RATEST had a clear
advantage, with average scores improved from 92.38 to 97.98
and from 89.80 to 94.40, respectively. Of course, within the
constraints of our user study, it is still difficult to conclude
how much of this improvement comes from RATEsT itself; it
is conceivable that students who opted to use RATEST were

Research 4: Distributed Data Management

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Problem # of users average # of attempts 140- ——
total who got a over all before a correct - RARd
correct answer users answer 120-
eventually 100
(b) 102 93 4.08 1.79 Strongly agree
(d) 93 93 3.12 1.57 Agree
(e) 100 95 5.24 3.45 Neutral
(g) 99 91 5.90 3.76 Disagree
(i) 120 94 11.10 7.46 Strongly disagree

Figure 8: Statistics on RATEST usage.

7 |
80- |
60- oYaYay
40-

20-
0- - - - -
Q2 Q3 Q5 Q6

Did the student use No Yes Time of the first use (before due date)
RATEsT for (i)? 5-7 days 3-4 days 2 days 1da
Fof studen(ts) T 120 = 24 30 Y 16}' 29y Q2: RATest helped me tell whether my queries were
correct.
Mean score on (i 89.80 94.40 97.14 99.05 91.96 86.70
Std. dev. ® 30.58 19.00 15.41 592 25.54 26.16 Q3: The small example RATest provided helped me
. - - - . - - _ derstand and fix the bug.
Mean score on (h) 88.34 93.57 96.83 95.24 95.54 85.71 understand and fix the bug ,
Std. dev. 31.77 20.86 14.89 18.12 17.86 30.06 Q5: Compared with autograder, RATest is more helpful
Mean score on (j) 85.46 85.42 96.67 90.00 82.81 64.66 in debugging.
Std. dev. 34.17 34.39 16.51 30.51 37.33 47.02 Q6: I'd like to use tools like RATest again for similar

assignments in the future.

Figure 9: Comparison of performance on (h) and (j) between students

whether they used RATEST for (i) or not.

simply more diligent and therefore would generally perform
better than others. While we cannot definitively attribute all
improvement in student performance to RATEST, we next
provide some evidence that it did help in a significant way.

Here, we zoom in on the three most difficult problems, (h),
(i), and (j); RATEST was only made available for (i). Problem
(h) (find all drinkers who frequent only those bars that serve
some beers they like) is quite similar to (i) (the difference
being “some beers” vs. “only beers”). Problem (j) (find all
(bar1, bar2) pairs where the set of beer served at bar1 is a proper
subset of those served at bar2) on other hand requires very
different solution strategy. Between those who did not use
RATEsT for (i) and those who did, Figure 9 (focus on the first
three columns and ignore the rest for now) compares their
scores on (h) and (j). We see that for the similar problem (h),
those who used RATEST on (i) significantly improved their
scores on (h), with a degree comparable to the improvement
on (i). For the dissimilar problem (j), those who used RATEST
no (i) showed no improvement in their scores on (j)—the two
score distributions are practically the same. We make two
observations here. First, it is clear that not all improvement in
student performance can be explained by student “diligence”
alone; otherwise we would have seen higher performance on
(j) for students who used RATEST on (i). Second, a learning
effect seems to exist: using RATEST for one problem can help
with a similar problem: (i) helps (h).

Figure 9, in its last four columns, also breaks down the
statistics by when a student started to work on Problem (i).
Not surprisingly, we see that “procrastinators” (those who
started very close to the due date) performed clearly worse
than others. If somebody started to work on (i) using RATEST
only the day before the homework was due, this individual

515

Figure 10: Results of student feedback.

would be expected to perform even worse than an “average”
student who opted not to use RATEST at all, especially for
the last problem. It would have been nice if we can similarly
break down the statistics for students who opted not to use
RATEsT at all, but it was not possible in that case to know
when they started to work on the problems. We could only
conjecture that a similar trend might exist for procrastinators,
so using RATEST did not hurt any individual’s performance.

Results of Anonymous Questionnaire. We collected
134 valid responses to our anonymous questionnaire; Fig-
ure 10 summarizes these responses. The feedback was largely
positive. For instance, 69.4% of the respondents agree or
strongly agree that the explanation by counterexamples
helped them understand or fix the bug in their queries, and
93.2% would like to use similar tools in the future for assign-
ments on querying databases. We also asked students which
problems they found RATEST to be most helpful (multiple
choices were allowed): 58% voted for (g) and 94% voted for
(i), which were indeed the most challenging ones. We also so-
licited open-ended comments on RATEST. These comments
were overwhelming positive and reinforces our conclusions
from the quantitative analysis, e.g.:

o ‘Tt was incredibly useful debugging edge cases in the
larger dataset not provided in our sample dataset with
behavior not explicitly described in the problem set.”

o “Overall, very helpful and would like to see similar testers
for future assignments.”

o ‘Tliked how it gave us a concise example showing what
we did wrong.”

Summary. Overall, the conclusion of our user study is
positive. Students who used RATEsT did better, and their
improvement cannot be attributed all to merely the fact that

Research 4: Distributed Data Management

they opted to use an additional tool—RATEsT did add real
value. Also, using RATEST on one problem could also help
with another problem, provided that the problems are similar.
Finally, most students found RATEST very useful and would
like to use similar systems in the future.

6 RELATED AND FUTURE WORK

Test data generation. Cosette [12], which targets at decid-
ing SQL equivalence without any test instances, encodes SQL
queries to constraints using symbolic execution, and uses
a constraint solver to find counterexamples that differenti-
ates two input queries. The main difference of RATEsST with
Cosette is in the use of the given test data instance D. While
the reliance on D has its own issues, it also has a number of
advantages. First, since RATEST outputs a subinstance of D
as the counterexample, it produces tuples that preserve the
context and semantic of the input schema. Cosette returns
counterexamples of arbitrary integer values, which may be
harder for people to read and perceive. Second, since RATEST
computes provenance from actual input tuples, it is oblivious
to complex or even black-box conditions in the input query.
In contrast, Cosette only handles integer domains and queries
that can be encoded into symbolic expressions. Technically,
Cosette uses incremental solving to dynamically increase the
size of each symbolic relation, thus it returns counterexam-
ples with least number of distinct tuples, but the total number
of tuples is not minimized. Further, Cosette does not handle
database constraints explicitly and when there are selection
predicates comparing aggregate values with numbers, i.e.,
the last challenge we discussed in Section 3.1, Cosette may
fail to return a counterexample in minutes (we found such a
case when there is a “having count(distinct column) > 2” in
our modified TPC-H Q21). However, we note that some of
our strategies like encoding integrity constraints into sym-
bolic constraints and parameterizing aggregate queries can
also be applied to Cosette. More detailed comparison can be
found in the full version [32].

XData [10] generates test data by covering different types
of query mutants of the standard query, without looking into
wrong queries. Qex [46] is a tool for generating input rela-
tions and parameter values for a parameterized SQL query
that also uses the SMT solver Z3, and aims at unit testing of
SQL queries. It does not support nested queries and set oper-
ations and hence it cannot work for our problem because of
our use of difference. Olston et al. [36] studied the problem of
generating small example data for dataflow programs to help
users understand the behavior of their dataflow programs.

Provenance and witness. Data provenance has primar-
ily been studied for non-aggregate queries: Buneman et al.
[9] defined why-provenance of an output tuple in the result
set, which they call the witness basis. Green et al. [19] in-
troduced how-provenance with the general framework of

516

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

provenance semiring. Sarma et al. [41] gave algorithms for
computing how-provenance over various RA operators in the
Trio system. Amsterdamer et al. [2] extended the provenance
semiring framework [19] to support aggregate queries. Be-
sides these theoretical works, there are systems that capture
different forms of provenance [3, 17, 18, 27, 38, 42]. How-
ever, to the best of our knowledge, no prior work considered
SWP/SCP, and there are no systems available that support
provenance for general SPJUD and aggregate queries.

Missing answers and why-not questions. The prob-
lem of explaining “why a certain tuple is not in the query
answer” has been studied using two approaches: instance-
based [21-23, 29] where explanations are (missing) input tu-
ples, and query-based [11, 44] where explanations are based
on query predicates or operators. Since we are trying to an-
swer “why a tuple ¢ is in the result of (Q; — Q;)(D)”, the prob-
lem “why ¢ is not in Q2(D)” and the instance-based approach
are quite related to our problem. However, it cannot be di-
rectly applied to solve our problem: on one hand, existing
works only consider monotone queries; on the other hand,
the instance-based solution provides input tuples whose in-
sertion will make the missing tuple ¢ appear in the query re-
sult of Oy, which does not help differentiate the two queries.

Teaching or grading tool for programming. Due to
popularity of students taking programming-related courses,
teaching and grading tools for programming assignments
that automatically generate feedback for submissions are
receiving a lot of attention [20, 26, 37]. In the database com-
munity, Chandra et al. built XData [10] that can be used for
grading by generating multiple test cases for different query
mutants, as well as giving immediate feedback to student.
The latter is similar to our RATEST tool. Jiang and Nandi
[25, 34] designed and prototyped interactive electronic text-
book to help students get rapid feedbacks from querying the
database with novel interaction techniques.

Explanations for query answers. Explanations based
on tuples in the provenance has been recently studied by
Wu-Madden [47] and Roy-Suciu [40]. These works take an
aggregate query and a user question as input, find tuples
whose removal will change the answer in the opposite direc-
tion, and returns a compact summary as explanations.

Future work. Building user-friendly tools to help stu-
dents or programmers learn and debug database queries is
an interesting research direction. In particular, building a
similar tool with the full functionality of SQL queries is a
challenging open problem.

ACKNOWLEDGMENTS

This work is supported in part by NSF Awards 11S-1408846,
11S-1552538, 11S-1703431, IIS-1718398, 1IS-1814493, and by
NIH award 1R01EB025021-01.

Research 4: Distributed Data Management

REFERENCES

[1] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. On the
Limitations of Provenance for Queries with Difference. In TaPP.

[2] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance
for aggregate queries. In PODS. 153-164.

[3] Bahareh Arab, Dieter Gawlick, Venkatesh Radhakrishnan, Hao Guo,
and Boris Glavic. 2014. A generic provenance middleware for database
queries, updates, and transactions. In TaPP.

[4] Clark Barrett, Christopher L. Conway, Morgan Deters, et al. 2011.
CVC4. In CAV ’11, Vol. 6806. Springer, 171-177.

[5] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The smt-lib
standard: Version 2.0. In Proceedings of the 8th International Workshop
on Satisfiability Modulo Theories, Vol. 13. 14.

[6] Clark Barrett and Cesare Tinelli. 2018. Satisfiability modulo theories.
In Handbook of Model Checking. Springer, 305-343.

[7] Armin Biere. [n. d.]. CaDiCalL: Simplified Satisfiability Solver. https:
//github.com/arminbiere/cadical. [Online; accessed 24-Oct-2018].

[8] Nikolaj Bjgrner, Anh-Dung Phan, and Lars Fleckenstein. 2015. vZ-
an optimizing SMT solver. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 194—
199.

[9] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001. Why

and where: A characterization of data provenance. In International

conference on database theory. Springer, 316-330.

Bikash Chandra, Bhupesh Chawda, Biplab Kar, KV Maheshwara Reddy,

Shetal Shah, and S Sudarshan. 2015. Data generation for testing and

grading SQL queries. The VLDB Journal 24, 6 (2015), 731-755.

Adriane Chapman and H. V. Jagadish. 2009. Why not?. In SIGMOD.

523-534.

[12] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung.
2017. Cosette: An Automated Prover for SQL. In CIDR.

[13] Sara Cohen, Yehoshua Sagiv, and Werner Nutt. 2005. Equivalences

among aggregate queries with negation. ACM Transactions on Compu-

tational Logic (TOCL) 6, 2 (2005), 328-360.

Transaction Processing Performance Council. 2008. TPC-H benchmark

specification. Published at http://www.tcp.org/hspec.html 21 (2008), 592

603.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT

solver. In International conference on Tools and Algorithms for the Con-

struction and Analysis of Systems. 337-340.

Michael R Garey, David S. Johnson, and Larry Stockmeyer. 1976. Some

simplified NP-complete graph problems. Theoretical computer science

1,3 (1976), 237-267.

[17] Boris Glavic and Gustavo Alonso. 2009. Perm: Processing provenance
and data on the same data model through query rewriting. In ICDE.
174-185.

[18] Todd J Green, Grigoris Karvounarakis, Zachary G Ives, and Val Tannen.
2007. Update exchange with mappings and provenance. In PVLDB.
675-686.

[19] Todd J Green, Grigoris Karvounarakis, and Val Tannen. 2007. Prove-
nance semirings. In PODS. 31-40.

[20] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017.

DeepFix: Fixing Common C Language Errors by Deep Learning. In

AAAI 1345-1351.

Melanie Herschel and Mauricio A. Hernandez. 2010. Explaining Miss-

ing Answers to SPJUA Queries. PVLDB 3, 1 (2010), 185-196.

Melanie Herschel, Mauricio A. Hernandez, and Wang Chiew Tan. 2009.

Artemis: A System for Analyzing Missing Answers. PVLDB 2, 2 (2009),

1550-1553.

[23] Jiansheng Huang, Ting Chen, AnHai Doan, and Jeffrey F. Naughton.
2008. On the provenance of non-answers to queries over extracted

[10

=

[11

—

(14

[l

(15

=

[16

=

[21

—

[22

—

517

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]

[47]

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

data. PVLDB 1, 1 (2008), 736-747.

Tomasz Imielinski and Witold Lipski, Jr. [n. d.]. Incomplete Information
in Relational Databases. . ACM 31, 4 ([n. d.]), 761-791.

Lilong Jiang and Arnab Nandi. 2015. Designing interactive query
interfaces to teach database systems in the classroom. In Proceedings of
the 33rd Annual ACM Conference Extended Abstracts on Human Factors
in Computing Systems. 1479-1482.

Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit Gul-
wani. 2016. Semi-supervised verified feedback generation. In SIGSOFT.
739-750.

Grigoris Karvounarakis, Zachary G Ives, and Val Tannen. 2010. Query-
ing data provenance. In SIGMOD. 951-962.

Stefan Kratsch, Daniel Marx, and Magnus Wahlstrom. 2010. Param-
eterized complexity and kernelizability of max ones and exact ones
problems. In MFCS. 489-500.

Seokki Lee, Sven Kohler, Bertram Ludiascher, and Boris Glavic. 2017.
A SQL-Middleware Unifying Why and Why-Not Provenance for First-
Order Queries. In ICDE. 485-496.

Michael Ley and Schloss Dagstuhl. 2018. DBLP database. https://dblp.
uni-trier.de/xml/. (2018).

Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha
Chechik. 2014. Symbolic optimization with SMT solvers. In ACM
SIGPLAN Notices, Vol. 49. ACM, 607-618.

Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. Explaining Wrong
Queries Using Small Examples. Arxiv (2019). https://arxiv.org/abs/
1904.04467

Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. RATest: Explaining
Wrong Relational Queries Using Small Examples. In SIGMOD.

Arnab Nandi. 2015. Breathing Life into Database Textbooks. In CIDR.
Werner Nutt, Yehoshus Sagiv, and Sara Shurin. 1998. Deciding equiva-
lences among aggregate queries. In PODS. 214-223.

Christopher Olston, Shubham Chopra, and Utkarsh Srivastava. 2009.
Generating example data for dataflow programs. In SIGMOD. 245-256.
Sagar Parihar, Ziyaan Dadachanji, Praveen Kumar Singh, Rajdeep Das,
Amey Karkare, and Arnab Bhattacharya. 2017. Automatic grading
and feedback using program repair for introductory programming
courses. In Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education. ACM, 92-97.

Fotis Psallidas and Eugene Wu. 2018. Smoke: Fine-grained lineage at
interactive speed. PVLDB 11, 6 (2018), 719-732.

Sudeepa Roy, Vittorio Perduca, and Val Tannen. 2011. Faster query
answering in probabilistic databases using read-once functions. In
ICDT. 232-243.

Sudeepa Roy and Dan Suciu. 2014. A formal approach to finding
explanations for database queries. In SIGMOD. 1579-1590.

Anish Das Sarma, Martin Theobald, and Jennifer Widom. 2008. Exploit-
ing lineage for confidence computation in uncertain and probabilistic
databases. In ICDE. IEEE, 1023-1032.

Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat. 2018.
ProvSQL: provenance and probability management in postgreSQL.
PVLDB 11, 12 (2018), 2034-2037.

Niklas Sérensson and Niklas Eén. 2009. Minisat 2.1 and minisat++
1.0-sat race 2008 editions. SAT (2009), 31.

Quoc Trung Tran and Chee-Yong Chan. 2010. How to ConQueR Why-
not Questions. In SIGMOD. 15-26.

Moshe Y Vardi. 1982. The complexity of relational query languages.
In STOC. 137-146.

Margus Veanes, Nikolai Tillmann, and Jonathan De Halleux. 2010. Qex:
Symbolic SQL query explorer. In International Conference on Logic for
Programming Artificial Intelligence and Reasoning. Springer, 425-446.
Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining Away
Outliers in Aggregate Queries. PVLDB 6, 8 (2013), 553-564.

Research 4: Distributed Data Management

[48] Jun Yang. 2018. RA (radb): A relational algebra interpreter over rela-
tional databases. https://github.com/junyang/radb.

A PROOFS FROM SECTION 2.2

We will give the proofs of theorems in Table 1 in this section.

A.1 SJand SPU Queries

Given t € Q1(D) \ Qz(D), the poly-time algorithm for SJ
and SPU queries involve finding a smallest witness of ¢ in
D for Q4, and using the fact that since Q, is monotone and
t ¢ Q2(D), therefore, VYD’ C D, t ¢ Q,(D’).

THEOREM 1. The SWP for two ST queries is poly-time solv-
able in combined complexity.

ProOF. Let Ry, ..., R be all relations that participate in
the SJ query Q. For each relation R;, i € [1, k], there must
exist exactly one tuple t; = t.R; (the R; component of t),
which is part of the witness of ¢ (under set semantic). Since
each t; must satisfy all selection conditions for t to appear
in Q1(D), the set D; = {t;|i € [1, k]} ensures that t € Q;(D;),
and is also minimal. Since Q, is monotone and t ¢ Q,(D), we
have t ¢ Q,(D;); hence t € (Q; — Q2)(D;). The running time
to find D, is polynomial in k, giving polynomial combined
complexity. O

When projection is allowed, an output tuple may have
multiple minimal witnesses, and we pick any one of them.

THEOREM 2. The SWP for two SPU queries is polynomial-
time solvable in combined complexity.

Proor. For an SPU query Qs, if t € Q;(D), at least one
tuple ¢’ in one of the input relations must satisfy the selection
condition (if any), and its projected attribute values must
match that of t. The smallest witness D, only consists of only
t’. Since Q, is monotone and t ¢ Q2(D), we have t ¢ Q2(D;).
The running time to find D; = {t} is polynomial in the size
of the Q7 and the input database. O

A.2 PJ Queries

For queries involving both projection and join, we show that
it is NP-hard in query complexity to find the smallest witness,
even when the query can be evaluated in poly-time.

THEOREM 3. The SWP for two PJ queries is NP-hard in query
complexity.

Proor. We prove the theorem by a reduction from the
vertex cover problem with vertex degree at most 3, which
is known to be NP-complete [16] and is defined as follows:
Given an undirected graph G(V, E) with vertex set V and
edge set E, where the degree of every vertex is at most 3,

decide whether there exists a vertex cover C of at most p
vertices such that each edge in E is adjacent to at least one

vertex in the set.

518

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Construction. Given G(V,E), suppose V = {vy,...,v,},
and E = {ey, - ,en}. We encode each vertex as a tuple
in the relation R(A, Z, E1, E,, E3). For each vertex v; € V,
R contains a tuple t; = (v;,z, ey, €;,, €;,), Where e; , e;,, e;,
are identifiers of edges adjacent to v;, iy < iy < i3. If the
degree of v; is less than 3, the identifiers are replaced by
a null symbol “«”. The attribute Z = z is a constant for all
tuples. In addition to R, we have m relations S, ..., S,. Each
Si, i € [1,m], has schema S;(E, Z). For the edge e; € E, S;
contains a single tuple (e;, z). Let D = (R, Sy, ..., Sp) be the
database instance.

Next, we construct Q; involving PJ that consist of m sub-
queries as follows: For all i € [1,m], let g¢; =
77(R ™R E =S, EVR.E,=S;.EVR.Es=S;.E Si), Which operates on
S; and R, checks for match of R.E;, R.E,, or R.E; with S;.E,
and then projects on to Z. Then we construct Q; = q; ™ gz ™
... M ¢,] using natural join on Z. All queries ¢; and Q; have
a single attribute Z. Note that, initially, g;(D) = {(z)} for all
i € [1, m], and therefore Q;(D) = {(z)} as well. The query Q
also outputs the attribute Z, but not the tuple {(z)}. We set
Q2 = mz(R MR zzs, .z S1) (the choice of S is arbitrary), and
therefore Q,(D) = {} is empty. The tuple t for which we want
to find the smallest witness in (Q; — Q;)(D) is (z). In other
words, the goal is to find a subinstance D’ = (R’, 51, ..., S;,),
R' CR,S] CS1,...,5}, C Sm, such that (z) € O1(D) \ Q2(D).

Below we argue that G has a vertex cover of size < p, if
and only if the SWP instance above has a witness D’ of size
< p + m where m is the number of edges in G.

The “Only If” direction. Suppose we are given a vertex
cover C with at most p vertices in G. We construct R} =
{tilvj € C},and S} = S, for all i € [1,m]. Since |C| < p,
|D’| < p + m since each S; contains a single tuple. Since C
is a vertex cover, for all edge e; = (vj, v¢) € E, either v; € C
or vg € C. Suppose without loss of generality (wlog.) v; € C.
Then wlog. assume t; = (v},z,e;,¢e’,e”) where e’,e” are
other two adjacent edges on v; (they could be * as well if the
degree of v; is < 3). The tuple t; and the tuple S;(e;, z) will
satisfy the join condition of g; (irrespective of the position of
e; in t;), and the projection will output (z). Since C is a vertex
cover, for all i € [1,m], q;(D’) = {(z)}. Therefore, Q;(D’) =
{(2)}. Q2(D’) remains empty. Hence (z) € Q1(D’) \ Q2(D’)
Therefore, D’ is a witness of (z) of size at most p + m.

The “If” direction. For the opposite direction, consider a
witness D’ = (R’,S7, ..., S;,) where " C R,5] C Sy,...,S;, C
Sms [R'| + |S{| + ... +|S;,| < p+ m, such that (z) € 01(D") \
02(D’), i.e., (z) € Q1(D’). We construct C = {v; | t; € R'}.
Note that if (z) € Q;(D’), (z) must be in the result of all
subqueries q;(D’), i € [1,m]. And g;(D’) returns (z) if and
only if (a) S is not empty (i.e., S; = S; since S; had only one
tuple), and (b) if e; = (v, v¢), at least one of t; or t, must
appear in R’ to satisfy the join condition in g;; otherwise g;

Research 4: Distributed Data Management

s B g A Z Ei E; Es
1 z e1 €6 *
e7 e3
2 z €1 e2 e7
el 22 o v3 oz ey ez %
(a) G(V. E) Vs z e e e
Us z e3 €4 es
E Z E Z
. Vg Z 65 * *
e1 z ey z (C)R
(b) S1, -, 87

Figure 11: An example reduction for Theorem 3

returns an empty result and thus Q; returns an empty result.
Therefore, all 5] must be equal to S;, |S| = 1. Then we have
IS;| + ... +1S;,| = m. Since |D’| < p + m, |[R’| < p, and thus
we get a vertex cover C of size at most p.

An example reduction is shown in Figure 11. O

A.3 JU Queries

THEOREM 4. The SWP for two JU queries is NP-hard in
query complexity.

Proor. We reduce from the vertex cover problem.

Construction. SupposeV = {vy, ...,v,} andE = {eq, - -,
em} in the input graph G(V, E) in the vertex cover problem.
For each vertex v; in G, there is a relation R;(Z) which con-
sists of a single tuple (z). For each edge e; = (vj,v¢) € E,
we construct a query ¢; = R; U R,. Then we construct a
query Q; = g1 X - -+ X ¢, where the join is a natural join
on Z. We construct Q; = Ry Mg, z+r,.z Rz (the choice of
Ry, R; is arbitrary). Hence D = (Ry,- -+ ,Ry), Q1(D) = {(2)},
and Q,(D) = {}. The output tuple (z) € Q;1(D) \ Q2(D), and
the goal is to find a witness D’ = (R}, - - - , R},) for (z) where
R CR;forallie[1,n].

We show that there exists a vertex cover C in G of size < p
if and only if there is a witness D’ for (z) of size < p.

The “Only If” direction. Consider a vertex cover C of
G such that |C| < p.If v; € C, then R} = {(2)}, otherwise
R} = {}. Since C is a vertex cover, all edges must be covered.
For an edge e; = (vj,v¢), suppose wlog. v; € C. Hence
the subquery gq; = R; U R, returns (z) on D’. Therefore,
01(D") = (2), QD) = {}, (2) € Q1(D)\ Qa(D"), e, D' is
witness for (z), and |D’| = |C| < p.

The “If” direction. Consider any witness D’ = (R’, ...,R})
where R] C Ry,...,R; C R, and |R]| + ... + |Ry,| < p, such
that (z) € 01(D’) \ Q2(D’), i.e,, (z) € Q1(D’). Since R; had
only one tuple (z), either R} has (z) or it is empty. If tuple
(2) € R}, then we add vertex v; to a set C. If (z) is in the result
of Q1(D’), (z) must be in the result of all subqueries g;(D’)
for all i € [1,m]. For e; = (v}, v¢), qi(D’) returns (z) if and
only if at least one of R} and R}, is not empty; otherwise g;
returns an empty result and thus Q; returns an empty result.
Therefore, for each edge e; € E, at least one of its adjacent

519

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

vertices v; or v, must exist in C. Hence C is a vertex cover,
and |C| = |D’| < p. o

On the other hand, the following theorem shows that if all
unions appear after all joins (which we call JU* queries), then
the SWP can be solved in poly-time in combined complexity.

THEOREM 5. The SWP for two JU* queries is polynomial
time solvable in combined complexity.

ProoF. Lett € Q1(D)\Q2(D). According to Theorem 1, the
SWP for SJ queries is polynomial time solvable in combined
complexity. Hence, we look for the smallest witness of ¢
in join-only part of Q;, and choose the one with smallest
number of tuples. The running time is polynomial in both
n = |D| and the size of the query. m]

A.4 Size-Bounded SPJU Queries

Theorem 6 shows that if the SPJU queries are of bounded
size (i.e. if we consider data complexity), there is a polyno-
mial time algorithm for SWP. We prove this theorem using
Proposition A.1, which is intuitive and known (e.g., [39]).
We use m-DNF to refer to a DNF where each minterm has at
most m literals.

ProrosiTION A.1. Given an SPJU query Q, a database in-
stance D, and an output tuplet € Q(D), the how-provenance of
t in Q(D) can be transformed into a k + 1-DNF in polynomial
time when Q is of bounded size, where k is the number of join
operations in Q.

THEOREM 6. The SWP for two SPJU queries is polynomial-
time solvable in data complexity.

Proor. Let ¢ be an output tuple in Q;(D) \ Q2(D). Since
Q, is monotone, t ¢ Qy(D’) for any D’ C D. According
to Proposition A.1, we can compute the how-provenance
Prvo,-g, p(t) in DNF in poly-time in data complexity. Then
we scan the DNF to find the minterm with least number of
literals, and this minterm represents the smallest witness
for t in Q1(D) — Q2(D). The literals in this clause are the
identifiers of tuples in the smallest witness.]

E.g., if Prv(t) = a + bc, then a forms the smallest witness.
A.5 Queries Involving Difference

Before discussing general SPJUD queries, let’s focus on one
special class of SPJUD queries where all differences appear
after all SPJU operators (which we call SPJUD* queries). More
formally, we define this class using formal grammar: Q —
q"10—-0Q, where ¢ is a terminal that represents SPJU queries.
For instance, queries Q; and Q, in Example 1 are SPJUD*
queries. The following theorem shows that the SWP can be
solved in poly-time for SPJUD* queries.

THEOREM 7. The SWP for two SPJUD* queries is polynomial-
time solvable in data complexity.

Research 4: Distributed Data Management

Proor. Let ¢ be an output tuple in Q;(D) \ Q2(D). Since
Q; and Q, are SPJUD* queries that can be written as nested
differences of queries like ¢; — g2 — (g3 — (g4 — gs5)) — ..., where
all g;-s are SPJU queries, Q1 —Q; is also an SPJUD* query. The
output tuple ¢ must be either in or not in the result of each
qi. We find the smallest witness by enumerating the minimal
witnesses of t w.r.t. every q; and D. If t is in the result of
qi(D), let w; be the set of minimal witnesses of t w.r.t. g;
and D. Then we pick one element from every w; U {0}, and
construct w as the union of all witnesses or the empty set
we picked. We evaluate Q; and Q, on w to see whether it
is a witness for ¢, and record the w of the smallest size. We
finish this procedure until we enumerate all combinations.

This procedure will return the smallest witness because:
(i) if t ¢ q;(D), t will also not be in g;(w) for any w C D
due to monotonicity, so we don’t need to consider such g;-s;
(ii) Assume that w’ is a smallest witness of t w.r.t. Q; — Q»
and D, for all g; where t € g;(w’), w’ must be a superset
of a minimal witness of t w.r.t. ¢; and D. Hence w’ must be
the union of minimal witnesses of t w.r.t. these g;-s and D;
otherwise, if w’ is a strict superset of the union of minimal
witnesses of ¢, we can always remove tuples not belong to
any minimal witness of t w.r.t. ¢;-s and D from w’, without
affecting t to be in or not in any g;, which contradicts the
assumption that w’ is a smallest witness. Therefore a smallest
witness of t w.r.t. Q; — Q, and D must be union of minimal
witness of t w.r.t. q; and D, and thus it must be enumerated
during the enumeration procedure.

The time complexity of entire enumeration process is
O(I1;m*) = O(m*?), where d is the number of difference
operators, m is the max size of relations, k; is the max com-
plexity of each SPJU query g; (i.e., the number of joins in
qi is ki — 1), k = max; k; and d is the number of g;-s. When
queries are of bounded sizes, i.e., if d and k are fixed, the
SWP for two SPJUD queries that can be written as nested
differences of SPJU queries is polynomial-time solvable. O

SWP is NP-hard in general even for bounded-size queries.

THEOREM 8. The SWP for two SPJUD queries Q1 and Q, is
NP-hard in data complexity.

ProoF. We again give a reduction from the vertex cover
problem with vertex degree at most 3 (see Theorem 3).

Construction. Suppose in G = (V,E), V = {v1,...,u5},
E={e,--
and S(B, C, Z). For each vertex v; € V, R contains a tuple
ti = (vi, z, €5, €5, €;,), Where e;,, e;,, €;, are the identifiers of
edges adjacent to v;, iy < iy < i3. If the degree of v; is less
than 3, the identifiers are replaced by a null symbol “+”. Here
z is a constant. For each edge e; € E, S contains a tuple
(eis €(im)+1, 2), Where e(izm)+1 is the identifier of the next

-, em }. We construct two relations R(A, Z, E1, E,, E3)

520

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

edge in the edge list (the next edge of e, is €1). Let D = (R, S)
be the database instance.

Next, we construct an SPJUD query that consists of sev-
eral subqueries as follows: Let g1 (on S) = 7z(S); g2 (on S)
= 713, z(5); q3 (on R, S)=75.¢,5.2(S ™5.0=E,vS.C=E,vS.C=E; R).
Then we construct Q; = g1, hence Q;(D) = {(z)}. We also
construct Qs 7z(q2 — q3) (assume C in g3 is renamed
to B). For edge e; = (v}, v¢), the edge e; appears for both
tuples t;,t, (in one of Ej, E,, E5 attributes), and therefore,
(ei, z) appears in the result of g3(D) for every i € [1,m].
Hence g3(D) = 75, 2(S). So q2(D) \ g3(D) = 0. Then (Q; —
Q2)(D) = {(2)}, and the goal is to find the smallest wit-
ness for (z). For the vertex cover instance in Figure 11(a), R
will be as given in Figures 11(c), and S will contain tuples
{(e1, e2,2), (e2,€3,2),- - - (e7,€1,2)}.

We now show that there exists a vertex cover C of size
at most p in the graph G if and only if there is a witness
D’ =(R’,S’) where |R’| + |S’| < p + m.

The “Only If” direction. Suppose we are given a vertex
cover C of G with at most k vertices. Construct R’ = {t; | v; €
Ctl,and S’ = S.01(D) = Q1(D’) = {(z)} since S is unchanged.
Similarly, g»(D") = np,z(S) is unchanged. Since C is a vertex
cover, for every edge e; = (v}, v¢) either t; or t, isin R’; hence
q3(D’) = q3(D), i.e., each (e;, 2), i € [1,m] appears in g3(D’).
Then Q; —Q outputs (z) on D', |[R’| = |C| < p, |S’| = |S| = m,
and we get a witness of at most p + m tuples.

The “If” direction. Consider any witness D’ = (R’,S’)
where R C R,S’ C S,|R’| +|S’| < p + m, such that (z) €
Q1(D’) \ Q2(D’). We construct C = {v; | t; € R’}. Since (2)
isin Q1(D”) \ Q2(D’), (z) must be in the result of g1(S’), and
not in the result of g2(S”) — g3(R’, S’), hence S” must contain
at least one tuple. Therefore, g,(S”) outputs at least one tuple
(e;, z) since S’ is not empty. In turn, g3(R’, S") must output
all tuples in ¢2(S”) to make g2(S") — g3(R’, S") empty. (a) We
argue that S’ = S. Suppose S’ contains at least one tuple, say
wlog, (e1, 2, z). Then to remove (e1, z) from g2(S")\ g3(R’, S”),
q3(R’, S") must contain (ey, z), which can generate only from
S(em, €1, z). Hence (e, e1,2z) € S’. In turn, (e, z) € q2(S’).
To remove it, we need S(ep-—1, €m,2) in S’. Continuing this
argument (by induction), we get S = S’. (b) Consider any
tuple, say wlog., (e1, e2,z) in S’. Then to remove (e1, z) from
q2(5") \ q3(R’, S’), not only the tuple (e, e1,2) € S, it also
has to satisfy the join condition with R. This will hold only
if for one of the end points v;, v, of e; = (vj,v¢), t; € R’
or ty € R’. This should hold for all edges, and therefore the
set C we constructed is a vertex cover. Since |S’| = |S| = m,
|[R’| = |C| < p, therefore, we get a vertex cover in G of size
at most p.

The queries we constructed during the reduction are all
of bounded size, therefore the SWP for two SPJUD queries is
NP-hard in data complexity.]

