Demonstration

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

RATest: Explaining Wrong Relational Queries
Using Small Examples

Zhengjie Miao, Sudeepa Roy, and Jun Yang
Duke University
{zjmiao,sudeepa,junyang}@cs.duke.edu

ABSTRACT

We present a system called RATEST, designed to help debug
relational queries against reference queries and test database
instances. In many applications, e.g., classroom learning and
regression testing, we test the correctness of a user query
Q by evaluating it over a test database instance D and com-
paring its result with that of evaluating a reference (correct)
query Qo over D. If Q(D) differs from Qy(D), the user knows
Q is incorrect. However, D can be large (often by design),
which makes debugging Q difficult. The key idea behind
RATEsT is to show the user a much smaller database in-
stance D’ C D, which we call a counterexample, such that
Q(D’) # Qo(D’). RATEsT builds on data provenance and con-
straint solving, and employs a suite of techniques to support,
at interactive speed, complex queries involving differences
and group-by aggregation. We demonstrate an application
of RATEST in learning: it has been used successfully by a
large undergraduate database course in a university to help
students with a relational algebra assignment.

CCS CONCEPTS

« Information systems — Database utilities and tools.

KEYWORDS

Data provenance; Explanations; Relational query grading

ACM Reference Format:

Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. RATest: Explain-
ing Wrong Relational Queries Using Small Examples. In 2019 In-
ternational Conference on Management of Data (SIGMOD °19), June
30-FJuly 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3299869.3320236

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD 19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. .. $15.00
https://doi.org/10.1145/3299869.3320236

1961

1 INTRODUCTION

In many applications, we test correctness of database
queries—which we call candidate queries—by comparing their
results with those of reference queries (which are deemed
correct) over some reference database instance. For example,
during software development, when changes are made to
queries used by applications, we use regression testing to
verify new queries by comparing their results against those
of original queries (presumed correct) over test databases.
In a classroom setting, where students learn to write rela-
tional queries, we can evaluate a student query and compare
its result with that of the correct solution query over a test
database instance. In these applications, a key to debugging
candidate queries is the reference database instance D, which
serves as a counterexample that illustrates the difference in
the results of candidate query Q and reference query Qo.

Unfortunately, in practice, D is often large, either because
it is based on real or production data, or it is synthesized to
cover numerous corner cases and to stress-test the scalability
of the queries. Such a large counterexample would take too
much effort to understand where the inequivalence of the
queries comes from. For example, in a classroom setting, if
we want to use real data from the DBLP publication database
in an assignment, D would contain millions of tuples, and
the difference in query results may contain many tuples as
well, easily overwhelming students.

The key idea behind our approach, implemented in a sys-
tem we call RATEST, is to show the user a much smaller coun-
terexample database instance D’ C D, such that Q(D’) #
Qo(D’), i.e., still enough to illustrate the difference between
Q and Q. D’ would also satisfy the same database constraints
as D. Besides the small size of D’, which makes it easier to
work with, this approach has a number of other advantages.
First, while it is possible to generate a counterexample D’
completely unrelated to D (like [4]), constraining D’ to be a
subset of D helps preserve some context for users by using
the same data values and relationships from D. Also, techni-
cally, knowing that D itself is a counterexample (albeit large)
helps us find small counterexamples more easily. For exam-
ple, without access to D, it would be difficult to automatically
generate values that satisfy one predicate involving complex
SQL functions but not another. Second, our counterexam-
ple can choose to illustrate just one particular result tuple

Demonstration

name major name number dept grade
Mary CS t Mary 216 CS 100 ty
John | ECON ty Mary 230 CS 75 ts
Jesse CS t3 Mary 208D ECON 95 ts
. John 316 CS 90 t7
(a) Student relation S John 208D | ECON 88 s
Jesse 216 CS 95 ty
Jesse 316 CS 90 to
Jesse 330 CS 85 1

(b) Registration relation R

[name T major T | name | major
[John | ECON [[ry | Mary | CS r2
ohn | ECON r
(c) Result of reference query Q ;esse cs rz

(d) Result of candidate query Q
Figure 1: Example relations with tuples identifiers.

that differentiates Q and Qy, which allows users to focus on
identifying and fixing one issue with their query at a time.
Third, users get enough help in debugging just by seeing
D’, Q(D’), and Qy(D’) (along with a description of what the
query is intended to return). There is no need to reveal the
reference query Qo or the entire test database instance D;
this feature is particularly useful in the classroom setting.!

We illustrate the problem of generating a small counterex-
ample with an example.

ExampLE 1. Consider two relations storing information
about students and the courses they took: S(name, major) and
R(name, number, dept, grade). Suppose a user is asked to write
a relational algebra query to find student records for those who
took exactly one Computer Science (CS) course. One correct
solution (reference query) Qy is the following:

Tname Odept="CS’ (R) - TTR; .name

S (O'dept='CS’ PRy (R)) PR, .name = Ry.name A R .number # Ry .number

(O'dept:’CS’PRz (R))

An incorrect candidate query may be the following, which
actually finds students who took one or more CS courses:

Q: ﬂname,major(s > Gdept:’CS’R)-

A reference database instance and the results of these queries
over this instance are shown in Figure 1. The tuples r, =
(Mary,CS) and r; = (Jesse,CS) are in the result of Q but
not in the result of Qy. To convince the user that Q is wrong,
we could provide the entirety of S and R as a counterexample
comprising 11 tuples. However, a smaller counterexample sim-
ply contains three tuples, t1, t4, t5 (a subset of tuples pertaining
to Mary), over which Qy would return an empty result while Q
would return just r, (Mary). This counterexample is not only
smaller, but also helps “pinpoint” the problem. For a real data-
base with tens of thousands of students, there can be a vast

!t is conceivable that the system can be abused to recover D with some
effort. We do not address this issue in our current system and have not
observed any such abuses in a real classroom deployment, but the problem
can be an interesting direction for future work.

1962

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

difference between the size of the entire database and that of
the smallest counterexample (which remains at 3).

In our recent work [7], we solve the problem of finding
small counterexamples by building on the work in data prove-
nance and constraint solving. We identify connections to
known problems, such as minimal witness, and show why
and how to adapt our problem definition for complex cases
such as when queries involve aggregation. We tackle the chal-
lenges of finding the smallest counterexample at interactive
speed and supporting complex queries involving differences,
group-by aggregation, as well as SQL functions and opera-
tors in selection and join conditions. A detailed discussion
on related work can be found in [7].

In this demonstration, we showcase a representative appli-
cation of RATEST in a classroom setting, which we deployed
earlier in a large undergraduate database course at Duke
University. We set up RATEST for a relational algebra as-
signment, with a large test database and the correct solution
queries, all of which are hidden from students. A student can
submit candidate queries to RATEST. If a query returns an
incorrect result, RATEST will show a counterexample with
a small number of tuples drawn from the test instance, and
show how the result of the submitted query differs from the
correct one on the counterexample. The student can revise
the query and get further feedback that may help reveal ad-
ditional bugs, until the query returns the same result as the
hidden solution query on the full hidden test instance.

2 BACKGROUND AND PROBLEM

Consider a database instance D where D |= T for a given set
I of integrity constraints, and two queries Q; and Q, such
that Q1(D) # Q2(D). The smallest counterexample problem
(SCP for short) is to find a D’ C D with minimum number
of tuples such that D’ |= T and Q;(D’) # Q2(D’), i.e., D" also
differentiates O; and Q,.2

As stated in Section 1, we connected SCP to data prove-
nance: if Q; and Q, return different results over a D, then
there must exist one tuple t € Q1(D) \ Q2(D) or t €
02(D) \ Q1(D). We refer to the concept of witnesses [3]: a
witness for a tuple ¢ w.r.t. a query Q and database instance D
is a subinstance D’ C D where t € Q(D’). Therefore, for any
counterexample D’ C D for which Q;(D’”) # Q,(D’), there
exists some tuple ¢ in (Q; — Q2)(D’) or (Q2 — O1)(D’), i.e., D’
is a witness of t w.r.t. Q; — Q, or Q, — Q; and D.

Thus, a reasonable approach to SCP is to consider each
tuple in Q1(D) \ Q2(D) (or Q2(D) \ Q1(D)), find its smallest
witness w.r.t. Q1 — Q; (or Q, — Qy, resp.) and D; we then
pick the smallest witness overall. If Q; and Q, are monotone,
this approach always yields the smallest counterexample [7].

2Without loss of generality, we assume that Q; and Q, have the same result
schema (otherwise, we do not need an instance to illustrate their difference).

Demonstration

In [7], we also obtained complexity results for SCP for differ-
ent classes of queries. For queries involving projection, join,
and difference, it is noteworthy that finding the smallest wit-
ness for a result tuple is already NP-hard in data complexity,
even when the queries are of bounded sizes.

Aggregate Queries. More challenges arise once we con-
sider group-by aggregation queries. First, the approach of
finding minimal witnesses for result tuples over D will un-
likely give us the smallest counterexample. The reason is that
removing a tuple from a group may change the aggregate
result (e.g., of SUM); a witness that tries to preserve the orig-
inal aggregate result may not be able to remove any tuple.
Hence, instead of finding minimal witnesses for result tuples
over D, we want a counterexample D’ that still shows some
difference between Q;(D’) and Q,(D’), but the result values
do not need to the same as those in Q;(D) or Qy(D).

A second challenge requires further modifying the defini-
tion of SCP, because there are cases when no counterexam-
ples are small in size even if they do not need to preserve ag-
gregate values. For example, suppose both Q; and Q; return
(different) tuples from groups that pass a HAVING condition
stipulating that the group size must be more than a million.
Any counterexample would necessarily have to produce a
group containing more than a million tuples. Nonetheless,
we show in [7] how to adapt the problem definition by allow-
ing the queries to be parameterized: e.g., the query constant
“one million” in the example earlier would be replaced with a
parameter A. Then, we allow a counterexample to show dif-
ference between Q; and Q, for some setting of the parameter
A, e.g., a small group size threshold that does not require a
large database instance to achieve. For details, see [7].

3 TECHNIQUES AND IMPLEMENTATION

Capturing Provenance. The smallest witness of a tuple ¢
w.r.t. a query Q and a database instance D can be obtained
with how-provenance or lineage [6]. The how-provenance of
aresult tuple t € Q(D), denoted by Prvg p(t) (or Prv(t) when
the context is clear), is a formula involving Boolean variables
annotating tuples in the input relations, which encodes how
t is derived from input tuples in D. These Boolean variables
indicate whether the corresponding tuples are present in
the input, and Prv(t) correctly computes whether tuple ¢
is in the query result given the setting of these Boolean
variables. Therefore, one can map the the problem of finding
the smallest witness into the min-ones satisfiability problem:
find a satisfying model for Prv(t) with the least number of
variables set to true; the true variables in this model would
give us the tuples in a smallest witness.

We implemented RATEST based on RA(radb) [7], a rela-
tional algebra (extended with group-by and aggregation) in-
terpreter that works by translating relational algebra queries

1963

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

into SQL (using WITH to build up complex queries one rela-
tional operator at a time). Taking two queries as input, RAT-
EST uses RA(radb) to translate them into SQL, but further
rewrites the SQL queries to compute provenance. Specifi-
cally, we add an extra string-valued prv column for all input
and intermediate result relations to store the provenance
expression. For each relational operator, we rewrite the SQL
fragment generated for this operator with logic to derive
output provenance expressions from input ones. All expres-
sions are in the SMT-LIB format [2]. As an example, for the
difference operator, following is the rewritten SQL query for

R — S (assuming columns A and B):
(SELECT R.A, R.B, '(and_'[|R.prv || '_(not_'"[]|S.prv|]'))"
FROM R, S WHERE R.A=S.A AND R.B=S.B) UNION
(SELECT A, B, prv FROM R WHERE NOT EXISTS
(SELECT * FROM S WHERE S.A=R.A AND S.B=R.B));

Note that this query computes all “potential” result tuples
(that may arise when some input relation tuples are deleted).

For aggregation, we further apply provenance for ag-
gregate queries [1]. We encode result aggregate values as
symbolic expressions involving values from input relations.
Then, we can express Q;(D) # Q,(D) symbolically: as-
sert that a group only exists in one of the query results
(Prvg,, p(t)®Prvg, p(t)is true), or the group exists in both re-
sults but the aggregate values differ (Prvg, p(t)APrvg, p(t)A
Agvg, p(t) # Agvg, p(t), where Agv denotes the symbolic
expression computing a given group’s aggregate value). This
approach allows RATEST to handle SPJUDA (Select-Project-
Join-Union-Difference-Aggregate) queries where there is no
further grouping using aggregate values and no difference
after aggregation within Q; and Q,.

Finding Counterexample with a Solver. Using the prove-
nance information obtained by executing the rewritten SQL
queries, we can then take a tuple in the symmetric differ-
ence of Q;(D) and Q,(D) and formulate an SMT (satisfiability
modulo theories) problem to find a smallest witness. RATEST
uses the Z3 SMT Solver [5], with the objective function min-
imizing the number of variables set to true. The satisfying
model returned by the solver represents a counterexample.

ExampLE 2. Consider again Example 1. (Mary,CS) and
(Jesse, CS) are returned by Q but not by Qo, and their how-
provenance w.r.t. Q — Qg and D can be computed, e.g.,

Prvg_g,, p({Jesse,CS))
= Prvg,p({Jesse, CS)) A =Prvg, p({Jesse,CS))

= (l‘z(fo +tio + tn)) t3(tg + tig + t11) t3(fotio + tot11 + tioti1)

= t3lot1o + t3loty + t3t10t11,
where it is clear that any one of t3totqg, t3tot11, and tstiptyy is
a smallest witness for (Jesse, CS). By asserting this formula
to be true, we can use the SMT solver to find such a witness.

A basic approach would be to call the solver on each tuple
in the symmetric difference of Q;(D) and Q,(D), and then

Demonstration

at) E Relation Algebra Debugger
0@

am

drinker(name, [
address)

bar(name, address) frequents| |serves|

beer(name,
brewer)
frequents|(drinker,
bar, times_a_week)
likes (drinker, beer)
serves(bar, beer,
price)

RA Test Status: Incorrect

RA Test Result:

Sample input database:

Figure 2: Overview of RATEST interface.

Sample input database:

Inrelation drinker: In relation frequents:

name address # drinker bar times_a_week

1 Frances 57876 Walker Mountain 1 Frances Pizzeria Bistro Leonardo 3

Inrelation bar: Inrelation likes:

name address # drinker beer

1 Pizzeria Bistro Bender Beer

Leonardo

27291 Camacho Highway Site 1
101

Frances

In relation beer: Inrelation serves:

name brewer # bar beer price

1 Yeti Special Export br1392 1 Pizzeria Bistro Leonardo Yeti Special Export 3.5

2 Bender Beer br1221

Your output: Correct output:

1 Frances (Empty)

Figure 3: Counterexample for the query in Figure 2.

pick the overall smallest counterexample. However, comput-
ing provenance on all result tuples incurs high overhead. In-
stead, we can pick one tuple ¢ in the difference, and compute
provenance just for t, by adding a selection using t’s value
on top of the difference query. Pushing this selection down
as much as possible through the difference query drastically
reduces the cost of provenance computation. Although this
approach may not give us the smallest counterexample, it
can always find a counterexample, and in practice it works
well: it can reduce the running time significantly (up to 42x
in our experiments) while still finding counterexamples that
are almost as small as the smallest possible.

Note that since the counterexample contains a subset of
D’s tuples, it trivially satisfies all keys, functional depen-
dencies, and NOT NULL constraints. However, referential con-
straints need explicit enforcement. We capture such con-
straints using Boolean formulas (involving Boolean variables
corresponding to D’s tuples), and additionally assert these
constraints when invoking the solver.

4 DEMONSTRATION

Figure 2 shows the web interface of RATEST. The demonstra-
tion goes through a use case of RATEST in an educational

1964

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

setting, where students are asked to write relational algebra
queries to answer questions against a database about bars,
beers, drinkers, and their relationships (bars serve beers;
drinkers like beers and frequent bars); see bottom left of Fig-
ure 2. Each table contains hundreds to thousands of tuples,
and the whole database contains 100,000 tuples.

As an example, consider one of the hardest problems in
the assignment: “Find all drinkers who frequent only those
bars that serve only beers they like” The solution requires
non-trivial uses of joins and differences:

Tnamedrinker — fayinker (7arinker, beer(frequents > serves) — likes).

Now consider a student query

Tnamedrinker — (T grinker(frequents >4 serves) — mgyinker likes),

where the second input to the first difference operator is
incorrect—this input would find “drinkers who frequent
some bars and like no beers” RATEST shows a small
counterexample explaining this mistake (Figure 3): drinker
“Frances” likes “Bender Beer” and frequents “Pizzeria Bistro
Leonardo,” where only another beer “Yeti Special Export” is
served. Thus, “Frances” should not be in the answer.

The user can revise the query and get further feedback that
may reveal more bugs; a history feature allows convenient
access to queries attempted recently. We also walk through
the backend of RATEsT for those interested.

Overall, this demonstration shows how RATEST uses small
counterexamples to help users understand why their queries
are wrong. We are also releasing RATEST to the public to en-
courage adoption by database courses at other universities.

ACKNOWLEDGMENTS

This work is supported in part by NSF Awards 11S-1408846,
11S-1552538, 1IS-1703431, 11S-1718398, 1IS-1814493, and by
NIH award 1R01EB025021-01.

REFERENCES

[1] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance
for aggregate queries. In PODS. 153-164.

Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The SMT-LIB
standard: Version 2.0. In Proceedings of the 8th International Workshop
on Satisfiability Modulo Theories, Vol. 13. 14.

Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001. Why
and where: A characterization of data provenance. In ICDT. 316-330.
Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung.
2017. Cosette: An Automated Prover for SQL. In CIDR.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT
solver. In International conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. 337-340.

Todd J Green, Grigoris Karvounarakis, and Val Tannen. 2007. Prove-
nance semirings. In PODS. 31-40.

Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. Explaining Wrong
Queries Using Small Examples. In SIGMOD.

(2]

