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Abstract—1In this paper, we propose a novel control archi-
tecture, inspired from neuroscience, for adaptive control of
continuous time systems. The objective here is to design control
architectures and algorithms that can learn and adapt quickly
to changes that are even abrupt. The proposed architecture, in
the setting of standard neural network (NN) based adaptive
control, augments an external working memory to the NN. The
learning system stores, in its external working memory, recently
observed feature vectors from the hidden layer of the NN that
are relevant and forgets the older irrelevant values. It retrieves
relevant vectors from the working memory to modify the final
control signal generated by the controller. The use of external
working memory improves the context inducing the learning
system to search in a particular direction. This directed learning
allows the learning system to find a good approximation of
the unknown function even after abrupt changes quickly. We
consider two classes of controllers for illustration of our ideas
(i) a model reference NN adaptive controller for linear systems
with matched uncertainty (ii) backstepping NN controller for
strict feedback systems. Through extensive simulations and
specific metrics we show that memory augmentation improves
learning significantly even when the system undergoes sudden
changes. Importantly, we also provide evidence for the pro-
posed mechanism by which this specific memory augmentation
improves learning.

I. INTRODUCTION

Human brain is arguably the best learning system known
to date. This fact has inspired many different branches of
research in science, engineering and computing. To achieve
goals such as autonomy, judgment, and common sense in ar-
tificial systems, it will likely be necessary to take inspiration
from the rapidly expanding knowledge in neuroscience and
cognitive science. In control systems, an example of such
efforts is neural network based adaptive control.

Modern machine learning approaches such as deep neural
networks require large amounts of data for their training. This
is in contrast to humans who can learn from relatively small
number of examples, sometimes even one example. This is
potentially highly relevant in adaptive control systems. In this
paper, we explore one of the central control challenges for
such adaptive control systems, which is the ability to learn
and adapt to changes in conditions or contexts quickly.

Memory plays a central role in such learning and cognition
tasks for humans. In neuroscience, there are three memory
systems namely semantic, episodic and non-declarative (of
which procedural memory is a subset) [1], [2]. Each system
stores or encodes information differently and has its strengths
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and weaknesses. Authors in [3] suggest that humans derive
their incredible ability to learn from just few examples by
an effective combination of these different kinds of memory
systems.

Inspired by these insights in neuroscience and motivated
by the opportunity in adaptive control, we focus on the
following questions: can control algorithms improve learning
by incorporating such memory structures? If so what is the
appropriate architecture? Is there an universal architecture
or is it problem dependent? And in what scenarios does
it improve learning? These are hard questions and they
have, so far, been relatively under-explored. They form the
essential basis for our research agenda under the theme of
learning for control. In the context of traditional thinking in
dynamic systems and control, state of the nonlinear controller
constitutes the “memory” in the controller. However, here we
are using knowledge about human memory systems to posit
specific memory modules that will complement the state of
the dynamic nonlinear controller and potentially lead to new
learning and control capabilities. Specifically, we draw on
some very recent developments in machine learning, Neural
Turing machines (NTM), that have taken a similar approach,
and incorporate these in adaptive control.

As an initial step towards these larger questions and goals,
we consider a well-studied adaptive control setting. The
base architecture is the standard adaptive control architecture
that uses a neural network as the function approximator of
the nonlinear uncertainty [4]-[9]. In addition, the nonlinear
uncertainties can vary with time including variations that
are abrupt or sudden. The objective for the controller is to
adapt quickly even after such abrupt changes. We make the
assumptions that the controller can observe the state of the
system and the abrupt changes are not large for this initial
exploration. The question then is, can memory structures
inspired from neuroscience improve these adaptive control
algorithms? And if so what is the architecture? And what
are the algorithms?

A traditional approach to improve speed of learning is
to increase the learning rate. But in closed loop control
applications, this can give rise to high frequency oscillations
[10]. Modifications have been proposed to deal with such
high frequency oscillations [10]-[12]. What is to be noted
is that the increase in the learning speed in these methods
is a consequence of the increase in the learning rate. So
these methods do not fundamentally address the challenge
of improving the speed of learning and response of adaptive
controllers. By contrast, here we propose a new control
architecture that is novel in terms of how the controller



uses information from past learning episodes to learn and
respond.

In section II we propose the Memory Augmented Neural
Network (MANN) adaptive controller and give as an example
the extension of the standard Model Reference Adaptive
Controller (MRAC). We then give some background from
neuroscience and provide examples of such augmentation
in machine learning literature as well. In section IV-A we
discuss the design of the memory interface. In particular
we introduce the central idea behind the design which is
induced learning. Finally in section V we provide a detailed
set of simulation results and discussion substantiating the
improvements in learning obtained by memory augmenta-
tion. We have not included any results on stability analysis
in this paper and that is a topic of our current research. But
our initial explorations indicate that it may be possible to
generalize existing results on stability of NN based adaptive
control to our setting.

II. MEMORY AUGMENTED CONTROL ARCHITECTURE

In this section, we introduce a novel memory augmented
control architecture for adaptive control of continuous time
systems. The intuitive idea here is to leverage the capabilities
offered by the combination of an implicit memory like a
NN and an external working memory that can store relevant
information from previous learning episodes.

1) Proposed Architecture: Our envisioned general archi-
tecture for combining traditional dynamic feedback control
with an external memory is depicted in Fig. 1. There are
numerous possible ways to develop concrete versions of this
general architecture. In this paper, we specialize it to Fig. 1
which extends the standard NN adaptive control architecture
by augmenting the NN with an external working memory.
The output of the control law block is the control input u
to the plant. The plant output is the system state. The plant
output is fed to the error evaluator which calculates either (i)
the error between system state and a pre-specified trajectory
in the case of a trajectory tracking problem, or (ii) error
between a reference model’s state and the state of the system
in the case of MRAC. The error is used to calculate the
update to the neural network parameters. The output of the
neural network is fed to the control law block. Typically, the
NN output is used to compensate the nonlinear uncertainty in
the system dynamics. The proposed architecture introduces
an “external working memory” to the NN. The NN can
write or read from the memory to modify its output. In a
later section, we will provide a detailed description of this
memory interface.

2) Example (MRAC): Consider the system given in (1).

&= Ax+ B(u+ f(z)) + B,r (D)

This is a linear plant, whose system matrices A and B
are known, with a matched nonlinear uncertainty f(x) [10].
Figure 2 gives the memory augmented MRAC architecture
for this problem. The variable x is the system state, 7 is
the command signal, and u is the control input. The control
law block’s output is supposed to ensure that the system
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state = tracks ,.s, which is the state of a given reference
model &ef = Apef®res + Brr. The NN output is used by
the control law to compensate the unknown f(x). Here, the
neural network output is given by ugq = — f (refer Notation)
and the base control term is PI control. Without the working
memory, the architecture is the standard MRAC architecture
[10], [13].

Notation: The system state is denoted by, z € R"™.
Throughout the paper, as in standard NN adaptive control, we
use a two layer neural network with a sigmoidal activation
function in the hidden layer. For a given nonlinear function
f(x) and a compact set C it follows by the universal
approximation theorem, that for any c there exists a NN,
which includes an extra bias term b,,, such that,

f@)=WTo(VTz+b,)+by,+e, Vo €C, where || <c

Including the extra term, b,,, allows us to illustrate the
learning principle using simple examples. Denote the NN
used to approximate the function f(z) by f = WTo(VTz+
I;v) + Bw. Later, we use a function called softmax(.), whose
input is a vector z and output is also a vector of the same
length. The ith component of softmax(.) is given by

exp (z;)
> j €XP (%)
We introduce two other vector functions which appear in

the NN update laws. We denote these functions by & and &’
which are defined by:

5 [ o(VTz +b,) }

softmax(z);, =

2

5 [ diag(a(VTz +b,) © (1 — o(VTz 4+ b,)))
— o7

} 3)

where 0 is a zero vector of dimension equal to the number
of hidden layer neurons. The class of controllers that are



NN based adaptive controllers have a base control term and
a NN output term. We denote these terms by up; and uqq
respectively. The overall control input is then the summation
of the two terms i.e. u = up; + Ugqd-

III. MEMORY SYSTEMS IN THE BRAIN AND NEURAL
TURNING MACHINES

In this section we first introduce the predominant types
of memory systems in the human brain and how they have
motivated our thinking. We then recap some recent develop-
ments in machine learning inspired by the idea of working
memory in neuroscience. This learning system essentially
augments an external working memory to a NN. The primary
motivation of this series of work was to build a learning
system that can learn from fewer examples. We then give
a brief discussion on how this learning system learns from
fewer examples.

A. Memory Systems

As mentioned before, neuroscience identifies three kinds
of memory systems (i) semantic (ii) non-declarative (of
which procedural memory is a subset) (iii) episodic memory
[1], [2]. According to the classic work by Tulvig et. al
[14], semantic memory “is a mental thesaurus, organized
knowledge a person possesses about words and other verbal
symbols, their meaning and referents, about relations among
them, and about rules, formulas, and algorithms for the
manipulation of these symbols, concepts and relations”. In
short, semantic memory refers to the models, concepts of
the environment the brain interacts with and the algorithms
for manipulating them. From the point of view reinforcement
learning (RL) [15] or control, semantic memory is related
to model-based learning [3]. Semantic memory is powerful
in the sense that the brain can employ these learned con-
cepts and algorithms in previously unseen environments or
contexts. Their disadvantage stems from the computational
demands involved in using them, for example: model-based
learning in RL [3].

Procedural memory is a memory that is gathered over
several episodes of learning while performing a task. It is a
memory that learns the procedure of performing a task. Itis a
slow learning memory and can generalize to different context
within the same task. For example, in the game of chess
expert chess players learn complex algorithms (not precisely
expressible as a sequence or set of rules) through experience,
leading them to superior performance. This is an example of
procedural memory. From the point of view reinforcement
learning procedural memory is related to model-free learning
[3]. There is evidence that the brain employs both semantic
and procedural memory systems for RL tasks [3].

Episodic memory, in contrast, stores raw history of past
experiences. Loosely, episodic memory refers to memory
of specific events that were personally experienced and
remembered. For example, the memory of the experience of
dinner on one’s 18th birthday (e.g., the taste of the food, the
location etc.) falls under the umbrella of episodic memory.
There is evidence that episodic memory can improve learning

with sparse data for RL tasks [16]. Their disadvantage is that
they generalize very poorly unlike semantic or procedural
memory [3].

Working memory system models are combinations of
memory systems and a central executive which can manip-
ulate the information in these systems like recalling from
past experience [17]. Working memory systems are clearly
demonstrated in a chess player. An expert chess player
can recall moves from an old game or the position of
the pieces from an earlier part of the game. This enables
the player to quickly understand the game situation and
make a better decision for the next move. It follows that
an expert player is able to make better decisions by using
a combination of working memory, with episodic memory
as its memory system, and other memory systems such as
semantic or procedural memory. It is this combined benefit
of two memory systems, through a working memory, that is
exploited in many learning systems proposed in the machine
learning literature [18]-[20] and the architecture we propose.

B. Use of Memory Systems in Machine Learning

It was proposed as early as 2001 that neural networks with
memory capacities [21] could be quite capable of learning
from sparse data. For example authors in [22] showed that,
“LSTMs (Long Short Term Memory) which have an inher-
ent memory can quickly learn never-before-seen quadratic
functions with a low number of data samples”. Starting in
2014, Neural Turing Machines (NTMs) [18] being among
the first, architectures with external working memory were
proposed [19], [20]. The interface of the external working
memory was designed such that the process of reading and
writing from the memory is differentiable or learnable via
error backpropagation algorithm [23]. It was shown in these
works that the addition of the external working memory
improved the performance of LSTMs across many problems.

In the standard implementation of NTMs, the interface
between NN and the working memory (as in Fig. 1 of the
proposed architecture) has two operations (i) Memory Write
and (ii) Memory Read. The working memory stores {key,
value} pairs, denoted by {k;,v;} where i takes values in
some (finite) set.

The Memory Write equation in NTM has a forget term
and an update term. The forget term removes contents
from the memory that are irrelevant and the update term
updates the contents of the memory with the new information
provided it is relevant. This gives NTMs the capability to
retain information and also update with the new information,
depending on their relevance.

The Memory Read operation uses an addressing mech-
anism to read from the memory. In a typical addressing
mechanism, a NN is used to generate a query vector q based
on the current context. This query is then matched with the
keys to determine the values to be read from the memory.
Provided the NN is trained to generate an appropriate query,
this operation should then retrieve useful information from
the memory. This information that is read from the memory
is used by NTMs to produce their final output.



What enables NTMs to learn from fewer examples? An
external working memory with its interface allows the learn-
ing system, such as NTMs, to store and retrieve relevant
information to enrich the context for its operation. With an
external source that provides a better context, the learning
system may not need to learn from scratch. Instead it can
learn by accounting for the context provided by the external
memory, potentially increasing its speed of learning. NTMs
have this capability because (i) they can learn to store and
retrieve context enriching information using the write and
read operation, and (ii) their learning algorithm, which is
based on backpropagation, is effective at credit assignment
[24].

IV. WORKING MEMORY INTERFACE AND CONTROL
ALGORITHM

In this section, we provide a detailed description of the
interface of the external working memory that augments the
NN in Fig. 1. We also motivate and justify, using an example,
how memory augmentation improves learning by an induced
learning mechanism. Finally, we specify the NN update laws
and the control algorithms.

A. Memory Interface

The working memory proposed here is based on the
ideas discussed in section III-B. We emphasize that the key
innovation lies in the specification of the query vector g,
write vector a and how the NN output is modified. We denote
the memory state by matrix y, output of Memory Read by
M, and the augmented NN output by u,q. The matrix p is
of size ns X N. Denote the i-th column vector of matrix p by
;. First, we give the equations for Memory Write, Memory
Read and NN output and then discuss them in detail.

Memory Write: f1; = —z;; + cpzia + zl-qu @)
Memory Read: M, = pz, z = softmax(u”q) %)
NN Output: ueg = —W7T (U(VTI + ZA)U) + MT> — by (6)

A.l. Memory Write: The Memory Write equation (4) is
similar to NTM and consists of three terms: (i) a forget term
(the first term), (ii) an update term using the new information
(the second term) and (iii) an additional update term (the
third term), which arises from the interaction of the NN
learning algorithm with the memory contents.

The main novelty here arises from what we call the wrife
vector, signifying new information, denoted by a in the
Memory Write equation (4). We propose to set a to be the
output of the hidden layer:

a= h:o’(f/Ta:—F&) @)

The middle term in equation (4) updates the memory content
using the write vector a at a rate proportional to the weight
z;. This weight, discussed in more detail below, reflects the
relevance of a in modifying memory content p,;.

The first term in equation (4) forgets the memory’s content
at the 7th location at the same rate z;. Thus, the Memory
Write operation updates and forgets at a rate proportional

to the relevance of the write vector. This gives memory the
ability to retain information and also update its contents with
the new information. The forget term also ensures that the
memory contents are stable. The third term in equation (4)
is the regular parameter update that arises from the memory
vectors ;8 being perceived as additional parameters of the
NN by the NN learning algorithm. Here g,, depends on the
problem and ¢, is a design constant. If the middle term
reflecting new information is left out, the Memory Write
equation becomes much more like the NN update equation,
and thus we would expect the performance of the controller
to not be different from the controller without memory. We
illustrate this intuition in the simulation results later.

We emphasize here that, in the long term, the memory does
not remember information from earlier learning episodes be-
cause its contents are gradually overwritten with information
from later episodes. This follows from the Memory Write
equation (4). We refer the reader to Fig. 5, which plots
the trajectory of the Memory Read output, to illustrate this
observation further. In this sense the memory is short term.
It is a topic of further research to design a memory with an
interface that can store and exploit relevant information from
earlier learning episodes.

What is the rationale for the above definition of z;s? The
weights z;s are defined in (5). Here we take the dot product of
the write vector (which follows from the definition of query
vector as given in (8)) and the respective memory vectors,
as given in (5), and pass it through the softmax function
to generate the weights z;s. It follows that the weight z;
is largest for the memory vector that is most similar to the
write vector and smallest for the memory vector that is least
similar. Thus z; measures relevance by similarity.

We want the new information from the write vector to be
considered as an update that is relevant to a memory vector j
only when it is consistent with the information already stored
in this location in terms of what it represents. Here the new
write vector, which is given by (7), represents the learned
hidden layer output value for the current state. Hence the
interface should consider the new information as an update
to that location 5 whose content is the last write vector that
was equal to the learned hidden layer output value for the
same state. This new write vector is likely to be similar to
this earlier write vector and so the memory vector at location
7. Also, the weight z;, as defined in (5), is determined by
similarity of the write vector and the memory vector at
location i. Consequently, the weight z; is likely to be higher
for this location j, i.e., when ¢ = j. Hence z;s are effective
in determining relevance as we wanted.

A.2. Memory Read: 1t is defined by (5) and we need to
specify the query vector q. We propose to set the query vector
to be the write vector itself:

g=h=c(VTz+b) (8)

The key is defined to be the memory vector itself. Below
we justify these choices. The addressing mechanism for this
interface matches the query and key by their respective dot
product. These dot products are then normalized using the



softmax function to produce a set weights z;’s such that
> z; = 1, as given in (5). The final output M, is the
weighted linear combination of the memory vectors with z;s
as the weights (5). Note that the weights are the largest for
those memory vectors that are most similar to the query.

What is the rationale for the above definitions of query
and key vectors? We first note that the Memory Read M,
is used to modify the control input as in (6). Hence, the
query vector should be a function of hidden layer output
which is exactly as in (8). The key should be matchable
with the query vector and also contain information about
the corresponding memory vector. The memory vector itself
satisfies this criterion. Hence we select the memory vector
itself as the corresponding key.

We want the addressing mechanism to be able to retrieve
relevant values for the current scenario. In this work (i) we
assume that abrupt changes in function f(x), specified in
terms of the change in value for each x, are not large and
(i) the memory remembers information only from recent
learning episodes. Hence the new scenario after an abrupt
change is not very different from the scenario that the mem-
ory contents correspond to. In such a case, the information
that is likely to be relevant is the memory vector that is
similar to the query vector (which is the current hidden
layer output). This is exactly the output of the Memory Read
operation (5), suggesting that the addressing mechanism is
effective in retrieving relevant values for the current scenario.

A.3. NN Output: The learning system (NN) modifies its
output using the information M, retrieved from the memory.
For this memory interface, the NN output is modified by
adding the output of the Memory Read to the output of
the hidden layer as in (6). Below we give a suggestive
explanation using an example on how this modification
improves the context inducing the learner to learn quickly.

How does the modified NN output induce the learner to
learn quickly? While a full analysis of this remains a topic
for future research, here we provide a suggestive explanation
using an example. Let’s consider the scenario where the
learning system had settled and remained in steady state
for a long time after the initial learning phase. Assume that
the NN weights had converged to their correct values, i. e.,
W = W, bw = bw,bv = b, and V = V. We refer to the
corresponding NN as the first network. Since this is a good
approximation, the bound on the error, which is ¢, is small.
Suppose that f(.) changes as follows:

f+<af()+ewherel+c>cp>1—c¢ 9)

The new f is approximately equal to a second neural
network whose weights are given by W = eisW, by =
c1by + cz,b =b,and V = V. It is easy to show that
the error for this approximation is bounded by ¢ + ¢2, and
is small because c is small. Note that the hidden layers of
the correct approximations are identical for the times before
(first network) and after the abrupt change (second network).

Before the abrupt change the contents of the memory are
the hidden layer values of the first (and so second) network.
This follows from the discussion on Write operation and

the fact that the Memory Write equation is reduced to the
first two terms after the initial learning phase. This is so
because g, becomes zero once the learning phase is over
(refer section IV-B). Just after the abrupt change the Memory
Read outputs a value that is approximately equal to the
hidden layer output of the first (and so second) network. This
follows from the discussion on Memory Read operation.

The modification of the NN output using this Memory
Read appears to the learner as if the hidden layer is partially
fixed at the hidden layer of the second network. In addition,
the second network is a correct approximation of the new
function and so is a valid point for the learning to converge
to after the abrupt change. As a result, the learner is induced
to update its outer layer weights in a direction that converges
to the outer layer weights of the second network, further
inducing the learning of the whole network to proceed in a
direction towards the second network. This directed learning
makes the learning quicker.

A.4. Learning Mechanism Principle: Motivated by the
above discussion, we believe that, for our proposed learning
controller that uses an external working memory, learning is
accelerated through an induced learning mechanism which
facilitates quick convergence to a neural network that is a
good approximation of the new function. Interestingly, this
is also the idea behind transfer learning where a pre-trained
network on a different problem is reused for the new problem
by fine tuning only the final layers while fixing the earlier
layers.

B. Control Algorithm

First, we provide the complete set of equations for the
general control architecture in Fig. 1 and then provide their
specific forms for (i) the MRAC controller of a linear plant
with matched uncertainty and (ii) the backstepping controller
for strict feedback systems.

B.1. General Control and Update Law: The Memory Write
equation, the Memory Read equation and the NN output
are same as the equations (4), (5) and (6) respectively. The
control input for NN adaptive control is a combination of
base controller wuy,;, which is problem specific, the NN output
uqq and a “robustifying term” v [6], [25]. The final control
input is given by,

(10)

U = Up, + Uad + U,

The variable g, in (4) is problem specific and depends on
the Lyapunov function (without the NN error term). The NN
update law, which constitutes the learning algorithm for the
proposed architecture, is the regular update law for a two
layer NN [25],

“Z —Cu (66" (V7o +5,)) au
ARATIN ] P

B.2. MRAC Controller: Here we specify the control equa-



tions of the MRAC controller for the system in (1). The
control input and the update laws are same as (10) and
(11). If the base controller input wup; is the standard LQR
controller and the lyapunov function is e’ Pe, then the vector
qu = el PB, where e = z — Zref, P is the matrix solution
to the lyapunov equation AT ;P + PA,.; = —Q, and Q is
a positive definite matrix (Refer [26]). The robustifying term
is given by v = —k. (W[ + [Vl + llulr) lell>

B.3. Backstepping Controller for Strict Feedback Systems:
A strict feedback system is given by the set of equations as
given in (12). The function g(z) > 0V x. The problem setup
is that y has to track the desired trajectory x14. In addition
the system is either partially or completely unknown if either
f(x) is unknown or both f(z) and g(z) are unknown. The
control can be designed via the backstepping method [8],
[27]. The backstepping method entails defining a sequence of
auxiliary control inputs, one for each state z;, in a recursive
manner. For lack of space we don’t discuss the derivation of
the backstepping controller.

&1 = fi(z1) + g1(z1)w2

i’n = fn(xn) + gn(xn)uv y=1o (12)

Here we provide the architecture for robust NN backstep-
ping controller of partially known systems. This controller
uses a separate NN to approximate each of the unknown
function f;(.). We use subscript ¢ to denote the weights
of each neural network. In the extended architecture a
separate memory is augmented to each neural network. Two
subscripts are used to denote the memory and its specific
vector respectively. The auxiliary control inputs for ¢ =1 is
just the desired trajectory x14. For 1 < ¢ < n—1 the auxiliary
control inputs x;41 ¢S are a combination of the base auxiliary
controller, a NN output and a robustifying term,

Tit1,d = Tit1,bl + Tit1l,ad + Vit

Tit1,pl = 9;1 (Cbi,d — Kie; — giT_leifl)

Tit1,ad = gi_l (7VAV1‘T (G (‘A/qTIz + Ei,v) + Mi,r) - l;i,w)
vir1 = =07 ke (IWille + [Ville + il )es (13)

where e; = z; — x; 4. The control input u also has three
terms but with few differences,

U= Up, + Uad + Vnt1, Upt = Gy (Tn.g — Knen)

Ugd = g;l (—Wg (0’ (VnTxn + Env) + Mn,r) — Enw)

Uni1 = —gn ke (IWalle + [[Vallp + linll F)en (14)

The NN update laws for the network 7 is the same as
(11). The g;,,, vector is e; if the lyapunov function for each
auxiliary control is e?.

V. DISCUSSION AND SIMULATION RESULTS

In this section we provide simulation results that illustrate
the improvements in learning by inclusion of an external
working memory. We illustrate this using examples for each

of the controllers in section IV-B. In addition we also provide
(i) comparison with response of the MANN controller when
¢y = 01in (4) (ii) comparison of performance of a NN which
has the same number of parameters as the MANN controller
(number for the latter includes the size of the memory) (iii)
illustration of induced learning.

A. Flight Control Problem

In this sub-section we consider the longitudinal dynamics
of a flight. The system model is a linear plant with a matched
uncertainty. Denote the flight’s angle of attack by «, pitch by
q, the elevator control input by u. Then the system equations
appended with an integrator, as in [26], is given by,

& 0 1 0 el
& = 0 2o 14 Zq a
) - n]&U MmU
q U S q
0 -1
+ & Jwrf@)+| 0 |yema (15
i 0

where Y.m,q 1S the command signal that the angle of
attack has to track and e; = f Q — Yemd- HEre yYema =
0.1 rad. The system parameters are that of B-747 flight.
The flight’s mass is m = 288773 Kg, moment of inertia
I, = 44877574 Kgm?. The flight is assumed to be at
an altitude of ~ = 6000 m and travelling at a speed of
U = 274 m/s (0.8 Mach). The base controller is a LQR
controller whose cost matrices are given by ¢ = I and
R = 1. The values of the terms in the matrices for B-747
are given by,

Z Z M

=2 = 032,14+ —L =0.86, — = —0.93

mU Lt mU T, ’

M, Zs M;

1 =043, =X = —0.02, =2 = —1.16 16
I, - T (16)

The memory interface parameters are set as ¢, = 3/4,
k., = 0 and the NN learning rates are set as C,, = C,, = 10.
The outer layer NN weights are initialized to value 0 and the
hidden layer weights and the memory vectors are randomly
initialized to a number between 0 and 1. In the two examples
we consider here, the number of hidden layer neurons (V)
is set as 4 and 5 respectively and the number of memory
vectors (ny) is set as 1. Number of hidden layers is chosen to
be the smallest number such that the NN controller (without
memory) does not show large oscillations. The uncertainty
jumps in both the examples are set such that the uncertainty
term is at most of the same order as the linear terms in the
system equations. In example 1, f(z) is given by,

f(x) = Cy(t)x*, where C; =0.1 at t =0,

Cy —50Cy att=5and Cyp — 2Cy at t =25 a7
In example 2, f(x) is given by,

f(z) =2® + 0.1Cy, where Cy = 0.1 at t =0,

Cr—10Cy att =5and Cy — 2Cr att =25  (18)
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B. Control of Strict Feedback System

For illustration we consider the following partially known
strict feedback system: n = 2, f; = —0.1xy + 0.123, fo =
—0.1z + 0.123, g1 = 1+ 0.12%, go = 1 + 0.123. The
controller parameters are set as: ¢, = 3/4, K; = 10 Vi,
k., = 10, Cy, = C, = 10. The number of hidden layer
neurons and the number of memory vectors are set as 3 and
1 respectively. The desired trajectory x14 = 0.1. The outer
layer NN weights are initialized to 0 and the hidden layer
and memory vectors are randomly initialized to a number
between 0 and 1. In this example, f; = 22 +0.001 at t = 0
and fi — f1 + 0.25sin(10z1) — 0.001 at ¢ = 5; fo =
22+ 0.001 at t =0 and fo — fo — 0.001 at t = 5.

C. Discussion

From the top two plots of Fig. 3 and the left plot of Fig.
6, it follows that augmenting the NN controller with a work-
ing memory improves significantly the system’s response
to abrupt changes. Improvements are seen in both peak
reduction and settling time. And this is observed to hold for
the varied scenarios considered in these simulations. Tables I
and II provide precise values for the two performance metrics
(i) peak deviation (ii) settling time for 10% error. These
metrics clearly show that the improvements obtained, by the
inclusion of a working memory, are significant.

TABLE 1
FLIGHT CONTROL, PEAK DEVIATION, max |& — Yewp|

Example 1 2
NN cont. (I) 0.54° 0.89°
NN cont. (II) 0.51° (N =5) | 0.7° (N =6)
MANN Cont. 0.38° 0.47°
Reduction (from (II)) 25.5% 32.6%
TABLE I

FLIGHT CONTROL, SETTLING TIME (10 % ERROR)

Example 1 2

NN cont. 6.61 s 6.55 s

NN cont. 591 s (N =05) | 543 s (N =6)
MANN Cont. 3.45 s 4.1s

We also compare the MANN controller with a NN con-
troller that has atleast the same number of parameters as the
MANN controller. For the flight control problem, this NN
controller has N = 5 and N = 6 number of hidden layer
neurons in examples 1 and 2 respectively. In the example for
strict feedback system, this NN controller has N = 4 number
of hidden layer neurons. The simulations reveal that this NN
controller, inspite of having the same number of parameters
as the MANN controller, is still weaker in its response to
abrupt changes. This is illustrated in the bottom right plot of
Fig. 3 and the right plot of Fig. 6 and clearly suggested by
the performance measures in Tables I and II.

The bottom left plot of Fig. 3 provides comparison of the
response of the MANN controller without the first update
term. It is clear that the response without this term is only
as good as the NN controller without the memory justifying
a previous statement that we made. The effect of induced
learning is illustrated in Fig. 4. From the plots in Fig. 4 it
is evident that the external working memory induces the NN
network to converge to a good approximation in quick time.

In Fig. 5 we show the first two components of the hidden
layer output of the NN controller and the MANN controller
and M, (the output of Memory Read (5)). In these plots,
the Memory Read output M, is scaled by 1/¢,, to account
for the same factor in the first update term (4). The example
considered in the plots is similar to that of the example in
section IV-A. From Fig. 5 it is evident that the hidden layer
output of the MANN controller converges nearer to the value
before the abrupt change. By contrast, it converges to a very
different value for the NN controller without memory. This
suggests that the memory is inducing the NN to converge to
a network with very similar hidden layer weights, which is
similar to the outcome of the example discussed in section
IV-A. Consequently, this result also serves as evidence for
the induced learning mechanism.

The plots also reveal that the contents are updated after
every learning phase that follows an abrupt change. This
retains the effect of induced learning as observed in the
controller’s performance after subsequent changes. Finally
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we address the aspect of having more than one memory
state. In Fig. 7 we provide the response for the backstepping
controller with more than one memory state. It clearly reveals
that by having more than one memory state the learning
performance can be improved.

VI. CONCLUSION

We proposed a novel control architecture for adaptive
control of continuous time systems that is inspired from
neuroscience. The proposed architecture augments an exter-
nal working memory to the neural network that compensates
the unknown nonlinear function in the system dynamics. We
provided a specific memory interface for this architecture
and discussed how this design improves the speed of learn-
ing by a mechanism called induced learning. Finally, we
provided simulation results for two class of controllers (i)
a NN MRAC controller for linear systems with matched
uncertainty and (ii) backstepping NN controller for strict
feedback systems. The simulations and the performance
metrics clearly established that the controllers with memory
augmentation provide significant improvements in learning
and performance over their counterparts without memory.
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