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In this paper, we consider an infinite-dimensional phase retrieval problem to 
reconstruct real-valued signals living in a shift-invariant space from their phaseless 
samples taken either on the whole line or on a discrete set with finite sampling 
density. We characterize all phase retrievable signals in a real-valued shift-invariant 
space using their nonseparability. For nonseparable signals generated by some 
function with support length L, we show that they can be well approximated, up 
to a sign, from their noisy phaseless samples taken on a discrete set with sampling 
density 2L −1. In this paper, we also propose an algorithm with linear computational 
complexity to reconstruct nonseparable signals in a shift-invariant space from their 
phaseless samples corrupted by bounded noises.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A function/signal f on the real line is defined by its values f(t), t ∈ R. In this paper, we consider the 
problem whether a real-valued signal f on the real line is determined, up to a sign, from its magnitude 
measurements |f(t)|, t ∈ Ω, where Ω is either the whole real line R or its discrete subset. The above problem 
to determine a signal of interest from its magnitude measurements is an infinite-dimensional phase retrieval 
problem and it is possible to solve only if we have additional information about the signal.
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Phase retrieval plays important roles in signal/image/speech processing [25–27,31–33,36,39,46,47]. 
The phase retrieval problem of finite-dimensional signals has received considerable attention in recent 
years, however there still are lots of open mathematical and engineering questions unanswered, see
[9,10,17,15,57] and references therein. In the finite-dimensional setting, a fundamental problem is whether 
and how a (sparse) vector x ∈ R

d (or Cd) can be reconstructed from its magnitude measurements y = |Ax|, 
where A is a measurement matrix. The phase retrievability has been characterized via the measurement ma-
trix A [10,13,57], and many algorithms have been proposed to reconstruct the vector x from its magnitude 
measurements y [15–17,25,28,34,40–42,45,47].

The phase retrieval problem in an infinite-dimensional space is fundamentally different from a finite-
dimensional setting. There are several papers devoted to that research field [5–7,14,19,38,43,44,48,53,58]. 
Thakur proved in [53] that real-valued bandlimited signals could be reconstructed from their phaseless 
samples taken at more than twice the Nyquist rate. Shenoy, Mulleti and Seelamantula studied the phase 
retrieval of signals living in a principal shift-invariant space when the magnitude measurements of their 
frequency are available [48]. In this paper, we study whether and how to determine a real-valued signal 
residing in a shift-invariant space

V (φ) :=
{ ∑

k∈Z

c(k)φ(t − k) : c(k) ∈ R

}
, (1.1)

up to a sign, from its magnitude measurements, where the generator φ is a real-valued continuous function 
with compact support. A representative generator φ is the B-spline BN of order N ≥ 1 [55,56], which is 
obtained by convolving the indicator function χ[0,1) on the unit interval N times,

BN = χ[0,1) ∗ · · · ∗ χ[0,1)︸ ︷︷ ︸
N

. (1.2)

The concept of shift-invariant spaces arose in sampling theory, wavelet theory, approximation theory and 
signal processing, see [1,4,20,21,35,37,54] and references therein.

The Paley–Wiener space for bandlimited signals to live in is a shift-invariant space generated by the 
function sin πt

πt with infinite support. We notice that not all real-valued signals in a shift-invariant space 
V (φ) generated by a compactly supported function φ are phase retrievable, which is a different phenomenon 
from bandlimited signals. In Theorem 2.1 of Section 2, we show that a real-valued signal f ∈ V (φ) can be 
determined, up to a sign, from its magnitude measurements |f(t)|, t ∈ R, if and only if f is nonseparable, 
i.e., the signal f is not the sum of two nonzero signals in V (φ) with their supports being essentially disjoint. 
The above notion for a signal can be considered as a weak version of complement property for ideal sampling 
functionals, see Corollary 6.6 and cf. complement property for frames in Hilbert/Banach spaces [7,10,13,14]. 
Given an arbitrary signal f ∈ V (φ), we also find all functions/signals g ∈ V (φ) in Section 2 such that g and 
f have the same magnitude measurements on the real line.

Our phase retrieval of signals in a shift-invariant space is a phaseless sampling and reconstruction problem. 
Sampling in shift-invariant spaces is well studied as it is a realistic model for signals with smooth spectrum, 
and suitable models for taking into account the real acquisition and reconstruction devices and the numerical 
implementation, see [1,2,4,23,49,50,54] and the extensive list of references therein. In Theorem 3.1 and 
Corollaries 3.3 and 3.4 of Section 3, we show that a nonseparable wavelet signal in V (φ) generated by 
some function φ with support length L is determined, up to a sign, from its phaseless samples taken on a 
shift-invariant set X + Z, where X ⊂ (0, 1) is a set containing 2L − 1 distinct points.

Stability of phase retrieval is of paramount importance. The reader may refer to [11–13,24] for phase 
retrieval in the finite-dimensional setting and [51] for nonlinear frames. In this paper, we consider the 
scenario that phaseless samples
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zε(γ) = |f(γ)|2 + ε(γ), γ ∈ X + Z, (1.3)

of a signal f ∈ V (φ) taken on a shift-invariant set X +Z are corrupted, where X ⊂ (0, 1) is a finite set, and 
ε = (ε(γ))γ∈X+Z are additive noises with bounded level

‖ε‖∞ = sup{|ε(γ)| : γ ∈ X + Z}.

In Theorem 4.1 of Section 4, we establish the stability of phase retrieval in the above scenario when the 
original signal f is nonseparable. As an application of Theorem 4.1, any nonseparable signal in V (φ) gener-
ated by some function φ with support length L can be reconstructed, up to a sign, approximately from its 
noisy phaseless samples on a shift-invariant set X + Z with sampling density 2L − 1.

Many algorithms have been proposed to solve the phase retrieval problem in the finite-dimensional setting 
[15–17,25,28,34,40–42,47]. A conventional approach to the scenario (1.3) is to solve the following min-max 
problem:

fε := argming∈V (φ) max
γ∈X+Z

∣∣|g(γ)| −
√

zε(γ)
∣∣, (1.4)

which is infinite-dimensional and infeasible. In Section 4, we propose an MAPS algorithm to find an ap-
proximation fε ∈ V (φ) to a nonseparable signal f ∈ V (φ), up to a sign, when the noisy phaseless samples 
(zε(γ))γ∈X+Z in (1.3) are available. The MAPS algorithm consists of three parts: minimizing, adjusting 
phases and sewing. It can be locally implemented, and has linear computational complexity O(K2 − K1) to 
reconstruct a nonseparable signal f =

∑K2
k=K1

c(k)φ(· − k) ∈ V (φ) with finite duration approximately from 
its noisy phaseless sampling data. In Section 5, we present some simulations to demonstrate the stability of 
the proposed MAPS algorithm. Our numerical simulations indicate that the proposed MAPS algorithm is 
robust against bounded additive noises ε, and the error between the reconstructed signal fε and the original 
nonseparable signal f is O(

√
‖ε‖∞).

Proofs of our conclusions are included in Section 6.

2. Phase retrievability and nonseparability

For a real-valued compactly supported generator φ of the shift-invariant space V (φ), let

L = min
L1,L2∈Z

{
L2 − L1 : φ vanishes outside [L1, L2]

}
be its support length. For the representative spline generator BN , its support length is the same as the 
order N ≥ 1. Without loss of generality, we assume that

φ(t) = 0 for all t /∈ [0, L], (2.1)

otherwise replacing φ by φ(· − L0) for some L0 ∈ Z. Clearly, not all signals in V (φ) are determined, up to a 
sign, from their magnitude measurements on R. For instance, signals φ(t) ±φ(t −L) have the same magnitude 
measurements |φ(t)| + |φ(t − L)| on the real line, but they are not the same even up to a sign. Then it is 
natural to ask whether a signal f in V (φ) is determined, up to a sign, from its magnitude measurements, 
or equivalently,

Mf = {±f},

where the set
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Mf :=
{

g ∈ V (φ) : |g(x)| = |f(x)| for all x ∈ R
}

(2.2)

contains all signals g in V (φ) that have the same magnitude measurements as the signal f has.

Theorem 2.1. Let φ be a real-valued continuous function with compact support and V (φ) be the shift-invariant 
space in (1.1) generated by φ. Then a signal f ∈ V (φ) is determined, up to a sign, by its magnitude 
measurements, i.e., Mf = {±f}, if and only if there do not exist nonzero signals f1 and f2 in V (φ) such 
that

f = f1 + f2 and f1f2 = 0. (2.3)

We call a signal f ∈ V (φ) to be nonseparable if there do not exist nonzero signals f1, f2 ∈ V (φ) such that 
(2.3) holds, see Definition 6.1 for the definition of nonseparable signals in a linear space. Then a separable 
signal f ∈ V (φ) can be written as the sum of two nonzero signals f1, f2 ∈ V (φ) satisfying f1f2 = 0. The 
proof of Theorem 2.1 and connection between nonseparability of signals and complement property for ideal 
sampling functionals will be discussed in Subsection 6.1.

Remark 2.2. Let S(φ) be the set of all nonseparable signals in a real-valued shift-invariant space V (φ). The 
set S(φ) is a cone of V (φ) containing the zero signal, however it is neither a convex subset of V (φ) nor its 
closed subset. This phenomenon for phase retrievability is different from the bandlimited case, for which all 
bandlimited functions can be reconstructed, up to a sign, from their magnitude measurements on R [48,53].

Given a signal f ∈ V (φ), the next question to be addressed in this section is to find all signals g ∈ V (φ)
such that g and f have the same magnitude measurements on the whole real line, cf. [6]. Let us start from 
the simplest case that L = 1 (i.e., the generator φ is supported on [0, 1]). In this case, one can verify that a 
signal f ∈ V (φ) is nonseparable if and only if there exists an integer k0 such that

f(t) = c(k0)φ(t − k0) for some c(k0) ∈ R. (2.4)

Therefore any signal in V (φ) is a linear combination of nonseparable signals with mutually disjoint supports. 
For the case that the generator φ has its support length

L ≥ 2, (2.5)

as shown in Lemma 6.9, such a linear combination exists for any signal f ∈ V (φ), i.e., there exist nonsepa-
rable signals fi ∈ V (φ), i ∈ I, such that

f =
∑
i∈I

fi (2.6)

and their support intervals [ai, a′
i] are essentially mutually disjoint in the sense that

[ai, a′
i) ∩ [aj , a′

j) = ∅ for all distinct i, j ∈ I. (2.7)

Clearly signals g =
∑

i∈I ξifi with ξi ∈ {−1, 1}, i ∈ I, have the same magnitude measurements as the signal 
f has. In the following theorem, we show that the converse is true under some proper assumptions on the 
generator φ.

Theorem 2.3. Let φ be a real-valued continuous function satisfying (2.1) and (2.5), and X := {xm, 1 ≤ m ≤
2L − 1} ⊂ (0, 1) be so chosen that all L × L submatrices of
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Φ =
(
φ(xm + n)

)
1≤m≤2L−1,0≤n≤L−1 (2.8)

are nonsingular. Take f ∈ V (φ) and let Mf be as in (2.2). Then g ∈ Mf if and only if there exist ξi ∈
{−1, 1}, i ∈ I, such that g =

∑
i∈I ξifi, where fi, i ∈ I, are nonseparable signals in (2.6) and (2.7).

The proof of Theorem 2.3 depends on Theorem 3.2 and it will be given in Subsection 6.3.

3. Phaseless sampling and reconstruction

A set Λ ⊂ R is said to have sampling density D(Λ) if

D(Λ) = lim
b−a→+∞

#(Λ ∩ [a, b])
b − a

, (3.1)

where #E is the cardinality of a set E. In this section, we consider the problem whether a signal f in the 
shift-invariant space V (φ) can be recovered, up to a sign, from its phaseless samples taken on a discrete set 
with finite sampling density. By Theorem 2.1, a necessary condition is that the signal f is nonseparable.

For the case that the generator φ has support length L = 1, it follows from (2.4) that any nonseparable 
signal in V (φ) is determined, up to a sign, from its phaseless samples on t0 + Z ⊂ R with sampling density 
one, where t0 ∈ (0, 1) is so chosen that φ(t0) 
= 0. In the next theorem, we show that any nonseparable 
signal in a shift-invariant space generated by a compactly supported function with support length L ≥ 2
can be reconstructed from its phaseless samples taken on a discrete set with finite sampling density.

Theorem 3.1. Let φ and X be as in Theorem 2.3. Then any nonseparable signal f ∈ V (φ) is determined, 
up to a sign, from its phaseless samples |f(t)|, t ∈ X + Z, taken on the shift-invariant set X + Z.

The proof of the above theorem on phaseless sampling and reconstruction, with detailed arguments given 
in Subsection 6.2, depends on the following characterization of nonseparable signals.

Theorem 3.2. Let φ be a real-valued continuous function satisfying (2.1), (2.5) and (2.8), and f(t) =∑
k∈Z

c(k)φ(t − k) be a nonzero signal in V (φ). Then f is nonseparable if and only if

L−2∑
l=0

|c(k + l)|2 
= 0 (3.2)

for all K−(f) − L + 1 < k < K+(f) + 1, where K−(f) = inf{k : c(k) 
= 0} and K+(f) = sup{k : c(k) 
= 0}.

The nonsingularity of all L × L submatrices of the matrix Φ in (2.8) is also known as its full sparkness 
([8,22]). The full sparkness requirement (2.8) on the matrix Φ implies that φ has linearly independent shifts, 
i.e., the linear map from sequences to signals in V (φ),

(
c(k)

)∞
k=−∞ �−→

∞∑
k=−∞

c(k)φ(t − k),

is one-to-one ([35,49]). Conversely, if φ has linearly independent shifts and it is a continuous solution of the 
refinement equation ([20,37])

φ(t) =
N∑

n=0
a(n)φ(2t − n) and

∫
φ(t)dt = 1, (3.3)
R
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where 
∑N

n=0 a(n) = 2, then Φ in (2.8) is of full spark for almost all (x1, · · · , x2N−1) ∈ (0, 1)2N−1, see [49, 
Theorem A.2]. This together with Theorem 3.1 leads to the following result for wavelet signals, cf. [53, 
Theorem 1] and Corollary 6.3 for bandlimited signals.

Corollary 3.3. Let φ be a continuous solution of the refinement equation (3.3) with linearly independent 
shifts. Then there exists a set X ⊂ (0, 1) containing 2N −1 distinct points such that any nonseparable signal 
in V (φ) is determined, up to a sign, from its phaseless samples taken on X + Z.

For the refinement equation (3.3), under the assumption that

N∑
n=0

a(n)zn = (1 + z)Q(z) (3.4)

for some polynomial Q having positive coefficients and its zeros with strictly negative real part, the corre-
sponding matrix Φ in (2.8) is of full spark whenever xm ∈ (0, 1), 1 ≤ m ≤ 2N − 1, are distinct ([29,30]). It is 
well known that the B-spline BN of order N ≥ 2 satisfies the refinement equation (3.3) with Q(z) in (3.4)
given by 2−N+1(1 + z)N−1. This together with Theorem 3.1 yields the following result for spline signals, cf. 
[52].

Corollary 3.4. Let N ≥ 2 and X contain 2N −1 distinct points in (0, 1). Then any nonseparable spline signal 
in V (BN ) is determined, up to a sign, from its phaseless samples taken on the shift-invariant set X + Z.

Remark 3.5. Let φ be as in Theorem 3.2. For a signal f =
∑

k∈Z
c(k)φ(· − k) ∈ V (φ), define

Sf = inf
K−(f)−L+1<k<K+(f)+1

L−2∑
l=0

|c(k + l)|2. (3.5)

By Theorem 3.2, we obtain that Sf = 0 if f is separable, and that Sf > 0 if f is a nonseparable signal with 
compact support. The quantity Sf can be used to measure the distance from a signal f to the set of all 
separable signals in V (φ), cf. Theorem 4.1.

4. Stable reconstruction from phaseless samples

In this section, we consider the scenario that the available data

zε(γ) = |f(γ)|2 + ε(γ), γ ∈ X + Z, (4.1)

are phaseless samples of a signal

f =
∑
k∈Z

c(k)φ(· − k) ∈ V (φ) (4.2)

taken on a shift-invariant set X + Z corrupted by additive noises ε = (ε(γ))γ∈X+Z with bounded level

‖ε‖∞ = sup
{

|ε(γ)| : γ ∈ X + Z
}

.

Based on the constructive proof of Theorem 3.1 in Subsection 6.2, we propose an MAPS algorithm to find 
an approximation
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Algorithm 1 MAPS Algorithm.
Inputs: The finite set X; support length of the generator L; noisy phaseless sampling data 

(
zε(xm + l)

)
xm∈X,l∈Z

, 1 ≤ m ≤ 2L − 1.
Instructions:
1) Minimizing locally: For any k′ ∈ Z, let

cε,k′ = (cε,k′ (k))k∈Z (4.4)

have zero components except that cε,k′ (k), k′ − L + 1 ≤ k ≤ k′, are solutions of the minimization problem

min
2L−1∑
m=1

∣∣∣∣∣
∣∣∣ k′∑

k=k′−L+1

c(k)φ(xm,k′ − k)
∣∣∣ −

√
zε(xm,k′ )

∣∣∣∣∣
2

, (4.5)

where xm ∈ X and xm,k′ = xm + k′, 1 ≤ m ≤ 2L − 1.
2) Adjusting Phase: For k′ ∈ Z, multiplying cε,k′ by δε,k′ ∈ {−1, 1} so that

〈δε,k′ cε,k′ , δε,k′+1cε,k′+1〉 ≥ 0 for all k
′ ∈ Z. (4.6)

3) Sewing:

cε(k) =
1
L

k+L−1∑
k′=k

δε,k′ cε,k′ (k), k ∈ Z, (4.7)

to obtain an approximation of amplitude vector 
(
c(k)

)
k∈Z

.
Outputs: Amplitude vector 

(
cε(k)

)
k∈Z

, and the reconstructed signal fε =
∑

k∈Z
cε(k)φ(· − k).

fε =
∑
k∈Z

cε(k)φ(· − k) ∈ V (φ) (4.3)

to the signal f in (4.2) when the noisy phaseless samples in (4.1) are available.
The proposed MAPS algorithm consists of the following three parts: (i) solving the minimization problem 

(4.5) to obtain local approximations cε,k′ , k′ ∈ Z, of δk′c on k′ + [−L + 1, 0], up to a phase δk′ ∈ {−1, 1}; 
(ii) adjusting phases to obtain local approximations δε,k′cε,k′ to either c or −c on k′ + [−L + 1, 0]; and 
(iii) sewing δε,k′cε,k′ , k′ ∈ Z, together to get an approximation cε to either c or −c.

From implementation of the MAPS algorithm, we can reconstruct signals in V (φ) almost in real time from 
their phaseless samples, cf. [18,49] and references therein on local and distributed reconstruction. Moreover, 
the MAPS algorithm has linear computational complexity O(K2 − K1) to reconstruct nonseparable signals 
f =

∑K2
k=K1

c(k)φ(· −k) ∈ V (φ) approximately, up to a sign, from their noisy phaseless samples on (X +Z) ∩
[K1, K2 + L]. In the realistic model for sampling in a shift-invariant space, the generator φ does not have 
large support length L. Hence the minimization problem (4.5) of size L can be solved by many algorithms 
available in a stable way [15–17,25,28,34,40–42,47].

In the noiseless sampling environment (i.e., ε = 0), the proposed MAPS algorithm provides a perfect 
reconstruction to a nonseparable signal, up to a sign. In a noisy sampling environment, we show in the 
following theorem that the MAPS algorithm (4.4)–(4.7) provides, up to a sign, a stable approximation to 
the original nonseparable signal f .

Theorem 4.1. Let φ and X be as in Theorem 2.3, f(t) =
∑

k∈Z
c(k)φ(t − k) in (4.2) be a nonseparable 

real-valued signal with Sf in (3.5) being positive, and let 
(
zε(γ)

)
γ∈X+Z

be the noisy phaseless samples of 
the form (4.1) with bounded noise level ‖ε‖∞. Assume that fε(t) =

∑
k∈Z

cε(k)φ(t − k) is the signal in (4.3)
reconstructed by the MAPS algorithm (4.4)–(4.7). If

‖ε‖∞ ≤ Sf

−1 2 , (4.8)
48L‖(ΦL) ‖
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then there exists δ ∈ {−1, 1} such that

|cε(k) − δc(k)| ≤ ‖(ΦL)−1‖
√

8L‖ε‖∞, k ∈ Z, (4.9)

where ‖A‖ := sup‖x‖2=1 ‖Ax‖2 for a matrix A and

‖(ΦL)−1‖ := sup
m0<...<mL−1

∥∥∥((
φ(xml

+ n)
)

0≤l,n≤L−1

)−1∥∥∥. (4.10)

The proof of Theorem 4.1 includes an approximation property of vectors cε,k′ , k′ ∈ Z, in the first step 
of the MAPS algorithm (4.4)–(4.7), and existence of phase adjustment in the second step. The detailed 
arguments will be given in Subsection 6.4.

Define the reconstruction error of the MAPS algorithm by

E(ε) := min
δ∈{−1,1}

‖fε(t) − δf(t)‖∞. (4.11)

Then there exists a positive constant C by Theorem 4.1 such that

E(ε) ≤ L‖φ‖∞ min
δ∈{−1,1}

max
k∈Z

|cε(k) − δc(k)| ≤ C
√

‖ε‖∞. (4.12)

This together with (4.8) implies that there is no resonance phenomenon for the phaseless sampling and 
reconstruction model (4.1) if the noise level ‖ε‖∞ is sufficiently small. Moreover, numerical simulations in 
the next section show that the upper bound estimate in (4.12) for the reconstruction error E(ε) is suboptimal 
as it is about of the order 

√
‖ε‖∞.

5. Numerical simulations

In this section, we demonstrate the performance of the MAPS algorithm on reconstructing a cubic spline 
signal

f(t) =
K2∑

k=K1

c(k)B4(t − k) (5.1)

with finite duration, where B4 is the cubic B-spline in (1.2) and integers K1, K2 satisfy K1 ≤ K2. Our noisy 
phaseless samples are taken on XK + Z,

zε(γ) = |f(γ)|2 + ‖f‖2
∞ε(γ) ≥ 0, γ ∈ XK + Z, (5.2)

where ε(γ) ∈ [−ε, ε] are randomly selected with noise level ε > 0, and

XK =
{ m

K + 1 : 1 ≤ m ≤ K
}

, K ≥ 7. (5.3)

The set XK with K = 7 can be used as the set X in (2.8) and also in Theorem 3.1. In our simulations,

c(k) ∈ [−1, 1] \ [−0.1, 0.1], K1 ≤ k ≤ K2, (5.4)

are randomly selected. Denote the signal reconstructed by the MAPS algorithm from the noisy phaseless 
samples (5.2) by
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fε(t) =
K2∑

k=K1

cε(k)B4(t − k), (5.5)

cf. Theorem 4.1. Define an amplitude reconstruction error by

e(ε) := min
δ∈{−1,1}

max
k∈Z

|cε(k) − δc(k)|. (5.6)

As B4(t) ≥ 0 and 
∑

k∈Z
B4(t − k) = 1 for all t ∈ R, we have

E(ε) = min
δ∈{−1,1}

max
t∈R

|fε(t) − δf(t)| ≤ e(ε), (5.7)

where E(ε) is the signal reconstruction error defined in (4.11), cf. (4.12). For the phaseless sampling and 
reconstruction model (5.2) with small noise level ε, it follows from Theorem 4.1 that the amplitude recon-
struction error e(ε) in (5.6) and signal reconstruction error E(ε) in (4.11) are O(

√
ε). It is confirmed in the 

numerical simulations for nonseparable cubic spline signals, see Fig. 1.
The MAPS algorithm may not recover a nonseparable signal in a shift-invariant space if the noise level ε is 

not sufficiently small. Presented in Fig. 1 are the success rate in percentage and the average amplitude error 
after 1000 trials for different noise levels ε, where the MAPS algorithm to recover cubic spline signals f in 
(5.1) with c(k), k ∈ Z, in (5.4) from noisy samples in (5.2) is considered to save the phase successfully if e(ε) in 
(5.6) satisfies e(ε) < 0.1. In the simulations, a successful recovery implies that cε(k) and c(k), K1 ≤ k ≤ K2, 
have the same signs,

cε(k)c(k) > 0 for all K1 ≤ k ≤ K2.

The success rate of the MAPS algorithm can be improved if we have phaseless samples on a discrete set 
with high sampling density. Presented in Fig. 1 is the success rate in percentage to recover splines f in (5.1), 
up to a sign, from noisy phaseless samples in (5.2) taken on XK + Z, 7 ≤ K ≤ 15, where the noise level ε, 
the original signal f and the success threshold are the same as before. In addition to the improvement on 
success rate, our simulations also indicate that the amplitude reconstruction error in (5.6) decreases when 
the sampling density K increases, cf. [3, Theorem 3] for oversampling in a shift-invariant space.

The MAPS algorithm is applicable even if the original signal f is separable. Denote by gε the signal 
constructed from the MAPS algorithm. Our simulations show that the reconstruction error inf|g|=|f | ‖gε −
g‖∞ is about O(

√
ε), cf. (5.7), and hence the signal gε provides a good approximation to a signal g in 

Theorem 2.3, not necessarily the original signal f . Presented in Fig. 2 is the performance of the MAPS 
algorithm when the amplitude coefficients of the original cubic spline f in (5.1) satisfy c(k) ∈ [−1, 1] for all 
K1 ≤ k ≤ K2, cf. (5.4).

6. Proofs

In Section 6.1, we introduce nonseparability of a real-valued signal in a linear space, give a proof of 
Theorem 2.1, and establish the equivalence between complement property for ideal sampling functionals 
and nonseparability of all signals in a linear space. In Section 6.2, we characterize all nonseparable signals 
in a shift-invariant space and use them to prove Theorems 3.1 and 3.2. The proofs of Theorems 2.3 and 4.1
are given in Sections 6.3 and 6.4 respectively.

6.1. Nonseparability and complement property

In this subsection, we consider phase retrievability of signals in a linear space.
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Fig. 1. Plotted on the top left is a nonseparable cubic spline f with K1 = 5, K2 = 32 and c(k), k ∈ Z, in (5.4). On the top right is 
the difference between the signal f on the top left and the signal fε reconstructed by the MAPS algorithm from the noisy samples 
(5.2) with ε = 10−5 and K = 7, where the amplitude reconstruction error e(ε) is 0.0014. Plotted on the bottom left is the success 
rate against noise level − log10 ε to recover a nonseparable cubic spline f by the MAPS algorithm for 1000 trails, with c(k), k ∈ Z, 
randomly selected as in (5.4) and odd integers 7 ≤ K ≤ 15. On the bottom right is the average error log10 e(ε) against noise level 
− log10 ε in the logarithmic scale for a nonseparable cubic spline f running our MAPS algorithm for 1000 trails, where the error 
e(ε) is counted in the average only when phases are saved successfully.

Fig. 2. Plotted on the left is the original cubic spline f (in blue) and the constructed signal gε (in red) via the MAPS algorithm, 
where K1 = 5, K2 = 32, ε = 10−5 and c(k) ∈ [−1, 1], 5 ≤ k ≤ 32. On the right is the difference |gε − g| between the signal gε and 
a signal g in Theorem 2.3. The corresponding reconstruction error inf|g|=|f| ‖gε − g‖∞ is 0.0066. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)
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Definition 6.1. Let V be a linear space of real-valued continuous signals on a set Y . A signal f ∈ V is said 
to be nonseparable if there do not exist nonzero signals f1 and f2 in V such that

f = f1 + f2 and f1f2 = 0. (6.1)

The following is a generalization of Theorem 2.1.

Theorem 6.2. Let V be a linear space of real-valued continuous signals on a set Y . Then a signal f ∈ V is 
determined, up to a sign, by its magnitude measurements |f(t)|, t ∈ Y , if and only if it is nonseparable.

Proof. (=⇒) Suppose, on the contrary, that there exist nonzero signals f1, f2 ∈ V such that f = f1 + f2
and f1f2 = 0. Set g = f1 − f2 ∈ V . Then g 
= ±f and |g| = |f1| + |f2| = |f |. This is a contradiction.

(⇐=) Assume that f is nonseparable and g ∈ V satisfies |g| = |f |. Set g1 := (f + g)/2 and g2 :=
(f − g)/2 ∈ V . Then f = g1 + g2 and g1g2 = 0. This together with the nonseparable assumption on f

implies that either g1 = 0 or g2 = 0. Hence g = ±f and the sufficiency is proved. �
Observe that any bandlimited signal does not have a decomposition of the form (6.1), as it is analytic 

on R. Therefore by Theorem 6.2 we have the following corollary, cf. [53, Theorem 1].

Corollary 6.3. Any real-valued bandlimited signal is determined, up to a sign, by its magnitude measurements 
on the real line.

In this subsection, we next consider linear spaces V such that all signals in V are determined, up to a 
sign, from their magnitude measurements on the real line.

Definition 6.4. Let V be a linear space of real-valued continuous signals on a set Y . We say that V has 
complement property if for any subset A ⊂ Y , there do not exist two nonzero signals f and g in V such 
that

f(t) = 0 on A and g(t) = 0 on Y \A. (6.2)

The above concept for ideal sampling functionals on a linear space is similar to the complement property 
for frames in a Hilbert space [10,13,14] and continuous frames in a Banach space [7]. As shown below, it 
characterizes the phase retrievability of all signals in that linear space.

Theorem 6.5. Let V be a linear space of real-valued continuous signals on a set Y . Then all signals in V are 
determined, up to a sign, from their magnitude measurements on Y if and only if V has the complement 
property (6.2).

Proof. We follow the arguments used in [7,10,13,14], and include a detailed proof for convenience.
(=⇒) Suppose, on the contrary, that there exist a set A and two nonzero signals f, g ∈ V satisfying 

(6.2). Then signals f + g and f − g have the same magnitude measurements |f(t)| + |g(t)|, t ∈ Y , but 
f + g 
= ±(f − g). This is a contradiction.

(⇐=) Suppose, on the contrary, that there exist signals f, g ∈ V such that |f | = |g| and f 
= ±g. Set 
h1 = f + g and h2 = f − g. Then h1 and h2 are nonzero signals in V satisfying h1h2 = 0. Hence (6.2)
holds with f and g replaced by h1 and h2 respectively, and the set A by the support of h2. This is a 
contradiction. �

Combining Theorems 6.2 and 6.5, we have the following result about nonseparability of signals in a linear 
space and complement property for ideal sampling functionals.
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Corollary 6.6. Let V be a linear space of real-valued continuous signals on a set Y . Then V has the comple-
ment property (6.2) if and only if all signals in V are nonseparable.

6.2. Proofs of Theorems 3.1 and 3.2

Theorems 3.1 and 3.2 follow from the following equivalences for nonseparable signals.

Theorem 6.7. Let φ, X be as in Theorem 2.3, and f(t) =
∑

k∈Z
c(k)φ(t − k) be a nonzero real-valued signal 

in V (φ). Then the following are equivalent.

(i) The signal f is nonseparable.
(ii)

∑L−2
l=0 |c(k + l)|2 
= 0 for all K−(f) − L + 1 < k < K+(f) + 1, where K−(f) = inf{k : c(k) 
= 0} and 

K+(f) = sup{k : c(k) 
= 0}.
(iii) The signal f is determined, up to a sign, from its phaseless samples |f(t)|, t ∈ X + Z, taken on the 

shift-invariant set X + Z.

Proof. The implication iii)=⇒i) follows immediately from Theorem 2.1. Then it remains to prove i)=⇒ii) 
and ii)=⇒iii).

i)=⇒ii): Set K± = K±(f). For K− − L + 1 < k < K− + 1 or K+ − L + 1 < k < K+ + 1, the conclusion ∑L−2
l=0 |c(k + l)|2 
= 0 follows from the definitions of K− and K+. Then it remains to establish the statement 

ii) for K− < k < K+ − L + 2. Suppose, on the contrary, that

L−2∑
l=0

|c(k1 + l)|2 = 0 (6.3)

for some K− < k1 < K+ − L + 2. Set f1(t) :=
∑k1−1

l=K−
c(l)φ(t − l) and f2(t) :=

∑K+
l=k1+L−1 c(l)φ(t − l). Then

f = f1 + f2 and f1f2 = 0 (6.4)

by (6.3) and the observation that f1 and f2 are supported in (−∞, k1+L −1] and [k1+L −1, ∞) respectively. 
Clearly, f1 and f2 are nonzero signals in V (φ). This together with (6.4) implies that f is separable, which 
contradicts to the assumption i).

ii)=⇒iii): To prove this implication, we need a lemma.

Lemma 6.8. Let φ and X be as in Theorem 2.3. Then for any l ∈ Z and signal g(t) =
∑

k∈Z
d(k)φ(t − k) ∈

V (φ), coefficients d(k), l − L + 1 ≤ k ≤ l, are completely determined, up to a sign, by its phaseless samples 
|g(xm + l)|, xm ∈ X.

The above lemma follows immediately from [10, Theorem 2.8] and the observation that

g(xm + l) =
l∑

k=l−L+1

d(k)φ(xm + l − k), xm ∈ X.

Take a particular integer K− − 1 < k0 < K+ + 1 with c(k0) 
= 0. Without loss of generality, we assume 
that

c(k0) > 0, (6.5)

otherwise replacing f by −f .
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Using (6.5) and applying Lemma 6.8 with g and l replaced by f and k0 respectively, we conclude that 
c(k0 − L + 1), · · · , c(k0) are completely determined by phaseless samples |f(X + k0)| of the signal f on 
X + k0. Now we prove the following claim:

c(k), k ≤ k0, are determined by |f(X + k)|, k ≤ k0 (6.6)

by induction. Inductively we assume that c(k), k0−p −L +1 ≤ k ≤ k0, are determined from |f(X+k)|, k0−p ≤
k ≤ k0. The inductive proof is complete if k0 − p − L + 1 ≤ K−. Otherwise k0 − p − L + 1 > K− and

L−2∑
l=0

|c(k0 − p − L + l + 1)|2 
= 0 (6.7)

by the assumption ii). Applying Lemma 6.8 with g and l replaced by f and k0 − p − 1 respectively, we 
conclude that c(k0 − p − L), · · · , c(k0 − p − 1) are determined, up to a sign, by |f(X + k0 − p − 1)|. This 
together with (6.7) and the inductive hypothesis implies that c(k0 − p − L), · · · , c(k0 − p − 1) are completely 
determined by |f(X + k)|, k0 − p − 1 ≤ k ≤ k0. Thus the inductive argument can proceed.

Using the similar argument, we can show that c(k), k ≥ k0, are determined by |f(X + k)|, k ≥ k0. This 
together with (6.6) completes the proof. �
6.3. Proof of Theorem 2.3

The sufficiency follows as fi, i ∈ I, have mutually disjoint supports. To prove the necessity, we need a 
lemma.

Lemma 6.9. Let φ be as in Theorem 2.3. Then for any nonzero signal f ∈ V (φ) there exist nonseparable 
signals fi ∈ V (φ), i ∈ I, satisfying (2.6) and (2.7). Moreover the decomposition (2.6) and (2.7) is unique.

Proof. Write f =
∑

k∈Z
c(k)φ(· − k) and set

L :=
{

l ∈ Z : (c(l), . . . , c(l + L − 2)) 
= 0
}

. (6.8)

The set L can be decomposed into maximal mutually disjoint sets of consecutive integers. The above 
decomposition is unique and it can be described by existence of bi, b′

i ∈ Z ∪ {−∞, +∞}, i ∈ I, such that

L =
⋃
i∈I

(
(bi, b′

i) ∩ Z
)

=
⋃
i∈I

{
bi + 1, . . . , b′

i − 1
}

(6.9)

and

intervals [bi, b′
i), i ∈ I, are mutually disjoint. (6.10)

For instance, one may verify that the unique decomposition corresponding to the set L = {−1, 0, 1, 2, 3, 5, 6, 7,

10} is

L =
(
(−2, 4) ∩ Z

)
∪

(
(4, 8) ∩ Z

)
∪

(
(9, 11) ∩ Z)

)
= {−1, 0, 1, 2, 3} ∪ {5, 6, 7} ∪ {10}.

By (6.8), (6.9) and (6.10), we have
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c(k) = 0 for all k /∈ ∪i∈I(bi + L − 2, b′
i) ∩ Z. (6.11)

Define

fi =
∑

bi+L−2<k<b′
i

c(k)φ(· − k), i ∈ I. (6.12)

Then the decomposition (2.6) holds by (6.11) and (6.12), and the mutually disjoint property (2.7) follows 
from (6.10) and the observation that fi, i ∈ I, have support intervals [bi + L − 1, bi′ + L − 1]. Observe from 
(6.9) that K+(fi) = b′

i − 1 and K−(fi) = bi + L − 1, i ∈ I. This together with Theorem 3.2 implies that 
fi, i ∈ I, are nonseparable. Therefore fi, i ∈ I, in (6.12) are nonseparable signals satisfying (2.6) and (2.7).

Now it remains to prove uniqueness of the decomposition (2.6) and (2.7). Suppose that gj ∈ V (φ), j ∈ J , 
are nonseparable signals with their support intervals [aj, a′

j ] satisfying

f =
∑
j∈J

gj (6.13)

and

[aj , a′
j) ∩ [aj′ , a′

j′) = ∅ for all distinct j, j′ ∈ J. (6.14)

Then it suffices to prove that J = I and for any j ∈ J there exists a unique i ∈ I such that gj = fi, where 
fi, i ∈ I, are given in (6.12). By (2.1), (2.5), (6.13) and (6.14), we have

gj =
∑

aj−1<k<a′
j−L+1

c(k)φ(· − k) (6.15)

and

c(k) = 0 for all k /∈ ∪j∈J (aj − 1, a′
j − L + 1). (6.16)

Applying (6.15), (6.16) and Theorem 3.2, we obtain

L = ∪j∈J

(
(aj − L + 1, a′

j − L + 1) ∩ Z
)
, (6.17)

where the set L is given in (6.8). This together with (6.14) leads to another decomposition of the set L that 
satisfies (6.9) and (6.10). Due to the uniqueness of such a decomposition, we have that J = I and for any 
j ∈ J there exists a unique i ∈ I such that (aj , a′

j) = (bi + L − 1, b′
i + L − 1), where bi, b′

i, i ∈ I, are given in 
(6.9). This together with (6.15) completes the proof. �

Now we start the proof of Theorem 2.3.

Proof of Theorem 2.3. Without loss of generality, we assume that f 
= 0. Write g =
∑

k∈Z
d(k)φ(· − k) and 

f =
∑

k∈Z
c(k)φ(· − k). By Lemma 6.8, for any l ∈ Z there exists δl ∈ {−1, 1} such that

d(l + n) = δlc(l + n), 0 ≤ n ≤ L − 1. (6.18)

Set L := {l ∈ Z : (c(l), . . . , c(l + L − 2)) 
= 0} as in (6.8). Then it follows from (6.18) that
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δl−1 = δl for all l ∈ L. (6.19)

As in (6.9), we write L as the union of open intervals (ai, a′
i) ∩ Z, i ∈ I, with [ai, a′

i), i ∈ I, being mutually 
disjoint. Thus δl = δl′ for all l, l′ ∈ (ai − 1, a′

i) ∩ Z, which implies that the existence of ξi ∈ {−1, 1} with

d(k) = ξic(k) for all ai + L − 2 < k < a′
i with i ∈ I. (6.20)

By (6.11) and (6.18), we have

d(k) = 0 for all k /∈ ∪i∈I

(
(ai + L − 2, a′

i) ∩ Z
)
. (6.21)

Therefore the conclusion g =
∑

i∈I ξifi follows from (6.12), (6.20), (6.21) and Lemma 6.9. �

6.4. Proof of Theorem 4.1

To prove Theorem 4.1, we first show that the vector cε,k′ obtained in the first step approximates the 
original vector c on [k′ − L + 1, k′], up to a sign depending on k′.

Proposition 6.10. Let c, zε, ε, X, ‖(ΦL)−1‖ be as in Theorem 4.1. Then for any k′ ∈ Z, there exists δk′ ∈
{−1, 1} such that

k′∑
k=k′−L+1

|cε,k′(k) − δk′c(k)|2 ≤ 8L‖(ΦL)−1‖2‖ε‖∞. (6.22)

Proof. Set xm,k′ = xm + k′ ∈ X + k′, 1 ≤ m ≤ 2L − 1. Then

2L−1∑
m=1

(∣∣∣ k′∑
k=k′−L+1

cε,k′(k)φ(xm,k′ − k)
∣∣∣ −

∣∣∣ k′∑
k=k′−L+1

c(k)φ(xm,k′ − k)
∣∣∣
)2

≤ 2
2L−1∑
m=1

(∣∣∣ k′∑
k=k′−L+1

cε,k′(k)φ(xm,k′ − k)
∣∣∣ −

√
zε(xm,k′)

)2

+ 2
2L−1∑
m=0

(√
zε(xm,k′) −

∣∣∣ k′∑
k=k′−L+1

c(k)φ(xm,k′ − k)
∣∣∣
)2

≤ 4
2L−1∑
m=1

∣∣∣|f(xm,k′)| −
√

zε(xm,k′)
∣∣∣2

≤ 8L‖ε‖∞,

where the second inequality holds by (4.5), and the third estimate follows from the triangle inequality 
|
√

x2 + y − |x|| ≤
√

|y| for all x ∈ R and y ≥ −x2. Therefore there exists a subset M ⊂ {1, . . . , 2L − 1}
such that
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∑
m∈M

( k′∑
k=k′−L+1

(
cε,k′(k) − c(k)

)
φ(xm,k′ − k)

)2

+
∑

m∈{1,...,2L−1}\M

( k′∑
k=k′−L+1

(
cε,k′(k) + c(k)

)
φ(xm,k′ − k)

)2
≤ 8L‖ε‖∞.

This together with the definition of ‖(ΦL)−1‖ in (4.10) completes the proof. �
To prove Theorem 4.1, we adjust phases of cε,k′ , k′ ∈ Z, obtained in the first step so that the phase adjusted 

vectors δε,k′cε,k′ , k′ ∈ Z, approximate the original vector c on [k′ −L +1, k′], up to a sign independent on k′.

Proposition 6.11. Let δk′ ∈ {−1, 1}, k′ ∈ Z, be as in Proposition 6.10. If (4.8) holds for some δε,k′ ∈
{−1, 1}, k′ ∈ Z in (4.6), then

δε,k′δε,k′+1 = δk′δk′+1 (6.23)

for all k′ ∈ Z with 
∑0

k=−L+2 |c(k + k′)|2 
= 0.

Proof. For any k′ ∈ Z,

∣∣∣〈δk′cε,k′ , δk′+1cε,k′+1〉 −
k′∑

k=k′−L+2

|c(k)|2
∣∣∣

≤
k′∑

k=k′−L+2

|δk′cε,k′(k) − c(k)||c(k)| +
k′∑

k=k′−L+2

|δk′+1cε,k′+1(k) − c(k)||c(k)|

+
k′∑

k=k′−L+2

|δk′cε,k′(k) − c(k)||δk′+1cε,k′+1(k) − c(k))|

≤ 4
√

2L‖ε‖∞
∥∥(ΦL)−1∥∥( k′∑

k=k′−L+2

|c(k)|2
)1/2

+ 8L
∥∥(ΦL)−1∥∥2‖ε‖∞

<
k′∑

k=k′−L+2

|c(k)|2,

where the second estimate follows from Proposition 6.10, and the last inequality holds by the assumption 
(4.8) on the noise level ‖ε‖∞. Therefore the vectors δk′cε,k′ and δk′cε,k′+1 have positive inner product. This 
together with (4.6) proves (6.23). �

We finish this subsection with the proof of Theorem 4.1.

Proof of Theorem 4.1. Set K± = K±(f). By Theorem 3.2 and Proposition 6.11, there exists δ ∈ {−1, 1}
such that

δε,k′ = δδk′ (6.24)

for all k′ ∈ (K− − 1, K+ + L). For k ∈ Z, we obtain from (4.6), (4.7), (6.24) and Proposition 6.10 that
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|cε(k) − δc(k)| ≤ 1
L

k+L−1∑
k′=k

|cε,k′(k) − δk′c(k)| + 1
L

k+L−1∑
k′=k

|δk′δε,k′ − δ||c(k)|

≤ ‖(ΦL)−1‖
√

8L‖ε‖∞.

This completes the proof. �
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