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Abstract—This paper proposes online algorithms for dynamic
matching markets in power distribution systems. These algo-
rithms address the problem of matching flexible loads with
renewable generation, with the objective of maximizing social
welfare of the exchange in the system. More specifically, two
online matching algorithms are proposed for two generation-
load scenarios: (i) when the mean of renewable generation is
greater than the mean of the flexible load, and (ii) when the
condition (i) is reversed. With the intuition that the performance
of such algorithms degrades with increasing randomness of the
supply and demand, two properties are proposed for assessing
the performance of the algorithms. First property is convergence
to optimality (CO) as the underlying randomness of renewable
generation and customer loads goes to zero. The second property
is deviation from optimality, which is measured as a function of
the standard deviation of the underlying randomness of renew-
able generation and customer loads. The algorithm proposed for
the first scenario is shown to satisfy CO and a deviation from
optimality that varies linearly with the variation in the standard
deviation. We then show that the algorithm proposed for the
second scenario satisfies CO and a deviation from optimality
that varies linearly with the variation in standard deviation plus
an offset under certain condition.

Index Terms—Online algorithms, dynamic matching markets,
flexible loads, power distribution systems

I. INTRODUCTION

Electric power grids are undergoing a major transformation
driven, to a significant extent, by the goal of decarbonization
of energy systems, through large scale integration of renewable
electricity sources (RES). RES are often some combination of
utility scale centralized and distributed wind and solar gener-
ators. Integration of RES in the operation and control of the
grid is a significant challenge because photovoltaic (PV) solar
and wind are highly uncertain, inherently variable, and largely
uncontrollable. The information and decision complexity of
managing very large numbers of the distributed resources is
motivating research on decentralized control solutions [1].

Market platforms in distribution systems facilitate decen-
tralized management and control and can provide effective
solutions for managing distributed RES. Essentially, such
platforms can leverage the flexibility of loads to manage the
variability of RES locally. This can allow the grid to be
more locally self-sufficient and reduce the dependence on

This work is supported in part by the National Science Foundation
under Grant ECCS-1839429. D. Muthirayan and P. P. Khargonekar are
with the Department of Electrical Engineering and Computer Sciences,
University of California Irvine, Irvine, CA (emails: deepan.m@uci.edu,
pramod.khargonekar@uci.edu). M. Parvania is with the Department of Elec-
trical and Computer Engineering, The University of Utah, Salt Lake City, UT
84112 (email: masood.parvania@utah.edu).

large centralized fossil fuel based generators. Management of
such platforms poses interesting problems as customer loads
and renewable generation are inherently random. Specifically,
scheduling and matching of random supply and random de-
mand is a critical and challenging problem [2].

A. Related Work

There is a large body of work related to operation of dis-
tributed energy resources and flexible loads [3]-[11]. Authors
in [3]-[7] propose and study different algorithms for flexible
loads and RES scheduling with the objective of minimizing
the operation cost. The work in [8] provides asymptotic perfor-
mance guarantees for an approach based on online stochastic
optimization, while [9] provides a theoretical analysis for a
real-time algorithm for the objective of minimizing operational
costs. The work in [10] develops a model for balancing flexible
loads and local generation, and discuss its game theoretic
properties but do not provide theoretical guarantees on its
performance. Authors in [11] propose a model predictive
control scheme for minimizing customer dissatisfaction plus
generation cost, but only provide experimental evaluation of
their algorithm. In contrast to the above works, we develop
online matching algorithms for matching flexible loads and
local RES with the objective of maximizing social welfare.
The key feature of our proposed model is the concept of
criticality of flexible customers to capture their propensity to
pay. In addition, our paper provides theoretical guarantees for
the performance of the matching algorithms over a finite time
horizon.

Online matching has been extensively studied both in ad-
versarial and stochastic settings in a variety of application do-
mains [12]-[15] These papers provide algorithms that achieve
a performance that is lower bounded. Algorithms with robust
lower bounds in the online market clearing setting for a general
commodity market without service constraints are provided
in [16]. In contrast to these works, our analysis captures the
variation of the performance with respect to different scenarios
of load and renewable generation, and allows us to better
assess the performance of the algorithm across the scenarios.

B. Contribution and Paper Structure

The principal objective of this paper is to design online
algorithms for dynamic matching of electricity energy in real-
time operation of power distribution systems. The objective
of the algorithms is to maximize social welfare (defined



more precisely later). Specifically, we provide a pair of on-
line algorithms that are suitable for two distinct generation-
consumption scenarios: (i) the mean of renewable generation
is greater than the mean of the flexible loads, and (ii) when
the inequality in (i) is reversed. The setting we study considers
a novel flexible load model, which takes into account the
deadline constraints and criticality of flexible loads in calcu-
lating the utility function of customers in the matching market.
The criticality parameter of the proposed flexible load model
specifies the rate at which a customer’s willingness to pay
for electricity decreases over time. The proposed flexible load
model is generic and suitable for modeling a range of flexible
loads, such as electric vehicles (EVs), and flexible household
appliances (e.g., dishwasher, washer, dryer).

A key question in designing online matching algorithms is:
how should we assess the effectiveness of such algorithms
across scenarios in managing random demand and random
supply? In order to address this question, we propose a metric,
termed competitive ratio (CR), to measure the relative perfor-
mance of the proposed online algorithms. CR of an algorithm
is the ratio of the expected social welfare of the algorithm and
the expected social welfare of the oracle optimal algorithm. By
definition, CR is less than or equal to 1. Intuitively, we expect
that deviation of CR from 1 will be affected by the amount of
randomness in renewable generation and load variability. With
this intuition, we define the following concepts for assessing
the proposed algorithms: (i) convergence to optimality, i.e.,
convergence of CR to one as the randomness decreases to
zero, and (ii) deviation from optimality, where the deviation
is measured as a function of the randomness of generation
and loads (defined more precisely later). Our online algorithm
for the first scenario is shown to satisfy convergence to
optimality and we also provide a lower bound for deviation
from optimality. We show that this algorithm does not satisfy
convergence to optimality for the second scenario. We then
propose a modified algorithm for this case and provide results
for its convergence and deviation properties.

The rest of this paper is organized as follows: the proposed
flexible load model and supply model are presented in Section
II. The Proposed online algorithms and metrics for assessing
the performance of the algorithms are presented in Section III.
A case study is presented in Section IV, and conclusions are
drawn in Section V.

II. GENERATION AND FLEXIBLE LOAD MODELS
A. Supply Model

We consider two sources of supply for the dynamic match-
ing market platform: 1) upstream grid supply (GS), and 2)
distributed renewable energy sources (D-RES) in the distribu-
tion network. We assume that upstream grid supply, denoted
by p:, is sufficiently large and that it is priced at ¢ $/unit of
energy. The D-RES, such as PV solar, are by nature variable
and uncertain, and their availability depends on weather, e.g.,
solar irradiance. Let us denote the D-RES generated at time ¢
by S, which is governed by a discrete-time stochastic process.
We assume that the process S; is independent and identically
distributed (i.i.d) and that it is known to the market platform.

Denote the expectation with respect to all sources of random-
ness by E[.]. We denote the mean and standard deviation of
D-RES St by Hst = E[St], Os,t = E[(St — /J's,t)Q], where St
is upper bounded by a constant S.

B. Flexible Load Model

Let us denote the number of loads which arrive at the plat-
form at time ¢ by an independently and identically distributed
stochastic process n;, which is upper bounded by a constant
7. The mean and standard deviation of n; are respectively
denoted by (i, = E[ny], 0s = E[(ns — pin¢)?. Denote the
set of loads that arrive at the platform by /. Each load k € K
is characterized by three parameters {a*, d* b}, where a* is
the arrival time of the load, and d¥ is the specified deadline
time to serve the load. The parameter b* is the criticality of
load k, which represents the rate at which a load’s willingness
to pay decreases over time. The heterogeneity of the loads lies
in the differing deadlines and criticality. When load & arrives in
the platform it reports its service deadline d* and the value b*.
We note that loads of different types can arrive at the same
time. This paper assumes that the loads report truthfully on
arrival. The utility per unit of energy, shown by 7F, represents
the load’s willingness to pay for energy, and is defined as:

mh=c—bFt—d¥), wF>0, ¥ " <t<d® (1)

In (1), the load’s willingness to pay is less than or equal to
the grid supply price c. This is reasonable considering that the
grid supply is available at this price at all times. We assume
without loss of generality that each load represents a unit of
energy demand. This is because a load that exceeds a unit of
energy can be treated as multiple loads of the same type. From
now on we drop the subscript ¢ in the moments of the random
variables S; and ny, since they are i.i.d. Also, we denote the
combined standard deviation of the number of renewable based
generation and load arrivals by o = /(05)2 + (0,)2.

III. ONLINE MATCHING ALGORITHM

This section proposes a pair of online algorithms to imple-
ment dynamic matching markets for two different generation-
load scenarios in distribution systems. The objective of the
proposed online algorithms is to maximize the social welfare
of matching in the distribution system, subject to serving the
loads in the market. The matching market for the distribution
system operates for a duration of 7" with time steps spaced
equally at an interval At. The loads arrive in a sequential
fashion governed by the stochastic process described in Sec-
tion II-B. The generation from D-RES at any instant ¢ is given
by the model described in Section II-A. At an instant ¢, the
market maker can decide to match the energy demands of the
loads that are currently active for the increment of time At
to D-RES or the grid supply or wait till later to match it.
The market maker can make this decision only based on the
information of the stochastic process that governs the future
load arrivals and D-RES generation.

Denote the energy matched to load k at time ¢ by qF, where
q¥ € {0,1}, and the unit cost incurred by the platform for
providing ¢¥ by cF. The variable ¢/ is the decision variable of



the matching algorithm. We denote the energy utilized from
the renewable supply at time ¢ by s;, where s; < S;. Given
these definitions, the social welfare for servicing the loads is
defined as the sum of the utility of the loads minus the cost
incurred by the market to serve the loads. The social welfare,
W, is formulated as: W := Y, . (7F — cf)qf. Thus, the
objective of the online algorithm is formally stated as follows:

max E[W] s.t. Z @ =p+s VL (2)

k

We use M, to denote an online algorithm for solving
problem (2). For a given realization (scenario) of load arrivals
and D-RES generation for the full horizon, problem (2) is
solvable in polynomial time. The so-called oracle optimal
algorithm, denoted by M,, is the optimal solution of the
optimization problem for the complete information of load
arrivals at each time step, their deadline and criticality and D-
RES generation at each time step for the full horizon. Hence
the oracle optimal algorithm achieves the maximum possible
social welfare. We use the oracle algorithm as the benchmark
for measuring M, ’s relative performance, using the metric
competitive ratio (CR) defined as follows. Denote the social
welfare achieved by the platform’s matching algorithm M,
over the horizon T' by W[M,] and similarly denote the social
welfare achieved by the oracle algorithm by W[M,]. The CR
for matching algorithm M, is given by:

E[WI[M,]]
E[W[M,]]

We propose the following indicators based on the CR for
measuring the effectiveness of an algorithm: (i) convergence to
optimality (CO) as randomness reduces to zero, (ii) deviation
from optimality (DO) measured as a function of combined
standard deviation o, which are formally defined below.

Definition 1: Matching algorithm is said to achieve Con-
vergence to Optimality, if the expected welfare E[W[M,]]
converges to E[W[M,]] (i.e., CR converges to 1) as o — 0

Definition 2: Deviation from Optimality is the function D(co)
such that:.% >1 - D(o). . N

In particular we are interested in determining an upper
bound to D of the form o”. If D < O(o") then we say r
is the convergence rate. The notation O(.) denotes that the
term that accompanies the argument as a factor is a constant
and does not scale with the problem’s time horizon 7. We
say that the rate of deviation is linear if 7 = 1. We note that
convergence is only a necessary property for being effective in
managing the uncertainty in generation and loads. Deviation
from optimality is a more well rounded measure as it describes
the variation in the competitive ratio as the randomness varies.

(Competitive Ratio (CR)) 3)

A. Online Algorithm for the Case i, < s

We call the online algorithm we present for this case
by M;. This algorithm, presented in detail in Algorithm 1,
approximately matches the load with the highest criticality
among the currently active loads to the available renewable
supply. Any remaining load with an immediate deadline is
matched to the grid supply.

1 Matching Algorithm M

1) At t, order the currently active loads (m of them) such
that b1 > b2 > b3... > b™, where if b*~1 = b* then
dF1 < dF.

2) Match the S; units of D-RES to the first S; units of load
in the above list. Call this matched set Z.

3) Match loads in the set Z, = {i| i ¢ Z,, 3j € L, s.t. 7} >
71} to GS.

4) Match any remaining load with d* =t to GS.

5) t=t+1. GOTO 1.

Next we present Theorem 1 that describes the properties of
algorithm M.

Theorem 1: When p, < ps, the online algorithm M,
satisfies CO and

E[W[M,]]
E[WI[M,]]

>1-0 (Vo +a2). “)

Proof of Theorem 1 is provided in Appendix A. Algorithm
M is a “greedy” algorithm as it tries to maximize the welfare
it can gain at the current time by matching the most critical
loads to the renewable supply generated at the current time. We
note that the algorithm does not match any of the remaining
loads, unless they have an immediate deadline, and they
remain active. The online algorithm will achieve the optimal
welfare if renewable supply is available to supply the waiting
load, which may not be the case if adequate renewable supply
is not available. Therefore, the social welfare attained by the
algorithm can deviate from the optimal welfare that the oracle
optimal achieves in certain instances. What we have shown
is that the deviation from the oracle optimal is at least O(o).
Hence, the rate at which the deviation varies, i.e., 7 = 1. This
suggests that » = 1 is achievable when p,, < jis.

B. Online Algorithm for the Case, [, > lis

We start with a brief argument for why algorithm M fails
to satisfy CO for this case. Algorithm M; waits to serve a
load until the renewable generation is available to supply the
load. When g, > ps, the total amount of renewable energy
generated over a large duration of time would fall short of
the number of active loads during this period. Thus, in this
case, algorithm M; would fail, with a high probability, to
find renewable supply for certain loads. It is straightforward to
show that this probability approaches to one as the randomness
goes to zero. Consequently, algorithm M, can incur a net
loss relative to the optimal welfare with probability one as the
randomness goes to zero. In fact when p,, > ps, algorithm M,
fails to satisfy CO and when customers which arrive later have
higher criticality CR > 1 — O(py, — ps) — O (x/aﬁ + UZ) .

Here we modify algorithm M7, and develop Algorithm M,
for the case when p,, > us. Algorithm Ms is the following:
do the same steps as in M. In addition, match up to i, — jis
of the remaining loads that just arrived to the grid supply
(see Algorithm 2). This additional commitment on arrival
ensures that the algorithm trivially satisfies CO. We present
the properties of this algorithm as Theorem 2 below.



2 Matching Algorithm M5

1) At t, order the currently active loads (m of them) such
that b1 > b2 > b3... > b™, where if b*~1 = b* then
dF=1 < d*.

2) Match the S; of D-RES to the first S; units of load in
the above list. Call this matched set Z;.

3) Match loads in the set Z, = {i| i ¢ Z,, 3j € Z, s.t. 7} >
7} } to GS.

4) Match up to p, — ps of the remaining loads in the
ordered list and of those that just arrived to the GS.

5) Match any remaining load with d* =t to GS.

6) t=t+1. GOTO 1.

Theorem 2: When p, > us, the online algorithm (Ms)
satisfies CO and when customers which arrive later have
higher criticality

E[W[M,]] _ L) — 2 2)
spiary) 2O =) =0 (Voz+a7).

Proof of Theorem 2 is provided in Appendix B. The main
feature of algorithm M5 is that it matches an additional set
of loads that just arrived to the grid supply. The additional
commitment on arrival ensures that the platform services
certain loads earlier for which it could have failed to find
renewable supply to service at a later time. This ensures
that the algorithm satisfies convergence to optimality. From
Theorem 2 it follows that, under certain condition, the upper
bound to the deviation from optimal welfare varies linearly
with o but with an offset that is O(p, — us). We note that
the rate of deviation is for all practical purposes linear under
these conditions when p,, — ps is very small.

IV. CASE STUDY

Renewable generation profiles used in the simulation are
derived from PV solar generation from 9:00 AM to 5:00
PM on the 10th and 19th of May — each of these days are
representative of different variation profiles observed during
the month of the May — in the state of California and then
scaled down to a hypothetical generation capacity of 0.8 MWh
to arrive at the profile for the distribution system. The grid
supply price is set to be the average retail price for residential
customer in the U.S., which is $0.13/kWh. The maximum
limit of the number of loads that can arrive at a particular
time is determined by the scenario. The number of loads at
any instant ¢ is randomly drawn from the set of integers given
by 1 to the upper limit for the respective scenarios. The size
of each load is set to be 0.1 MWh and deadline and criticality
of loads are arbitrarily assigned.

We consider the following standard baseline algorithms for
comparison: (i) earliest deadline first (EDF), and (ii) matching
renewable energy to loads with the maximum willingness to
pay and any remaining load with immediate deadline to GS
(MH). The simulations are run for a horizon of 7" = 10
for the following scenarios: (i) when the mean of D-RES is
greater than the mean of the load arrivals and (ii) the scenario
when this relation is reversed. For each of these scenarios

we also consider two sub-scenarios: (i) where the variations
are moderate and (ii) where the variations are large. Each
scenario is repeated for 3000 trials and the expected welfare
is estimated by averaging across the trails. Table I provides
the values of the estimated expected welfare in the scenarios
for the two benchmark algorithms EDF and MH, the oracle
algorithm M, and the proposed algorithm M, (without step
(3)). The results in Table I demonstrates that the proposed
algorithm outperforms the benchmark algorithms in being the
closest to the oracle algorithm in all the scenarios.

TABLE I
EXPECTED WELFARE OF ALGORITHMS
Scenario EW[MH]] [ EW[EDF]] | EW[M,]] | EIW[M,]]
pn < ps, small o 882.2% 886% 893.5% 892.9%
in < Jis, large o 853.6% 860.5% 875.8% 872.8%
Un > Ws, small o 965.6% 941.4% 1000.6% 993.4%
fn > s, large o 9608 944.8% 1005.3% 985.4%

V. CONCLUSION

In this paper, we designed online algorithms for dynamic
matching markets in power distribution systems whose objec-
tive is to maximize social welfare. We proposed two indicators
for characterizing the effectiveness of an online algorithm
across scenarios (i) convergence to optimality (CO) as the
randomness goes to zero and (ii) deviation from optimality
(DO) measured as a function of the standard deviation, o, of
the distribution of renewable supply plus the number of loads
that arrive on the platform. Under this notion of performance
we presented a pair of algorithms that are effective for two
distinct sets of generation-load scenarios. The contributions of
this paper lies primarily in proving new theoretical results on
the design and performance of online algorithms for dynamic
matching markets in power distribution systems.
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APPENDIX A: PROOF OF THEOREM 1

Let W, be the welfare obtained from matching loads to
D-RES and W, be the welfare obtained from matching loads
to GS. The proof entails the following steps.

Step (i): We show that W [M,] = W,s + Wys > W[M,] +
W s, where W is the amount that the grid pays to the
platform. Firstly, the welfare W,.; cannot be increased by any
sequence of feasible shifts of the matching of the renewable
units, where the initial step in the sequence is an unmatching
of a renewable unit, a shift to a load matched to GS is not
allowed, and the final step could be matching of an unmatched
renewable unit. Call this remark (O-1). This is because the
loads that are more critical are matched to the renewable units
before the loads that are less critical are matched to renewable
units, which as a result of step (3) necessarily have a lesser
willingness to pay (when compared to the willingness to pay
at the time of matching of the more critical load) and so any
such sequence of shifts will at the best result in the same value
for W,.

Suppose a load is matched to GS at its deadline or before
then the marginal welfare generated from this load is given by
(mq,, —c), where d,, is the time when the load is matched to
GS. Consider all such loads that has been matched to the GS.
Denote the set of such loads to be ©,4,. Then

WM, =W+ Y (7 )= WM, - > ¢
0€0 €Oy
= W[M,] + W gs. &)

The last inequality follows from the fact that W,, >
W[M,] = pce,. 4, Which follows from (O-1) and the fact
that any increase in W,; by shifting the matching of the loads
from grid supply to renewable supply is less than szm,
where the summation is over all the loads in ©4,. The last
observation follows from (i) that the loads that get matched
to the grid supply at their deadline (step (4) of Algorithm 1)
are the less critical loads with properties similar to those in
remark (O-1) and so the increase in W, from shifting the
matching of a renewable unit from a higher critical to such a
load minus the decrease in welfare from shifting the matching
of the higher critical loads will be lesser than 7, at the deadline
of the less critical load to which a renewable unit is shifted
to; because the last higher critical load to be shifted in the
sequence of shifts can only be shifted to a renewable unit

after the deadline of the less critical load, and (ii) that the set
1, matched in step (3) of Algorithm 1 includes the set of all
the other less critical loads not included in point (i) and that
could have been matched by the oracle optimal instead of the
loads in the set 7, and so shifting a renewable unit to such a
load will only add as much as 74, to W,;.

Step (ii): We show that E[W 5] > —O(T\/02 + 02). We
denote probability by P[.] and the indicator function by I[.].
Let dd,,, be the minimum time interval after which a load that
arrives at the platform can get matched to the grid supply. It
follows from Algorithm 1 that a load which is active at time
t is matched to grid supply at time ¢ + dd,,, only if

t+0dp, t+6dm

S Si< Y mton, (©)
I=t I=t

where n; is the number of loads that arrive at time [, dn are
the number of loads that arrived before ¢ and are active at t,
and t + dd,,, is the time the load active at ¢ is matched to the
grid supply.

Let t,, <t be the last time instant less than or equal to ¢
when the loads that arrived before t,, were not active at ¢,,.
Then it follows that 6n < °;~; n; — S; and follows that the
maximum number of loads which are active at £ and can be
matched to grid supply at time ¢ + dd,,, is upper bounded by

t
(ne—S)+on< > m—5. (7)

=t

We define the following two quantities:

Sy +t Sy +t S+t
It_]l{ doosi< > nl}7Pt—IP’{ > s

I=tqw l=tqy =ty

Sdpm +t

< Z m} s
=ty

Then from Eq. (6) and Eq. (7) it follows that the amount

that the grid pays to platform at time t' = dd,, +1 for serving
loads, Wg4(t'), is lower bounded as given by

ST RS-

l=ty =ty

This implies that

t
]E[i () >CE (ZSz—nl>H{ZSl—nl<0}It].
I=ty I=ty
Since (s — prn) > 0 in this case, we get that
¢
E[Wgs(t/)‘tw] ZCE’ l(Z(sl - ,us) - (nl - ,U/n)> X
I=ty,

t
H{Z S, —ny <O}It] .
=ty

Then using Cauchy Schwartz inequality we get that

E[W gs(t)[tw] > —cV/t —ty + 1 (\/03—1—03) X
¢
Z S —ny <0}\/E.

=ty




The probability factor P, can be rewritten as follows:
S+t S+t
:IP{ oS- Y nl<0}
I=t. 1=ty

Sd
=P it (St =y — pis + pn)
I—t., (ﬂn

< (0dy, +t—ty+1) 5.
_Ms) ( )}

Then using Hoeffding’s inequality we get that

(Ms B Nn)2(6dm + 1) _
\/ESeXp{— 7+ 9)? }—e- 3

Using the fact that v/#exp~%* < O(1) and applying Hoeffd-
ing’s inequality to PP {Zfztw S; —n; <0 we get that

-0 <\/JEL+U§> VP.. )

Then using Eq. (8) we get that

E[W,s(t')] = =0 (Voi + 02 e.

B[Wgs(t)[tw] >

Hence

T
= ZE[WgS(t)] >-TO (x/aﬁ + 02) e. (10)
t=1
This completes Step 2. From the definition of CR it follows
that

EW[M,]] _ EWrs| + E[Wys] _ E[W[M,]] + E[W g]
E[W[M,]] EWIM,]]  — E[W[M,]]
TO (w/or% + 02) e
>1— . (11)
E[W[M,]]
Let us lower bound E[W[M,]]:
T
E[W[M,]] > E Zcmin{nt, St}] = ngm T, (12)

where Emin{n;, S;} = ng,,. This implies that

10(Vaitot)e  O(VaEiar)e

EW0ML]
E[WI[M,]]

The property CO follows trivially from the lower bound
derived above. B

= 1—
Nem L Nsm

APPENDIX B: PROOF OF THEOREM 2

Let W, be the welfare generated by algorithm 2 from
matching loads to the renewable supply and W, the welfare
generated from matching loads to the GS. Similar to the steps
in the proof of Theorem 1 we get that

WMy =Wea+ Y (ma—0) 2 WM - > ¢
0€0,, 6€0,,
=WI[M, ]+qu (13)

In this case Wgs can be divided in to two parts. One part
corresponds to the payment made by the grid for the load that
is matched on arrival as per step 4 of Algorithm 2 to the GS,
Wgsl. The other part corresponds to the payment made by the

grid for the other loads which are matched to GS, Wgsg. It
follows that

E[W[M,]] > E[W[Mo]] + E[W g1 (£)] + E[W gs2(t)]

Note that a load is matched on arrival to the grid supply by
step 4 of Algorithm 2, at ¢, only when S; < n, and up to
tn — ps are matched. This implies that

]E[Wgsl (t)] = —cE[(pn — ps)I{Ss < ng}].
That is
E[T7 401 (8)] > —c(in — o) P{S, < e},

The lower bound for E[W ,s]: Let fiy : g — pin,, S, =8, —
If loads other than those matched by step 4 of Algorithm 2 and
that arrive at ¢ are matched to the GS then it should be that
St < ny — (n, — ps), and only up to 7y — S, number of loads
of the loads can be matched to the GS. Thus, if any of the
other loads do get matched to the GS then it is necessary that
the cumulative sum of the renewable supply generated from its
arrival time up to the matching time is insufficient to service
the loads that arrive on the platform during this period, i.e.,
t+ dm S; < ?M ny, where dd,,, is the minimum time
interval after arrival a load can get matched to the GS by a
means other than the step 4 of Algorithm 2. The previous
condition follows from the fact that the loads that arrive later
have higher criticality and are ranked higher as per the ordering
in Algorithm 2. Hence

E[W 452(t)] > cE (S*t - ﬁt) 1{S, < 7} I,

where S, = S, — s and ny = ny — py, and ¢, =t in I;. Then
from Cauchy Schwartz inequality we get that

EW e (t)] = —c (Vo2 +02) P{Si < /P (14)

Combining the expression for the lower bound of E[W 1]
and E[W ;52] we get that

E[W[M,]] ZE[W — ps)P{S <y}

—CZ
—CZ( 02+02) Vo2 +02) /P

Then following steps similar to the steps in the proof of
Theorem 1 we get that

5)

E[W[M,]] _ _
ZUT ol 5 _ _ /2 2
EWhL] =& (b = p1s) = &2 ( Tn 08) ’
where,
P{S, <ni} _ P{S, < i}V,
= 702 = .
Nsm Nsm

CO follows from the definition of the algorithm.
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