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samples taken either on the whole line or on a discrete set with finite sampling
density. We characterize all phase retrievable signals in a real-valued shift-invariant
space using their nonseparability. For nonseparable signals generated by some
function with support length L, we show that they can be well approximated, up
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to a sign, from their noisy phaseless samples taken on a discrete set with sampling
Keywords: density 2L —1. In this paper, we also propose an algorithm with linear computational
Phaseless sampling and complexity to reconstruct nonseparable signals in a shift-invariant space from their
reconstruction phaseless samples corrupted by bounded noises.
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1. Introduction

A function/signal f on the real line is defined by its values f(¢),t € R. In this paper, we consider the
problem whether a real-valued signal f on the real line is determined, up to a sign, from its magnitude
measurements | f(t)],¢ € Q, where 2 is either the whole real line R or its discrete subset. The above problem
to determine a signal of interest from its magnitude measurements is an infinite-dimensional phase retrieval
problem and it is possible to solve only if we have additional information about the signal.
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Phase retrieval plays important roles in signal/image/speech processing [25-27,31-33,36,39,46,47].
The phase retrieval problem of finite-dimensional signals has received considerable attention in recent
years, however there still are lots of open mathematical and engineering questions unanswered, see
[9,10,17,15,57] and references therein. In the finite-dimensional setting, a fundamental problem is whether
and how a (sparse) vector z € R? (or C?) can be reconstructed from its magnitude measurements y = |Ax|,
where A is a measurement matrix. The phase retrievability has been characterized via the measurement ma-
trix A [10,13,57], and many algorithms have been proposed to reconstruct the vector x from its magnitude
measurements y [15-17,25,28,34,40-42,45,47].

The phase retrieval problem in an infinite-dimensional space is fundamentally different from a finite-
dimensional setting. There are several papers devoted to that research field [5-7,14,19,38,43,44,48,53,58].
Thakur proved in [53] that real-valued bandlimited signals could be reconstructed from their phaseless
samples taken at more than twice the Nyquist rate. Shenoy, Mulleti and Seelamantula studied the phase
retrieval of signals living in a principal shift-invariant space when the magnitude measurements of their
frequency are available [48]. In this paper, we study whether and how to determine a real-valued signal
residing in a shift-invariant space

V(g) := {Zc(kj)gb(t —k): c(k) e R}, (1.1)

kEZ

up to a sign, from its magnitude measurements, where the generator ¢ is a real-valued continuous function
with compact support. A representative generator ¢ is the B-spline By of order N > 1 [55,56], which is
obtained by convolving the indicator function x[o 1) on the unit interval N times,

By = X[0,1) * " * X][0,1) - (1~2)

N

The concept of shift-invariant spaces arose in sampling theory, wavelet theory, approximation theory and
signal processing, see [1,4,20,21,35,37,54] and references therein.

The Paley—Wiener space for bandlimited signals to live in is a shift-invariant space generated by the
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V(¢) generated by a compactly supported function ¢ are phase retrievable, which is a different phenomenon

function with infinite support. We notice that not all real-valued signals in a shift-invariant space
from bandlimited signals. In Theorem 2.1 of Section 2, we show that a real-valued signal f € V(¢) can be
determined, up to a sign, from its magnitude measurements |f(¢)|,¢ € R, if and only if f is nonseparable,
i.e., the signal f is not the sum of two nonzero signals in V(¢) with their supports being essentially disjoint.
The above notion for a signal can be considered as a weak version of complement property for ideal sampling
functionals, see Corollary 6.6 and cf. complement property for frames in Hilbert/Banach spaces [7,10,13,14].
Given an arbitrary signal f € V(¢), we also find all functions/signals g € V(¢) in Section 2 such that g and
f have the same magnitude measurements on the real line.

Our phase retrieval of signals in a shift-invariant space is a phaseless sampling and reconstruction problem.
Sampling in shift-invariant spaces is well studied as it is a realistic model for signals with smooth spectrum,
and suitable models for taking into account the real acquisition and reconstruction devices and the numerical
implementation, see [1,2,4,23,49,50,54] and the extensive list of references therein. In Theorem 3.1 and
Corollaries 3.3 and 3.4 of Section 3, we show that a nonseparable wavelet signal in V(¢) generated by
some function ¢ with support length L is determined, up to a sign, from its phaseless samples taken on a
shift-invariant set X + Z, where X C (0, 1) is a set containing 2L — 1 distinct points.

Stability of phase retrieval is of paramount importance. The reader may refer to [11-13,24] for phase
retrieval in the finite-dimensional setting and [51] for nonlinear frames. In this paper, we consider the
scenario that phaseless samples
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2() = (P +e(r), v € X +Z, (1.3)

of a signal f € V(¢) taken on a shift-invariant set X + Z are corrupted, where X C (0, 1) is a finite set, and
€ = (€(7))yex+z are additive noises with bounded level

[€lloc = sup{le(7)]: v € X +Z}.

In Theorem 4.1 of Section 4, we establish the stability of phase retrieval in the above scenario when the
original signal f is nonseparable. As an application of Theorem 4.1, any nonseparable signal in V' (¢) gener-
ated by some function ¢ with support length L can be reconstructed, up to a sign, approximately from its
noisy phaseless samples on a shift-invariant set X + Z with sampling density 2L — 1.

Many algorithms have been proposed to solve the phase retrieval problem in the finite-dimensional setting
[15-17,25,28,34,40-42,47]. A conventional approach to the scenario (1.3) is to solve the following min-max
problem:

fe := argming v 45 max_|[g(y)] = v/ze(v)

YEX+Z

: (1.4)

which is infinite-dimensional and infeasible. In Section 4, we propose an MAPS algorithm to find an ap-
proximation f. € V(¢) to a nonseparable signal f € V(¢), up to a sign, when the noisy phaseless samples
(2e(7))vex+z in (1.3) are available. The MAPS algorithm consists of three parts: minimizing, adjusting
phases and sewing. It can be locally implemented, and has linear computational complexity O(Ks — K1) to
fﬁ i, ¢(k)p(- — k) € V() with finite duration approximately from
its noisy phaseless sampling data. In Section 5, we present some simulations to demonstrate the stability of

reconstruct a nonseparable signal f = >"

the proposed MAPS algorithm. Our numerical simulations indicate that the proposed MAPS algorithm is
robust against bounded additive noises €, and the error between the reconstructed signal f. and the original

nonseparable signal f is O(\/||€]loo)-

Proofs of our conclusions are included in Section 6.
2. Phase retrievability and nonseparability

For a real-valued compactly supported generator ¢ of the shift-invariant space V(¢), let

L= i Lo —Lq: ishes i L+, L
LlIglgneZ{ 9 1 : ¢ vanishes outside [Lq, 2]}

be its support length. For the representative spline generator By, its support length is the same as the
order N > 1. Without loss of generality, we assume that

o(t) =0 forall t ¢ [0, L], (2.1)

otherwise replacing ¢ by ¢(- — Lg) for some Ly € Z. Clearly, not all signals in V(¢) are determined, up to a
sign, from their magnitude measurements on R. For instance, signals ¢(t) £¢(t— L) have the same magnitude
measurements |¢(t)| + |¢(t — L)| on the real line, but they are not the same even up to a sign. Then it is
natural to ask whether a signal f in V(¢) is determined, up to a sign, from its magnitude measurements,
or equivalently,

My ={£f},

where the set
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My :={geV(p): |g(z)]=|f(z)| for all z € R} (2.2)
contains all signals ¢g in V(¢) that have the same magnitude measurements as the signal f has.

Theorem 2.1. Let ¢ be a real-valued continuous function with compact support and V(@) be the shift-invariant
space in (1.1) generated by ¢. Then a signal f € V() is determined, up to a sign, by its magnitude
measurements, i.e., My = {£f}, if and only if there do not exist nonzero signals f1 and fo in V(¢) such
that

f=hh+f2 and fifa=0. (2.3)

We call a signal f € V(¢) to be nonseparable if there do not exist nonzero signals fi, fo € V(¢) such that
(2.3) holds, see Definition 6.1 for the definition of nonseparable signals in a linear space. Then a separable
signal f € V() can be written as the sum of two nonzero signals f1, fo € V(¢) satisfying fifo = 0. The
proof of Theorem 2.1 and connection between nonseparability of signals and complement property for ideal
sampling functionals will be discussed in Subsection 6.1.

Remark 2.2. Let S(¢) be the set of all nonseparable signals in a real-valued shift-invariant space V(¢). The
set S(¢) is a cone of V(¢) containing the zero signal, however it is neither a convex subset of V(¢) nor its
closed subset. This phenomenon for phase retrievability is different from the bandlimited case, for which all
bandlimited functions can be reconstructed, up to a sign, from their magnitude measurements on R [48,53].

Given a signal f € V(¢), the next question to be addressed in this section is to find all signals g € V (¢)
such that g and f have the same magnitude measurements on the whole real line, cf. [6]. Let us start from
the simplest case that L =1 (i.e., the generator ¢ is supported on [0, 1]). In this case, one can verify that a
signal f € V(¢) is nonseparable if and only if there exists an integer ko such that

f@) = c(ko)d(t — ko) for some c(ko) € R. (2.4)

Therefore any signal in V' (¢) is a linear combination of nonseparable signals with mutually disjoint supports.
For the case that the generator ¢ has its support length

L>2, (2.5)

as shown in Lemma 6.9, such a linear combination exists for any signal f € V(¢), i.e., there exist nonsepa-
rable signals f; € V(¢),i € I, such that

=3 (2.6)
iel

and their support intervals [a;, a}] are essentially mutually disjoint in the sense that

[ai, a;) N [aj,a;) = O for all distinct 4,5 € I. (2.7)
Clearly signals g = >, & fs with & € {—1,1},i € I, have the same magnitude measurements as the signal
f has. In the following theorem, we show that the converse is true under some proper assumptions on the
generator ¢.

Theorem 2.3. Let ¢ be a real-valued continuous function satisfying (2.1) and (2.5), and X := {zym,1 <m <
2L — 1} € (0,1) be so chosen that all L x L submatrices of
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¢ = (¢<xm + n))1§m52L71,0§n§L71 (2.8)

are nonsingular. Take f € V(¢) and let My be as in (2.2). Then g € My if and only if there exist & €
{=1,1},i €I, such that g =, ; & fi, where fi,i € I, are nonseparable signals in (2.6) and (2.7).

The proof of Theorem 2.3 depends on Theorem 3.2 and it will be given in Subsection 6.3.
3. Phaseless sampling and reconstruction
A set A C R is said to have sampling density D(A) if

D)= lim AN

b—a—+oo b —a ’

(3.1)

where #F is the cardinality of a set E. In this section, we consider the problem whether a signal f in the
shift-invariant space V(¢) can be recovered, up to a sign, from its phaseless samples taken on a discrete set
with finite sampling density. By Theorem 2.1, a necessary condition is that the signal f is nonseparable.

For the case that the generator ¢ has support length L = 1, it follows from (2.4) that any nonseparable
signal in V(¢) is determined, up to a sign, from its phaseless samples on tg + Z C R with sampling density
one, where ¢ty € (0,1) is so chosen that ¢(tp) # 0. In the next theorem, we show that any nonseparable
signal in a shift-invariant space generated by a compactly supported function with support length L > 2
can be reconstructed from its phaseless samples taken on a discrete set with finite sampling density.

Theorem 3.1. Let ¢ and X be as in Theorem 2.5. Then any nonseparable signal f € V(¢) is determined,
up to a sign, from its phaseless samples |f(t)|,t € X + Z, taken on the shift-invariant set X + 7Z.

The proof of the above theorem on phaseless sampling and reconstruction, with detailed arguments given
in Subsection 6.2, depends on the following characterization of nonseparable signals.

Theorem 3.2. Let ¢ be a real-valued continuous function satisfying (2.1), (2.5) and (2.8), and f(t) =
> kezc(k)o(t — k) be a nonzero signal in V(¢). Then f is nonseparable if and only if

L-2
> ek + DI #0 (3.2)

=0

foral K_(f)—L+1<k<Ky(f)+1, where K_(f) =inf{k : c(k) # 0} and K4 (f) = sup{k : c(k) # 0}.

The nonsingularity of all L x L submatrices of the matrix ® in (2.8) is also known as its full sparkness
([8,22]). The full sparkness requirement (2.8) on the matrix ® implies that ¢ has linearly independent shifts,
i.e., the linear map from sequences to signals in V(¢),

(ck)pe ¥ > clk)o(t — k),

k=—o00

is one-to-one ([35,49]). Conversely, if ¢ has linearly independent shifts and it is a continuous solution of the
refinement equation ([20,37])

N

¢(t) = > a(n)é(2t —n) and / o(t)dt =1, (3.3)
R

n=0
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where EnN:o a(n) = 2, then ® in (2.8) is of full spark for almost all (1, ,zan—_1) € (0,1)2V =1 see [49,
Theorem A.2]. This together with Theorem 3.1 leads to the following result for wavelet signals, cf. [53,
Theorem 1] and Corollary 6.3 for bandlimited signals.

Corollary 3.3. Let ¢ be a continuous solution of the refinement equation (3.3) with linearly independent
shifts. Then there exists a set X C (0,1) containing 2N — 1 distinct points such that any nonseparable signal
in V(¢) is determined, up to a sign, from its phaseless samples taken on X + Z.

For the refinement equation (3.3), under the assumption that

S am)" = (1+2)Q() (3.4)

n=0

for some polynomial @) having positive coefficients and its zeros with strictly negative real part, the corre-
sponding matrix ® in (2.8) is of full spark whenever z,, € (0,1),1 <m < 2N — 1, are distinct ([29,30]). It is
well known that the B-spline By of order N > 2 satisfies the refinement equation (3.3) with Q(z) in (3.4)
given by 27N*+1(1 4 2)N~1, This together with Theorem 3.1 yields the following result for spline signals, cf.
[52].

Corollary 3.4. Let N > 2 and X contain 2N —1 distinct points in (0,1). Then any nonseparable spline signal
in V(Bn) is determined, up to a sign, from its phaseless samples taken on the shift-invariant set X + Z.

Remark 3.5. Let ¢ be as in Theorem 3.2. For a signal f =", _, c(k)o(- — k) € V(¢), define

L—-2
inf 3 Jek + D). (3.5)

S =
K_(f)—L+1<k<K(f)+1 =0

By Theorem 3.2, we obtain that Sy = 0 if f is separable, and that Sy > 0 if f is a nonseparable signal with
compact support. The quantity Sy can be used to measure the distance from a signal f to the set of all
separable signals in V(¢), cf. Theorem 4.1.

4. Stable reconstruction from phaseless samples
In this section, we consider the scenario that the available data

2() = f(P +e(v), ye X + 7, (4.1)

are phaseless samples of a signal

F= clk)p(-— k) € V(¢) (4.2)

keZ
taken on a shift-invariant set X + Z corrupted by additive noises € = (€(7y))yex+z with bounded level
l€lloe = sup {le(v)]: v € X +Z}.

Based on the constructive proof of Theorem 3.1 in Subsection 6.2, we propose an MAPS algorithm to find
an approximation
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Algorithm 1 MAPS Algorithm.

Inputs: The finite set X; support length of the generator L; noisy phaseless sampling data (ze(zm +l))
Instructions:
1) Minimizing locally: For any k' € Z, let

zmeX,leZ’l <m<2L-1.

Ce,k = (ce,w(k))kez (4.4)
have zero components except that cc i (k), k' — L+ 1 < k < k’, are solutions of the minimization problem
2L—1 K’ 2
min S k)@ — k)’ — 2 @ma)| (4.5)
m=1 | k=k'—L+1

where z,, € X and Ty, = T, + k', 1 <m < 2L — 1.
2) Adjusting Phase: For k' € Z, multiplying cc k' by de,xr € {—1,1} so that

(Be k' Ce ks Oe kr1Ce,kr41) > O for all k' € Z. (4.6)
3) Sewing:
1 FHE-1
co(k) = = Seweew k), k€T, 4.7
(k) 7 kgk ke Ce ke (K) (4.7)

to obtain an approximation of amplitude vector (C(k))kez'

Outputs: Amplitude vector (c. (k)),€€Z7 and the reconstructed signal f. = >3, ce(k)p(- — k).

fe=Y_cdk)d(- — k) € V(9) (4.3)

kEZ

to the signal f in (4.2) when the noisy phaseless samples in (4.1) are available.

The proposed MAPS algorithm consists of the following three parts: (i) solving the minimization problem
(4.5) to obtain local approximations ¢, , k' € Z, of di-c on k' + [—L + 1,0], up to a phase o € {—1,1};
(ii) adjusting phases to obtain local approximations d¢ p/ce s to either ¢ or —c on k' + [-L + 1,0]; and
(iil) sewing de p/ce k', k' € Z, together to get an approximation c. to either ¢ or —c.

From implementation of the MAPS algorithm, we can reconstruct signals in V(¢) almost in real time from
their phaseless samples, cf. [18,49] and references therein on local and distributed reconstruction. Moreover,
the MAPS algorithm has linear computational complexity O(Ky — K1) to reconstruct nonseparable signals
f= ZkKiKl c(k)p(-—k) € V(¢) approximately, up to a sign, from their noisy phaseless samples on (X +Z)N
[K1, K5 + L]. In the realistic model for sampling in a shift-invariant space, the generator ¢ does not have
large support length L. Hence the minimization problem (4.5) of size L can be solved by many algorithms
available in a stable way [15-17,25,28,34,40-42,47].

In the noiseless sampling environment (i.e., ¢ = 0), the proposed MAPS algorithm provides a perfect
reconstruction to a nonseparable signal, up to a sign. In a noisy sampling environment, we show in the
following theorem that the MAPS algorithm (4.4)—(4.7) provides, up to a sign, a stable approximation to
the original nonseparable signal f.

Theorem 4.1. Let ¢ and X be as in Theorem 2.3, f(t) = > .5 c(k)p(t — k) in (4.2) be a nonseparable
real-valued signal with Sy in (3.5) being positive, and let (26(7))76)‘,+Z be the noisy phaseless samples of
the form (4.1) with bounded noise level ||€||oo. Assume that fo(t) =,y cc(k)o(t — k) is the signal in (4.3)
reconstructed by the MAPS algorithm (4.4)—(4.7). If

Sy

< — 4.
Il = i@ T (48)
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then there exists 6 € {—1,1} such that

lce(k) = de(k)| < (@)~ |IV/8Llell o, & € Z, (4.9)

where [|Al| := sup,,=1 [|Az|2 for a matriz A and

j@) = s (@ ) gcenn) | (4.10)

mo<...<mrp,_1

The proof of Theorem 4.1 includes an approximation property of vectors c s, k' € Z, in the first step
of the MAPS algorithm (4.4)—(4.7), and existence of phase adjustment in the second step. The detailed
arguments will be given in Subsection 6.4.

Define the reconstruction error of the MAPS algorithm by

E(e) := sen 1fe(®) = 0f (1)l co- (4.11)

Then there exists a positive constant C' by Theorem 4.1 such that

E(e) < Ll|¢l s max |ce(k) = d¢(k)| < CV/|l€]|oo- (4.12)

This together with (4.8) implies that there is no resonance phenomenon for the phaseless sampling and
reconstruction model (4.1) if the noise level ||¢||o is sufficiently small. Moreover, numerical simulations in
the next section show that the upper bound estimate in (4.12) for the reconstruction error E(e) is suboptimal
as it is about of the order +/]|€|oo-

5. Numerical simulations

In this section, we demonstrate the performance of the MAPS algorithm on reconstructing a cubic spline
signal
Ko
F(t) =Y c(k)Balt — k) (5.1)

k=K,

with finite duration, where By is the cubic B-spline in (1.2) and integers K7, K5 satisfy K7 < K. Our noisy
phaseless samples are taken on Xy + Z,

2e(7) = [FP + 1fl5%e(1) 20, v € Xk +Z, (5.2)

where €(v) € [—¢, ] are randomly selected with noise level € > 0, and

m
X :{—;1< <K},K>7. 5.3
K K+1 S=Mm > = ( )

The set X with K =7 can be used as the set X in (2.8) and also in Theorem 3.1. In our simulations,
C<k) € [_17 1] \ [_01701]7 Ky <k< K27 (54)

are randomly selected. Denote the signal reconstructed by the MAPS algorithm from the noisy phaseless
samples (5.2) by
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Ko

fe#) = > ce(k)Bat — k), (5.5)

k=K,

cf. Theorem 4.1. Define an amplitude reconstruction error by

e(e) == 66?1—1?,1} max lee(k) — de(k)|. (5.6)

As By(t) > 0and ), ., Bi(t — k) =1 for all t € R, we have

B(e) = min | max|f,(t) = 0 (1) < e(o) (5.7)
where FE(e) is the signal reconstruction error defined in (4.11), cf. (4.12). For the phaseless sampling and
reconstruction model (5.2) with small noise level ¢, it follows from Theorem 4.1 that the amplitude recon-
struction error e(e) in (5.6) and signal reconstruction error E(e) in (4.11) are O(y/€). It is confirmed in the
numerical simulations for nonseparable cubic spline signals, see Fig. 1.

The MAPS algorithm may not recover a nonseparable signal in a shift-invariant space if the noise level ¢ is
not sufficiently small. Presented in Fig. 1 are the success rate in percentage and the average amplitude error
after 1000 trials for different noise levels €, where the MAPS algorithm to recover cubic spline signals f in
(5.1) with e(k), k € Z, in (5.4) from noisy samples in (5.2) is considered to save the phase successfully if e(e) in
(5.6) satisfies e(e) < 0.1. In the simulations, a successful recovery implies that c.(k) and ¢(k), K < k < Ko,
have the same signs,

ce(k)e(k) > 0 for all K1 <k < K.

The success rate of the MAPS algorithm can be improved if we have phaseless samples on a discrete set
with high sampling density. Presented in Fig. 1 is the success rate in percentage to recover splines f in (5.1),
up to a sign, from noisy phaseless samples in (5.2) taken on Xx + Z,7 < K < 15, where the noise level ¢,
the original signal f and the success threshold are the same as before. In addition to the improvement on
success rate, our simulations also indicate that the amplitude reconstruction error in (5.6) decreases when
the sampling density K increases, cf. [3, Theorem 3] for oversampling in a shift-invariant space.

The MAPS algorithm is applicable even if the original signal f is separable. Denote by g. the signal
constructed from the MAPS algorithm. Our simulations show that the reconstruction error inf|g— ¢ [|ge —
9l is about O(y/e), cf. (5.7), and hence the signal g. provides a good approximation to a signal g in
Theorem 2.3, not necessarily the original signal f. Presented in Fig. 2 is the performance of the MAPS
algorithm when the amplitude coefficients of the original cubic spline f in (5.1) satisfy c¢(k) € [—1, 1] for all
K <k <Ky, cf (5.4).

6. Proofs

In Section 6.1, we introduce nonseparability of a real-valued signal in a linear space, give a proof of
Theorem 2.1, and establish the equivalence between complement property for ideal sampling functionals
and nonseparability of all signals in a linear space. In Section 6.2, we characterize all nonseparable signals
in a shift-invariant space and use them to prove Theorems 3.1 and 3.2. The proofs of Theorems 2.3 and 4.1
are given in Sections 6.3 and 6.4 respectively.

6.1. Nonseparability and complement property

In this subsection, we consider phase retrievability of signals in a linear space.
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Fig. 1. Plotted on the top left is a nonseparable cubic spline f with K1 = 5, Ko = 32 and ¢(k),k € Z, in (5.4). On the top right is
the difference between the signal f on the top left and the signal f. reconstructed by the MAPS algorithm from the noisy samples
(5.2) with e = 107° and K = 7, where the amplitude reconstruction error e(e) is 0.0014. Plotted on the bottom left is the success
rate against noise level — log, € to recover a nonseparable cubic spline f by the MAPS algorithm for 1000 trails, with c(k), k € Z,
randomly selected as in (5.4) and odd integers 7 < K < 15. On the bottom right is the average error log,, e(¢) against noise level
—log,, € in the logarithmic scale for a nonseparable cubic spline f running our MAPS algorithm for 1000 trails, where the error
e(e) is counted in the average only when phases are saved successfully.
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Fig. 2. Plotted on the left is the original cubic spline f (in blue) and the constructed signal g. (in red) via the MAPS algorithm,
where K; =5, Ky =32, e = 107° and ¢(k) € [-1,1],5 < k < 32. On the right is the difference |g. — g| between the signal g. and
a signal g in Theorem 2.3. The corresponding reconstruction error inf|g—|#| [[ge — glloo is 0.0066. (For interpretation of the colors
in the figure(s), the reader is referred to the web version of this article.)
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Definition 6.1. Let V' be a linear space of real-valued continuous signals on a set Y. A signal f € V is said
to be nonseparable if there do not exist nonzero signals f; and fs in V such that

f=r5+[f and fif2=0. (6.1)
The following is a generalization of Theorem 2.1.

Theorem 6.2. Let V' be a linear space of real-valued continuous signals on a set Y. Then a signal f € V is
determined, up to a sign, by its magnitude measurements |f(t)|,t € Y, if and only if it is nonseparable.

Proof. (=) Suppose, on the contrary, that there exist nonzero signals f1, fo € V such that f = fi1 + fa
and f1fo =0.Set g = f1 — fo € V. Then g # +f and |g| = | f1| + | f2| = |f|]- This is a contradiction.

(<) Assume that f is nonseparable and g € V satisfies |g| = |f]. Set g1 := (f + ¢g)/2 and g2 :=
(f —g)/2 € V. Then f = g1 + g2 and g1g2 = 0. This together with the nonseparable assumption on f
implies that either g; = 0 or go» = 0. Hence g = £+ f and the sufficiency is proved. 0O

Observe that any bandlimited signal does not have a decomposition of the form (6.1), as it is analytic
on R. Therefore by Theorem 6.2 we have the following corollary, cf. [53, Theorem 1].

Corollary 6.3. Any real-valued bandlimited signal is determined, up to a sign, by its magnitude measurements
on the real line.

In this subsection, we next consider linear spaces V' such that all signals in V' are determined, up to a
sign, from their magnitude measurements on the real line.

Definition 6.4. Let V' be a linear space of real-valued continuous signals on a set Y. We say that V has
complement property if for any subset A C Y, there do not exist two nonzero signals f and g in V such
that

f(t)=00n A and g(t) =0 on Y\A. (6.2)

The above concept for ideal sampling functionals on a linear space is similar to the complement property
for frames in a Hilbert space [10,13,14] and continuous frames in a Banach space [7]. As shown below, it
characterizes the phase retrievability of all signals in that linear space.

Theorem 6.5. Let V' be a linear space of real-valued continuous signals on a set’Y. Then all signals in V are
determined, up to a sign, from their magnitude measurements on Y if and only if V has the complement
property (6.2).

Proof. We follow the arguments used in [7,10,13,14], and include a detailed proof for convenience.

(=) Suppose, on the contrary, that there exist a set A and two nonzero signals f,g € V satisfying
(6.2). Then signals f + g and f — g have the same magnitude measurements |f(t)| + |g(¢)],¢ € Y, but
f+9g# £(f —g). This is a contradiction.

(«<=) Suppose, on the contrary, that there exist signals f,g € V such that |f| = |g| and f # +g. Set
hi = f+ ¢ and ha = f — g. Then hy and he are nonzero signals in V' satisfying hiho = 0. Hence (6.2)
holds with f and g replaced by h; and hsy respectively, and the set A by the support of hy. This is a
contradiction. 0O

Combining Theorems 6.2 and 6.5, we have the following result about nonseparability of signals in a linear
space and complement property for ideal sampling functionals.
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Corollary 6.6. Let V' be a linear space of real-valued continuous signals on a set' Y. Then V has the comple-
ment property (6.2) if and only if all signals in V are nonseparable.

6.2. Proofs of Theorems 3.1 and 3.2

Theorems 3.1 and 3.2 follow from the following equivalences for nonseparable signals.

Theorem 6.7. Let ¢, X be as in Theorem 2.3, and f(t) =, o, c(k)o(t — k) be a nonzero real-valued signal
in V(¢). Then the following are equivalent.

(i) The signal f is nonseparable.
(ii) Sl ek + D2 #0 for all K_(f) = L+1 < k < Ky(f) + 1, where K_(f) = inf{k : c(k) # 0} and
K (f) = sup{k : c(k) # 0}.
(iii) The signal f is determined, up to a sign, from its phaseless samples |f(t)|,t € X + Z, taken on the
shift-invariant set X + Z.

Proof. The implication iii)==1) follows immediately from Theorem 2.1. Then it remains to prove i)=ii)
and ii)==iii).

i)=ii): Set Ky = K (f). For K_ —L+1<k<K_+1lor Ky —L+1<k< K+ 1, the conclusion
ZlL:_OQ le(k+1)|* # 0 follows from the definitions of K_ and K. Then it remains to establish the statement
ii) for K_ < k < Ky — L+ 2. Suppose, on the contrary, that

L—2
> ek + D> =0 (6.3)

=0
for some K_ < k; < Ki —L+2. Set fi(t) := f;;ﬁ c(l)p(t —1) and fa(t) :== leiﬁflJrL_l c(l)ép(t—1). Then
f=hH+/f and f1fa=0 (6.4)

by (6.3) and the observation that f; and f; are supported in (—oo, k1 +L—1] and [k; +L—1, 00) respectively.
Clearly, f1 and fy are nonzero signals in V(¢). This together with (6.4) implies that f is separable, which
contradicts to the assumption i).

ii)==iii): To prove this implication, we need a lemma.

Lemma 6.8. Let ¢ and X be as in Theorem 2.5. Then for any | € Z and signal g(t) = >, ., d(k)p(t — k) €
V(9), coefficients d(k),l — L+ 1 <k <1, are completely determined, up to a sign, by its phaseless samples
lg(@m + D, zm € X.

The above lemma follows immediately from [10, Theorem 2.8] and the observation that

l

9@m+) = > dk)p(@m +1—k), zm X
k=l—L+1

Take a particular integer K_ — 1 < ko < K4 + 1 with ¢(kg) # 0. Without loss of generality, we assume
that

c(ko) > 0, (6.5)

otherwise replacing f by —f.
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Using (6.5) and applying Lemma 6.8 with g and [ replaced by f and kg respectively, we conclude that
clko — L+1),---,c(ko) are completely determined by phaseless samples |f(X + ko)| of the signal f on
X + ko. Now we prove the following claim:

c(k), k < kg, are determined by |f(X + k)|, k < kg (6.6)

by induction. Inductively we assume that c(k), ko—p—L+1 < k < ko, are determined from | f (X +k)|, ko—p <
k < ko. The inductive proof is complete if kg —p— L+ 1 < K_. Otherwise kg —p— L+ 1> K_ and

L-2

> lelko —p—L+1+1)>#0 (6.7)
=0

by the assumption ii). Applying Lemma 6.8 with ¢ and [ replaced by f and ko — p — 1 respectively, we
conclude that ¢(kg —p— L), - ,c(ko —p — 1) are determined, up to a sign, by |f(X + ko —p — 1)|. This
together with (6.7) and the inductive hypothesis implies that ¢(kg — p — L), - -+ ,¢(kg — p — 1) are completely
determined by |f(X + k)|, ko —p — 1 < k < kg. Thus the inductive argument can proceed.

Using the similar argument, we can show that c(k),k > ko, are determined by |f(X + k)|, k > ko. This
together with (6.6) completes the proof. 0O

6.3. Proof of Theorem 2.3

The sufficiency follows as f;,¢ € I, have mutually disjoint supports. To prove the necessity, we need a
lemma.

Lemma 6.9. Let ¢ be as in Theorem 2.3. Then for any nonzero signal f € V() there exist nonseparable
signals f; € V(¢),1 € I, satisfying (2.6) and (2.7). Moreover the decomposition (2.6) and (2.7) is unique.

Proof. Write f =", _, c(k)é(- — k) and set
L:={leZ:(cl),...,c(l+L—2))#0}. (6.8)

The set £ can be decomposed into maximal mutually disjoint sets of consecutive integers. The above
decomposition is unique and it can be described by existence of b;,b; € Z U {—o00, +0o0},i € I, such that

L=J(@tp)nz)=J{bi+1,....0 -1} (6.9)

el el

and

intervals [b;, b)), ¢ € I, are mutually disjoint. (6.10)

For instance, one may verify that the unique decomposition corresponding to the set £ = {—1,0,1,2, 3,5,6, 7,
10} is

L=((-2,49NnZ)U((4,8)NZ)uU((9,11)NZ)) ={-1,0,1,2,3} U{5,6,7} U {10}.

By (6.8), (6.9) and (6.10), we have
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c(k)y=0 forall k¢ Ujcr(b;+L—2,0,)NZ. (6.11)

Define

fi= > ck)e(-—k), i€l (6.12)

bi+L—2<k<b)

Then the decomposition (2.6) holds by (6.11) and (6.12), and the mutually disjoint property (2.7) follows
from (6.10) and the observation that f;,i € I, have support intervals [b; + L — 1,b;; + L — 1]. Observe from
(6.9) that K4 (f;) = b, —1 and K_(f;) = b; + L — 1,7 € I. This together with Theorem 3.2 implies that
fi,i € I, are nonseparable. Therefore f;,i € I, in (6.12) are nonseparable signals satisfying (2.6) and (2.7).

Now it remains to prove uniqueness of the decomposition (2.6) and (2.7). Suppose that g; € V(¢),j € J,

are nonseparable signals with their support intervals [a;, a}] satisfying
F=> 9 (6.13)
jeJ
and
laj,a}) N [ajr, al) = 0 for all distinct 7, " € J. (6.14)

Then it suffices to prove that J = I and for any j € J there exists a unique ¢ € I such that g; = f;, where
fi,i € I, are given in (6.12). By (2.1), (2.5), (6.13) and (6.14), we have

g= >  dke(—k (6.15)

aj—1<k<a}—L+1
and
c(k) =0 for all k ¢ Ujes(a; — 1,05 — L +1). (6.16)
Applying (6.15), (6.16) and Theorem 3.2, we obtain
L=Ujes((aj—L+1,aj—L+1)NZ), (6.17)
where the set £ is given in (6.8). This together with (6.14) leads to another decomposition of the set £ that
satisfies (6.9) and (6.10). Due to the uniqueness of such a decomposition, we have that J = I and for any

j € J there exists a unique i € I such that (a;,a}) = (b + L — 1,b; + L — 1), where b;, b}, i € I, are given in
(6.9). This together with (6.15) completes the proof. O
Now we start the proof of Theorem 2.3.

Proof of Theorem 2.3. Without loss of generality, we assume that f # 0. Write g = >, ., d(k)$(- — k) and
[ =2 rezclk)o(- — k). By Lemma 6.8, for any [ € Z there exists §; € {—1,1} such that

dl+n)=3dc(l+n), 0<n<L-1 (6.18)

Set L:={le€Z: (c(l),...,c(l+ L —2))#0} as in (6.8). Then it follows from (6.18) that
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01 =20; forall leL. (6.19)

As in (6.9), we write £ as the union of open intervals (a;,a;) NZ,i € I, with [a;,a}),i € I, being mutually
disjoint. Thus §; = §p for all [,I’ € (a; — 1, a}) N Z, which implies that the existence of & € {—1,1} with

d(k) = &e(k) for all a; + L —2 < k < a, with i € I. (6.20)

By (6.11) and (6.18), we have

d(k) =0 for all k ¢ Ujer((a; + L —2,a;) NZ). (6.21)
Therefore the conclusion g = 3, _; & fi follows from (6.12), (6.20), (6.21) and Lemma 6.9. O
6.4. Proof of Theorem /.1

To prove Theorem 4.1, we first show that the vector c. ;- obtained in the first step approximates the
original vector ¢ on [k’ — L + 1, k'], up to a sign depending on £’.

Proposition 6.10. Let ¢, z.,¢, X, ||(®1) Y| be as in Theorem 4.1. Then for any k' € 7Z, there exists 0 €
{=1,1} such that

k/
Do leen (k) = SpeR)® < BLI(®L) P[]l oo- (6.22)
k=k'—L+1

Proof. Set o =y + k' € X +k,1 <m < 2L — 1. Then

2L—1 K’ K’ 2
3 (\ > cw®oleny — k)| | c<k>¢<xm,k,—k>\>

m=1 k=k’'—L+1 k=k'—L+1

2L—1 K 2
<2 (‘ Z Cep (K)P(@mkr — k)‘ - ze(:cm,k/)>

m=1 \ k=k/—L+1

+ QQLX_:I < (@) — ‘ i c(k)Pp(xpm i — k)‘)

m=0 k=k’'—L+1
2L—-1 2

<4 |1 @) = fzelwm)| < BLleloo,
m=1

where the second inequality holds by (4.5), and the third estimate follows from the triangle inequality
[v/22+y — |z|]| < /|y| for all x € R and y > —x2. Therefore there exists a subset M C {1,...,2L — 1}
such that
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S (el c)olone 1)’

meM  k=k'—L+1

E )
* 2 (X (cawl®) +ek)él@mp — k) <SL|ellw.
me{l,...2L—1}\M  k=k'—L+1

This together with the definition of ||(®7)~!|| in (4.10) completes the proof. 0O

To prove Theorem 4.1, we adjust phases of ¢, i/, k' € Z, obtained in the first step so that the phase adjusted
vectors Oc g/ Ce i/, k' € Z, approximate the original vector ¢ on [k’ — L+ 1, k'], up to a sign independent on &’.

Proposition 6.11. Let 6y € {—1,1},k' € Z, be as in Proposition 6.10. If (4.8) holds for some ¢ €
{-1,1},K' € Z in (4.6), then

Oe ke i/ 41 = Ok Opr 41 (6.23)
for all k' € Z with 3 __; o |c(k +k')|> #0.

Proof. For any k' € Z,

k/
‘(6;«667,«, 5k’+1cs,k/+1> - Z |C(k)|2’
k=k'—L+2
k' k'
< D e (B) —c®lle®) + D rsicep (k) — c(k)||e(k)]
k=k'—L+2 k=k'—L+2

&
+ Z |5k1657k/(k) - C(k)|‘5k/+1ce,k’+1(k) - C(k))|

k=k'—L+2
K 1/2
<4V2Lfelf @) (D le)?) T+ L] (@0) 7| lell
k=k/'—L+2
k/
< Xl
k=k'—L+2

where the second estimate follows from Proposition 6.10, and the last inequality holds by the assumption
(4.8) on the noise level ||€||oo. Therefore the vectors oy ce i and dsce k41 have positive inner product. This
together with (4.6) proves (6.23). O

We finish this subsection with the proof of Theorem 4.1.

Proof of Theorem 4.1. Set K1 = Ky (f). By Theorem 3.2 and Proposition 6.11, there exists 6 € {—1,1}
such that

(56’]@/ = 66k’ (6.24)

for all ¥’ € (K_ — 1, K4 + L). For k € Z, we obtain from (4.6), (4.7), (6.24) and Proposition 6.10 that
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1 k+L—1 1 k+L—1
|C€(k) — (5C(k)| S Z Z |Ce,k" (k‘) — (Sk/C(k)| + f Z |5k"5€,k’ — 6||C(k)|
k'=k k'=k
< (@) V8L €]l co-

This completes the proof. O
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