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Nonsubsampled Graph Filter Banks: Theory and
Distributed Algorithms

Junzheng Jiang, Member, IEEE, Cheng Cheng , and Qiyu Sun

Abstract—In this paper, we consider nonsubsampled graph filter
banks (NSGFBs) to process data on a sparse graph. The analysis
filter banks of NSGFBs have small bandwidth, pass/block the nor-
malized constant signal, and have stability on �2. Given an analysis
filter bank with small bandwidth, we introduce algebraic and opti-
mization methods to construct well-localized synthesis filter banks
such that the corresponding NSGFBs provide a perfect signal re-
construction in the noiseless setting. We also prove that the pro-
posed NSGFBs can control the resonance effect in the presence of
bounded noise and they can limit the influence of shot noise pri-
marily to a small neighborhood near its location on the graph. We
later introduce an iterative algorithm to implement the proposed
NSGFBs in adistributedmanner, anddevelop anNSGFB-basedde-
noising technique which is demonstrated to have satisfactory per-
formance on noise suppression.

IndexTerms—Graph signal processing, spatially distributednet-
work, graph filter bank, nonsubsampled, distributed algorithm.

I. INTRODUCTION

S PATIALLY distributed networks (SDNs) have an agent at
each location equippedwith some data processing and com-

munication subsystems, and they have a fusion center with lim-
ited computing capacity or do not have a fusion center at all.
SDNs have been widely used in (wireless) sensor networks,
smart grids andmany real world applications [1]–[7]. Our repre-
sentative SDNs are distributed over a spatial domain with agents
communicating with each other via signal broadcasting within a
finite range. Data collected by an SDN resides naturally on ver-
tices of a graph. Graph signal processing provides an innovative
framework to process data on graphs. Many concepts in clas-
sical signal processing, such as the Fourier transform, wavelet
transform and filter banks, have been extended to graph settings
in recent years. However there are still lots of fundamental prob-
lems unexplored or not completely answered [8]–[13].
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Fig. 1. Block diagram of an NSGFB with analysis filter bank (H0,H1) and
synthesis filter bank (G0,G1), where x is the input of the NSGFB and x̃ is its
output.

The wavelet transform is one of the most prominent tech-
niques to process signals in regular domains [14]–[16]. Dur-
ing the past decades, graph wavelet transforms have been intro-
duced and some of them are designed to use the eigenvalue and
eigenspace information of the graphLaplacianmatrix [17]–[21].
Graph wavelet transform is under the same theoretical structure
as graph filter banks, and the corresponding wavelet filter banks
carry downsampling and upsampling procedures [9], [10], [22]–
[28]. Several forms of the downsampling and upsampling have
been defined by the partitioned graph coloring in [22], the max-
imum spanning tree structure of the graph in [26], and the SVD
decomposition of the graph Laplacian matrix in [27]. A proper
definition of the downsampling and upsampling procedure is
not obvious especially when the residing graph is of large order
and it has complicated topological structure. This motivates us
to consider a nonsubsampled graph filter bank (NSGFB) with
downsampling and upsampling procedures circumvented; see
Figure 1 for its block diagram.
An NSGFB contains an analysis filter bank (H0,H1) and a

synthesis filter bank (G0,G1). An important concept for anNS-
GFB is the perfect reconstruction condition so that the output x̃
in Figure 1 is always the same as the input x. Due to the non-
subsampled structure in an NSGFB, the perfect reconstruction
condition can be easily characterized by

G0H0 +G1H1 = I, (1)

where I is the identity matrix of appropriate size. An equivalent
statement to the above matrix equation is that columns of G0

andG1 form a dual frame to columns ofHT
0 andHT

1 . The frame
and wavelet approach to NSGFBs on graphs has been discussed
in [21], [29], [30], where the analysis/synthesis filter banks are
polynomials of a graph shift matrix or they are well approxi-
mated by Chebyshev polynomials of a graph shift matrix. In this
paper, we work on graphs with complicated topological struc-
tures and we consider designing NSGFBs with some desired
features, such as spectral decomposition property of the anal-
ysis procedure, robustness of the analysis/synthesis procedure
against bounded input noises and bounded subband processing
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errors, and distributed implementation of the analysis/synthesis
procedure.
The analysis procedure in an NSGFB on a graph G := (V,E)

decomposes an input graph signal x into two subband signals
z0 = H0x and z1 = H1x. To apply an NSGFB to some real
world applications, such as noise suppression and abnormal phe-
nomenon detection, two subband signals z0 and z1 should carry
different frequency information of the input signal x [22], [23],
[25], [31]. In this paper, analysis filter banks (H0,H1) are de-
signed to pass/block the normalized constant signal D1/2

G 1,

H0D
1/2
G 1 = D

1/2
G 1 and H1D

1/2
G 1 = 0, (2)

where DG = (DG(i, j))i,j∈V is the degree matrix of the graph
G. Our representative analysis filter banks are spline filter banks
(Hspln

0,n ,Hspln
1,n ) of order n ≥ 1,

Hspln
0,n =

(
I− 1

2
Lsym
G

)n

and Hspln
1,n =

(
1

2
Lsym
G

)n

, (3)

and the node-variant filter bank (Hnv
0 ,Hnv

1 ) given by

Hnv
0 = I− α−1DGL

sym
G , Hnv

1 = α−1DGL
sym
G , (4)

where α = max1≤i≤N DG(i, i) is a degree normalization con-
stant, AG and Lsym

G = D
−1/2
G (DG −AG)D

−1/2
G are the adja-

cency matrix and symmetric normalized Laplacian matrix of the
graph G respectively. The spline filter banks were introduced in
[32] as graph-spline wavelet transform for circulant graph set-
ting, while the node-variant filter bank has been used in [40].
In practical applications, the input x is the original signal

xo corrupted by an additive noise εεε. For an SDN, the agent at
each vertex operates almost independently and the noise that
arises at each vertex is usually contained in some range [7].
We then believe that a reasonable fidelity measure to assess the
robustness of NSGFBs is the bounded difference ‖x̃− xo‖∞
between the original signal xo and the output signal x̃ of the
NSGFB in the noise environment, instead of the standard least
squares error ‖x̃− xo‖2, where for 1 ≤ p ≤ ∞, �p is the space
of all p-summable sequences with norm ‖ · ‖p [7], [33], [34]. In
this paper, NSGFBs are designed to be robust against bounded
input noises and bounded subband processing errors.
Filter banks can be implemented either in a centralized sys-

tem or a distributed system. In a centralized system, the fusion
center receives data from agents at vertices, performs designed
data processing and sends the processed data back to agents.
Most filter banks on graphs are designed for centralized pro-
cessing, however for the implementation of filter banks on an
SDN of large size, a centralized system may suffer from high
computational burden and call for significant efforts to create
a data exchange network. For signal processing on an SDN or
a graph of large order, a distributed system provides an indis-
pensable tool. The distributed system has been used for signal
sampling and reconstruction on an SDN, graph signal inpaint-
ing and economic dispatch in power networks. The reader may
refer to [7], [35], [36] and references therein on distributed im-
plementations of signal processing on graphs. In this paper, we
design well-localized NSGFBs with analysis filter banks hav-
ing small bandwidths and synthesis filter banks having either
small bandwidths or exponentially off-diagonal decay, so that
the corresponding analysis and synthesis procedure is applica-
ble in spatially distributed systems with each agent equipped
with limited data processing and communication abilities.

The objective of this paper is to study well-localized NSGFBs
on a distributed system from designs to algorithms, and then to
noise suppression.

A. Main Contributions

Given a stable analysis filter bank, the existence of synthesis
filter banks is theoretically guaranteed so that the corresponding
NSGFB satisfies the perfect reconstruction condition (1) [15],
[16]. It is highly nontrivial to design well-localized synthesis fil-
ter banks that can be fulfilled in a distributed system due to the
complexity of graphs to describe SDNs of large size, cf. [21]–
[24] and [28]. The first contribution of this paper is that two
novel methods are proposed to construct well-localized synthe-
sis filter banks such that the corresponding NSGFB provides a
perfect reconstruction in a noiseless environment, see SectionsV
and VI. In the first approach, the analysis filter banks are poly-
nomials of the symmetric normalized Laplacian matrix Lsym

G ,
and the synthesis filter banks are designed by solving a Bezout
identity for polynomials, cf. [15], [16], [37]. Their bandwidth
can be no larger than the bandwidth of the analysis filter banks.
In the second approach, analysis filter banks are not necessar-
ily to be polynomials of the symmetric normalized Laplacian
matrix Lsym

G , and the synthesis filter banks are the solution of
some constrained optimization problems. The synthesis filter
bank is proved to have an exponential off-diagonal decay, and
hence the output of the corresponding NSGFB suffers primar-
ily in a small neighborhood of vertices where agents lose data
processing ability and/or communication capability.
The robustness of an NSGFB is of paramount importance.

The second contribution of this paper is that for the NSGFB
with analysis filter bank having small bandwidth and synthesis
filter banks obtained from our approaches, we establish a quan-
titative estimate on the bounded difference ‖x̃− xo‖∞, which
is independent on the order of the graph. This indicates that the
proposed NSGFB can control the resonance effect in the pres-
ence of bounded additive noises, see Propositions V.2 and VI.4.
ForNSGFBonSDNs, data processing should be implemented

in a distributed manner. It is observed that synthesis filter banks
in the second approach may not have the small bandwidth and
they may not be well approximated by Chebyshev polynomi-
als of the symmetric normalized Laplacian matrix. This leads
to the third contribution of this paper, an iterative algorithm in
SectionVII to implement the synthesis procedure in a distributed
manner. The proposed algorithm includes a graph decomposi-
tion of overlapping regions, local synthesis procedure in each
region, and appropriate adjustment over overlapped vertices in
each iteration. The approach is motivated by the observations
that solutions of some global optimization problem can be well
approximated by a weighted sum of solutions to local optimiza-
tion problems [7] and local synthesis procedures have bound-
ary effects, see Figure 4. The novelty of the proposed iterative
algorithm is that we decompose the network into a family of
overlapping neighboring subnetworks of appropriate sizes (6),
which ensures every agent in the network is located in the region
of some neighboring subnetworks that has negligible boundary
effects of the local synthesis procedure. Moreover, the proposed
iterative algorithm is scalable and implementable in SDNs with-
out a fusion center, and it has linear complexity.
As an application of NSGFBs, we develop a distributed de-

noising technique that has satisfactory performance on noise
suppression, which is the fourth contribution of this paper.
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B. Organization

In Section II, we briefly review some fundamental concepts
of graphs and introduce an overlapping graph decomposition
(6). In Section III, we introduce the concept and properties
of graph filters on �p, 1 ≤ p ≤ ∞. In Section IV, we discuss
analysis filter banks (H0,H1) having small bandwidth and �2-
stability and passing/blocking the normalized constant signal. In
Section V, we propose an algebraic design of synthesis filter
banks (G0,G1) when analysis filters H0 and H1 are polyno-
mials of the symmetric normalized Laplacian on the graph. In
Section VI, we construct synthesis filter banks (G0,G1) by
solving some constrained optimization problem. In Section VII,
we propose an exponentially convergent iterative algorithm
to implement the synthesis procedure. In Section VIII, we
introduce a distributed denoising technique associated with
spline/node-variant NSGFBs and demonstrate its performance
for signal denoising on graphs of large order. All proofs are
collected in the appendices.

C. Notation

We use the common convention of representing matrices
and vectors with boldface letters and scalars with normal let-
ters. For a matrix A, denote its transpose, pseudo-inverse,
trace, Frobenius norm and operator norm on �p, 1 ≤ p ≤ ∞,
by AT ,A†, tr(A), ‖A‖F and ‖A‖Bp

respectively. For a graph
G := (V,E), define the geodesic distance ρ(i, j) between ver-
tices i and j ∈ V in a connected component of the graph G by
the number of edges in a shortest path connecting them, and set
the distance ρ(i, j) = ∞ if vertices i and j ∈ V belong to dif-
ferent connected components. For a scalar t, let t be the vector
of appropriate size with all entries taking value t. For a set F ,
denote its cardinality and indicator function by μ(F ) and χF

respectively, where χF (i) = 1 if i ∈ F and zero otherwise. For
a polynomial P , we denote its degree by deg(P ).

II. PRELIMINARIES ON GRAPHS

Let G := (V,E) be a graph, where V = {1, 2, . . . , N} is the
set of vertices and E is the set of edges. Throughout this paper,
we presume that the graph G has the following global features
[7], [8]:
� The graph G is simple, i.e., it is undirected and unweighted,
and it does not contain self-loops and multiple edges.

� The graph G has polynomial growth, i.e., numbers of r-hop
neighbors of any vertex are dominated by a polynomial
about r ≥ 0.

A quantitative description of the second feature is that the
counting measure μ on the graph G satisfies

μ(B(i, r)) ≤ D1(G)(r + 1)d for all i ∈ V and r ≥ 0, (5)

where B(i, r) := {j ∈ V : ρ(i, j) ≤ r} contains all r-hop
neighbors of a vertex i ∈ G. The minimal positive constants d
andD1(G) in (5) are known as Beurling dimension and density
of the graph G respectively. We remark that a graph G with the
above two global features is sparse and its Beurling dimension
is not necessarily to be a positive integer [7].
For a graphG = (V,E), define the r-neighboring subgraph of

i ∈ V by Gi,r := (B(i, r), E(i, r)), where E(i, r) contains all
edges of the graph G with endpoints in B(i, r). Then for r ≥ 1,
we can decompose the graph G into a family of overlapping

subgraphs Gi,r, i ∈ V , of diameters at most 2r,

G = ∪i∈V Gi,r. (6)

The decomposition (6) plays a crucial role in the proposed dis-
tributed algorithm for an NSGFB. The selection of the radius
parameter r in (6) depends on Beurling dimension d and den-
sity D1(G) of the graph G; see Theorem VII.2. Accordingly,
we expect that the Beurling dimension d and density D1(G) of
the graph G are much smaller than (or even independent on) the
order of the graph. Shown in Figure 2 are two representative
graphs that are reproduced by the GSPToolbox [38].
� The Minnesota traffic graph has two connected compo-
nents and it has 2642 vertices and 3303 edges, where each
vertex represents a spatial location in the state ofMinnesota
equipped with a traffic monitoring sensor and each edge
denotes a direct communication link between monitoring
sensors [22], [23].

� The random geometric graph RGGN is connected and it
has N vertices randomly deployed in the region [0, 1]2

with an edge existing between two vertices if their physical
distance is not larger than

√
2N−1/2 [27], [39].

III. GRAPH SIGNAL AND FILTERING

A signal x residing on the graph G is a column vector
(x(i))i∈V , where x(i) refers to the signal value at vertex i ∈ V .
In SDNs and many real world applications, it is natural to as-
sume that signals collected in the dataset reside in some sequence
space �p, 1 ≤ p ≤ ∞ [7], [33], [34].

A filterA on the graph G is a linear transformation from one
signal x on G to another signal y = Ax on G, which is usu-
ally represented by a matrix A = (a(i, j))i,j∈V . Graph filters
are widely designed to be either polynomials of a graph shift
matrix, or well approximated by Chebyshev polynomials of a
graph shift matrix [10], [12], [13], [21]–[24], [27], [32], [36],
[40]. A favorite example of graph shift matrices is the symmetric
normalized Laplacian matrix Lsym

G whose eigenvalues are con-
tained in the interval [0, 2] [10], [22]–[24], [27], [32]. Exemplary
filters of this paper are

A = P (Lsym
G ) = p0I+

L∑
l=1

pl(L
sym
G )l, (7)

where P (t) =
∑L

l=0 plt
l for some coefficients pl, 0 ≤ l ≤ L.

To develop a distributed algorithm for an NSGFB, analysis
filters will be designed to have small bandwidths.

Definition III.1: The bandwidth σ := σ(A) of a graph fil-
ter A = (a(i, j))i,j∈V is the smallest nonnegative integer such
that a(i, j) = 0 hold for all i, j ∈ V with ρ(i, j) > σ. For a
filter pair (A,B), we define its bandwidth σ := σ(A,B) by
max(σ(A), σ(B)).
For a nonzero graph filterA, the bandwidthσ(A) in the above

definition is the same as its another common definition, which
is the maximal integer σ̃ such that a(i, j) 	= 0 for some i, j ∈ V
with ρ(i, j) = σ̃. An advantage of a filter A = (a(i, j))i,j∈V
with small bandwidth σ ≥ 0 is that the corresponding filtering
procedure can be implemented in a distributedmanner. Given an
input signal x = (x(i))i∈V , the signal value z(k) of the output
signal z = (z(k))k∈V = Ax at the vertex k is a “weighted” sum
of signal values of the input x in its σ-neighborhood,

z(k) =
∑

ρ(i,k)≤σ

a(k, i)x(i), k ∈ V. (8)
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Fig. 2. Plotted on the first row from left to right are the Minnesota traffic graph, the original blockwise constant signal x that has only two values ±1 [22], [23],
the lowpass subband signalHspln

0,2 x and the highpass subband signalHspln
1,2 x. On the second row from left to right are a random geometric graph withN = 4096,

the original blockwise polynomial signal x consisting of four strips and imposing the polynomial 0.5− 2cx on the first and third diagonal strips and 0.5 + c2x + c2y

on the second and fourth strips respectively, where (cx, cy) are the coordinates of vertices [27], the lowpass subband signal Hspln
0,2 x and the highpass subband

signal Hspln
1,2 x.

The above distributed algorithm requires that each vertex k
shares signal values with its σ-hop neighbors, memorizes en-
tries a(k, i), i ∈ B(k, σ), of the k-th row of the filter A, and
has computational capability to perform additions and multipli-
cations in (8). From the above argument, we see that a graph
filter of the form (7) has bandwidth σ ≤ deg(P ) and the corre-
sponding filtering procedure can be implemented in a distributed
manner.
A filter A is expected to map a signal with finite energy to

another signal with finite energy and a bounded signal to another
bounded signal. A quantitative description of the above filtering
procedure is

‖Ax‖p ≤ C‖x‖p for all x ∈ �p, (9)

where 1 ≤ p ≤ ∞ and C is a positive constant.
Definition III.2: We say that A is a graph filter on �p if (9)

is satisfied, and we call the minimal constant C for (9) to hold,
denoted by ‖A‖Bp

, the filter bound on �p.
Let 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN ≤ 2 be eigenvalues of the sym-

metric normalized Laplacian matrix Lsym
G , and write

Lsym
G = UTΛΛΛU, (10)

where UT = [u1, . . . ,uN ] is an orthogonal matrix and ΛΛΛ =
diag(λ1, . . . , λN ) is a diagonal matrix. Then the matrix A in
(7) satisfies

A = UTP (ΛΛΛ)U, (11)

and hence it is a symmetric matrix with eigenvalues
P (λ1), . . . , P (λN ). Thus the filter bound ‖A‖B2

of the graph
filter A on �2 can be evaluated explicitly,

‖A‖B2
= sup

1≤n≤N
|P (λn)| ≤ sup

0≤t≤2
|P (t)|. (12)

To estimate ‖A‖Bp
, p 	= 2, of a graph filterA = (a(i, j))i,j∈V ,

we define the bound of A by

‖A‖∞ = sup
i,j∈V

|a(i, j)|, (13)

and the Schur norm ofA by

‖A‖S = max

⎛
⎝sup

i∈V

∑
j∈V

|a(i, j)|, sup
j∈V

∑
i∈V

|a(i, j)|
⎞
⎠ .

Following the argument used in [7], we can show that a bounded
filter with small bandwidth is a graph filter on �p, 1 ≤ p ≤ ∞,
with filter bound dominated by some constant independent of
the order of the graph G.

Proposition III.3: Let 1 ≤ p ≤ ∞ andA be a bounded graph
filter with bandwidth σ. Then

‖A‖∞ ≤ ‖A‖Bp
≤ ‖A‖S ≤ D1(G)(σ + 1)d‖A‖∞, (14)

where d and D1(G) are the Beurling dimension and density of
the graph G respectively.
Our representative splinefiltersHspln

0,n andHspln
1,n , n ≥ 1, in (3)

have bandwidth σ ≤ n, and they are graph filters on �p, 1 ≤ p ≤
∞, with filter bounds dominated by some constants depending
only on the Beurling dimension and density of the graph,

‖Hspln
l,n ‖Bp

≤ (‖Hspln
l,1 ‖Bp

)n ≤
{
1 if p = 2

(2d−1D1(G)n if p 	= 2,

(15)

where the last inequality follows from (3), (12) and (14).

IV. ANALYSIS FILTER BANKS

The design of graph analysis filter banks is crucial for com-
petent performances of NSGFBs. There are substantial meth-
ods for the design of graph analysis filter banks in literature
[22]–[25], [31]. In this section, we design analysis filter banks
(H0,H1)ofNSGFBs to have small bandwidth, to pass/block the
normalized constant signal, and to have stability on �2. Also in
Theorem IV.4 of this section, we show that analysis filter banks
in our design have stability on �p for all 1 ≤ p ≤ ∞, with an
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estimate on their lower and upper �p-stability bounds indepen-
dent of the order of the graph.

A. Bandwidths

In this paper, we design analysis filter banks (H0,H1) of an
NSGFB to have small bandwidth σ(H0,H1). Our exemplary
analysis filter banks (H0,H1) are polynomials of the symmetric
Laplacian Lsym

G on G, i.e.,
H0 = P0(L

sym
G ) and H1 = P1(L

sym
G ) (16)

for some polynomialsP0 andP1 with degreesL0 andL1 respec-
tively, which have bandwidthσ(H0,H1) ≤ max(L0, L1). Con-
sequently, spline filter banks (Hspln

0,n ,Hspln
1,n ), n ≥ 1 have band-

widths σ(Hspln
0,n ,Hspln

1,n ) ≤ n, and the node-variant filter bank
(Hnv

0 ,Hnv
1 ) has bandwidth one.

The analysis procedure associated with our analysis filter
banks has an input x = (x(i))i∈V and two outputs

z0 = H0x and z1 = H1x. (17)

The signal values of the outputs z0 = (z0(i))i∈V and z1 =
(z1(i))i∈V at each vertex k ∈ V are “weighted” sums of val-
ues of the input x in σ(H0,H1)-neighborhood of k by (8),

zl(k) =
∑

ρ(i,k)≤σ

hl(k, i)x(i), k ∈ V, (18)

where σ = σ(H0,H1) and Hl = (hl(i, j))i,j∈V , l = 0, 1. The
above distributed algorithm requires O(σd) manipulations and
additions for each agent,whered is theBeurlingdimensionof the
graph G. Therefore, for our analysis procedure, data processing
cost and computational burden of each agent is independent on
the graph orderN , and the total computational cost for thewhole
graph is O(σdN).

B. Spectral Decomposition

To apply an NSGFB to some real world applications, such
as noise suppression and abnormal phenomenon detection, its
analysis filter bank should constitute certain spectral decompo-
sition. So throughout the paper, we design normal analysis filter
banks to pass/block the normalized constant signal D1/2

G 1.
Definition IV.1: A graph filter bank (H0,H1) is said to be

normal if the filter H0 passes the normalized constant signal
D

1/2
G 1, and the filter H1 blocks the normalized constant signal

D
1/2
G 1, i.e., (2) holds.
A normal analysis filter bank (H0,H1) has bandwidth

σ(H0,H1) ≥ 1, except the trivial case that H0 is the identity
matrix andH1 is the zero matrix, and σ = 0. So throughout the
paper, we only consider analysis filter banks (H0,H1) having
positive bandwidth

σ := σ(H0,H1) ≥ 1. (19)

The analysis filter bank decomposes the input signal on a
graph into two components carrying certain frequency informa-
tion. However the frequency partition of an analysis filter bank
on an arbitrary graph G is not as obvious as that in classical set-
ting. For the case that filtersH0 andH1 are of the form (16) for
some polynomialsP0 andP1, onemay verify that they constitute
normal filter bank if and only if

P0(0) = 1 and P1(0) = 0. (20)

The spline filter banks (Hspln
0,n ,Hspln

1,n ), n ≥ 1, in (3) are of the
form (16) with P0(t) = (1− t/2)n and P1(t) = (t/2)n, and
they are normal filter banks by (20), i.e.,

Hspln
0,n D

1/2
G 1 = D

1/2
G 1 and Hspln

1,n D
1/2
G 1 = 0. (21)

Shown in Figure 2 is local smoothing/blocking phenomenon of
the spline filter bank (Hspln

0,2 ,Hspln
1,2 ) to a blockwise constant

signal on the Minnesota traffic graph and a blockwise smooth
signal on the random geometric graph RGG4096 in Figure 2.
It is observed that the lowpass filtered signal is very close to
the original signal except near the boundary between different
blocks, and that the highpass filtered signal essentially vanishes
except around the regionwhere the original signal exhibits sharp
local variation.

C. Stability

Robustness is a fundamental requirement in the context of
filter bank to control the signal dynamic range and to regulate the
input noise. For the robustness of an NSGFB on �p, 1 ≤ p ≤ ∞,
we introduce the stability of a graph filter pair on �p.

Definition IV.2: We say that (H0,H1) has �p-stability if
there are two positive constants Cp and Dp such that

Cp‖x‖p ≤ (‖H0x‖pp + ‖H1x‖pp
)1/p ≤ Dp‖x‖p (22)

hold for all x ∈ �p if 1 ≤ p < ∞, and

C∞‖x‖∞ ≤ max (‖H0x‖∞, ‖H1x‖∞) ≤ D∞‖x‖∞ (23)

hold for all x ∈ �∞ if p = ∞. The largest constant Cp and the
smallest constantDp for (22) and (23) to hold are knownas lower
and upper stability bounds of (H0,H1) on �p respectively.

Given an NSGFB with the analysis filter bank (H0,H1) and
synthesis filter bank (G0,G1) such that the perfect reconstruc-
tion condition (1) holds, the input signal x and the output signals
z0 = H0x and z1 = H1x of the analysis procedure have com-
parable energy, that is

(‖G0‖2B2
+ ‖G1‖2B2

)−1‖x‖22 ≤ ‖H0x‖22 + ‖H1x‖22
≤ (‖H0‖2B2

+ ‖H1‖2B2
)‖x‖22 (24)

hold for all x ∈ �2, where the second inequality follows directly
from Definition III.2 and the first inequality holds as for all
x ∈ �2,

‖x‖2 = ‖(G0H0 +G1H1)x‖2
≤ ‖G0‖B2

‖H0x‖2 + ‖G1‖B2
‖H1x‖2

≤ (‖G0‖2B2
+ ‖G1‖2B2

)1/2 (‖H0x‖22 + ‖H1x‖22
)1/2

by (1) and Definition III.2. So throughout the paper, we require
that analysis filter banks (H0,H1) have �2-stability.

For any x ∈ �2, direct calculation yields

‖H0x‖22 + ‖H1x‖22 = xT
(
HT

0 H0 +HT
1 H1

)
x. (25)

This leads to the following characterization on the �2-stability.
Proposition IV.3: The analysis filter bank (H0,H1) has �2-

stability if and only if H := HT
0 H0 +HT

1 H1 is positive defi-
nite. Moreover, the lower and upper stability bounds C2 andD2

are given by

C2
2 = (‖H−1‖B2

)−1 and D2
2 = ‖H‖B2

. (26)

For graph filters H0 and H1 of the form (16), HT
0 H0 +

HT
1 H1 is a positive definite matrix with eigenvalues
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TABLE I
THE LOWER AND UPPER STABILITY BOUNDS FOR SPLINE ANALYSIS FILTER

BANK OF ORDER TWO

(P0(λn))
2 + (P1(λn))

2, 1 ≤ n ≤ N . Hence the corresponding
lower and upper stability bounds C2 and D2 are evaluated by

C2 = inf
1≤n≤N

√
(P0(λn))2 + (P1(λn))2

≤ sup
1≤n≤N

√
(P0(λn))2 + (P1(λn))2 = D2. (27)

Taking polynomials P0(t) = (1− t/2)n and P1(t) = (t/2)n in
(27), and recalling that the eigenvalues of Lsym

G lie in the in-

terval [0, 2], we obtain that spline filter banks (Hspln
0,n ,Hspln

1,n )

of order n ≥ 1 has �2-stability with lower bound 2−n+1/2 and
upper bound 1.
Filters in a stable filter bank on �p are graph filters on �p, 1 ≤

p ≤ ∞. In the following theorem, we show that analysis filter
banks are stable on �p, 1 ≤ p ≤ ∞, with quantitative estimates
on their lower and upper stability bounds by some constants
independent of the order of the graph.

Theorem IV.4: Let filtersH0 andH1 have bandwidth σ ≥ 1,
setH := HT

0 H0 +HT
1 H1 and denote the condition number of

the matrix H by

κ = ‖H−1‖B2
‖H‖B2

. (28)

If (H0,H1) has �2-stability, then it has �p-stability for all 1 ≤
p ≤ ∞. Moreover, we have the following estimates for its lower
and upper stability bounds Cp and Dp:

Cp ≥ ‖H‖1/2B2

d!2d+1(D1(G))2(σ + 1)2dκd+2
(29)

and

Dp ≤ 2D1(G)(σ + 1)d‖H‖1/2B2
, (30)

where d and D1(G) are the Beurling dimension and density of
the graph G respectively.
The lower bound estimate forCp in (29) and the upper bound

estimate Dp in (30) are quite conservative. Shown in Table I
are numerical results of the lower and upper stability bounds
Cp and Dp, p = 1, 2, 4,∞ for the spline analysis filter bank
(Hspln

0,n ,Hspln
1,n ) of order n = 2, where Minnesota and RGGN

stand for the Minnesota traffic graph and random geometric
graph of orderN in Figure 2 respectively, and SST is the graph
used to describe sea surface temperature of 100 observation sta-
tions in Figure 8. Our numerical results confirm that the esti-
mates of lower and upper stability bounds Cp and Dp in (29)
and (30) are comparable with different p, cf. [41], [42] for his-
torical remarks and recent advances on stability bound estimates
for matrices with certain off-diagonal decay.

V. SYNTHESIS FILTER BANKS AND BEZOUT IDENTITY

Let (H0,H1) be a normal graph filter bank with �2-stability.
In this section, we propose an algebraic method to construct
graph filters G0 and G1 so that the NSGFB with the analysis
filter bank (H0,H1) and synthesis filter bank (G0,G1) satisfies
the perfect reconstruction condition (1) and the bandwidth of
synthesis filter bank (G0,G1) is no larger than the bandwidth
of the analysis filter bank (H0,H1).

Theorem V.1: Let (H0,H1) be a normal filter bank with �2-
stability. Assume that (H0,H1) is of the form (16) for some
polynomials P0 and P1. If polynomials Q0 and Q1 satisfy

P0(z)Q0(z) + P1(z)Q1(z) = 1, z ∈ C, (31)

then the NSGFBwith the analysis filter bank (H0,H1) and syn-
thesis filter bank (G0,G1) satisfies the perfect reconstruction
condition (1), where

G0 = Q0(L
sym
G ) and G1 = Q1(L

sym
G ). (32)

Proof: The conclusion follows immediately from (16), (31),
and (32). �
The approachof constructing synthesis filter banks via solving

the Bezout identity (31) provides a tool to design them without
a priori knowledge of global topological structure of the resid-
ing graph and then it simplifies their designs for perfect signal
reconstruction. It is well known that the Bezout identity (31) is
solvable if and only if polynomials P0 and P1 have no common
root [37]. Recall from (20) that P0(0) = 1 and P1(0) = 0. Then
we can find a unique solution pair (QB

0 , Q
B
1 ) to the Bezout iden-

tity (31) such thatQB
0 (0) = 1,QB

1 (0) = 0 and the degree ofQB
0

(resp. QB
1 ) is no larger than the degree of P1 (resp. P0). Using

the above polynomial pair, we define a filter bank (GB
0 ,G

B
1 ) by

GB
0 = QB

0 (L
sym
G ) and GB

1 = QB
1 (L

sym
G ). (33)

The above filter bank (GB
0 ,G

B
1 ) has bandwidth no larger than

bandwidth of the analysis filter bank (H0,H1), and it together
with the analysis filter bank (H0,H1) forms an NSGFB satisfy-
ing the perfect reconstruction condition (1) by Theorem V.1. So
we call the filter bank (GB

0 ,G
B
1 ) in (33) as the synthesis filter

bank constructed from Bezout approach, and use the superscript
B to distinguish from arbitrary synthesis filter banks constructed
in Theorem V.1.
Following (33), we define synthesis spline filtersGB,spln

0,n and

GB,spln
1,n of order n ≥ 1 by

GB,spln
l,n = QB,spln

l,n (Lsym
G ), l = 0, 1, (34)

where QB,spln
0,n (t) = Qn(t/2) +Qn(1)(t/2)

n, QB,spln
1,n (t) =

Qn(1− t/2)−Qn(1)(1− t/2)n, and

Qn(t) =

n−1∑
l=0

(
2n− 1

l

)
(1− t)n−1−ltl.

The filter bank (GB,spln
0,n ,GB,spln

1,n ) is the synthesis filter bank

constructed from Bezout approach, since QB,spln
0,n and QB,spln

1,n

are polynomials of degree n which satisfies QB,spln
0,n (0) = 1,

QB,spln
1,n (0) = 0 and (1− t/2)nQB,spln

0,n (t) + (t/2)nQB,spln
1,n (t)

= (1− t/2)nQn(t/2) + (t/2)nQn(1− t/2) = 1 by (3) and
[14, Proposition 6.1.2]. Therefore the NSGFB with the analysis
spline filter bank (Hspln

0,n ,Hspln
1,n ) and synthesis spline filter bank

(GB,spln
0,n ,GB,spln

1,n ) satisfies the perfect reconstruction condition
(1).
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Write Gl = (gl(i, j))i,j∈V , l = 0, 1. As the synthesis fil-
ters G0 and G1 have finite bandwidth σ̃ ≤ max(deg(Q0),
deg(Q1)), the synthesis procedure can be implemented in a dis-
tributed manner,

x̃(k) =
∑

ρ(j,k)≤σ̃

(g0(k, j)z̃0(j) + g1(k, j)z̃1(j)), k ∈ V, (35)

where x̃ = (x̃(i))i∈V is the reconstructed signal and Ψl(zl) =
(z̃l(i))i∈V , l = 0, 1, are outputs of subband processing. Hence
values of the reconstructed signals x̃ at each vertex k ∈ V are
“weighted” sums of values of the subband processed outputs
Ψ0(z0) and Ψ1(z1) in a σ̃-neighborhood of k ∈ V , cf. (18) for
distributed implementation of the analysis procedure. Therefore
for the synthesis procedure, data processing cost and computa-
tional burden for each agent is about O(σ̃d) manipulations and
additions (independent on N ) and the total computational cost
for the whole graph isO(σ̃dN), where d andN are the Beurling
dimension and the order of the graph G respectively.
In real world applications of an NSGFB such as the proposed

distributed denoising method in Section VIII, the subband sig-
nals z0 and z1 in (17) are processed via some (non)linear pro-
cedure, such as hard/soft thresholding and quantization. In this
case, the reconstructed signal

x̃ = G0Ψ0(z0) +G1Ψ1(z1) (36)

is not necessarily the same as the input signal x, where Ψ0,Ψ1

are subband processing operators. Next, we show that the recon-
struction error is mainly dominated by the error caused by the
subband processing.

Proposition V.2: Let G, d, D1(G), (H0,H1) and (G0,G1)
be as in Theorem V.1. Assume that the error caused by the sub-
band processing Ψl on subband signals zl = Hlx, l = 0, 1, is
dominated by ε for any input signal x ∈ �p, i.e.,

‖zl −Ψl(zl)‖p ≤ ε, l = 0, 1, (37)

where ε ≥ 0 and 1 ≤ p ≤ ∞. For the input signal x ∈ �p, the
reconstructed signal x̃ in (36) via the corresponding NSGFB
belongs to �p and satisfies

‖x̃− x‖p ≤ D1(G)(σ̃ + 1)d(‖G0‖∞ + ‖G1‖∞)ε, (38)

where σ̃ is the bandwidth of the synthesis filter bank (G0,G1).
Our representative subband processing procedures Ψ are

hard/soft thresholding and uniform quantization. For those
cases, the subband processing Ψ is of the form Ψ(z) =
(ψ(z(i)))i∈V for z = (z(i))i∈V . Thus the subband processing
can be implemented in a distributed manner and the resulted
error is bounded (i.e., (37) holds for p = ∞) by the threshold-
ing and quantization level; see Table VI in Section VIII. This
together with (18) and (35) implies that the NSGFB with analy-
sis/synthesis filter banks in Theorem V.1 can be implemented in
a distributed manner too, provided that the subband processing
can be.

VI. SYNTHESIS FILTER BANK AND OPTIMIZATION

Let (H0,H1) be a normal graph filter bank with �2-stability.
For the distributed implementation of synthesis procedure on
SDN or a graph of large order, (approximately) sparse and lo-
calized synthesis filter banks are favorable. In this section, we
propose solving the minimization problem

min
G0,G1

‖G0‖2F + ‖G1‖2F subject toG0H0 +G1H1 = I

(39)

to construct approximately sparse synthesis filter banks. The
minimization problem (39) is a convex relaxation of the con-
ventional sparse minimization problem:

min
G0,G1

‖G0‖0 + ‖G1‖0 subject toG0H0 +G1H1 = I,

(40)

where ‖A‖0 is the number of nonzero entries in a matrixA. Al-
though the unique solution of the minimization problem (39)
is not the sparsest synthesis filter banks in the conventional
sparse minimization problem (40), we observe that it has a
closed form (42), and it is approximately sparse and localized by
Theorem VI.1.
Define the Lagrange function L of the constrained optimiza-

tion problem (39) by

L(G0,G1,ΘΘΘ) = ‖G0‖2F + ‖G1‖2F
− tr

(
(G0H0 +G1H1 − I)ΘΘΘT

)
,

where ΘΘΘ is the matrix-valued Lagrange multiplier. By direct
calculation, we have⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂L
∂G0

= 2G0 −ΘΘΘHT
0

∂L
∂G1

= 2G1 −ΘΘΘHT
1

∂L
∂Θ

= G0H0 +G1H1 − I.

(41)

Set H = HT
0 H0 +HT

1 H1. Solving

∂L
∂G0

=
∂L
∂G1

=
∂L
∂ΘΘΘ

= 0

leads to the unique solution of the constrained optimization prob-
lem (39),

GL
0 = H−1HT

0 and GL
1 = H−1HT

1 . (42)

The synthesis filter bank (GL
0 ,G

L
1 ) in (42) satisfies (1), and the

filterGL
0 passes the normalized constant signal D1/2

G 1, as

GL
0D

1/2
G 1 = H−1HT

0 D
1/2
G 1

= H−1(HT
0 H0 +HT

1 H1)D
1/2
G 1 = D

1/2
G 1

by (2) and (42).We call the filter bank (GL
0 ,G

L
1 ) as the synthesis

filter bank constructed from optimization approach and use the
superscript L to distinguish from other synthesis filter banks
satisfying (1).
For the case that H is a diagonal matrix, the synthesis filter

bank (GL
0 ,G

L
1 ) in (42) has the same bandwidth as the analysis

filter bank (H0,H1), and its entries satisfy

|gLl (i, j)| ≤
{ ‖H−1‖B2

‖Hl‖∞ if ρ(i, j) ≤ σ

0 otherwise,
(43)

where GL
l := (gLl (i, j))i,j∈V , l = 0, 1.

Letκbe the condition number of thematrixH in (28). It iswell
known that κ > 1 when H is not a diagonal matrix. For κ > 1,
the synthesis filter bank (GL

0 ,G
L
1 ) in (19) does not necessarily

have a small bandwidth, however it always has an exponential
off-diagonal decay, and hence it is approximately sparse, see
[43] for sparsity measurements of a matrix.

Theorem VI.1: Let (H0,H1) be a normal graph filter bank
with �2-stability, and GL

l := (gLl (i, j))i,j∈V , l = 0, 1, be as in
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(19). Assume that κ > 1, then

|gLl (i, j)| ≤ D1(G)(σ + 1)d(1− 1/κ)−1/2

× ‖H−1‖B2
‖Hl‖∞ exp

(
− θ

2σ
ρ(i, j)

)
(44)

hold for all i, j ∈ V and l = 0, 1, where θ = ln(κ/(κ− 1)),σ ≥
1 is the bandwidth of the analysis filter bank (H0,H1), and d
andD1(G) are the Beurling dimension and density of the graph
G respectively.

Remark VI.2: Agents in an SDN may lose data processing
ability and/or communication capability. In that case, outputs of
the analysis procedure of an NSGFB can be considered as being
corrupted by shot noises. The exponential off-diagonal decay
property in Theorem VI.1 implies that the reconstructed signal
suffers mainly in their neighborhood of limited size.

Remark VI.3: By the exponential off-diagonal decay prop-
erty in Theorem VI.1, the synthesis filters (GL

0 ,G
L
1 ) are filters

on �p, 1 ≤ p ≤ ∞,

‖GL
l ‖Bp

≤ d!2d(D1(G))2(σ + 1)2dκd+1(1− 1/κ)−1/2

× ‖H−1‖B2
‖Hl‖∞, l = 0, 1. (45)

The above conclusion with p = ∞ indicates that the NSGFB
does not have a resonance effect.
Applying similar arguments used in the proof of Proposition

V.2, we have the following result.
Proposition VI.4: Let G, (H0,H1), (G

L
0 ,G

L
1 ) be as in

Theorem VI.1, and let p,Ψ0,Ψ1, ε be as in Proposition V.2.
Assume that the input signal x of the corresponding NSGFB be-
longs to �p, then the reconstructed signal x̃ = GL

0Ψ0(H0x) +
GL

1Ψ1(H1x) via the NSGFB belongs to �p and

‖x̃− x‖p ≤ d!2d(D1(G))2(σ + 1)2dκd+1‖H−1‖B2

× (1− 1/κ)−1/2 (‖H0‖∞ + ‖H1‖∞) ε. (46)

Solving the constrained optimization program (39) associated
with the analysis spline filter banks (Hspln

0,n ,Hspln
1,n ), we have the

synthesis spline filter banks (GL,spln
0,n ,GL,spln

1,n ), n ≥ 1, where

GL,spln
l,n =

(
(Hspln

0,n )2 + (Hspln
1,n )2

)−1

Hspln
l,n , l = 0, 1. (47)

The synthesis spline filtersGL,spln
0,n andGL,spln

1,n , n ≥ 1, have full
bandwidth, however they have exponential off-diagonal decay
by (44) and Theorem VI.1,

|gL,splnl,n (i, j)| ≤ 23n−3/2(22n−1 − 1)−1/2(n+ 1)dD1(G)

× exp

(
− ln(22n−1/(22n−1 − 1))

2n
ρ(i, j)

)
, i, j ∈ V,

where GL,spln
l,n = (gL,splnl,n (i, j))i,j∈V , l = 0, 1.

AsUTx is thought as a graph Fourier transform of the signal
x, we may use the diagonal vector P (λλλ) of P (ΛΛΛ) to describe
frequency response of the filter A = P (Lsym

G ) = UTP (ΛΛΛ)U
in (7) where λλλ = (λ1, . . . , λN ) is composed of eigenvalues
0 ≤ λ1 ≤ · · · ≤ λN ≤ 2 of the symmetric normalized Lapla-
cian Lsym

G . Shown in Figure 3 are frequency responses of the

analysis spline filter banks (Hspln
0,n ,Hspln

1,n ) of ordern, the synthe-

sis spline filter banks (GB,spln
0,n ,GB,spln

1,n ) in (34), and the synthe-

sis spline filter banks (GL,spln
0,n ,GL,spln

1,n ) just constructed, where
n = 1, 2. It is observed that the frequency responses of analy-
sis spline filter banks (Hspln

0,n ,Hspln
1,n ) and synthesis spline filter

banks (GL,spln
0,n ,GL,spln

1,n ) have certain complementary property,

while the synthesis spline filter banks (GB,spln
0,n ,GB,spln

1,n ) con-
structed via solving a Bezout identity do not.

VII. ITERATIVE DISTRIBUTED ALGORITHM FOR

SYNTHESIS PROCEDURE

For the NSGFB with synthesis filter banks in Theorem V.1,
the implementation of the corresponding synthesis procedure in
a distributed manner has been discussed in (35). For the NSGFB
with the analysis filter bank (H0,H1) and synthesis filter bank
(GL

0 ,G
L
1 ) constructed from optimization approach, the output

x̃ of the synthesis procedure is

x̃ = GL
0 z̃0 +GL

1 z̃1, (48)

where z̃0 and z̃1 be outputs of subband processing. As filters
GL

0 andGL
1 may have full bandwidth, it is infeasible to evaluate

GL
0 z̃0 and GL

1 z̃1 directly in a distributed manner. In this sec-
tion, we circumvent directly evaluating the synthesis filter bank
(GL

0 ,G
L
1 ) by proposing an iterative distributed algorithm to

implement the synthesis procedure (48), which has linear com-
plexity and is implementable in SDNs without a fusion center.
The proposed iterative distributed algorithm is based on two

pivotal observations. The first observation is that the output sig-
nal x̃ in (48) is the unique solution of the following global least
squares problem:

min
x

‖H0x− z̃0‖22 + ‖H1x− z̃1‖22. (49)

To solve the global optimization problem (49) in a distributed
manner, we introduce a family of least squares problems in the
(2r)-neighborhood of vertices k ∈ V :

min
x

‖H0χ
2r
k x− z̃0‖22 + ‖H1χ

2r
k x− z̃1‖22, (50)

where for any k ∈ V and s ≥ 0, χs
k is the diagonal matrix

χs
k : (x(i))i∈V 
−→ (χB(k,s)(i)x(i))i∈V , (51)

whose diagonal entries take values of the indicator function
χB(k,s) on the ball B(k, s) centered at node k with radius s.
For any k ∈ V , we differentiate (50) with respect to χ2r

k x to
obtain a solution of the local least squares problem (50),

vk,r = χ2r
k (χ2r

k Hχ2r
k )†χ2r

k (HT
0 z̃0 +HT

1 z̃1), (52)

where H = HT
0 H0 +HT

1 H1. The second crucial observation
is that the above solution vk,r provides a local good approxi-
mation to the solution x̃ of the least squares problem (49) in a
r-neighborhood of the vertex k ∈ V , but not in the whole 2r-
neighbor regions due to boundary effects, see Figure 4 for a
numerical demonstration. Therefore we can patch vk,r, k ∈ V ,
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Fig. 3. Plotted in (a) and (b) are the frequency responses of analysis/synthesis spline filters of order n = 1, 2 on the Minnesota traffic graph. Plotted in (c) and
(d) are the frequency responses of analysis/synthesis spline filters of order n = 1, 2 on the random geometric graph RGG4096 in Figure 2.

Fig. 4. Plotted are the difference in the 2r-neighborhood of a random signal
xo and its local approximation vk,r on the Minnesota traffic graph (left) and
on the random graph RGG4096 (right), where r = 6, the center k is circled in
blue, the vertices in the outlying regionB(k, 2r)\B(k, r) are circled in red. In
the simulation, the signal xo has entries being randomly chosen from [−1, 1],
the analysis filter bank is the spline filter bank (Hspln

0,2 ,Hspln
1,2 ) of order 2, and

vk,r is given in (52). The maximal error between xo and vk,r on vertices in
the r-neighborhood B(k, r) and in the outlying region B(k, 2r)\B(k, r) are
0.0234, 0.7080 for the Minnesota traffic graph, and 0.0049, 0.6545 for the
random graph RGG4096 respectively.

together

vr =

(∑
k′∈V

χr
k′

)−1 ∑
k∈V

χr
kvk,r = J(HT

0 z̃0 +HT
1 z̃1) (53)

to generate a good approximation,

‖vr − x̃‖p ≤ δr,σ‖x̃‖p, (54)

to the solution x̃ of the least squares problem (49) in �p norm,
where δr,σ ∈ (0, 1), the radius parameter r ≥ 1 is chosen appro-
priately, and

J =

(∑
k′∈V

χr
k′

)−1 ∑
k∈V

χr
k(χ

2r
k Hχ2r

k )†χ2r
k . (55)

Set filters

J0 = JHT
0 and J1 = JHT

1 , (56)

which have bandwidths σ(J0,J1) ≤ σ + 4r and approximate
synthesis filtersGL

0 andGL
l respectively when r is sufficiently

large. Based on (52), (53) and (54), we propose an iterative
distributed algorithm with initials z̃0, z̃1 ∈ �p:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v(m) = J0z̃
(m−1)
0 + J1z̃

(m−1)
1

x(m) = x(m−1) + v(m)

z̃
(m)
0 = z̃

(m−1)
0 −H0v

(m)

z̃
(m)
1 = z̃

(m−1)
1 −H1v

(m)

(57)

for m ≥ 1, where

x(0) = 0, z̃
(0)
0 = z̃0, z̃

(0)
1 = z̃1. (58)

Recall that (H0,H1) and (J0,J1)have bandwidthsσ andσ +
4r respectively. Then the implementation of the above algorithm
at each vertex k requires to store entries in the k-th row of filters
J0 and J1 in the (4r + σ)-hop neighbor of the vertex k, entries
in the k-th row of filtersH0 andH1 in the σ-hop neighbor of the
vertex k, and also the initial data z̃0 and z̃1 in the (4r + σ)-hop
neighbor of the vertex k. In each iteration, the agent k requires
O((4r + σ)d)manipulations and additions and it needs to share
value of the vector v(m) at the vertex k with its σ-hop neighbor,
and values of the vectors z̃(m)

0 and z̃
(m)
1 at the vertex k with its

(4r + σ)-hop neighbor respectively.
Remark VII.1: Decompose H = D+R into a diagonal

component D and the remainder R. Then the classical Jacobi
method to solve the linear system Hx = HT

0 z̃0 +HT
1 z̃1 is

x(m) = D−1(HT
0 z̃0 +HT

1 z̃1 −Rx(m−1)), m ≥ 1. (59)

The Jacobi method converges whenH is diagonally dominated,
which is not necessarily true for the case in our setting. We
observe that for r = 0, the matrix J in (55) is equal to D−1.
Hence the sequence x(m),m ≥ 0, in the proposed algorithm
(57) and (58) with r = 0 is the same as the one in the Jacobi
method (59) with initial x(0) = 0.

In the next theorem, we further show that the iterative algo-
rithm (57) and (58) converges exponentially when r is appropri-
ately selected.

Theorem VII.2: Let (H0,H1) be a normal filter bank with
�2-stability, κ > 1 be the condition number of the matrix H :=
HT

0 H0 +HT
1 H1 given in (28), and let (GL

0 ,G
L
1 ) be as in (42).

Set

δr,σ :=
(D1(G))2(2σ + 1)dκ2

κ− 1
exp

(
− θ

2σ
r

)
(3r + 2σ + 1)d,

(60)

where θ = ln(κ/(κ− 1)), σ ≥ 1 is the bandwidth of the anal-
ysis filter bank (H0,H1), and d and D1(G) are the Beurl-
ing dimension and density of the graph G respectively. Take
z̃0, z̃1 ∈ �p, and let x(m),m ≥ 0, be as in (57) and (58). If the
radius parameter r is so chosen that

δr,σ ∈ (0, 1), (61)

then x(m),m ≥ 0, converges to x̃ in (48) exponentially,

‖x(m) − x̃‖p ≤ (δr,σ)
m‖x̃‖p, m ≥ 0. (62)

By (60) and (62) in Theorem VII.2, the iterative algorithm
(57) and (58) has exponential convergence when a large radius
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TABLE II
PERFORMANCE OF THE PROPOSED ITERATIVE DISTRIBUTED ALGORITHM TO

RECOVER SIGNALS ON THE MINNESOTA TRAFFIC GRAPH

TABLE III
PERFORMANCE OF THE PROPOSED ITERATIVE DISTRIBUTED ALGORITHM TO

RECOVER SIGNALS ON THE RANDOM GEOMETRIC GRAPH RGG4096

IN FIGURE 2

parameter r is chosen. The convergence rate of iterative algo-
rithm depends on the radius parameter r, as observed from (60)
and (62) in Theorem VII.2. Notice that graph filters J, J0 and
J1 have their bandwidths satisfyingσ(J) ≤ 4r,σ(J0) ≤ 4r + σ
and σ(J1) ≤ 4r + σ. Hence for a larger r, heavier burden arises
at each iteration, which implies that each vertex in the graph
G should have more data storages, better computing abilities
and stronger communication capacities in real world applica-
tions. Shown in Tables II and III are the averageEm,r of relative
maximal reconstruction error‖x(m) − x‖∞/‖x‖∞ over 50 trials
versus the numberm ≥ 1 of iterations and the radius parameter
r ≥ 0, where (Hspln

0,n ,Hspln
1,n )with n = 2 are used as analysis fil-

ter banks, the signal x in Tables II and III is randomly selected
on the Minnesota traffic graph and on the random geometric
graphRGG4096 in Figure 2 respectively. This demonstrates that
the iterative algorithm (57) and (58) converges faster for larger
radius r, and the original signal can be well approximated in one
step when a large radius r is chosen.
By (60) andTheoremVII.2, there is a radius parameter r0 such

that the iterative algorithm (57) and (58) converges exponentially
whenever r ≥ r0.We emphasize that the above radius parameter
r0 can be selected to be independent of the order of the graph
G. Our simulation indicates that the iterative algorithm (57) and
(58)with r = 0, i.e. the Jacobi iterativemethod inRemarkVII.1,
diverges for some bounded inputs on theMinnesota traffic graph
and on some random geometric graphs; see the first column of
Tables II and III.
The iterative algorithm (57) and (58) can be realized in a

distributed manner, because all matrices Hl = (hl(i, j))i,j∈V
and Jl = (jl(i, i

′))i,i′∈V , l = 0, 1, have small bandwidths. The
detailed implementation is given in Algorithm 1, see Figure 5
for the block diagram, in which Hl,k = (hl(k, i))i∈B(k,σ) and
Jl,k = (jl(k, i))i∈B(k,4r+σ), l = 0, 1. InAlgorithm1, every ver-
tex k ∈ V is required to store data of size O((4r + σ)d), to

Fig. 5. Block diagram of the Algorithm 1.

Fig. 6. Block diagram of an NSGFB-based denoising procedure, where x and
x̃ are the noisy input and denoised output respectively, (H0,H1) and (G0,G1)
are analysis filter bank and synthesis filter bank of the NSGFB respectively, and
τ is the hard thresholding constant.

Algorithm 1: Iterative Distributed Algorithm on an Agent
k ∈ V .

Inputs: stop criterion ε and observations z̃l,k
= (z̃l(i))i∈B(k,4r+σ), l = 0, 1.
Initialization: x(k) = 0 and m = 0.
Iteration:
1) Evaluate v(k) = 〈J0,k, z̃0,k〉+ 〈J1,k, z̃1,k〉.
2) Update x(k) = x(k) + v(k).
3) Send data v(k) to all σ-hop neighbors, receive data
v(i), i ∈ B(k, σ)\{k}, from all σ-hop neighbors, and
generate a vector vk = (v(i))i∈B(k,σ).
4) Evaluate z̃l(k) = z̃l(k)− 〈Hl,k,vk〉, l = 0, 1.
5) Send data z̃0(k) and z̃1(k) to all (4r + σ)-hop
neighbors, receive data z̃0(i) and z̃1(i), i ∈ B(k, 4r+
σ)\{k}, from all (4r + σ)-hop neighbors, and generate
vectors z̃l,k = (z̃l(i))i∈B(k,4r+σ), l = 0, 1.
6) Evaluate ‖vk‖∞ ≤ ε. If yes, terminate the iteration
and output x(k) and m. Otherwise, set m = m+ 1 and
return to Step 1).
Outputs: x(k) and m.

perform O((4r + σ)d) algebraic manipulations in each itera-
tion, and to transmit data to its (4r + σ)-hop neighbors twice in
each iteration. By the exponential convergence of the iterative
algorithm (57) and (58), the total cost for each agent to imple-
ment Algorithm 1 is O((4r + σ)d log(‖x‖∞/ε)) (independent
on N ), and the total computational cost for the whole graph is
O((4r + σ)d log(‖x‖∞/ε)N), where ε is the stop criterion.
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VIII. DISTRIBUTED DENOISING

For signal processing on an SDN without a fusion center, the
recruiting of a distributed algorithm is indispensable since the
whole adjacency matrix is not available at each agent due to
the limited communication capacity of each agent on SDNs [7].
Given an NSGFB with analysis filter bank (H0,H1) and syn-
thesis filter bank (G0,G1), we propose a denoising technique
by applying hard thresholding operator Tτ , τ ≥ 0, to the high-
pass subband signal, where the hard thresholding function is
Tτ (t) = tU(|t| − τ) and the unit step function U(t) takes value
1 for t > 0 and zero otherwise, cf. [27], [28], [30], [31]. Pre-
sented in Figure 6 is a block diagram of the proposed denoising
algorithm. In this section, we demonstrate the performance of
the proposed denoising procedure associated with spline/node-
variant NSGFBs, which can be implemented in a distributed
manner and hence it is beneficial to (local) noise suppression on
SDNs (graphs) of very large size.
In the simulations, the noisy input is

x = xo + εεε, (63)

where xo = (xo(i))i∈V is the original graph signal and the ran-
dom noise εεε = (ε(i))i∈V has value ε(i) at vertex i ∈ V obey-
ing uniform distribution on [−η, η]. In the simulations, we use
the representative spline/node-variant NSGFBs. The spline NS-
GFBs contain analysis spline filter banks (Hspln

0,n ,Hspln
1,n ) in (3)

and synthesis spline filter banks being either (GB,spln
0,n ,GB,spln

1,n )

in (34) or (GL,spln
0,n ,GL,spln

1,n ) in (47), where n ≥ 1. They are
abbreviated by NSGFB-Bn and NSGFB-Ln respectively. The
above node-variant analysis filter bank (4) is not in the polyno-
mial form (7) in general, however we can still construct well-
localized synthesis filter bank (GL,nv

0 ,GL,nv
1 ) via solving the

minimization problem (39), and we use the abbreviated nota-
tion NSGFB-NVF to represent the corresponding NSGFB.
The denoising procedure is performed by retaining the low-

pass subband signal and applying the hard thresholding opera-
tion Tτ to the high-pass subband signal, where τ > 0 is chosen
appropriately. Thus the denoised output is

x̃ = GB,spln
0,n z̃0 +GB,spln

1,n z̃1 (64)

for NSGFB-Bn,

x̃ = GL,spln
0,n z̃0 +GL,spln

1,n z̃1 (65)

for NSGFB-Ln, and

x̃ = GL,nv
0 z̃0 +GL,nv

1 z̃1 (66)

for NSGFB-NVF, respectively, where z̃0 = z0, z̃1 = Tτ (z1),
and zl = Hspln

l,n x, n ≥ 1 in (64) and (65), or zl = Hnv
l x in (66),

l = 0, 1 respectively. For the above denoising procedure, we
use 20 log10 ‖xo‖p/‖x− xo‖p to measure the input �p-signal-
to-noise ratio (�p-SNR) in dB, and 20 log10 ‖xo‖p/‖x̃− xo‖p
to measure the output �p-SNR in dB, where 1 ≤ p ≤ ∞.
In our simulations, the NSGFB-based denoising procedure is

performed on a DELL PC by mimicking the distributed imple-
mentation in (18), (35) and Algorithm 1, except for the last two
simulations on performance and time consumption to denoise
signals residing on random geometric graphs of large order. In
the spirit of reproducible research, we will make our matlab
codes available to the public for academic purposes after the
publication.
TheMinnesota traffic graph is a test bed for various techniques

in signal processing on graphs of medium order [10], [22], [24],

TABLE IV
DENOISING PERFORMANCE ON THE MINNESOTA TRAFFIC GRAPH MEASURED

BY THE �2-SNR

TABLE V
DENOISING PERFORMANCE ON THE RANDOM GEOMETRIC GRAPH RGG4096

MEASURED BY THE �2-SNR

[27]. The denoising performance of the proposed spline/node-
variant NSGFBs on the Minnesota graph is presented in Ta-
ble IV, where the original signal xo is the blockwise constant
function in Figure 2, the input and output �2-SNRs are the aver-
agevalues over 50 trials and the threshold value τ is selected to be
3η [24], [27], [44]. Shown also in Table IV are the performance
comparisons with the biorthogonal graph filter bank (graphBior)
in [23], theM -channel oversampled graph filter bank (OSGFB)
in [24], the pyramid transform (PRT) in [27], the graph total
variation regularization denoising method (GTVR) in [45], and
the spectral graph trilateral filter denoising algorithm (SGTF)
in [44], where the corresponding output �2-SNRs are calculated
from the accompanying codes in these references. It indicates
that the spline NSGFBs and the OSGFB outperform other four
methods in the small noise scenario, the spline and node-variant
based NSGFBs have the best performance in the moderate noise
environment, and the SGTF stands out from the rest in the strong
noise case.
We test the denoising performance of the proposed

spline/node-variantNSGFBs on the randomgeometric graphs of
medium order reproduced by theGSPToolbox [38]. Presented in
Tables V and VI are the denoising performance of spline/node-
variant NSGFBs and the performance comparison with graph-
Bior, OSGFB, PRT, GTVR and SGTF on the random geomet-
ric graph RGG4096, where xo is the blockwise polynomial in
Figure 2. In denoising procedure, the threshold value τ is se-
lected to be 3η, and the �2-SNRs and �∞-SNRs are the average
values over 50 trials. From the �2-SNRmeasurements inTableV,
we notice that the NSGFB-NVF outperforms all other denoising
methods in small and moderate noise scenarios, while the SGTF
has the best performance in the strong noise scenario. From the
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Fig. 7. Plotted are denoising performance comparison on the random geometric graphRGG4096: from top left to top right are noisy signal onRGG4096, residue
through PRT, residue through GTVR respectively. From middle left to right are residue through SGTF, residue through NSGFB-B1, residue through NSGFB-B2
respectively. From bottom left to right are residue through NSGFB-L1, residue through NSGFB-L2, residue through NSGFB-NVF respectively.

TABLE VI
DENOISING PERFORMANCE ON THE RANDOM GEOMETRIC GRAPH RGG4096

MEASURED BY THE �∞-SNR

�∞-SNR measurements in Table VI, we observe that the GTVR
and the proposed spline/node-variant NSGFBs have comparable
performances on denoising. In particular, the GTVR surpasses
other denoising methods in small and moderate noise scenarios
and the proposed spline NSGFBs stand out in the strong noise
scenario. Also from Table V and VI, we see that for p = 2 and
p = ∞, differences between the output �p-SNRs and the input
�p-SNRs are in some range independent on the input noise level
η. As �p-SNRs are in the logarithm scale of �p fidelity measure-
ments, this confirms the conclusions inPropositionsV.2 andVI.4
that the output error in the �p fidelity measurement is dominated
by a multiple of the input noise.
Shown in Figure 7 is the comparison of the denoising perfor-

mance of the proposed spline/node-variant NSGFBs, graphBior,

SGTF, GTVR for the signal used for Tables V and VI with noise
level η = 1/2 [24], [27].We notice that all denoising techniques
have satisfactory performance inside the strip where the signal
has small variation, and that the proposed spline/node-variant
NSGFBs have better performance on noise suppression than the
other threemethods do near the boundary of two adjacency strips
where the signal has large variation.
We next demonstrate the denoising performance of the pro-

posed spline /node-variant NSGFBs on some real dataset, par-
ticularly on the sea surface temperature dataset published by
the Earth System Research Laboratory [46], [47]. The dataset
is acquired at 100 station locations on the Pacific ocean from
170◦ west to 90◦ west and from 60◦ south to 10◦ north with
dynamic range from −1.32 ◦C to 30.72 ◦C, and each station
records monthly mean of the sea surface temperature within a
timeperiod of 1733months fromJanuary 1870 toMay2014. The
underlying graph G of the dataset has 100 vertices representing
observation stations and edges given by 5-nearest neighboring
stations in physical distances [48]. For 1 ≤ t ≤ 1733, let xt

o be
the graph signal that contains the sea surface temperature of
100 observation stations at the t-th month, see Figure 8. In the
simulation, subband signals at the low frequency are retained
and other subband signals are proceeded by hard-thresholding
with threshold τ = 3η, except that for the GTVR, we use the
algorithm in [45]. We compare our NSGFBs with the graph-
Bior in [23], OSGFB in [24], PRT in [27], GTVR in [45] and
SGTF in [44]. Shown in Table VII are the average input �2-
SNRs with noise level η = 1, 2, 5, 10, and the average output
�2-SNRs of xt

o, 1 ≤ t ≤ 1733, where one denoising test is per-
formed on a monthly signal on the sea surface temperature. It is
observed that the proposed NSGFBs have better performance on
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Fig. 8. The graph signal that contains monthly mean of the sea surface tem-
perature of 100 observation stations in June 2013.

TABLE VII
DENOISING PERFORMANCE ON THE SEA SURFACE TEMPERATURE DATASET

MEASURED BY THE �2-SNR

denoising than other methods for η = 1, 2, while the SGTF
method stands out for η = 5, 10.
The proposed denoising algorithm is designed for the dis-

tributed implementation in an SDN with each agent has limited
computing and communicating capability. However due to lo-
calization and sparsity of matrices Jl andHl, l = 0, 1, it can be
implemented in a centralized facility (and also we believe in a
parallel computing framework) very efficiently. So we may ap-
ply the proposed spline NSGFB-based denoising algorithm to
denoise signals residing on random geometric graphs of large
orders 10000 ≤ N ≤ 300000, and we perform the simulations
via Matlab2013b on a DELL T7910 workstation with 20 cores,
where the workstation configuration is Intel(R) Xeon(R) CPU
with two E5-2630 v4 processors (2.20 Hz) and 64G memory.
Shown in Table VIII are average values of the �2-SNRs over 50
trials, where the upper row for each graph orderN corresponds
to the SNRs of input noisy signals while the lower row stands
for the SNRs of denoised signals by NSGFB-L1. In Table VIII,
the denoising performance for signals on a random geometric
graph of order N = 4096 is copied from Table V, and in the
synthesis procedure (65) we use the iterative algorithm (57) and
(58) with the maximal signal adjustment ‖v(m)‖∞ ≤ 10−4 as a
stopping criterion and the radius parameter r = 2. We observe
that the stopping criterion is met after 4 iterations for all orders
N and noise levels η listed in Table VIII. Also, we observe that
the output �2-SNRs of spline NSGFBs have invisible change
for the same input noise level when the order N of the graph

TABLE VIII
DENOISING PERFORMANCE ON RANDOM GEOMETRIC GRAPHS OF ORDER N

MEASURED BY THE �2-SNR

TABLE IX
RUNTIME IN SECONDS OF DENOISING ALGORITHMS ON RANDOM GEOMETRIC

GRAPHS OF ORDER N

G increases. This gives the prominent potential of the proposed
algorithm (57) and (58) to denoise signals on graphs of very
large order.
In addition to the satisfactory denoising performance on

the random geometric graphs of large order, as shown in Ta-
ble IX, the proposed denoising algorithms based on NSGFB-
NVF, NSGFB-L1, NSGFB-B1 and NSGFB-B2 spend less time
in their implementation than graphBior, OSGFB, PRT, GTVR
and SGTF do, except that GTVR consumes less time than the
iterative denoising algorithm based on NSGFB-L2 does. Here
listed in Table IX are average running times in seconds over 50
trials to implement denoising algorithms on random geometric
graphs of large orderN , where noise level is η = 1/2 and the no-
tion ERR means that either the running is above 10000 seconds
or that algorithm is not applicable.
The Algorithm 1 is implementable on SDNs in which there

is no fusion center and each agent is equipped with comput-
ing and communication subsystems. Due to our facility limita-
tion, presented in the simulations above are the NSGFB-based
denoising procedure performed on a PC or a workstation by
mimicking the distributed implementation. We finish this sec-
tion with a signal denoising simulation on random geometric
graph of order N implemented on the Matlab distributed com-
puting server (MDCS) configured across 3 computers (eachwith
3.6 GHz i7CPU and 8G-memory) that totally have 12 workers.
The denoising performance of NSGFB-L1 is the same as that
in Table VIII, while the average CPU time of operating one de-
noising test for N = 10000, 20000, 40000, 80000, 300000 are
39.30, 175.85, 720.23, 3083.40, 5.5451 × 104 seconds, respec-
tively, cf. Table IX on the time consumption to implement signal
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denoising on a workstation. The underlying reason could be the
extra communication cost arisen in data exchanging between
12 workers in each iteration. We remark that the implemen-
tation in Algorithm 1 is designed to minimize the computing
cost. The communication cost could be reduced if in Step 1) of
Algorithm 1 the agent k evaluates all neighboring values v(j)
in its σ-hop neighborhood instead of v(k) only and then the
communication Step 3) in the middle of each iteration could be
eliminated.

IX. CONCLUSIONS

The downsampling and upsampling procedure has been used
in graph wavelet filter banks, while its proper definition is not
obvious especially when the residing graph is of large order
and complicated topological structure. For signal processing
on graphs of large order, we consider an NSGFB that does
not include the downsampling and upsampling procedure. This
greatly simplifies the design of well-localized NSGFBs to sat-
isfy the perfect reconstruction condition. The analysis filter bank
in an NSGFB can be properly selected to have small bandwidth
and to decompose a graph signal into two components carry-
ing different frequency information. Synthesis filter banks can
be constructed from the proposed algebraic and optimization
approaches, which can be implemented in a distributed manner,
and hence the designwill be applicable for SDNswith each agent
equipped with limited data processing and communication abil-
ities. In this paper, NSGFBs are shown to be beneficial to (local)
noise suppression and a distributed denoising technique based
on NSGFBs is demonstrated to have satisfactory performance
against bounded noises.
Exemplary analysis filter banks of NSGFBs in this paper are

polynomials of a shift matrix of the graph, while the optimal
graph filters associated with some fidelity measures are not of
polynomial form in some applications. Future works will focus
on the design of adaptive analysis filter banks for better fre-
quency decomposition and various applications.

APPENDIX

A. Proof of Theorem IV.4

First we establish the lower bound estimate (29). Set

B = I−H/‖H‖B2
. (A.1)

Then B has bandwidth 2σ, ‖B‖B2
≤ (κ− 1)/κ, and H−1 =

(‖H‖B2
)−1

∑∞
n=0 B

n. WriteH−1 = (g(i, j))i,j∈V . For κ = 1,
we have

H−1 = (‖H‖B2
)−1I and ‖H−1‖Bp

= ‖H−1‖B2
. (A.2)

Now we consider the case that κ > 1. Set θ = ln(κ/(κ− 1)),
and for i, j ∈ V let n0(i, j) be the minimal integer such that
2n0(i, j) ≥ ρ(i, j)/σ. Then

|g(i, j)| = (‖H‖B2
)−1

∣∣∣∣∣∣
∞∑

n=n0(i,j)

Bn(i, j)

∣∣∣∣∣∣
≤ (‖H‖B2

)−1
∞∑

n=n0(i,j)

‖Bn‖B2

≤ ‖H−1‖B2
exp

(
− θ

2σ
ρ(i, j)

)
, (A.3)

where the equality follows from the observation that Bn have
bandwidth 2nσ, the first inequality holds by (14), and the second
inequality is obtained from the definition of the minimal integer
n0(i, j) and the following estimate ‖Bn‖B2

≤ ‖B‖nB2
≤ (1−

1/κ)n, n ≥ 1. By (A.3) and the second inequality in (14) we
have

‖H−1‖Bp
≤ ‖H−1‖B2

× sup
i∈V

∞∑
n=0

∑
2nσ≤ρ(i,j)<2(n+1)σ

exp

(
− θ

2σ
ρ(i, j)

)

≤ ‖H−1‖B2
sup
i∈V

∞∑
n=0

e−nθμ (B(i, 2(n+ 1)σ − 1))

≤ (2σ)dD1(G)‖H−1‖B2

∞∑
n=0

(n+ 1)d(1− κ−1)n

≤ (2σ)dD1(G)‖H−1‖B2

((
1

1− t

)(d)

|t=1−κ−1

)

≤ d!(2σ)dD1(G)κd+1‖H−1‖B2
(A.4)

if κ > 1. Then

‖x‖p ≤ ‖H−1‖Bp
(‖HT

0 ‖Bp
‖H0x‖p + ‖HT

1 ‖Bp
‖H1x‖p)

≤ d!2d(σ + 1)2d(D1(G))2κd+1‖H−1‖B2

× (‖H0‖B2
‖H0x‖p + ‖H1‖B2

‖H1x‖p)
≤ d!2d+1(σ + 1)2d(D1(G))2κd+2‖H‖−1/2

B2

× (‖H0x‖pp + ‖H1x‖pp)
1
p , (A.5)

where the second inequality follows from (A.2) and (A.4), and
the third one holds by (25), (28) and Proposition III.3. This
proves (29), as Cp is the largest constant for (22) and (23) to
hold.
Next we prove (30). Take x ∈ �p, 1 ≤ p < ∞, we have

(‖H0x‖pp + ‖H1x‖pp)1/p

≤ (‖H0‖pBp
‖x‖pp + ‖H1‖pBp

‖x‖pp)1/p

≤ D1(G)(1 + σ)d(‖H0‖B2
+ ‖H1‖B2

)‖x‖p
≤ 2D1(G)(1 + σ)d‖H‖B2

‖x‖p,
where the first inequality follows from the definition of the op-
erator norm ‖ · ‖Bp

of a matrix, the second inequality holds by
(14), and the last inequality holds by (25). This proves (30) for
1 ≤ p < ∞, asDp is the smallest constant for (22) and to hold.
The conclusion (30) for p = ∞ can be proved by a similar

argument.

B. Proof of Proposition V.2

Set z0 = H0x and z1 = H1x. Then

‖x̃− x‖p ≤ ‖G0(z0 −Ψ0(z0))‖p + ‖G1(z1 −Ψ1(z1))‖p
≤ (‖G0‖Bp

+ ‖G1‖Bp
)ε

≤ D1(G)(σ̃ + 1)d(‖G0‖∞ + ‖G1‖∞)ε, (A.6)
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where the first inequality follows from the perfect reconstruc-
tion condition (1) for the NSGFB constructed in Theorem V.1,
the second one holds by (37), and the last estimate is true by
Proposition III.3.

C. Proof of Theorem VI.1

By (42) and (A.3), we have

|gLl (i, j)| ≤ ‖H−1‖B2
‖Hl‖∞

∑
ρ(k,j)≤σ

exp

(
− θ

2σ
ρ(i, k)

)

≤ D1(G)‖H−1‖B2
‖Hl‖∞(σ + 1)d

× exp

(
− θ

2σ
ρ(i, j) +

θ

2

)
, i, j ∈ V,

where l = 0, 1. This proves (44).

D. Proof of Theorem VII.2

Set y(m) = x̃− x(m) and write y(m) = (y(m)(i))i∈V ,m ≥
0. We claim that

y(m) = H−1(HT
0 z̃

(m)
0 +HT

1 z̃
(m)
1 ), m ≥ 0. (A.7)

The above claim holds form = 0, since

y(0)= x̃ = H−1(HT
0 z̃0 +HT

1 z̃1)=H−1(HT
0 z̃

(0)
0 +HT

1 z̃
(0)
1 )

by (48) and (58). Inductively for m ≥ 1, we have

y(m) = H−1(HT
0 z̃

(m−1)
0 +HT

1 z̃
(m−1)
1 )− v(m)

= H−1(HT
0 z̃

(m)
0 +HT

1 z̃
(m)
1 ),

where the first and second equality follows from the inductive
hypothesis and (57) respectively. This completes the proof of
Claim A.7.
Write (χ2r

k Hχ2r
k )−1 = (gk(i, j))i,j∈B(k,2r) and

χr
k(χ

2r
k Hχ2r

k )†χ2r
k H(χ2r+2σ

k − χ2r
k ) = (g̃k(i, j))i,j∈V , k ∈ V.

(A.8)

Following the argument used to prove (A.3), we have

|gk(i, j)| ≤ ‖H−1‖B2
exp

(
− θ

2σ
ρ(i, j)

)
(A.9)

for all i, j ∈ B(k, 2r). By (A.8) and (A.9), we obtain

g̃k(i, j) = 0 (A.10)

where either i 	∈ B(k, r) or j 	∈ B(k, 2r + 2σ)\B(k, 2r), and

|g̃k(i, j)| ≤ ‖H−1‖B2
‖H‖∞

∑
l∈B(j,2σ)

exp

(
− θ

2σ
ρ(i, l)

)

≤ D1(G)(2σ + 1)dκ exp

(
− θ

2σ
r + θ

)
, (A.11)

where i ∈ B(k, r) and j ∈ B(k, 2r + 2σ)\B(k, 2r).
Write v

(m)
k = (v

(m)
k (i))i∈V ,m ≥ 1, k ∈ V . By (57), (A.7),

we have

χr
k(v

(m)
k − y(m−1)) = χr

k(χ
2r
k Hχ2r

k )†χ2r
k

×H(χ2r+2σ
k − χ2r

k )y(m−1).

Combining the above equation with (A.10) and (A.11), we get

|v(m)
k (i)− y(m−1)(i)| =

∣∣∣∣∣∣
∑

j∈B(k,2r+2σ)

g̃k(i, j)y
(m−1)(j)

∣∣∣∣∣∣
≤ D1(G)(2σ + 1)dκ exp

(
− θ

2σ
r + θ

)

×
⎛
⎝ ∑

j∈B(i,3r+2σ)

|y(m−1)(j)|
⎞
⎠ , i ∈ B(k, r). (A.12)

This together with (57) implies that

|y(m)(i)| = |v(m)(i)− y(m−1)(i)|

≤ 1

μ(B(i, r))

∑
k∈B(i,r)

|v(m)
k (i)− y(m−1)(i)|

≤ D1(G)(2σ + 1)dκ exp

(
− θ

2σ
r + θ

)

×
⎛
⎝ ∑

j∈B(i,3r+2σ)

|y(m−1)(j)|
⎞
⎠ (A.13)

for all i ∈ V and m ≥ 1. Using the above componentwise esti-
mate, we obtain

‖y(m+1)‖p ≤ δr,σ‖y(m)‖p, m ≥ 0. (A.14)

Iteratively applying the above estimate proves (62).
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