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ABSTRACT

For testing the correctness of SQL queries, a standard prac-

tice is to execute the query in question on some test database

instance and compare its result with that of the correct query.

Given two queriesQ1 andQ2, we say that a database instance

D is a counterexample (for Q1 and Q2) if Q1(D) differs from

Q2(D); such a counterexample can serve as an explanation

of whyQ1 andQ2 are not equivalent. While the test database

instance may serve as a counterexample, it may be too large

or complex to understand where the inequivalence arises.

Therefore, in this paper, given a known counterexample D

for Q1 and Q2, we aim to find the smallest counterexample

D ′ ⊆ D where Q1(D
′) , Q2(D

′). The problem in general

is NP-hard. Drawing techniques from provenance and con-

straint solving, we develop a suite of algorithms for finding

small counterexamples for different classes of queries, includ-

ing those involving negation and aggregation. We evaluate

the effectiveness and scalability of our algorithms on stu-

dent queries from an undergraduate database course, and on

queries from the TPC-H benchmark. We also report a user

study from the course where we deployed our tool to help

students with an assignment on relational algebra.
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1 INTRODUCTION

Correctness of database queries is often tested by evaluating

the queries with respect to a reference query and a test data-

base instance. A primary application is in teaching students

how to write SQL and auto-grading their queries. Typically,
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we have a test database instance D and a correct query Q1.

The correctness of a student query Q2 can be checked by

testing whetherQ1(D) = Q2(D). Assuming thatQ2 is at least

syntactically correct and its output schema is compatible

with that of Q2 (which can be easily verified), if Q2 does

not solve the intended problem, then there will be at least

one tuple in Q1(D) but not in Q2(D), or in Q2(D) but not in

Q1(D). Another application scenario is when people rewrite

complex SQL queries to obtain better performance. One ap-

proach for checking the correctness of complex rewritten

queries is regression testing: execute the rewritten query

Q2 on test instances to make sure that Q2 returns the same

results as the original query Q1. Finding an answer tuple

differentiating two queries and providing an explanation for

its existence helps students or developers understand the

error and fix their queries.

In both applications above, if the test database D is large—

either because it is a large real data set or it is synthesized

to be large enough to test scalability or ensure coverage of

numerous corner cases—it would take much effort to under-

stand where the inequivalence of two queries came from.

Suppose we teach a database course using DBLP data [30] for

an assignment on SQL or relational algebra. The database has

more than 5 million entries, and giving this entire database

(or the full query results) to students as a counterexample to

their query is not very effective. In practice, the mistakes in

most of the queries may be explained by only a small number

of tuples, which is much more useful for debugging.

Of course, one could generate a completely different coun-

terexampleD ′ altogether, but using the test database instance

D to help generate a counterexample has some distinct advan-

tages. First, it helps to preserve the same context for users by

using the same data values and relationships. Second, know-

ing that the original instance D is already a counterexample

can help create the counterexample D ′ more efficiently. This

motivates the problem we study in this paper: given a data-

base instance D, a reference query Q1, and a test query Q2

such that Q1(D) , Q2(D), find a counterexample as a subin-

stance D ′ ⊆ D such that Q1(D
′) , Q2(D

′) and the size of D ′

is minimized.We illustrate the setting with an example.

Example 1. Consider relations Student(name, major) and

Registration(name, course, dept, grade) storing informa-

tion about students and course registrations. In a database

course, suppose the instructor asked the students to write a SQL
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name major

Mary CS t1
John ECON t2
Jesse CS t3

(a) Table Student S

name course dept grade

Mary 216 CS 100 t4
Mary 230 CS 75 t5
Mary 208D ECON 95 t6
John 316 CS 90 t7
John 208D ECON 88 t8
Jesse 216 CS 95 t9
Jesse 316 CS 90 t10
Jesse 330 CS 85 t11

(b) Table Registration R

Figure 1: Toy database instance for Example 1. Identifiers are

shown for all tuples.

name major

John ECON r1

(a) Result of Q1

name major

Mary CS r2
John ECON r3
Jesse CS r4

(b) Result of Q2

Figure 2: Results of Q1,Q2 in Example 1.

query to find students who registered for exactly one Computer
Science (CS) course. The test instance is given in Figure 1. The
following query Q1 solves this problem correctly:

SELECT s.name ,s.major -- Q1

FROM Student s, Registration r

WHERE s.name = r.name AND r.dept = 'CS'

EXCEPT

SELECT s.name ,s.major

FROM Student s, Registration r1 , Registration r2

WHERE s.name = r1.name AND s.name = r2.name AND

r1.course <> r2.course AND r1.dept = 'CS' AND r2.dept = 'CS'

However, one student wrote Q2, which actually finds students
who registered for one or more CS courses.

SELECT s.name ,s.major -- Q2

FROM Student s, Registration r

WHERE s.name = r.name AND r.dept = 'CS'

Figure 2 shows the results ofQ1 andQ2. The tuples r2 and r4
are in the output ofQ2 but not in the output ofQ1. To convince
the student that his query is wrong, the instructor can provide
the full contents of S,R as a counterexample comprising 11 tu-
ples. However, a smaller and better counterexample can simply
contain three tuples (e.g., t1t4t5) to illustrate the inequivalence
of Q1 and Q2. The benefit can be much larger if we consider a
real enrollment database from a university, whereas the size of
the counterexample can remain small.

Prior work in the database community mainly focused
on the theoretical study of decidability [13, 35] or generat-
ing a comprehensive set of test databases to “kill” as many
erroneous queries as possible [10], but does not pay much
attention to explaining why two queries are inequivalent.
There are recent systems that aim to generate counterexam-
ples for SQL queries. Cosette developed by Chu et al. [12]
used formal methods to encode SQL queries as logic formulas
to generate a counterexample proving that two SQL queries
are inequivalent. XData by Chandra et al. [10] generates test
data using mutation techniques. However, counterexamples
generated by such systems can lead to arbitrary values, which
may not be meaningful to the user. Our approach instead

ensures that the user sees familiar values and relationships
already present in the test database instances. Moreover, our
approach focuses users on one issue with their query at a
time, while XData gives instances that test multiple issues.

Specifically, this paper makes the following contributions.

• We formally define the smallest counterexample prob-
lem, and connect it to data provenance with the defini-
tion of the smallest witness problem.

• We give results (NP-hardness proofs and poly-time
algorithms) in terms of both data and combined com-
plexity for different subclasses of SPJUD queries.

• We give practical algorithms for SPJUD queries using
SAT and SMT solvers, and discuss a suite of optimiza-
tions to improve efficiency.

• For aggregate queries, we illustrate the challenges and
propose methods to address them, which includes ap-
plying provenance for aggregate queries [2], adapting
the problem definition using the idea of “parameteriz-
ing” the queries, and heuristics to improve efficiency.

• We have implemented an end-to-end system called
RATest, which has seen live deployment and will be
demonstrated at this conference [33].

• We evaluate the effectiveness and scalability of our
approach on student queries from an undergraduate
course, and on queries from the TPC-H benchmark.

• We provide a case study in a large undergraduate data-
base course at Duke University, where students use
RATest to debug their queries in a homework. Quanti-
tative analysis of usage statistics and homework scores
show that use of RATest improved student perfor-
mance; anonymous survey of the students also indi-
cates that they found RATest helpful to their learning.

2 SPJUD QUERIES

In this section, we consider the class of non-aggregate queries
with Select (S)-Project (P)-Join (J)-Union (U)-Difference (D)
operations expressed as relational algebra (RA) expressions;
queries with aggregates are considered in Section 3. We will
use RA form and SQL form of queries interchangeably. A
subset of these operators using abbreviations will denote the
corresponding subclass of such queries; e.g., PJ queries will
denote queries involving only projection and join operations.
First, Section 2.1 gives a formal problem definition and covers
some preliminaries. Then, Section 2.2 presents complexity
results for different subclasses of SPJUD queries. Finally,
Section 2.3 discusses practical algorithms and optimizations.

2.1 Problem Definition and Preliminaries

For a database instance D (involving one or more relations)
and a query Q , Q(D) denotes the result of Q on D. Let Γ
denote a set of integrity constraints on the schema of the
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database instance D. We consider the following standard
integrity constraints: keys, foreign keys, not null, and func-
tional dependencies. If D satisfies Γ, we write D |= Γ. We use
|D | to denote the total number of tuples in D.
We will use unique identifiers to refer to the tuples in the

database and query answers. In our example tables, they are
written in the right-most column (see Figures 1 and 2), e.g.,
in Figure 1, t1 refers to the tuple Student(Mary,CS).

2.1.1 Smallest Counterexample Problem. Consider two
queries Q1 and Q2 such that Q1(D) , Q2(D) on a database
instance D, where D |= Γ for a given set of constraints Γ. In
other words, D explains why Q1 and Q2 are not equivalent.
Based on D, we want to find a small counterexample D ′ ⊆ D

that also explains the inequivalence of Q1,Q2.

Definition 1 (Counterexample and the Smallest

Counterexample Problem). Given a database schema with
a set of integrity constraints Γ and two queries Q1 and Q2, we
say that a database instance D is a counterexample for Q1

and Q2 conforming to Γ if D |= Γ and Q1(D) , Q2(D).
Given a counterexample D for Q1 and Q2 conforming

to Γ, the goal of the smallest counterexample problem
SCP(D, Γ,Q1,Q2) is to find a counterexample D ′ ⊆ D for Q1

and Q2 conforming to Γ such that the total number of tuples
in D ′ is minimized (i.e., for all counterexamples D ′′ ⊆ D,
|D ′′ | ≥ |D ′ |).

In the above definition, we assume that the query results
are union-compatible (i.e., Q1(D) and Q2(D) have the same
schema), which is easy to check syntactically; otherwise
the difference in their schema provides an explanation of
their inequivalence. From now on, where it is clear from the
context, we will implicitly assume that D ′ ⊆ D discussed as
a counterexample conforms to the given constraints Γ; we
will discuss how constraints are handled in Section 2.3.4.

Example 2. In Example 1, the given test instance in Figure 1
is a counterexample forQ1 andQ2. However, some subinstances
are also counterexamples. Among these, two smallest counterex-
amples can be formed with t1 in S and t4t5 in R, or with t3 in S
and t9t10 in R. (Two other subinstances that are smallest coun-
terexamples can be formed by varying the two courses of Jesse,
but no counterexample has fewer than 3 tuples.)

Our goal is to explain the query inequivalence to users by
showing the smallest counterexample over which the two
queries return different results. Even in our running example
with a toy database instance, this reduced the number of
tuples from 11 to only 3, whereas the benefit is likely to be
muchmore for test database instances in practice as observed
in our experiments. The brute-force method to find the small-
est counterexample is to enumerate all subinstances of D,
and search for the smallest subinstance D ′ where Q1(D

′)

and Q2(D
′) differ. However, enumerating all possible subin-

stances is inefficient and it does not utilize the fact that D
itself is a counterexample. Therefore, to solve this problem
more efficiently, we relate it to the concepts of witnesses and
data provenance as discussed below.

2.1.2 Smallest Witness Problem. Buneman et al. [9] pro-
posed the concept of witnesses to capture why-provenance
of a query answer. Intuitively, a witness is a collection of
input tuples that provides a proof for a given result tuple.
Formally, given a database instance D, a query Q , and a tu-
ple t ∈ Q(D), a witness for t w.r.t. Q and D is a subinstance
D ′ ⊆ D where t ∈ Q(D ′). For instance, in Example 1, {t1, t4},
{t1, t5}, and {t1, t4, t5} are three witnesses of the result tuple
r2 w.r.t.Q2 and D. We useW(Q,D, t) to denote the set of all
witnesses for t ∈ Q(D) w.r.t.Q and D. Since we also consider
non-monotone queries, we extend the definition of witness
with the concept of potential answers. We give the definition
below, and will discuss more details later.

Definition 2 (Potential Answers). Given a query Q

and a database instanceD, we call a tuple t a potential answer
w.r.t. Q and D if there exists D ′ ⊆ D such that t ∈ Q(D ′). Let
A(Q,D) denote the set of all potential answers w.r.t. Q and D.

Intuitively, members of A(Q,D) can be obtained by delet-
ing zero or more tuples from D and evaluating Q . Obviously,
all tuples in Q(D) are potential answers.
For instance, in Example 1, only (John,ECON ) is in the

result of Q1. However, other tuples can also be potential
answers. In particular, if we remove some registration records
from R, then (Mary, CS) and (Jesse, CS) may appear in the
query result of Q1 over the modified database, so they are
potential answers.
The following proposition states that the number of po-

tential answers is polynomial in data complexity [45] (when
the query is fixed). The proof is by induction on the height
of the operator tree for the query (we defer the proof to the
full version of this paper [32] because of space constraints).

Proposition 1. Given a database instance D, an SPJUD
query Q , the number of tuples in A(Q,D) is polynomial in
terms of number of tuples in D.

Recall that witness is previously defined for a tuple in
result of Q over D. With the notion of potential answers, we
now extend the domain of witness so that it is also defined
for any tuple in A(Q,D).
A witness may contain many tuples and is sensitive to

the query structure. Buneman et al. [9] defined minimal
witness as a minimal element ofW(Q,D, t); i.e., for a mini-
mal witnessw ∈ W(Q,D, t), there exist no other witnesses
w ′ ∈ W(Q,D, t) such that w ′ ⊂ w . In Example 1, {t1, t4}
and {t1, t5} are minimal witnesses of the result tuple r2 w.r.t.
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Q2 and D, but {t1, t4, t5} is not. Note that a witness with the
smallest cardinality must be a minimal witness.

How do witnesses relate to counterexamples? It turns out
that any counterexample for Q1 and Q2 is also a witness for
some potential answer w.r.t. either Q1 − Q2 or Q2 − Q1, as
the following proposition shows more formally.

Proposition 2. Given a counterexample D for Q1 and Q2,
any counterexampleD ′ ⊆ D forQ1 andQ2 must be inW(Q1−

Q2,D, t) ∪ W(Q2 − Q1,D, t) for some t ∈ A(Q1 − Q2,D) ∪

A(Q2 −Q1,D).

Proof. Since D ′ is a counterexample, there exists a tuple
t such that t ∈ (Q1 −Q2)(D

′) or t ∈ (Q2 −Q1)(D
′). Because

D ′ ⊆ D, by definition ofA, t ∈ A(Q1−Q2,D)∪A(Q2−Q1,D).
Furthermore, D ′ is a witness for t w.r.t. Q1 −Q2 and D, or a
witness for t w.r.t. Q2 −Q1 and D. �

Definition 3 (Smallest Witness Problem). Given a
database instance D, two union-compatible queries Q1 and
Q2 such that Q1(D) , Q2(D), and a tuple t such that t ∈

A(Q1 − Q2,D) or t ∈ A(Q2 − Q1,D), the goal of the small-
est witness problem SWP(D,Q1,Q2, t) is to find a witness
w ∈ W(Q1 −Q2,D, t) ∪W(Q2 −Q1,D, t) such that the total
number of tuples inw is minimized.

Using Propositions 1 and 2, we can reduce the smallest
counterexample problem SCP(D,Q1,Q2) to the smallest wit-
ness problem SWP(D,Q1,Q2, t) in polynomial time by enu-
merating every potential answer t w.r.t. Q1 − Q2 and D or
w.r.t. Q2 − Q1 and D, solving SWP(D,Q1,Q2, t), and finding
the globally minimum witness across all such t ’s; i.e.,

SCP(D,Q1,Q2) = min
t ∈A(Q1−Q2,D)∪A(Q2−Q1,D)

SWP(D,Q1,Q2, t).

From now on, without loss of generality, we will assume
that in SCP(D,Q1,Q2), there exists a tuple t ∈ Q1(D) but
t < Q2(D). In the rest of the paper, we will mainly focus
on the smallest witness problem SWP(D,Q1,Q2, t) for such a
tuple. We further discuss the connection between SCP and
SWP in Section 2.3.

Discussion.Note that we have to considerQ1 andQ2 jointly
in general when finding counterexamples and witnesses. For
instance, suppose t ∈ Q1(D) −Q2(D), and we want to find a
smallest subset D ′ of D such that t ∈ Q1(D

′) −Q2(D
′). An-

swering “why t is inQ1(D)” is enough only whenQ2 is mono-
tone. WhenQ2 is non-monotone, a witnessw ∈ W(Q1,D, t)

may happen to make t appear in the result of Q2(w), failing
to differentiate Q1 and Q2.

1 Similarly, answering both “why
t is in Q1(D)” and “why t is not in Q2(D)” may also fail—
if we find a witness w1 ∈ W(Q1,D, t) and a small subin-
stance w2 of D with the help of a why-not approach [21–
23, 29], such that t ∈ Q1(w1) and t < Q2(w2), it is possible

1In contrast, if Q2 is monotone, t cannot be in Q2(D
′) for any D′ ⊆ D

because we know t < Q2(D) to begin with.

Query Class

of Q1,Q2

Data
Complexity

Combined
Complexity

SJ P (Thm. 1) P (Thm. 1)

SPU P (Thm. 2) P (Thm. 2)

PJ P (Thm. 6) NP-hard (Thm. 3)

JU P (Thm. 6) NP-hard (Thm. 4)

JU∗ P (Thm. 5) P (Thm. 5)

SPJUD∗ P (Thm. 7) NP-hard if falls

into class PJ or JU

PJD NP-hard (Thm. 8) NP-hard (Thm. 8)

Table 1: Complexity results on SWP. All theorems and proofs

appear in the appendix.

that t < (Q1 − Q2)(w1 ∪ w2): first, t could be missing from
Q1(w1 ∪w2) ifQ1 is non-monotone; second, t could be in the
result of Q2(w1 ∪w2) even if t < Q2(w2). Therefore, we have
to consider Q1 −Q2 or Q2 −Q1 as a whole.

2.2 Complexity for SPJUD Queries

Table 1 summarizes the complexity of the smallest witness
problem (SWP) for any subclass of SPJUD queries. In terms of
complexity, we consider data complexity (fixed query size),
query complexity (fixed data size), and combined complexity
(in terms of both data and query size) [45]. Thus polynomial
combined complexity indicates polynomial data complexity.

In Table 1, the class JU∗ has the restriction that all unions
appear after all joins. The class SPJUD∗ is defined as: Q →

q+ |Q − Q , where q+ is a SPJU query. Proofs are given in
Appendix A. For queries involving PJ, in general even the
query evaluation problem is NP-hard in query complexity. It
is the same for queries involving JU, however, the problem
is in poly-time for the subclass JU∗, because we can directly
look into the join-only parts of a JU∗ query. For general SPJU
queries, the problem has poly-time data complexity, and thus
we can provide a poly-time algorithm for SPJUD∗ queries
in data complexity. What is noteworthy is that for the class
of queries involving projection, join, and difference without
any restrictions, it is already NP-hard in data complexity to
find the smallest witness for a result tuple; and the result
holds even when the queries are of bounded sizes and the
database instance only contains two relations. While in the
complexity results, we assume both Q1,Q2 belong to the
same query class, if t ∈ Q1(D) \ Q2(D), for all monotone
cases the exact class of Q2 does not matter as long as it is
monotone. We can show that SCP for PJD queries is also
NP-hard in data complexity by a simple reduction from SWP.

2.3 Methods for SPJUD Queries

The smallest witness problem is in general NP-hard even
for queries of bounded size, and the poly-time algorithms in
Table 1 are not efficient for practical purposes. To address
these challenges, we introduce a constraint-based approach
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to the smallest witness problem.Wemap the problem into the
min-ones satisfiability problem [28] by tracking the Boolean
provenance of potential answers. The min-ones satisfiabil-
ity problem is an extension of the classic Satisfiability (SAT)
problem: given a Boolean formula ϕ, it checks whether ϕ is
satisfiable with at most k variables set to true. This problem
can be solved by either using a SAT solver (e.g., MiniSAT
[43], CaDiCaL [7]), or an SMT Solver (e.g., CVC4 [4]and
Z3 [15]). Satisfiability Modulo Theories (SMT) is a form of
constraint satisfaction problem. It refers to the problem of
determining whether a first-order formula is satisfiable w.r.t.
other background first-order formulas, and is a generaliza-
tion of the SAT problem [6]. SAT and SMT problems are
known to be NP-hard with respect to the number of clauses,
constraints, and undetermined variables. However, there is
a variety of solvers that work very well in practice, and with
these solvers we can find a small solution to a SWP instance.
The rest of this subsection will describe how to encode how-
provenance, and then use a state-of-the-art solver to find the
smallest witness for a potential answer. The implementation
details will be discussed in Section 4.

2.3.1 Boolean How-Provenance. In order to compute the
smallest witness efficiently for general SPJUD queries, we
use the concept of how-provenance or lineage [1, 19] by prove-
nance semirings. How-provenance encodes how a given re-
sult tuple is derived from the given input tuples using a
Boolean expression, and its first use can be traced back to
Imilienski and Lipski [24] who used it to describe incomplete
databases or c-tables. The computation of how-provenance
of a tuple t ∈ A(Q,D), denoted by PrvQ,D (t) or Prv(t)when
clear from the context, is well known and intuitive: tuples in
the given input relations are annotated with unique identi-
fiers (as shown in the right-most columns in Figure 1). As the
query Q executes, for selections or duplicate-preserving pro-
jections, the annotations remain the same; for joint usages
of sub-expressions (joins), their annotations are combined
with conjunction (∧ or ·), and for alternative usages of sub-
expressions (de-duplicates or unions), the annotations are
combined with disjunction (∨ or +). For simplicity, we use
+ for disjunction, and omit symbols for conjunction. For
instance, in Example 1, in Q2(D),

PrvQ2,D (r2) = t1t4 + t1t5 = t1(t4 + t5) = ϕ1(say) (1)

For set difference operation, the extension of provenance
with potential answers is important. Consider Q = Q1 −Q2

where all tuples in A(Q1,D) and A(Q2,D) are annotated
with how-provenance. For a tuple t to appear in A(Q,D), it
must appear in A(Q1,D). Suppose PrvQ1,D (t) = ϕ. If t does
not appear in A(Q2,D), PrvQ,D (t) = ϕ. If t does appear in

A(Q2,D)with PrvQ2,D (t) = ψ , then PrvQ,D (t) = ϕ ·ψ , where

ψ = ¬ψ denotes the negation of the Boolean expression ψ .

The tuple t appears in the final result of Q(D) if t appears in
A(Q1,D) but not inA(Q2,D), or if t appears in both of them
and PrvQ,D (t) is true. The removal of any tuple from D will
make its Boolean variable set to false and thus may affect the
value of PrvQ,D (t). We consider all potential answers w.r.t.
Q and D when computing the how-provenance for Q(D).

Example 2.1. In Example 1, consider the following RA
expressions for Q2 and Q1, using abbreviations S and R for
Students and Registration, where Z denotes natural join.

Q2 = πname,majorσdept=′CS′(S Z R) (2)

Suppose Q3 = πname,majorση(S Z R r1 Z R r2), where η de-
notes the selection condition: r1.dept = ’CS’ ∧ r2.dept =

’CS’∧r1.course , r2.course. ThenQ1 = Q2−Q3. Consider
the result tuple r2 = (Mary, CS), which is in (Q2 − Q1)(D)

(Figure 2). The provenance of r2 = (Mary, CS) in Q2(D) is
given in Equation (1). It does not appear in Q1(D) since it
appears in both Q2,Q3 in (2). For Q3, PrvQ3,D (r2) = t1t4t5 =

ϕ2(say). Hence, PrvQ1,D (r2) = ϕ1 · ϕ2, and PrvQ2−Q1,D (r2)

= ϕ1 · [ϕ1 · ϕ2] = ϕ1 · [ϕ1 +ϕ2] = ϕ1 ·ϕ2 = (t1(t4 + t5)) · (t1t4t5)

= t1t4t5. In other words, the tuple (Mary, CS) can distinguish
the queries Q1,Q2 in a small witness with t1 in S and t4t5 in
R, which solves both SWP and SCP problems.

For the above example, the smallest witness or the smallest
counterexample could be found by inspection, since Q1,Q2

are similar. For arbitrary and more complex queries, how-
provenance gives a systematic approach to find a small wit-
ness as we will discuss in the following two sections.

2.3.2 Passing How-Provenance to a Solver. Since Prv(t) is
composed of a combination of Boolean variables annotating
tuples in the input relations, a Boolean variable is true iff the
corresponding tuple is present in the input relation. Then
an instance of the smallest witness problem is mapped to
an instance of the min-ones satisfiability problem: find a
satisfying model to Prv(t) with least number of variables set
to true, and the variables set to true in the satisfying model
indicate tuples in the smallest witness.

The pseudocode of the algorithm to solve SWP and then SCP
can be found in the full version [32]. Briefly, one approach
to solving SWP is by repeated invocation of a SAT solver.
Since the solver will return an arbitrary satisfying model,
to get the minimum model we need to ask the solver to
return a different model every time we rerun it. We set a
maximum number of runs to limit the running time, and the
algorithm stops when there is no more satisfying models or
it has reached the maximum number of runs. It may not find
the minimum model when it stops, but it is likely to find a
small one if given enough time.
To solve SCP, recall from Section 2.1 that it suffices to

consider SWP for all potential answers inQ1−Q2 andQ2−Q1.
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Therefore, a basic algorithm for SCP, which we call SCP-
all, will compute the provenance for Q1 −Q2 and Q2 −Q1,
identifying all potential answers and their provenance in the
process. Then, for each potential answer, we solve SWP as
described above. The overall smallest witness will be chosen.

2.3.3 Improving the Basic Approach. The basic approach
above has two limitations: 1) for SWP, it cannot find the small-
est witness until it searches all possible models that satisfy
Prv(t); 2) SCP-all computes provenance for every potential
answer, resulting in high overhead. Therefore, we propose
two improvements.
The first improvement is to pick only one tuple t from

Q1(D)\Q2(D), and capture only the provenance of t by adding
a selection operator to select tuple t on top of the query tree
of Q1 −Q2. During provenance computation, which we im-
plemented by rewriting SQL queries (see Section 4 for more
details), the SQL optimizer is likely to push down the ad-
ditional selection operator, thereby reducing unnecessary
intermediate computation and accelerating provenance com-
putation. We call this strategy SCP-sel for “selective” prove-
nance, which solves only one instance of SWP. Of course, if
Q1(D) ⊆ Q2(D), we would then consider Q2(D) \Q1(D).

The second improvement is to treat SWP as an optimization
problem instead of finding different models with a SAT solver.
Integer linear programming solvers cannot be applied be-
cause transforming how-provenance into linear constraints
can be exponential. To solve this problem, we use optimizing
SMT solvers that are now available with recent advances in
the programming languages and verification research com-
munity [8, 31]. Given a formula ϕ and an objective function
F , an optimizing SMT solver finds a satisfying assignment
of ϕ that maximizes or minimizes the value of F . In our case,
we encode Prv(t) as the constraint of the optimizing SMT
solver, set the number of true variables as the objective func-
tion, and solve for the optimal model. Our SMT formulation
includes only Boolean variables, so we encode the number of
true variables by first converting the variables into 0 or 1 and
then summing them up. The pseudocode of this improved
algorithm can be found in [32].
As an example, the following listing illustrates how we

encode the provenance in the SMT-LIB standard format [5]
as the input to an SMT solver, which returns a solution to
SWP(D,Q1,Q2, (Jesse,CS)) in Example 1:

1 (declare-const t1 Bool)

2 ...

3 (declare-const t11 Bool)

4 (define-fun b2i ((x Bool)) Int (ite x 1 0))

5 (assert (and (or t4 t5) (not (and (or (and t1 t4) (and t1

t5)) (not (and t1 (and t4 t5)))))))

6 (minimize (+ (b2i t1) (b2i t2) ... (b2i t11)))

Lines 1-3 define Boolean variables for each tuple. Line 4
defines function b2i that converts Boolean variables into 0

and 1. Line 5 adds the how-provenance as an SMT constraint.
Then with function b2i we take the sum of 0-1 variables to
get the total number of variables set to true, and then set
minimizing this sum as the objective function (Line 6).

2.3.4 Handling Database Constraints. Since we output a
subinstance of the input database instance as the witness,
database constraints like keys, not null, and functional de-
pendencies are trivially satisfied if the input instance is valid.
On the other hand, foreign key constraints can be naturally
represented as Boolean formulas like provenance expres-
sions. For instance, in our running example in Figure 1, the
name column in the Registration table may refer to the
name column in the Student table. So, if we want to keep
any tuple in the Registration table, we must also keep the
tuple with the same name value in the Student table. This
constraint can be expressed in the a ⇒ b form, e.g., t1 + t4,
t2 + t7, .., etc., corresponding to the constraint that the tuples
in the Registration table cannot exist unless the tuple it
refers to exists in the Student table. Then, for each tuple
that appears in the provenance expression added to the SAT
or SMT solver, we add its foreign key constraint expression
to the solver as a constraint.

3 AGGREGATE QUERIES

So far, we have focused on SPJUD queries. We now extend
our discussion to aggregate queries. We make some assump-
tions on the form of such queries: 1) no aggregate values or
NULL are allowed in group-by attributes; 2) selection pred-
icates involving previously aggregated values (i.e., HAVING
conditions) involve only numeric comparisons; 3) there is
no difference operator above aggregation in either Q1 or Q2,
(of course, we handle the top-level difference in Q1 −Q2 and
Q2 −Q1 when Q1 and Q2 may involve aggregation).

3.1 Challenges of Aggregate Queries

First, (selective) how-provenance does not work well for SCP
for aggregate queries. Recall from Section 2.3 that a practical
heuristic we used for SPJUD queries, SCP-sel, just picks one
tuple t from the symmetric difference between Q1 and Q2

and focuses on computing how-provenance and finding a
witness for t . Unfortunately, this heuristic may not work
for an aggregates result tuple t , because its aggregate value
generally depends on all member tuples in the input group
corresponding to t ; removal of any such tuple may change
t ’s aggregate value, so there may not exist any proper subset
of tuples in the input group that can serve as a witness for t .

Example 3 (Challenge of preserving aggregate val-

ues). Suppose we have a reference query Q1 aimed at comput-
ing the average grade of students in CS courses, using the two
tables in Figure 1:
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SELECT s.name , AVG(r.grade) as avg_grade

FROM Student s, Registration r

WHERE s.name=r.name AND r.dept='CS'

GROUP BY s.name;

Suppose a second queryQ2 forgets the condition r.dept=’CS’.
These two queries would return the following results:

Q1(D)

name avg_grade
Mary 87.5
John 90
Jesse 90

Q2(D)

name avg_grade
Mary 90
John 89
Jesse 90

Suppose we pick (Mary, 90) in Q2(D) to focus on. The witness
for this result tuple—which by definition needs to preserve the
aggregate value 90—would have to include all of Mary’s regis-
tration records. In reality, however, to show that Q1 returns a
different result from Q2 for some counterexample, one regis-
tration record (Mary, 208D, ECON, 88) will suffice: Q1 would
return empty while Q2 would return (Mary, 88).

To circumvent the problem, can we resort to consider-
ing witnesses for all potential answers instead of just t , as
in SCP-all? Indeed, in the above example, (Mary, 88) is a
potential answer that can be constructed by extending how-
provenance to aggregates, essentially through enumeration
of all possible combinations of tuples in a group [41]. How-
ever, this approach leads to exponential overhead and be-
comes impractical for even moderate-size groups.

Finally, as soon as we consider further selection involving
aggregate values (such as HAVING), there can be cases where
the size of any counterexample is necessarily large by our
formulation of SCP in Definition 1. Consider the following.

Example 4 (Challenge of Inherently Large Coun-

terexamples). Continuing with Example 3, let us extend both
queries to find the average grade of CS courses of students who
registered for at least 3 CS courses. Basically, both Q1 and Q2

get an additional HAVING clause. For example, Q1 becomes:

SELECT s.name , AVG(r.grade) as avg_grade

FROM Student s, Registration r

WHERE s.name=r.name AND r.dept='CS'

GROUP BY s.name

HAVING COUNT(r.course) >= 3;

Q1 and Q2 would return the following results (recall that Q2

misses the condition r.dept=’CS’):

Q1(D)

name avg_grade
Jesse 90

Q2(D)

name avg_grade
Mary 90
Jesse 90

Because of the HAVING condition, we must include all (3) of
Mary’s registration records in a counterexample, or else the
queries would be indistinguishable because neither would re-
turn Mary’s group.

While the group size in the above example is small, it
is trivial to construct examples where HAVING would force
arbitrarily large groups of input tuples to be included in
a counterexample. No approach (including painstakingly

Q1

name avg_grade provenance
Mary val1 : avg(t4 ⊗ 100, t5 ⊗ 75) prv1 : (t1(t4 + t5)) (sum(t4 ⊗ 1, t5 ⊗ 1) ≥ 3)

John val2 : avg(t7 ⊗ 90) prv2 : (t2t7) (t7 ⊗ 1 ≥ 3)

Jesse val3 : avg(t9 ⊗ 95, t10 ⊗ 90, t11 ⊗ 85) prv3 : (t3 (t9 + t10 + t11)) (sum(t9 ⊗ 1, t10 ⊗ 1, t11 ⊗ 1) ≥ 3)

Q2

name avg_grade provenance
Mary val4 : avg(t4 ⊗ 100, t5 ⊗ 75, t6 ⊗ 95) prv4 : (t1(t4 + t5 + t6)) (sum(t4 ⊗ 1, t5 ⊗ 1, t6 ⊗ 1) ≥ 3)

John val5 : avg(t7 ⊗ 90, t8 ⊗ 8) prv5 : (t2(t7 + t8)) (sum(t7 ⊗ 1, t8 ⊗ 1) ≥ 3)

Jesse val6 : avg(t9 ⊗ 95, t10 ⊗ 90, t11 ⊗ 85) prv6 : (t3(t9 + t10 + t11)) (sum(t9 ⊗ 1, t10 ⊗ 1, t11 ⊗ 1) ≥ 3)

Table 2: Provenance for aggregate queries in Example 4.

Note that instead of infix notations for avg and sum as in [2], we

use prefix notations for readability.

considering all potential answers) would help because the
problem is inherent in the formulation of SCP in Definition 1.

3.2 Methods for Aggregate Queries

We first tackle the ineffectiveness of how-provenance, by
applying provenance semirings for aggregate queries proposed
by Amsterdamer et al. [2] and proposing a baseline method
called AGG-base. We further address the inherent limitation
of Definition 1 for handling aggregates by proposing a new
definition based on the ideas of parameterizing queries, and
showing howAGG-base can be adapted. Finally, we present a
heuristic method calledAGG-impr that improves the running
time of AGG-base for queries involving a single aggregation
followed by an optional selection.

3.2.1 Applying Provenance for Aggregates. Following the
approach in [2], we encode aggregate values computed by
queries as symbolic expressions using abstract arithmetic
operations and variables corresponding to tuples in the input
relations. Selection conditions involving aggregate values
are then encoded as symbolic logical expressions. Table 2
shows the provenance for aggregate queries for Example 4.
For instance, avg(t4 ⊗ 100, t5 ⊗ 75) represents the AVG value
of a group containing two tuples t4 and t5 in the result of
Q1, and the value of the attribute of tuple t4 is 100, and for
t5 it is 75 . If t4 is removed from the input relations, then
t4 ⊗ 100 will not contribute to the aggregate. Like the how-
provenance, (t1(t4 + t5)) (sum(t4 ⊗ 1, t5 ⊗ 1) ≥ 3) indicates
how the result tuple is derived from the input or intermedi-
ate tuples: t1(t4 + t5) means that the group exists iff t1 exists
and one of t4 and t5 exists; sum(t4 ⊗ 1, t5 ⊗ 1) ≥ 3 represents
the HAVING criterion: the COUNT (a special case of SUM) value
should be greater or equal to 3. As with how-provenance, ag-
gregate values and provenance expressions can be computed
bottom-up during query evaluation. Unlike how-provenance,
there is no longer a need to enumerate all possible aggregate
values resulting from subsets of a group of tuples; one single
symbolic expression succinctly captures these possibilities.

With this approach, we have a baseline method for finding
counterexamples for aggregate queries, which we call AGG-
base. Given Q1(D) and Q2(D) that differ, we pick a group
that exists in one result but not the other, or a group that
exists in both but the aggregate values differ. In either case,
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we can assert a symbolic Boolean expression derived using
the aggregate provenance expressions, and let an SMT solver
find a satisfying model with minimum number of input tu-
ples included. For example, a counterexample for Q1 and
Q2 w.r.t. tuple (Mary, 90) can be found by solving the con-
straint (prv4 ⊕prv1)∨ (val4 , val1). Note that the constraint
only insists that aggregate values produced byQ1 andQ2 are
different; there is no stipulation that this counterexample
reproduces the same aggregate value 90.

3.2.2 Parameterizing the Problem. To address the problem
that certain queries require large counterexamples by Defi-
nition 1, we modify our problem definition by parameteriz-
ing the queries, thereby allowing extra degrees of freedom
when constructing counterexamples. Specifically, we replace
the constants in selection predicates (such as 3 used in the
HAVING condition of Example 4) by a parameter; a subin-
stance can be a counterexample as long as it differentiates
the two queries for some setting of the parameter, not neces-
sarily the original one.

Definition 4 (Smallest Parameterized Counterex-

ample Problem). Given two queries Q1 and Q2 parameter-
ized by λ, as well as a database instance D and a setting
λ = v , where Q1(v,D) , Q2(v,D), the smallest parameter-
ized counterexample problem (SPCP) is to find a subinstance
D ′ of D and a parameter setting λ = v ′, such that such that
Q1(v

′
,D ′) , Q2(v

′
,D ′), and the total number of tuples in D ′

is minimized.

Example 5 (Smallest Parameterized Counterexample).

Continuing with Example 4, we can turn the threshold number
of courses (3) in the HAVING conditions of both Q1 and Q2 into
a parameter λ. For example, Q1 becomes:

SELECT s.name , AVG(r.grade) as avg_grade

FROM Student s, Registration r

WHERE s.name=r.name AND r.dept='CS'

GROUP BY s.name

HAVING COUNT(r.course) >= λ;

If we insist on λ = 3, the smallest counterexample we can
find would be t1t4t5t6 (see Example 4). However, with the flexi-
bility of SPCP, we can find a small counterexample t1t6, which
differentiates Q1 and Q2 for λ = 1.

We can adapt the algorithm AGG-base to work for SPCP.
The only change would be that we treat the query param-
eter λ as a symbolic variable when computing aggregate
provenance. For example, doing so amounts to replacing oc-
currences of the constant 3 with λ in Table 2 for Example 4.
We impose no constraint on this variable to the solver, so
it can find small counterexamples without adhering to the
original parameter setting.

3.2.3 A Heuristic Improvement. AGG-base may not scale
very well when a group contains many tuples, because the

SMT constraints will involve many variables and become
difficult to solve. Thus, we develop a heuristic improvement
called AGG-impr, targeting Q1 and Q2 where both end with
an aggregation operator followed by an optional selection
operator. The key intuition behind AGG-impr is to heuristi-
cally focus on differentiating two corresponding groups of
tuples computed by Q1 and Q2 before they are aggregated.
A counterexample that differentiates these two groups will
likely lead to different result tuples after aggregation. Recall
Example 3, where Q1 and Q2 differ in the aggregate value of
result group for Mary (because Q2 forgot to restrict to CS
courses). Disregarding aggregation, if we simply focus on
differentiating members in the Mary group, we will obtain a
counterexample t1t6, which happens to differentiate Q1 and
Q2 after aggregation.

In more detail, AGG-impr works as follows. First, it picks
one group, identified by a specific group-by valuea, for which
Q1(D) and Q2(D) differ (either the group is in one result
but not the other, or its aggregate value differs). Then, we
formulate two queries Q ′

1 and Q
′
2 that compute the members

of groupa forQ1 andQ2 (resp.); they are formed by taking the
subqueries ofQ1 andQ2 below the aggregation operator and
subjecting them to a selection condition setting the group-by
attribute to a. We simply solve SCP on Q ′

1(D) and Q
′
2(D) to

obtain a counterexample C .
Next, AGG-impr tests if C also works for Q1 and Q2, and

if not, tries to change any query parameter in the final selec-
tion to make it work. To this end, let Q∗

1 and Q
∗
2 denote the

“remainder” queries that produce the final result tuples for
groupa from the results ofQ ′

1 andQ
′
2, i.e.,Q1(C) = Q

∗
1(Q

′
1(C))

and Q2(C) = Q∗
2(Q

′
2(C)). Q

∗
1 and Q∗

2 should involve only
one aggregation followed by a selection parameterized by
λ. In general, following an approach similar to earlier sec-
tions, we can derive a Boolean expression from Q∗

1 , Q
∗
2 , and

the actual contents of Q ′
1(C) and Q ′

2(C) to check whether
Q1(C) , Q2(C), with only one variable λ. We then assert this
expression and solve for a feasible setting of λ. In practice,
the cases for various types of final selection conditions are
simple enough that we use a set of hand-coded rules to set λ.

Finally, there is still a chance that C does not work for Q1

and Q2. In this case, AGG-impr can attempt another coun-
terexample for Q ′

1 and Q
′
2, and repeat this process a number

of times before giving up.

4 IMPLEMENTATION & EXPERIMENTS

Provenance has been not only studied extensively theo-
retically [2, 9, 19], but also implemented in various sys-
tems [3, 17, 18, 27, 38, 42]. However, to the best of our knowl-
edge, no current system readily meets our need for support-
ing general SPJUD and aggregate queries. We have imple-
mented our system, called RATest, on top of a SQL-based
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database system by translating relational queries and prove-
nance computation into SQL for execution. RATest builds on
an open-source RA interpreter [48] that translates relational
algebra queries (extended with group-by and aggregation)
into SQL, using WITH to build up complex queries one rela-
tional operator at a time. To compute provenance, RATest
rewrites the SQL fragment generated for each relational oper-
ator with logic to derive output provenance expressions from
its input ones. All input and result (including intermediate)
relations are augmented with an extra string-valued column
for storing provenance expressions (Section 2.3); columns
for aggregate values are replaced with string-valued ones
for storing the corresponding symbolic expressions (Sec-
tion 3.2.1). These expressions are computed using SQL in
a bottom-up fashion through the query tree, by manipulat-
ing the strings encoding these expressions in the SMT-LIB
format [5]. For additional details, see [32].
Once provenance has been computed by evaluating the

rewritten SQL queries, RATest generates the SMT con-
straints and solves them using Z3 4.7.1, an efficient opti-
mizing SMT Solver by Microsoft Research [8, 15], with the
objective function minimizing the number of Boolean vari-
ables set to true. The satisfying models returned by the solver
represent the counterexamples.

RATest is implemented mostly in Python, and the exper-
iments in this section ran locally on a 64-bit Ubuntu 16.04
LTS server with 3.60GHz Intel Core i7-4790 CPU and 16GB
1600MHz DDR3 RAM, which also hosts the database (Mi-
crosoft SQLServer 2017). RATest additionally features a web-
based interface, described in more detail in [33].
The following experiments focus on evaluating the effi-

ciency and scalability of our algorithms as well as the quality
of the counterexamples they find. Section 4.1 focuses on
SPJUD queries collected from student submissions to a re-
lational algebra assignment in an undergraduate database
course at Duke University; therefore, the wrong queries were
“real”, although test database instances are synthetic. Sec-
tion 4.2 uses TPC-H [14], where we manually created wrong
versions of several benchmark queries.

4.1 Real-World SPJUD Queries

Queries in these experiments come from submissions by
141 students to a relational algebra assignment in Fall 2017,
where they were asked to write SPJUD queries using the RA
interpreter. There were 8 questions, 7 of which are relevant
to our experiments (the first question was so simple that all
students got it correct). These questions are similar (but not
identical) to those used in our user study in Fall 2018 (see
Section 5 for more more details); the database schema is the
same. We use a synthetic test database instance D whose
size can be adjusted. It was designed to catch some corner

cases but there is no guarantee that it has complete coverage
(in the sense that it can reveal all incorrect queries), and we
observed that as we increase its size, more incorrect queries
were caught:2

# tuples in D 1,000 4,000 10,000 40,000 100,000
# incorrect queries found 111 167 168 169 170

Some questions involve very complex queries to find tu-
ples satisfying conditions with universal quantification or
uniqueness quantification requiring multiple uses of differ-
ence (see Section 5 for concrete examples), and elicited some
extremely complex student solutions with scores of oper-
ators; we are not aware of any directly related work that
is able to handle this level of query complexity. We had to
drop two overly complicated student queries that involved
massive cross products.

SCP-all vs. SCP-sel.As discussed in Section 2.3, although
SCP-all in theory is better at finding smallest counterex-
amples by considering all potential answers differentiating
Q1 and Q2, doing so in practice can be expensive and may
not deliver interactive performance – there is one student’s
query for which the solver did not finish in one hour, and
we reported the smallest counterexample returned after one
hour. Instead, SCP-sel focuses on only one tuple in the sym-
metric difference of Q1(D) and Q2(D) (we always arbitrarily
pick the first one in return order), which is guaranteed to
find a counterexample but not necessarily the smallest one.
We would like to see how SCP-sel compares with SCP-all

in terms of speed and quality of their solutions overall. Here,
both approaches uses SMT:

SCP-all SCP-sel

average running time (sec) 75.89 3.80
average size of counterexample 3.52 3.52

Surprisingly, solutions found by SCP-sel for this workload
have the same size as those found by SCP-all, even though
SCP-sel considers only one candidate tuple and runs much
master. Upon closer examination, for 168 out of the 170
wrong queries we discovered, all candidate tuples considered
for the given wrong query have equally sized smallest wit-
nesses. Hence, at least for this real-world query workload,
SCP-sel has a very high probability of finding the global
minimum while being much faster than SCP-all.

Solver Strategies.Herewe further evaluate the time-quality
trade-off of different solver strategies. SMT uses the optimiz-
ing SMT solver; SAT*∆ refers to the strategy of repeatedly
invoking a SAT solver to find up to ∆ satisfying models and
report theminimum. Since the SAT solver may return an arbi-
trary model each time, for these experiments we run SAT*∆

10 times and report the average minimum. Figure 3a shows
the solution quality of SMT and SAT*128 across queries

2Interestingly, we also found big synthetic test databases to be far more

effective in catching incorrect queries than human graders, who had no

auto-grading support back in Fall 2017.
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(using SCP-sel). SMT is the clear winner, consistently pro-
ducing smaller counterexamples than SAT*128. For a closer
look at the time-quality trade-off, Figure 3b further compares
the average solver running time and counterexample size
produced by SMT vs. SAT*∆ for varying ∆ (from 1 to 128);
for comparison, we also show SCP-all with SMT. Overall,
we see that SMT offers much better time-quality trade-off—
it is able find counterexamples smaller than any of SAT*∆
by spending just a little more time than SAT*4. Of course,
results of these experiments heavily depend on the solver im-
plementation; a comprehensive evaluation would be beyond
the scope of this paper. Here, we simply observe that our
implementation choice of SMT provides good performance
and solution quality in practice, as it cannot be easily beaten
by simply enumerating a number of satisfying models.

Size of Counterexamples vs. Provenance Expressions.
Since our approach to finding counterexamples is based on
provenance, an interesting question is whether provenance
expressions themselves are small enough to serve as expla-
nations instead. To this end, we compare the size of an coun-
terexample given by our approach against the size of the
provenance expression (for the same result tuple targeted
by the counterexample). Here, we define the size of a prove-
nance expression as the number of distinct variables (input
tuples) it contains.3 Figure 4 compares the average size of
counterexamples and that of the corresponding provenance
expressions, as we vary the size of the database D. We use
SCP-sel with SMT here. While the counterexample sizes
depend on the particularities of each database instance, the
general trend is that the average size of provenance increases
with the database size, while the average size of counterexam-
ples is much lower and remains stable even as the database
becomes larger.

3We note that the length of the expression can be much greater than this

number because a variable may appear multiple times, and that simply

setting variables to true may not lead to valid counterexample. In other

words, the burden on the user to decipher a provenance expression will be

higher than this particular definition of size implies.

Running Time Breakdown vs. Database Size. To better
understand the performance of our approach, we vary the
size of the database and study the breakdown of running
times in Figure 5. Here, raw is the time to evaluate the dif-
ference between the student query and the reference query
(without computing any provenance); prov-all is for eval-
uating the rewritten query, which computes all potential
answers and their provenance (a step needed in SCP-all);
prov-sel is for evaluating the rewritten query with the ex-
tra selection targeting one specific tuple in the difference
to obtain its provenance (a step used by SCP-sel). We also
show the total times spent on the solver for SCP-sel with
SMT (solver-sel-SMT), SCP-sel with SAT*128 (solver-sel-
SAT*128), and SCP-all with SMT (solver-all-SMT). From
the figure, we see that full provenance computation adds sig-
nificant overhead compared with normal query evaluation
(prov-all vs. raw). However, we can drastically reduce this
overhead by focusing on only one tuple in the difference: e.g.,
prov-sel is about 42× faster than prov-all and 29× faster
than raw when |D | = 100K . Also thanks to this focus, solver
time for SCP-sel with SMT becomes negligible in compar-
ison with other components of the running time for large
databases; as shown in earlier experiments, it still produce
small counterexamples comparable to those of SCP-all with
SMT, which can be prohibitive for large databases.

Running Time vs. Query Complexity. Focusing on SCP-

sel with SMT, we now study how query complexity affects
the running time (and its breakdown) in Figure 6. Besides the
total running time, we also report its breakdown in terms
of time spent on evaluating the difference between student
and reference queries (raw), computing provenance for the
selected tuple (prov), and solving the SMT (solver). We
consider three measures of query complexity: number of op-
erators, number of difference operators, and the height of the
query tree.4 If multiple queries have the same value for some
complexity measure, we report their average running time.

4Here, a “query” refers to one (and only one) of Q1 −Q2 and Q2 −Q1 that

SCP-sel chooses to focus on, so the top operator is always a difference.
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From these plots, we see that the cost of (selective) prove-
nance computation and solving the SMT tends to increase
with query complexity, but the total running time is domi-
nated by just the time of checking the difference between
student and reference queries, which fluctuates more.

4.2 Synthetic Aggregate Queries

We experimented on the TPC-H benchmark database gen-
erated at scale 1 (8.5 million tuples) with queries Q4, Q16,
Q18, Q21, and Q21-S, a modified version of Q21 that ends
with a final selection on aggregate value. We choose these
queries because they do not involve arithmetic operations
on aggregate functions. First we dropped the ORDER BY op-
erator and rewrote these queries using the RA interpreter,
then we experimented both the baseline approach (AGG-
base) and the heuristic improvement (AGG-impr) discussed
in Section 3. We also experimented with AGG-base with
the parameterization extension on Q18 (it has a subquery
involving selection predicate with aggregate value, and ends
with another aggregation operator). We intentionally made
two wrong queries for each query, whose errors include dif-
ferent selection conditions, incorrect use of difference, and
incorrect position of projection. These are common errors
in the students queries from the previous experiment.

Size of Counterexamples vs. Provenance Expressions.
See Figure 7. SC-Base and SC-Impr are the sizes of coun-
terexample returned by AGG-base and AGG-impr, respec-
tively; Prov-Base and Prov-Impr are the sizes of prove-
nance expressions used in AGG-base and AGG-impr, respec-
tively. AGG-base does not finish running on Q4. The sizes
of the counterexamples by both AGG-base and AGG-impr

are significantly smaller than the original provenance for
aggregate queries expressions for most queries (note the
logarithmic scale). For some queries (Q4 and Q16), AGG-
impr does not reduce the size of counterexamples over the
how-provenance expression, because these queries are much
simpler in structure compared to those involving multiple
projections and differences in Section 4.1.

For Q18, AGG-base with parameterization extension (not
shown in figure) returns counterexamples with 3.5 tuples
on average, reducing by half of the size of counterexamples
by both AGG-base and AGG-impr, while the solver running
time only increases to 0.0210 seconds. This indicates that the
parameterization extension helps us avoid large counterex-
amples required by selections involving aggregate values.

Running Time. Table 3 reports the running time of our
algorithms for finding the smallest counterexample for each
TPC-H query we experiment with. We present a breakdown
of the execution time into time spent on evaluating the dif-
ference between wrong and reference queries, computing

Query
Raw
Query

AGG-base AGG-impr

Eval.
Time

Prov. Query
Eval. Time

Solver
Runtime

Prov. Query
Eval. Time

Solver
Runtime

Q4 3.6036 4.0403 timeout 0.0029 0.0151
Q16 0.8676 0.1349 0.2471 0.1084 0.0022
Q18 6.8751 0.0086 0.0134 0.0130 0.0039
Q21 21.5184 2.6205 31.1106 0.0577 0.0066
Q21-S 21.5408 2.8034 155.6828 0.0524 0.0061

Table 3: Running time (sec) for TPC-H queries.

provenance for the selected tuples, and solving the SMT con-
straints. We find that the scalability of AGG-impr is much
better than AGG-base, because it focuses on a single group
member instead of the entire group. The performance of
AGG-base is significantly affected by the number of tuples
in the group, as the SMT solver struggles to scale.

5 USER STUDY

Since one motivation of our work is to provide small exam-
ples as explanations of why queries are incorrect, we built our
RATest system as a web-based teaching tool and deployed it
in an undergraduate database class at Duke University in Fall
2018 with about 170 students. For one homework assignment,
students needed to write relational algebra queries to answer
10 questions against a database of six tables about bars, beers,
drinkers, and their relationships. The difficulties of these 10
problems range from simple to very difficult. The students
had a small sample database instance to try their queries on.
Their submissions were tested by an auto-grader against a
large, hidden database instance designed to exercise more
corner cases and catch more errors; if these answers differed
from those returned by the correct queries (also hidden),
the students would see the failed tests with some additional
information about the error (but not the hidden database
instance or the correct queries). The final submissions were
then graded manually informed by the auto-grader results;
partial credits were given. For the purpose of this user study,
we normalize the student score for each question to [0, 100].

We did not wish to create unfair advantages for or undue
burdens on students with our user study. This consideration
constrained our user study design. For example, we ruled
out the option of dividing students into groups where only
some of them benefit from RATest; we also ruled out creat-
ing additional homework problems without counting them
towards the course grades. Therefore, we made the use of
RATest completely optional (and with no extra incentives
other than the help RATest offers itself). RATest was given
the correct queries and the same database instance used by
the auto-grader for testing. If a student query returned an in-
correct result, RATestwould show a small database instance
(a subset of the hidden one), together with the results of the
incorrect query and the hidden correct query on this small
instance. We made RATest available for only 5 out of the 10
problems. Leaving some problems out allowed us to study
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Problem
# of users average # of attempts

total who got a
correct answer
eventually

over all
users

before a correct
answer

(b) 102 93 4.08 1.79
(d) 93 93 3.12 1.57
(e) 100 95 5.24 3.45
(g) 99 91 5.90 3.76
(i) 120 94 11.10 7.46

Figure 8: Statistics on RATest usage.

Did the student use
No Yes

Time of the first use (before due date)
RATest for (i)? 5-7 days 3-4 days 2 days 1 day
# of students 49 120 45 30 16 29

Mean score on (i) 89.80 94.40 97.14 99.05 91.96 86.70
Std. dev. 30.58 19.00 15.41 5.22 25.54 26.16

Mean score on (h) 88.34 93.57 96.83 95.24 95.54 85.71
Std. dev. 31.77 20.86 14.89 18.12 17.86 30.06

Mean score on (j) 85.46 85.42 96.67 90.00 82.81 64.66
Std. dev. 34.17 34.39 16.51 30.51 37.33 47.02

Figure 9: Comparison of performance on (h) and (j) between students

whether they used RATest for (i) or not.

Q2 Q3 Q5 Q6
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20
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80
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140

Q2: RATest helped me tell whether my queries were
correct.

Q3: The small example RATest provided helped me
understand and fix the bug.

Q5: Compared with autograder, RATest is more helpful
in debugging.

Q6: I’d like to use tools like RATest again for similar
assignments in the future.

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Figure 10: Results of student feedback.

simply more diligent and therefore would generally perform
better than others. While we cannot definitively attribute all
improvement in student performance to RATest, we next
provide some evidence that it did help in a significant way.

Here, we zoom in on the three most difficult problems, (h),
(i), and (j); RATest was only made available for (i). Problem
(h) (find all drinkers who frequent only those bars that serve
some beers they like) is quite similar to (i) (the difference
being “some beers” vs. “only beers”). Problem (j) (find all
(bar1, bar2) pairs where the set of beer served at bar1 is a proper
subset of those served at bar2) on other hand requires very
different solution strategy. Between those who did not use
RATest for (i) and those who did, Figure 9 (focus on the first
three columns and ignore the rest for now) compares their
scores on (h) and (j). We see that for the similar problem (h),
those who used RATest on (i) significantly improved their
scores on (h), with a degree comparable to the improvement
on (i). For the dissimilar problem (j), those who used RATest
no (i) showed no improvement in their scores on (j)—the two
score distributions are practically the same. We make two
observations here. First, it is clear that not all improvement in
student performance can be explained by student “diligence”
alone; otherwise we would have seen higher performance on
(j) for students who used RATest on (i). Second, a learning
effect seems to exist: using RATest for one problem can help
with a similar problem: (i) helps (h).

Figure 9, in its last four columns, also breaks down the
statistics by when a student started to work on Problem (i).
Not surprisingly, we see that “procrastinators” (those who
started very close to the due date) performed clearly worse
than others. If somebody started to work on (i) using RATest
only the day before the homework was due, this individual

would be expected to perform even worse than an “average”
student who opted not to use RATest at all, especially for
the last problem. It would have been nice if we can similarly
break down the statistics for students who opted not to use
RATest at all, but it was not possible in that case to know
when they started to work on the problems. We could only
conjecture that a similar trendmight exist for procrastinators,
so using RATest did not hurt any individual’s performance.

Results of Anonymous Questionnaire. We collected
134 valid responses to our anonymous questionnaire; Fig-
ure 10 summarizes these responses. The feedback was largely
positive. For instance, 69.4% of the respondents agree or
strongly agree that the explanation by counterexamples
helped them understand or fix the bug in their queries, and
93.2% would like to use similar tools in the future for assign-
ments on querying databases. We also asked students which
problems they found RATest to be most helpful (multiple
choices were allowed): 58% voted for (g) and 94% voted for
(i), which were indeed the most challenging ones. We also so-
licited open-ended comments on RATest. These comments
were overwhelming positive and reinforces our conclusions
from the quantitative analysis, e.g.:

• “It was incredibly useful debugging edge cases in the
larger dataset not provided in our sample dataset with
behavior not explicitly described in the problem set.”

• “Overall, very helpful andwould like to see similar testers
for future assignments.”

• “I liked how it gave us a concise example showing what
we did wrong.”

Summary. Overall, the conclusion of our user study is
positive. Students who used RATest did better, and their
improvement cannot be attributed all to merely the fact that
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they opted to use an additional tool—RATest did add real
value. Also, using RATest on one problem could also help
with another problem, provided that the problems are similar.
Finally, most students found RATest very useful and would
like to use similar systems in the future.

6 RELATED AND FUTUREWORK

Test data generation. Cosette [12], which targets at decid-
ing SQL equivalence without any test instances, encodes SQL
queries to constraints using symbolic execution, and uses
a constraint solver to find counterexamples that differenti-
ates two input queries. The main difference of RATest with
Cosette is in the use of the given test data instance D. While
the reliance on D has its own issues, it also has a number of
advantages. First, since RATest outputs a subinstance of D
as the counterexample, it produces tuples that preserve the
context and semantic of the input schema. Cosette returns
counterexamples of arbitrary integer values, which may be
harder for people to read and perceive. Second, since RATest
computes provenance from actual input tuples, it is oblivious
to complex or even black-box conditions in the input query.
In contrast, Cosette only handles integer domains and queries
that can be encoded into symbolic expressions. Technically,
Cosette uses incremental solving to dynamically increase the
size of each symbolic relation, thus it returns counterexam-
ples with least number of distinct tuples, but the total number
of tuples is not minimized. Further, Cosette does not handle
database constraints explicitly and when there are selection
predicates comparing aggregate values with numbers, i.e.,
the last challenge we discussed in Section 3.1, Cosette may
fail to return a counterexample in minutes (we found such a
case when there is a “having count(distinct column) > 2” in
our modified TPC-H Q21). However, we note that some of
our strategies like encoding integrity constraints into sym-
bolic constraints and parameterizing aggregate queries can
also be applied to Cosette. More detailed comparison can be
found in the full version [32].

XData [10] generates test data by covering different types
of query mutants of the standard query, without looking into
wrong queries. Qex [46] is a tool for generating input rela-
tions and parameter values for a parameterized SQL query
that also uses the SMT solver Z3, and aims at unit testing of
SQL queries. It does not support nested queries and set oper-
ations and hence it cannot work for our problem because of
our use of difference. Olston et al. [36] studied the problem of
generating small example data for dataflow programs to help
users understand the behavior of their dataflow programs.
Provenance and witness. Data provenance has primar-

ily been studied for non-aggregate queries: Buneman et al.
[9] defined why-provenance of an output tuple in the result
set, which they call the witness basis. Green et al. [19] in-
troduced how-provenance with the general framework of

provenance semiring. Sarma et al. [41] gave algorithms for
computing how-provenance over various RA operators in the
Trio system. Amsterdamer et al. [2] extended the provenance
semiring framework [19] to support aggregate queries. Be-
sides these theoretical works, there are systems that capture
different forms of provenance [3, 17, 18, 27, 38, 42]. How-
ever, to the best of our knowledge, no prior work considered
SWP/SCP, and there are no systems available that support
provenance for general SPJUD and aggregate queries.
Missing answers and why-not questions. The prob-

lem of explaining “why a certain tuple is not in the query
answer” has been studied using two approaches: instance-
based [21–23, 29] where explanations are (missing) input tu-
ples, and query-based [11, 44] where explanations are based
on query predicates or operators. Since we are trying to an-
swer “why a tuple t is in the result of (Q1−Q2)(D)”, the prob-
lem “why t is not inQ2(D)” and the instance-based approach
are quite related to our problem. However, it cannot be di-
rectly applied to solve our problem: on one hand, existing
works only consider monotone queries; on the other hand,
the instance-based solution provides input tuples whose in-
sertion will make the missing tuple t appear in the query re-
sult of Q2, which does not help differentiate the two queries.

Teaching or grading tool for programming. Due to
popularity of students taking programming-related courses,
teaching and grading tools for programming assignments
that automatically generate feedback for submissions are
receiving a lot of attention [20, 26, 37]. In the database com-
munity, Chandra et al. built XData [10] that can be used for
grading by generating multiple test cases for different query
mutants, as well as giving immediate feedback to student.
The latter is similar to our RATest tool. Jiang and Nandi
[25, 34] designed and prototyped interactive electronic text-
book to help students get rapid feedbacks from querying the
database with novel interaction techniques.
Explanations for query answers. Explanations based

on tuples in the provenance has been recently studied by
Wu-Madden [47] and Roy-Suciu [40]. These works take an
aggregate query and a user question as input, find tuples
whose removal will change the answer in the opposite direc-
tion, and returns a compact summary as explanations.
Future work. Building user-friendly tools to help stu-

dents or programmers learn and debug database queries is
an interesting research direction. In particular, building a
similar tool with the full functionality of SQL queries is a
challenging open problem.
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A PROOFS FROM SECTION 2.2

We will give the proofs of theorems in Table 1 in this section.

A.1 SJ and SPU Queries

Given t ∈ Q1(D) \ Q2(D), the poly-time algorithm for SJ
and SPU queries involve finding a smallest witness of t in
D for Q1, and using the fact that since Q2 is monotone and
t < Q2(D), therefore, ∀D

′ ⊆ D, t < Q2(D
′).

Theorem 1. The SWP for two SJ queries is poly-time solv-
able in combined complexity.

Proof. Let R1, ...,Rk be all relations that participate in
the SJ query Q1. For each relation Ri , i ∈ [1,k], there must
exist exactly one tuple ti = t .Ri (the Ri component of t ),
which is part of the witness of t (under set semantic). Since
each ti must satisfy all selection conditions for t to appear
inQ1(D), the set Dt = {ti |i ∈ [1,k]} ensures that t ∈ Q1(Dt ),
and is also minimal. SinceQ2 is monotone and t < Q2(D), we
have t < Q2(Dt ); hence t ∈ (Q1 −Q2)(Dt ). The running time
to find Dt is polynomial in k , giving polynomial combined
complexity. �

When projection is allowed, an output tuple may have
multiple minimal witnesses, and we pick any one of them.

Theorem 2. The SWP for two SPU queries is polynomial-
time solvable in combined complexity.

Proof. For an SPU query Q1, if t ∈ Q1(D), at least one
tuple t ′ in one of the input relations must satisfy the selection
condition (if any), and its projected attribute values must
match that of t . The smallest witnessDt only consists of only
t ′. Since Q2 is monotone and t < Q2(D), we have t < Q2(Dt ).
The running time to find Dt = {t ′} is polynomial in the size
of the Q1 and the input database. �

A.2 PJ Queries

For queries involving both projection and join, we show that
it is NP-hard in query complexity to find the smallest witness,
even when the query can be evaluated in poly-time.

Theorem 3. The SWP for two PJ queries is NP-hard in query
complexity.

Proof. We prove the theorem by a reduction from the
vertex cover problem with vertex degree at most 3, which
is known to be NP-complete [16] and is defined as follows:
Given an undirected graph G(V ,E) with vertex set V and
edge set E, where the degree of every vertex is at most 3,
decide whether there exists a vertex cover C of at most p
vertices such that each edge in E is adjacent to at least one
vertex in the set.

Construction. Given G(V ,E), suppose V = {v1, ...,vn},
and E = {e1, · · · , em}. We encode each vertex as a tuple
in the relation R(A,Z ,E1,E2,E3). For each vertex vi ∈ V ,
R contains a tuple ti = (vi , z, ei1 , ei2 , ei3 ), where ei1 , ei2 , ei3
are identifiers of edges adjacent to vi , i1 < i2 < i3. If the
degree of vi is less than 3, the identifiers are replaced by
a null symbol “∗”. The attribute Z = z is a constant for all
tuples. In addition to R, we havem relations S1, ..., Sm . Each
Si , i ∈ [1,m], has schema Si (E,Z ). For the edge ei ∈ E, Si
contains a single tuple (ei , z). Let D = (R, S1, ...,Sm) be the
database instance.

Next, we construct Q1 involving P J that consist ofm sub-
queries as follows: For all i ∈ [1,m], let qi =
πZ (R ZR .E1=Si .E∨R .E2=Si .E∨R .E3=Si .E Si ), which operates on
Si and R, checks for match of R.E1,R.E2, or R.E3 with Si .E,
and then projects on toZ . Then we constructQ1 = q1 Z q2 Z

... Z qm] using natural join on Z . All queries qi andQ1 have
a single attribute Z . Note that, initially, qi (D) = {(z)} for all
i ∈ [1,m], and thereforeQ1(D) = {(z)} as well. The queryQ2

also outputs the attribute Z , but not the tuple {(z)}. We set
Q2 = πZ (R ZR .Z,S1 .Z S1) (the choice of S1 is arbitrary), and
thereforeQ2(D) = {} is empty. The tuple t for whichwewant
to find the smallest witness in (Q1 −Q2)(D) is (z). In other
words, the goal is to find a subinstance D ′

= (R′
, S ′1, ..., S

′
m),

R′ ⊆ R, S ′1 ⊆ S1, ...,S
′
m ⊆ Sm , such that (z) ∈ Q1(D) \Q2(D).

Below we argue that G has a vertex cover of size ≤ p, if
and only if the SWP instance above has a witness D ′ of size
≤ p +m wherem is the number of edges in G.
The “Only If” direction. Suppose we are given a vertex

cover C with at most p vertices in G. We construct R′
i =

{tj | vj ∈ C}, and S ′i = Si for all i ∈ [1,m]. Since |C | ≤ p,
|D ′ | ≤ p +m since each Si contains a single tuple. Since C
is a vertex cover, for all edge ei = (vj ,vℓ) ∈ E, either vj ∈ C

or vℓ ∈ C . Suppose without loss of generality (wlog.) vj ∈ C .
Then wlog. assume tj = (vj , z, ei , e

′
, e ′′) where e ′, e ′′ are

other two adjacent edges onvj (they could be ∗ as well if the
degree of vj is < 3). The tuple tj and the tuple Si (ei , z) will
satisfy the join condition of qi (irrespective of the position of
ei in ti ), and the projection will output (z). SinceC is a vertex
cover, for all i ∈ [1,m], qi (D

′) = {(z)}. Therefore, Q1(D
′) =

{(z)}. Q2(D
′) remains empty. Hence (z) ∈ Q1(D

′) \ Q2(D
′)

Therefore, D ′ is a witness of (z) of size at most p +m.
The “If” direction. For the opposite direction, consider a

witness D ′
= (R′

, S ′1, ..., S
′
m) where R

′ ⊆ R, S ′1 ⊆ S1, ..., S
′
m ⊆

Sm , |R
′ | + |S ′1 | + ... + |S ′m | ≤ p +m, such that (z) ∈ Q1(D

′) \

Q2(D
′), i.e., (z) ∈ Q1(D

′). We construct C = {vi | ti ∈ R′}.
Note that if (z) ∈ Q1(D

′), (z) must be in the result of all
subqueries qi (D

′), i ∈ [1,m]. And qi (D
′) returns (z) if and

only if (a) S ′i is not empty (i.e., S ′i = Si since Si had only one
tuple), and (b) if ei = (vj ,vℓ), at least one of tj or tℓ must
appear in R′ to satisfy the join condition in qi ; otherwise qi
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...

E Z
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(b) S1, · · · , S7
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v1 z e1 e6 ∗

v2 z e1 e2 e7
v3 z e2 e3 ∗

v4 z e4 e6 e7
v5 z e3 e4 e5
v6 z e5 ∗ ∗

(c) R

Figure 11: An example reduction for Theorem 3

returns an empty result and thus Q1 returns an empty result.
Therefore, all S ′i must be equal to Si , |S

′
i | = 1. Then we have

|S ′1 | + ... + |S ′m | =m. Since |D ′ | ≤ p +m, |R′ | ≤ p, and thus
we get a vertex cover C of size at most p.

An example reduction is shown in Figure 11. �

A.3 JU Queries

Theorem 4. The SWP for two JU queries is NP-hard in
query complexity.

Proof. We reduce from the vertex cover problem.
Construction. SupposeV = {v1, ...,vn} andE = {e1, · · · ,

em} in the input graph G(V ,E) in the vertex cover problem.
For each vertex vi in G, there is a relation Ri (Z ) which con-
sists of a single tuple (z). For each edge ei = (vj ,vℓ) ∈ E,
we construct a query qi = R j ∪ Rℓ . Then we construct a
query Q1 = q1 Z · · · Z qm , where the join is a natural join
on Z . We construct Q2 = R1 ZR1 .Z,R2 .Z R2 (the choice of
R1,R2 is arbitrary). Hence D = (R1, · · · ,Rn), Q1(D) = {(z)},
and Q2(D) = {}. The output tuple (z) ∈ Q1(D) \Q2(D), and
the goal is to find a witness D ′

= (R′
1, · · · , R

′
n) for (z) where

R′
i ⊆ Ri for all i ∈ [1,n].
We show that there exists a vertex cover C in G of size ≤ p

if and only if there is a witness D ′ for (z) of size ≤ p.
The “Only If” direction. Consider a vertex cover C of

G such that |C | ≤ p. If vi ∈ C , then R′
i = {(z)}, otherwise

R′
i = {}. Since C is a vertex cover, all edges must be covered.

For an edge ei = (vj ,vℓ), suppose wlog. vj ∈ C . Hence
the subquery qi = R j ∪ Rℓ returns (z) on D ′. Therefore,
Q1(D

′) = (z),Q2(D
′) = {}, (z) ∈ Q1(D

′) \Q2(D
′), i.e., D ′ is a

witness for (z), and |D ′ | = |C | ≤ p.
The “If” direction. Consider anywitnessD ′

= (R′
1, ...,R

′
n)

where R′
1 ⊆ R1, ...,R

′
n ⊆ Rn and |R′

1 | + ... + |R′
n | ≤ p, such

that (z) ∈ Q1(D
′) \ Q2(D

′), i.e., (z) ∈ Q1(D
′). Since Ri had

only one tuple (z), either R′
i has (z) or it is empty. If tuple

(z) ∈ R′
i , then we add vertexvi to a setC . If (z) is in the result

of Q1(D
′), (z) must be in the result of all subqueries qi (D

′)

for all i ∈ [1,m]. For ei = (vj ,vℓ), qi (D
′) returns (z) if and

only if at least one of R′
j and R

′
ℓ
is not empty; otherwise qi

returns an empty result and thus Q1 returns an empty result.
Therefore, for each edge ei ∈ E, at least one of its adjacent

vertices vj or vℓ must exist in C . Hence C is a vertex cover,
and |C | = |D ′ | ≤ p. �

On the other hand, the following theorem shows that if all
unions appear after all joins (which we call JU∗ queries), then
the SWP can be solved in poly-time in combined complexity.

Theorem 5. The SWP for two JU∗ queries is polynomial
time solvable in combined complexity.

Proof. Let t ∈ Q1(D)\Q2(D). According to Theorem 1, the
SWP for SJ queries is polynomial time solvable in combined
complexity. Hence, we look for the smallest witness of t
in join-only part of Q1, and choose the one with smallest
number of tuples. The running time is polynomial in both
n = |D | and the size of the query. �

A.4 Size-Bounded SPJU Queries

Theorem 6 shows that if the SPJU queries are of bounded
size (i.e. if we consider data complexity), there is a polyno-
mial time algorithm for SWP. We prove this theorem using
Proposition A.1, which is intuitive and known (e.g., [39]).
We usem-DNF to refer to a DNF where each minterm has at
mostm literals.

Proposition A.1. Given an SPJU query Q , a database in-
stanceD, and an output tuple t ∈ Q(D), the how-provenance of
t in Q(D) can be transformed into a k + 1-DNF in polynomial
time when Q is of bounded size, where k is the number of join
operations in Q .

Theorem 6. The SWP for two SPJU queries is polynomial-
time solvable in data complexity.

Proof. Let t be an output tuple in Q1(D) \ Q2(D). Since
Q2 is monotone, t < Q2(D

′) for any D ′ ⊆ D. According
to Proposition A.1, we can compute the how-provenance
PrvQ1−Q2,D (t) in DNF in poly-time in data complexity. Then
we scan the DNF to find the minterm with least number of
literals, and this minterm represents the smallest witness
for t in Q1(D) − Q2(D). The literals in this clause are the
identifiers of tuples in the smallest witness. �

E.g., if Prv(t) = a + bc , then a forms the smallest witness.

A.5 Queries Involving Difference

Before discussing general SPJUD queries, let’s focus on one
special class of SPJUD queries where all differences appear
after all SPJU operators (which we call SPJUD∗ queries). More
formally, we define this class using formal grammar: Q →

q+ |Q−Q , where q+ is a terminal that represents SPJU queries.
For instance, queries Q1 and Q2 in Example 1 are SPJUD∗

queries. The following theorem shows that the SWP can be
solved in poly-time for SPJUD∗ queries.

Theorem 7. The SWP for two SPJUD∗ queries is polynomial-
time solvable in data complexity.

Research 4: Distributed Data Management SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

519



Proof. Let t be an output tuple in Q1(D) \ Q2(D). Since
Q1 and Q2 are SPJUD

∗ queries that can be written as nested
differences of queries like q1−q2−(q3−(q4−q5))− ..., where
allqi -s are SPJU queries,Q1−Q2 is also an SPJUD

∗ query. The
output tuple t must be either in or not in the result of each
qi . We find the smallest witness by enumerating the minimal
witnesses of t w.r.t. every qi and D. If t is in the result of
qi (D), let wi be the set of minimal witnesses of t w.r.t. qi
and D. Then we pick one element from everywi ∪ {∅}, and
construct w as the union of all witnesses or the empty set
we picked. We evaluate Q1 and Q2 on w to see whether it
is a witness for t , and record thew of the smallest size. We
finish this procedure until we enumerate all combinations.
This procedure will return the smallest witness because:

(i) if t < qi (D), t will also not be in qi (w) for any w ⊆ D

due to monotonicity, so we don’t need to consider such qi -s;
(ii) Assume that w ′ is a smallest witness of t w.r.t. Q1 −Q2

and D, for all qi where t ∈ qi (w
′), w ′ must be a superset

of a minimal witness of t w.r.t. qi and D. Hencew
′ must be

the union of minimal witnesses of t w.r.t. these qi -s and D;
otherwise, ifw ′ is a strict superset of the union of minimal
witnesses of t , we can always remove tuples not belong to
any minimal witness of t w.r.t. qi -s and D fromw ′, without
affecting t to be in or not in any qi , which contradicts the
assumption thatw ′ is a smallest witness. Therefore a smallest
witness of t w.r.t. Q1 −Q2 and D must be union of minimal
witness of t w.r.t. qi and D, and thus it must be enumerated
during the enumeration procedure.
The time complexity of entire enumeration process is

O(Πim
ki ) = O(mkd ), where d is the number of difference

operators, m is the max size of relations, ki is the max com-
plexity of each SPJU query qi (i.e., the number of joins in
qi is ki − 1), k = maxi ki and d is the number of qi -s. When
queries are of bounded sizes, i.e., if d and k are fixed, the
SWP for two SPJUD queries that can be written as nested
differences of SPJU queries is polynomial-time solvable. �

SWP is NP-hard in general even for bounded-size queries.

Theorem 8. The SWP for two SPJUD queries Q1 and Q2 is
NP-hard in data complexity.

Proof. We again give a reduction from the vertex cover
problem with vertex degree at most 3 (see Theorem 3).
Construction. Suppose in G = (V ,E), V = {v1, ...,vn},

E = {e1, · · · , em}.We construct two relationsR(A,Z ,E1,E2,E3)
and S(B,C,Z ). For each vertex vi ∈ V , R contains a tuple
ti = (vi , z, ei1 , ei2 , ei3 ), where ei1 , ei2 , ei3 are the identifiers of
edges adjacent to vi , i1 < i2 < i3. If the degree of vi is less
than 3, the identifiers are replaced by a null symbol “∗”. Here
z is a constant. For each edge ei ∈ E, S contains a tuple
(ei , e(i%m)+1, z), where e(i%m)+1 is the identifier of the next

edge in the edge list (the next edge of em is e1). Let D = (R, S)

be the database instance.
Next, we construct an SPJUD query that consists of sev-

eral subqueries as follows: Let q1 (on S) = πZ (S); q2 (on S)
= πB,Z (S); q3 (on R, S)=πS .C,S .Z (S ZS .C=E1∨S .C=E2∨S .C=E3 R).
Then we construct Q1 = q1, hence Q1(D) = {(z)}. We also
construct Q2 = πZ (q2 − q3) (assume C in q3 is renamed
to B). For edge ei = (vj ,vℓ), the edge ei appears for both
tuples tj , tℓ (in one of E1,E2,E3 attributes), and therefore,
(ei , z) appears in the result of q3(D) for every i ∈ [1,m].
Hence q3(D) = πB,Z (S). So q2(D) \ q3(D) = ∅. Then (Q1 −

Q2)(D) = {(z)}, and the goal is to find the smallest wit-
ness for (z). For the vertex cover instance in Figure 11(a), R
will be as given in Figures 11(c), and S will contain tuples
{(e1, e2, z), (e2, e3, z), · · · (e7, e1, z)}.
We now show that there exists a vertex cover C of size

at most p in the graph G if and only if there is a witness
D ′
= (R′

, S ′) where |R′ | + |S ′ | ≤ p +m.
The “Only If” direction. Suppose we are given a vertex

coverC ofG with at most k vertices. Construct R′
= {ti | vi ∈

C}, and S ′ = S .Q1(D) = Q1(D
′) = {(z)} since S is unchanged.

Similarly, q2(D
′) = πB,Z (S) is unchanged. SinceC is a vertex

cover, for every edge ei = (vj ,vℓ) either ti or tℓ is inR
′; hence

q3(D
′) = q3(D), i.e., each (ei , z), i ∈ [1,m] appears in q3(D

′).
ThenQ1−Q2 outputs (z) onD

′, |R′ | = |C | ≤ p, |S ′ | = |S | =m,
and we get a witness of at most p +m tuples.

The “If” direction. Consider any witness D ′
= (R′

, S ′)

where R′ ⊆ R, S ′ ⊆ S, |R′ | + |S ′ | ≤ p +m, such that (z) ∈
Q1(D

′) \ Q2(D
′). We construct C = {vi | ti ∈ R′}. Since (z)

is in Q1(D
′) \Q2(D

′), (z) must be in the result of q1(S
′), and

not in the result of q2(S
′) − q3(R

′
, S ′), hence S ′ must contain

at least one tuple. Therefore, q2(S
′) outputs at least one tuple

(ei , z) since S
′ is not empty. In turn, q3(R

′
, S ′) must output

all tuples in q2(S
′) to make q2(S

′) − q3(R
′
, S ′) empty. (a) We

argue that S ′ = S . Suppose S ′ contains at least one tuple, say
wlog, (e1, e2, z). Then to remove (e1, z) from q2(S

′)\q3(R
′
, S ′),

q3(R
′
, S ′) must contain (e1, z), which can generate only from

S(em , e1, z). Hence (em , e1, z) ∈ S ′. In turn, (em , z) ∈ q2(S
′).

To remove it, we need S(em−1, em , z) in S ′. Continuing this
argument (by induction), we get S = S ′. (b) Consider any
tuple, say wlog., (e1, e2, z) in S ′. Then to remove (e1, z) from
q2(S

′) \ q3(R
′
, S ′), not only the tuple (em , e1, z) ∈ S ′, it also

has to satisfy the join condition with R. This will hold only
if for one of the end points vj ,vℓ of e1 = (vj ,vℓ), tj ∈ R′

or tℓ ∈ R′. This should hold for all edges, and therefore the
set C we constructed is a vertex cover. Since |S ′ | = |S | =m,
|R′ | = |C | ≤ p, therefore, we get a vertex cover in G of size
at most p.
The queries we constructed during the reduction are all

of bounded size, therefore the SWP for two SPJUD queries is
NP-hard in data complexity. �
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