
I-Rex: An Interactive Relational Query Explainer for SQL

Zhengjie Miao, Tiangang Chen, Alexander Bendeck, Kevin Day,

Sudeepa Roy, Jun Yang

Duke University, Durham, NC, USA

{zjmiao,sudeepa,junyang}@cs.duke.edu,
{tiangang.chen,alexander.bendeck,kevin.day}@duke.edu

ABSTRACT

We demonstrate I-REX
1, a system designed to help users under-

stand SQL query evaluation and debug SQL queries. I-REX lets

users interactively “trace” the evaluation of complex SQL queries,

including those with correlated subqueries. I-REX also explains

why a query returns an incorrect answer with respect to a refer-

ence query over a test database instance—a common use case in

education and software regression testing. To avoid the cognitive

overload caused by debugging over a large database instance, I-

REX lets users focus on smaller instances contained in the large

one (which we call “counterexamples”) that still distinguish the two

queries. Supporting these features for SQL queries poses two key

challenges. First, unlike debugging for procedural languages, it is

not clear how to trace a declarative SQL query, because its execu-

tion plan often differs from how it was originally written. I-REX

offers a novel interface for tracing SQL query evaluation in a way

faithful to how queries are written syntactically, even for complex

queries involving multiple levels of nesting and correlation. Sec-

ond, we need a method for finding small counterexamples that han-

dles the complexity of practical SQL. I-REX extends provenance

support for SQL in non-trivial ways to work with various query

constructs. This demonstration walks through use cases in which

I-REX helps users understand and debug SQL queries.

PVLDB Reference Format:

Zhengjie Miao, Tiangang Chen, Alexander Bendeck, Kevin Day, Sudeepa
Roy, and Jun Yang. I-Rex: Interactive Relational Query Explainer for SQL.
PVLDB, 13(12): 2997-3000, 2020.
DOI: https://doi.org/10.14778/3415478.3415528

1. INTRODUCTION
Data analytics has emerged as one of the most important skills

for modern jobs. Much analysis of structured data happens through

SQL. However, learning and debugging SQL can be challenging,

even for people with considerable experience with procedural pro-

gramming languages, partly because of the declarative nature of

1
A video and other information about our system can be found at https://

dukedb-hnrq.github.io/; we will continue to update this website as we add new

features or release new versions.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150­8097.
DOI: https://doi.org/10.14778/3415478.3415528

SQL. I-REX is a system designed to help users understand SQL

query evaluation and debug SQL queries. I-REX addresses two

key challenges. First, despite a plethora of debugging tools for pro-

cedural languages, there exist few tools for SQL—it is not even

clear how to “trace” a declarative query because it is often opti-

mized and executed differently from the way it is written. Second,

in many use cases, users may find out that a SQL query returns a

wrong answer for a given test database instance, yet debugging the

query over a large database is slow and poses significant cognitive

burden, especially for novices. These challenges are compounded

by the complexity of the SQL language, with constructs such as

nested, correlated subqueries. In the following, we illustrate these

challenges with examples and motivate our approach.

For the first challenge of tracing SQL evaluation, a strawman

solution is to convert the SQL query of interest into a logical plan

of relational algebra operators, and trace the evaluation of this plan

operator by operator, allowing users to examine all intermediate

results in a bottom-up fashion. While this solution is more palatable

than tracing the execution plan, there can still be a huge disconnect

between the logical plan and the original query, especially for those

with constructs such as correlated subqueries that are frequently

used but have no direct counterparts in relational algebra.

(a) Drinker relation

name addr

Ben 101 W.M. St. d1

Coy 101 W.M. St. d2

Dan 300 N.D. St. d3

(b) Frequents relation

drinker bar times

Ben The Edge 3 f1
Ben ToT 1 f2
Dan JJ Pub 1 f3
Dan ToT 2 f4

(c) Likes relation

drinker beer

Ben Amstel l1
Ben Budweiser l2
Coy Dixie l3
Dan Amstel l4
Dan Budweiser l5
Dan Corona l6

(d) Serves relation

bar beer price

The Edge Amstel 2.75 s1
The Edge Budweiser 2.00 s2

JJ Pub Amstel 3.00 s3
JJ Pub Corona 3.25 s4
JJ Pub Dixie 3.00 s5
ToT Corona 2.50 s6
ToT Dixie 2.75 s7

Figure 1: Example relations with tuples identifiers.

Drinker Serves

as S

Frequents

as F

MIN(a1)

GROUP BY drinker

F.bar=S.bar

F.drinker, 1 as a1
a1 is NULL

name=drinker

name

Figure 2: Decorrelated query plan for Ex-
ample 1.

(a) Result of ref. Q0

name

Coy r1
Dan r2

(b) Result of wrong Q

name

Coy r3

Figure 3: Results of
queries in Example 2.

2997



EXAMPLE 1 (TRACING SQL QUERIES). Figure 1 shows a

database about drinkers, beers, bars, and relationships among

them. Consider the following query:

❙❊▲❊❈❚ name ❋❘❖▼ Drinker
❲❍❊❘❊ ◆❖❚ ❊❳■❙❚❙

(❙❊▲❊❈❚ s.bar ❋❘❖▼ Serves s, frequents f
❲❍❊❘❊ f.bar=s.bar ❆◆❉ name=f.drinker );

Note that name in the WHERE clause of the nested subquery refers

to a column from the Drinker table in the outer query. Because

of this correlation, we cannot “trace” intermediate results of the

query in a bottom-up fashion from the subquery to the outer query.

One possible workaround is to decorrelate the query, such that the

resulting query can be translated into a logical plan that allows

bottom-up tracing. This workaround is universal as decorrelation

is routinely done in most database query optimizers. However, a

serious drawback is that the decorrelated query may not resem-

ble the original. For example, for the query above, the popular

open-source SQL query planning tool, Apache Calcite [1], would

generate an overly complex decorrelated logical plan depicted in

Figure 2 (already simplified for presentation). Tracing this decor-

related query plan will not help users understand the original query

and may cause more confusions.

Instead, I-REX provides a novel interactive interface that allows

users to trace query evaluation in a way faithful to how the query

is written originally. Intuitively, each subquery is executed in a

“context” with specific variable bindings provided during the eval-

uation of its outer queries. For example, the result of the subquery

above (within WHERE NOT EXISTS (...)) depends on the par-

ticular name value from the Drinker tuple being examined by the

outer query. I-REX’s interface adheres to this standard evaluation

semantics of correlated subqueries and supports tracing through

nested SQL query blocks, without requiring any additional knowl-

edge of relational algebra or its mapping from SQL.

For the second challenge of debugging queries over a large

database, we focus on a common use case that arises in education

and software regression testing, where users notice that a query is

wrong because it returns different answers from a “reference” (cor-

rect) query on a test database instance.2 To avoid the cognitive

overload caused by debugging over a large instance, I-REX lets

users focus on small instances contained in the large one (which

we call “counterexamples”) that still distinguish the two queries.

EXAMPLE 2 (SMALL COUNTEREXAMPLES). Suppose a

SQL assignment asks students to write a query to find drinkers who

frequent only bars that serve some beers they like. The instructor

provides the reference query Q0:

❙❊▲❊❈❚ name ❋❘❖▼ drinker
❲❍❊❘❊ ◆❖❚ ❊❳■❙❚❙ (

❙❊▲❊❈❚ bar ❋❘❖▼ frequents
❲❍❊❘❊ drinker = name ❆◆❉ bar ◆❖❚ ■◆

(❙❊▲❊❈❚ bar ❋❘❖▼ serves , likes
❲❍❊❘❊ drinker=name ❆◆❉ serves.beer=likes.beer ));

A student writes the following incorrect query Q, which considers

the three relationship tables in a different order and actually finds

drinkers who frequent only bars that serve only beers they like (we

have observed this mistake to be typical for students learning SQL

in our database courses):

❙❊▲❊❈❚ name ❋❘❖▼ Drinker
❲❍❊❘❊ ◆❖❚ ❊❳■❙❚❙ (

2
Note that returning correct answers for a finite number of test instances does not

guarantee that a query is correct—however, this practice of using test instances to

gauge correctness is both common and practical given the general undecidability of

query equivalance testing.

❙❊▲❊❈❚ s.bar ❋❘❖▼ Serves s, Frequents f
❲❍❊❘❊ f.bar=s.bar ❆◆❉ name=f.drinker
❆◆❉ s.beer ◆❖❚ ■◆ (

❙❊▲❊❈❚ l.beer ❋❘❖▼ likes l ❲❍❊❘❊ name=l.drinker ));

Over the test database instance shown in Figure 1, Q0 outputs tu-

ples r1 = 〈Coy〉, r2 = 〈Dan〉, while Q outputs only one tuple

r3 = 〈Coy〉. Instead of showing the full instance with 20 tu-

ples, we can show a counterexample consisting of only 5 tuples

d3, f3, l4, s3, s5(highlighted in the tables), over which Q0 would

still return r2 (Dan) but Q will return an empty result. Besides

reducing the cognitive overload, this small counterexample also

“pinpoints” an error in Q: that Q would fail to find a drinker

when the drinker frequents some bar serving both beers he likes and

beers he does not like. For a real test database instance involving

thousands of tuples, the small counterexample still contains only 5

tuples, significantly smaller than the entire database.

In this demonstration, we will showcase a representative debug-

ging scenario, to illustrate how I-REX can help explain errors in

user queries using small counterexamples and further help users

trace the evaluation of their queries to understand their behaviors.

With each counterexample pinpointing one error in the user query,

users can focus on fixing their queries one “bug” at a time, until

they pass the whole test database instance.

Related work. Conceptually, I-REX shares its two key features

with our previous system, RATEST [6], which supports evaluation

tracing and finding small counterexamples for relational algebra

queries. RATEST has been deployed in undergraduate database

courses and benefited hundreds of students; its success motivated

us to support similar features for SQL. It turns out that moving from

procedural relational algebra to declarative SQL, also a much more

complex language, requires both a complete redesign of the front-

end tracing interface and significant reworking of the back-end pro-

cessing methods. As motivated in Example 1, the simple bottom-up

tracing of RATEST does not work for I-REX. Support for prove-

nance [5], which underpins our techniques for finding small coun-

terexamples, has been lacking for general SQL queries; I-REX

has extended provenance support to more SQL constructs beyond

SPJUDA (select-project-join-union-difference-aggregate) queries.

Besides RATEST, a number of other systems are also related to

I-REX. For tracing SQL evaluation, Dietrich and Grust [3] built

an observational debugger that allows users to mark some parts of

the query and then observe the intermediate results produced by

the selected parts, helping users learn how a specific query com-

ponent executes. A discussion of additional related work can be

found in [6]. For instance, the work on “Why-Not” queries aim to

explain missing answer tuples by data or query modifications that

would instead include them in the query result. In contrast, I-REX

intends to explain and trace more complex SQL queries while re-

maining faithful to the original database (albeit via a much smaller

counterexample) and original queries.

2. IMPLEMENTATION AND SYSTEM
Figure 5 depicts the architecture of I-REX. As a web application,

I-REX allows users to issue SQL queries in the front-end. Then, the

two major components of the back-end handle the query separately:

the counterexample finder returns a small counterexample database

w.r.t. the user query and a given reference query; the query evalua-

tion tracer supports interactive tracing in the front-end by decom-

posing the user query and executing rewritten subqueries against

the database. More details are presented below.

Capturing How-Provenance for SQL Query. In our recent

work [6], we studied the smallest counterexample problem (SCP):

2998



�✁✂✁✄☎ ✆

✝✞✟✠ ✞

✡☛✁✞✁☞☞☞

✡✌☎☛ ✍✎✏✑✒✎✑✓

✔� ✒�✁✂✁✄☎ ✔

✝✞✟✠ ✞✓✕

✍✎✏✖✒✎✑✓ ✔�☞☞☞

✗✘✙✚✛✜✢

✣✢✜✤

✥✦✤✦✧✜★✘✧

✣✧✘✩✦✤✜✤✛✦

✪✤✫★✧✬✭✦✤★✜★✚✘✤ ✡✌☎☛ ✍✎✏✑✒✎✑✕✮✍✯✓

✔� ✒�✁✂✁✄☎ ✔✕✮✍✯

✝✞✟✠ ✞✓✕

✍✎✏✖✒✎✑✕✮✍✯✓ ✔�☞☞☞

✰✱✲✳✴ ✵✶✷

✶✳✸✹✺
✷✻✼✽✾✿❀

✶✳✸✹✺ ❁❀✿✱

❂❀✼✸❃✹✿✽✾

✶✳✸✹✺

❄

❅

❆

❇❇❇

❂❀✼✸❃✹✿✽✾ ✶✳✸✹✺ ❈✽✴❉

❁✹✻❊✸✱✿✱✾✸ ❂✱✱✻✴✿✴✽✻✱

✣✜✧✫✦✧

Figure 4: Provenance instrumentation pipeline for SQL.

❋●❍■

❏❑▲❍■▼

◆❖P❍

◗❘❙❚❯❱❲❱❳❨❩❬❭❱ ❪❫❚❴❱❲

❵■❛❜❍❑❖❑P❍

❏❑●▲■❝❞❍❑▲❖▲❡❛❑
❢❣❤ ❢❛✐❜❍■

❢❥❑▲❖❦

❵❖■●❍■

❏❑❧❝▲ ❢♠♥

♠❝❍■❥

♦♣❣❢

q❙❱❲r st❨❭❙❨❯❫❘❚ ✉❲❨✈❱❲

❢❝✇①❝❍■❥

②❡❍■❖■P③❥

④❍❑❍■❖▲❛■

⑤②⑥⑦⑥

⑧❛❑⑨❡▲❡❛❑

⑥❜❖✐❝❖▲❛■

⑧❛■■❍✐❖▲❡❛❑

⑦❍⑩■❡▲❍■

Figure 5: I-REX system architecture.

given a database instance D and two queries Q1 and Q2 where

Q1(D) 6= Q2(D), find a sub-instance D′ ⊆ D with minimum

number of tuples such that Q1(D
′) 6= Q2(D

′). We proposed a

solution to SCP by considering each tuple t in Q1(D) \Q2(D) (or

Q2(D) \ Q1(D)) and finding the smallest D′ ⊆ D (witness for

t) such that still t ∈ Q1(D
′) \ Q2(D

′). The solution consists of

first capturing Boolean how-provenance [5] (encoding how an out-

put tuple t is derived from input tuples by annotating input tuples

with Boolean variables), and then finding a satisfying model for

the how-provenance formula with the least number of variables set

to true, which can be efficiently done using an SMT (satisfiability

modulo theories) solver. We developed additional techniques in [6]

to improve the scalability of this approach; experiments show that

we can deliver interactive response time even for databases with

millions of tuples.

In [6], we implemented a how-provenance tracker by translat-

ing relational algebra queries into SQL fragments and then instru-

menting queries according to the logic of SPJUDA operators. But

this rewriting does not apply to general SQL queries, especially

when there are correlated subqueries. Decorrelation is theoreti-

cally possible, but not well supported in practice, and often intro-

duces extraneous operations including aggregation that complicate

provenance. Therefore, we avoid decorrelation and apply an instru-

mentation pipeline inspired by [4] as shown in Figure 4 to capture

how-provenance for SQL. First, we obtain the logical query plan

of the input SQL query using the explain command of Cock-

roachDB [2]. The resulting tree-structured logical plan uses an

Apply operator instead of decorrelating the query. The Apply op-

erator takes a relation R as input, evaluates an expression E for

each row r ∈ R, and then combines the results of each E(r) as

the output. Next, we build a new algebraic query from the logical

query plan. For instance, queries with NOT EXISTS subqueries like

the one we show in Example 1 can be represented as an antijoin be-

tween the outer relation and the inner query’s result. Furthermore,

if there are deeper nested correlated subqueries (such as Q and Q0

in Example 2), Apply is introduced and columns from outer rela-

tions are replaced with placeholders. Then we rewrite this algebraic

query into SQL with additional provenance information, and exe-

cute it separately for every value binding. Beyond correlated sub-

queries, we also have to consider NULL and bag semantics, which

are not handled in [6]. For example, outerjoins may introduce NULL

if there are input tuples that do not join with others.

Tracing Query Evaluation through Blocks and Context. As dis-

cussed earlier, tracing is non-trivial due to SQL’s complexity—for

example, it would not make sense to trace a query with correlated

subqueries as a tree of operators in a bottom-up manner. Existing

approaches all require transforming SQL queries into an alternative

representation, e.g., (i) tracing through the physical query plan re-

turned by the query optimizer (which may not resemble the original

query at all), (ii) tracing through a tree of operators using a new op-

erator for correlation (e.g., as what we did to capture provenance),

or (iii) tracing through equivalent procedural code. All these ap-

proaches impose additional cognitive burden: users must familiar-

ize themselves with a new representation and must be able to trans-

late insights they gained from tracing the alternative representation

back to how to fix their original SQL query. Instead, we want to

trace a SQL query at a logical level and in a way consistent with

how the query is written.

Instead of letting a query optimizer dictate how to execute a SQL

query, I-REX uses the syntax of the query to derive an evalua-

tion structure that faithfully reflects how the query is written. We

break the query syntactically down into a hierarchy of blocks (sub-

queries); a block always corresponds to a contiguous substring of

the original query string and can be executed under a context, which

provides values for columns referenced in this block but coming

from outside the block. The user can choose which block to focus

on individually, and when the user focuses on a particular block to

explore, our interface highlights the corresponding part of the orig-

inal query string. For query Q in Example 2, the root block in the

hierarchy represents the entire query; this root has one child block

Q1, which represents the nested SELECT statement that serves as

the input to NOT EXISTS in the outermost WHERE; Q1 in turn has

another child block Q1.1 representing the subquery that serves as

an input to NOT IN.

If a block b represents a correlated subquery, it may refer to

columns from tables in FROM clauses of b’s ancestor blocks, thus

the behavior of b needs to be understood from the context provided

by evaluating its ancestors. Note that while we treat the hierar-

chy of blocks as a tree, the column references for constructing the

context is modeled as a directed graph. For example, in Q1.1, the

column reference name refers to the Drinker table in Q’s FROM

clause. Imagine that Q examines one Drinker row at a time; the

particular Drinker row being examined by Q provides the context

for Q1.1 and a specific binding for name to be used for evaluating

Q1.1. In general, the context and bindings for a block b can be

provided by any ancestor blocks of b.

When a user focuses on a block b, our interface clearly shows

the current context and bindings for b’s external (correlated) refer-

ences, if any. The user can adjust the context and explore how b’s

result changes accordingly. For an uncorrelated subquery whose

result does not depend on the context, our interface intelligently

omits the option to adjust context, avoiding clutter and confusion.

Tracing Evaluation of Each Block. Given the context, our inter-

face further allows the user to focus on specific contexts to under-

stand the evaluation of any block b. For example, consider block

Q1, which is a two-table SELECT with a conjunctive WHERE with

three predicates. Below the context for Q1, our interface shows

the contents of the two input tables for Q1 as well as its output

(under the current context provided by Q). By selecting a com-

bination of input rows, the user can see the truth values of the

predicates in WHERE to understand why this particular combination

yields an output row (then it will be highlighted automatically) or

not (then a warning will be displayed). In general, our interface

would display the entire WHERE condition as a Boolean expression

tree whose leaves are annotated with truth values; hovering on ref-

2999




