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Design of Nonsubsampled Graph Filter Banks
via Lifting Schemes

Junzheng Jiang , David B. Tay , Qiyu Sun , and Shan Ouyang

Abstract—Graph filter banks play a crucial role in the vertex
and spectral representation of graph signals. The notion of two-
channel nonsubsampled graph filter banks (NSGFBs) on an undi-
rected graph was introduced recently. The absence of downsam-
pling/upsampling operators allows greater flexibility in the design
ofNSGFBs that achieve perfect reconstruction.However the design
ofNSGFBs that take the spectral response into account has not been
adequately addressed yet. Based on the polynomial/rational lifting
scheme, this letter presents a simplemethod to designNSGFBswith
good spectral response and perfect reconstruction. Experimental
results will demonstrate the effectiveness of the proposedmethod in
tailoring the spectral responses of the lifted NSGFBs. Application
of the NSGFB to denoising will also be considered.

Index Terms—Graph signal processing, nonsubsampled graph
filter bank, lifting scheme, Laplacian matrix.

I. INTRODUCTION

GRAPH signal processing (GSP) is a research field that is
gaining prominence and finds a variety of applications

where the data is defined over an irregular domain, e.g. sensor
networks and social networks [1], [2]. One of the main ideas
behindGSP is the exploitation of pairwise relationships between
data values defined over nodes via a graph model. Some of
the fundamental principles from traditional signal processing
have been extended to the graph domain, giving rise to the
graph Fourier transform [3], graph filter [4], graph wavelet filter
bank [5]–[9], etc. Graph filter banks (GFBs), in particular, is a
topic that has drawn significant attention as they play a crucial
role in the vertex and spectral representation of graph signals.
GFBs with downsampling/upsampling (DU) operators are, in
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general, difficult to analyse and design, except in cases with
special graphs, such as bipartite graphs [6], [7].
In [9], the notion of two-channel nonsubsampled graph filter

banks (NSGFB) was introduced by Jiang, Cheng and Sun.
A two-channel NSGFB consists of an analysis filter bank
{H0,H1} and a synthesis filter bank {G0,G1}. The absence of
the DU operators leads to the following perfect reconstruction
(PR) condition [9]

G0H0 +G1H1 = I. (I.1)

The analysis filter bank {H0,H1} of an NSGFB on a graph
G is said to be normal if (i) the lowpass graph filter passes
the weighted constant signal, i.e. H0D

1/2
G 1 = D

1/2
G 1; and (ii)

the highpass graph filter blocks that signal, i.e. H1D
1/2
G 1 = 0,

whereDG is the degreematrix of the graphG and1 = [1 . . . 1]T .
In [9], the authors proposed two methods to design normal
NSGFBs satisfying the PR condition (I.1) but do not explicitly
take the spectral response into account. The spectral approach
to graph signal transforms provides a representation that is
similar to the Fourier transform for regular-domain signals.
A spectral/frequency domain interpretation of the transforms
allows a distinction between low-frequency and high-frequency
components of a graph signal. Another advantage with the spec-
tral approach is that the spectral filter h(λ) (λ spectral variable)
can be designed independently of the graph structure [5]–[8].
When the filter is applied to a specific graph, the filter adjusts
itself to the structure of the graph when λ is substituted with a
graph matrix, e.g. Laplacian L, which encodes the structure of
the graph.
In this letter, we propose a simple yet flexible method to

design PR NSGFBs that is based on the lifting scheme applied
to the analysis filters. It allows the tailoring of the spectral
response via a lifting filter. Analysis filters with good frequency
characteristics can be designed by optimizing the lifting filters.
Transform based on lifting has also been previously proposed
in [11] for graph signals. Subsampling is however used in [11]
and some edge information are lost because of this. The filters
in [11] are specified in the vertex domain and shaping the spectral
response is not readily achievable. In this work there is no loss
of edge information (as there is no subsampling) and the control
the spectral characteristics of the filters, e.g. low-pass, is easily
achieved.

II. PRELIMINARIES AND LIFTING SCHEME

Let G = (V,E,W) be an undirected weighted graph with no
self-loops and multiple edges, where V = {1, 2, . . . , N} is the
set of nodes,E is the set of edges, andW = [wij ]1≤i,j≤N is the
weighted adjacency matrix. The degree matrixDG is a diagonal
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matrix whose i-th diagonal entry is given by dii =
∑

j∈V wij .
The symmetrically normalized Laplacian matrix is defined as
Lsym
G ≡ I−D

−1/2
G WD

−1/2
G . The eigendecomposition ofLsym

G
is given by Lsym

G = UΛUT , where U is the orthogonal eigen-
vector matrix and Λ = diag(λ1, . . . , λN ) is a diagonal eigen-
value matrix with eigenvalues 0 ≤ λ1 ≤ · · · ≤ λN ≤ 2. The
eigenvalues of Lsym

G can be interpreted as spectral frequen-
cies [5]–[7].
A signal on the graph G is represented by a vector x =

[x1 · · · xN ]T , where each element xi represents a numerical
quantity associated with node i. The graph Fourier transform
x̂ of a graph signal x is given by x̂ = UTx. A graph filter is
represented by a matrix H that acts on an input signal x to
give an output signal y = Hx. A common class of filters are
functions of the normalized Laplacian matrix Lsym

G ,

H = h(Lsym
G ) := Uh(Λ)UT , (II.1)

where h is a function defined on [0, 2] and h(Λ) is a diagonal
matrix with diagonal entries h(λ1), . . . , h(λN ). For a filterH of
the form (II.1) and an input x, the graph Fourier transform of the
corresponding outputHx is given by Ĥx = h(Λ)x̂. Hence the
filterH has frequency response h(λi) at the spectral frequencies
λi, 1 ≤ i ≤ N [1], [3], [5]–[7]. Due to the above observation,
the function h is known as the spectral response function of the
filter H in (II.1).
The lifting scheme, pioneered by Sweldens [10], can improve

the frequency response of the subband filters by using lifting
filters. The lifting in [10] was developed for regular domain
filter banks with critical subsampling. We, however adapt the
lifting for filter banks without subsampling, and operating on
signals defined over irregular domains, i.e. graphs. One of the
main advantages of lifting is that the PR constraint is structurally
imposed, and does need to be explicitly considered in the design
process. In other techniques, such as the complementary filter
method [14], the constraint needs to be explicitly considered,
whichwill complicate the design process.Motivated by this fact,
we apply the lifting scheme to improve the spectral response of
the filters in NSGFBs. There are two approaches to improve the
frequency response characteristic via the lifting scheme. The
first is to apply lifting to the synthesis filter bank,

G0 = GP
0 +RHP

1 , G1 = GP
1 −RHP

0 , (II.2)

where {HP
0 , H

P
1 } and {GP

0 ,G
P
1 } are the prototype analysis

and synthesis filter banks respectively, and R is a lifting filter.
The second is to apply lifting to the analysis filter bank,

H0 = HP
0 +GP

1 R, H1 = HP
1 −GP

0 R. (II.3)

If the prototype NSGFB is assumed to satisfy the PR condition
(I.1), then with the analysis filter bank in (II.3) and prototype
synthesis filter bank {GP

0 ,G
P
1 }, we have GP

0 H0 +GP
1 H1 =

I+ (GP
0 G

P
1 −GP

1 G
P
0 )R. Hence the resultant NSGFB sat-

isfies (I.1) provided that the prototype synthesis filters GP
0

and GP
1 are commutative, i.e., GP

0 G
P
1 = GP

1 G
P
0 . Following

a similar argument, we can show that the resultant NSGFB with
the prototype analysis filters {HP

0 , H
P
1 } which commute, i.e.

HP
0 H

P
1 = HP

1 H
P
0 , and the synthesis filters {G0,G1} in (II.2),

also satisfies (I.1).
Proposition II.1: Let the prototype NSGFB satisfies (I.1),

i.e., GP
0 H

P
0 +GP

1 H
P
1 = I. If the prototype synthesis filters

{GP
0 , G

P
1 } are commutative, then the lifted NSGFB with the

analysis filters in (II.3) satisfies (I.1). Conversely, if the prototype
analysis filters {HP

0 , H
P
1 } are commutative, then the lifted

NSGFB with the synthesis filters in (II.2) satisfies (I.1).
The commutativity between prototype synthesis filters {GP

0 ,
GP

1 } follows if they both can be diagonalized by a common
nonsingularmatrix. In [9], a representative class of analysis filter
bank is the spline filter bank {Hspln

0,n , Hspln
1,n } of order n ≥ 1

given by Hspln
0,n ≡ (I− Lsym

G /2)n, Hspln
1,n ≡ (Lsym

G /2)n. The

corresponding minimum degree synthesis filter bank {Gspln
0,n ,

Gspln
1,n } is designed via the Bezout identity, where Gspln

0,n ≡
Pn(L

sym
G /2), Gspln

1,n ≡ Pn(I− Lsym
G /2), and Pn is the unique

polynomial solution of degree n− 1 to the equation (1−
t)nPn(t) + tnPn(1− t) = 1. Now the synthesis filters are poly-
nomials of the symmetric Laplacian matrix. Therefore, they
share the same orthogonal eigenvector space, and this makes
them commutative. A similar argument can be made for the
commutativity of the prototype analysis filters.

III. DESIGN METHODOLOGY

The role of the analysis filter bank is to decompose the
input signal into different spectral frequency bands, while the
role of the synthesis filter bank is to reconstruct the signal.
The frequency characteristic of the former is therefore more
important than the latter in many applications. With the aim to
achieve good frequency characteristics for the analysis filters,
we concentrate on the lifting scheme (II.3) so that the spectral
responses of the lifted analysis filters approximate the desired
spectral responses d0(λ) and d1(λ). Typical examples of the
desired responses are the ideal brick-wall low-pass/high-pass
functions I0(λ) and I1(λ) given by

I0(λ) ≡
{
1 if λ ∈ [0, 1]
0 if λ ∈ (1, 2]

and I1(λ) ≡
{
0 if λ ∈ [0, 1)
1 if λ ∈ [1, 2].

Consider an NSGFB with its analysis filter bank {HP
0 ,H

P
1 }

and synthesis filter bank {GP
0 ,G

P
1 } being of the form (II.1),

i.e. HP
i = hP

i (L
sym
G ) and GP

i = gPi (L
sym
G ), i = 0, 1 for some

functions hP
i (λ), g

P
i (λ) on the interval λ ∈ [0, 2]. In this sec-

tion, we design lifting filters of the form R = r(Lsym
G ) so

that the spectral response of the lifted analysis filter bank in
(II.3), i.e. {h0(λ), h1(λ)}, approximates the desired responses
{d0(λ), d1(λ)}. One can readily verify that the lifted analysis
filters responses are given by h0(λ) = hP

0 (λ) + gP1 (λ)r(λ) and
h1(λ) = hP

1 (λ)− gP0 (λ)r(λ). Hence the design of the lifting
filterR reduces to finding a function r(λ) so that hi(λ) is close
to di(λ), i = 0, 1, with respect to a chosen error criterion.

A least squares formulation of the design problem is to
determine the lifting filter r(λ) that minimizes

φ(r) =

∫ µp

0

∣
∣h0(λ)− d0(λ)

∣
∣2dλ +

∫ 2

µs

∣
∣h1(λ)− d1(λ)

∣
∣2dλ,

(III.1)
where 0 < μp ≤ 2 and 0 ≤ μs < 2. The first term in the objec-
tive functional φ(r) measures the difference between the lifted
spectral response h0(λ) to the desired spectral response d0(λ)
on [0, μp], while the secondmeasures the difference between the
lifted spectral response h1(λ) to the desired spectral response
d1(λ) on [μs, 2]. The edge frequency parameters μs and μp can
be prescribed by the designer.
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We will address the design of the filter r(λ) with two func-
tional forms. The first is the polynomial form and the second is
the rational form.
1) Polynomial Filters: The lifting filter is given by

r(λ) = r0 +
L∑

l=1

rlλ
l = cTλ r, (III.2)

where cλ ≡ [1 λ · · · λL]T and r = [r0 r1 · · · rL]
T . Define

the spectral response difference as e0(λ) ≡ d0(λ)− hP
0 (λ) and

e1(λ) ≡ d1(λ)− hP
1 (λ). Applying (III.2), we can recast the

minimization problem (III.1) as a least squares problem with
respect to the coefficients vector r,

min
r

rTAr− 2bT r+ c0, (III.3)

where

A =

∫ µp

0

cλ|gP1 (λ)|2cTλ dλ +

∫ 2

µs

cλ|gP0 (λ)|2cTλ dλ, (III.4)

b =

∫ µp

0

gP1 (λ)e0(λ)cλdλ −
∫ 2

µs

gP0 (λ)e1(λ)cλdλ, (III.5)

and c0 =
∫ µp

0 |e0(λ)|2dλ +
∫ 2

µs
|e1(λ)|2dλ. If either (i) the spec-

tral response gP1 (λ) �≡ 0 on [0, μp]; or (ii) gP0 (λ) �≡ 0 on [μs, 2],
then it can be verified that the matrix A in (III.4) is positive
definite and therefore non-singular. Hence the optimal solution
of the problem (III.3) is given by r∗ = A−1b.
The lifted analysis filter bank {H0,H1} in (II.3) may not

be normal even if the prototype analysis filter bank {HP
0 ,H

P
1 }

is. However, it will be normal if the lifting filter R satisfies
RD

1/2
G 1 = 0. The above requirement is met for a lifting filter

R of the form (II.1) if its spectral response function r satisfies
r(0) = 0, which becomes r0 = 0 for a polynomial lifting filter
r(λ) of the form (III.2). Similar to the optimal solution r∗ =
A−1b, for unconstrainted problem (III.3), we can show that
r̃∗ = Ã−1b̃ is the optimal solution of the constrained problem
(III.3) with r0 = 0, where r̃ = [r1 · · · rL]T , c̃λ = [λ · · · λL]T ,
and Ã and b̃ are defined by (III.4) and (III.5) respectively, but
with cλ replaced by c̃λ.
2) Rational Filters: We now consider the design of ratio-

nal lifting filters, i.e. r(λ) = a(λ)
b(λ) , where a(λ) and b(λ) are

polynomials with b(0) = 1. As the filter function is rational,
a formulation using (III.1) would involve integrals which are
difficult to evaluate analytically. An alternative formulation of
the minimization problem in (III.1), which replaces the integral
with a weighted discrete sum, is proposed as follows:

min
a(λ),b(λ)

∑

λi∈[0,µp]

wi

∣
∣
∣gP1 (λi)

a(λi)

b(λi)
− e0(λi)

∣
∣
∣
2

+
∑

λi∈[µs,2]

wi

∣
∣
∣gP0 (λi)

a(λi)

b(λi)
+ e1(λi)

∣
∣
∣
2

(III.6)

where 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 and w1, . . . , wn are
weights specified by users according to the importance of dif-
ferent λi over the intervals. One typical example is with the
uniform partition: λi =

2(i−1)
n and wi =

2
n , 1 ≤ i ≤ n Another

example is with the spectral partition (with n = N ): λi ∈ Λ and

wi = λi+1 − λi, 1 ≤ i ≤ N , where Λ is the set of eigenvalues
of Lsym

G , and λN+1 = 2.
The presence of the denominator term is the main hurdle

to solving problem (III.6). If the denominator is removed, the
original problem reduces to a bi-quadratic problem. The poly-
nomials a(λ) and b(λ) can then be optimized alternatively with
an iterative algorithm. This could lead to a solution that is biased
as the approximation error in the modified problem is different
to the original problem.We present an approach inspired by [12]
to solve the minimization problem (III.6).
Firstly, we approximate the original problem (III.6) via

min
a(λ),b(λ)

∑

λi∈[0,µp]

wi

|b̂(λi)|2
∣
∣gP1 (λi)a(λi)− e0(λi)b(λi)

∣
∣2

+
∑

λi∈[µs,2]

wi

|b̂(λi)|2
∣
∣gP0 (λi)a(λi) + e1(λi)b(λi)

∣
∣2

(III.7)

which is a relaxation where pseudo denominators b̂(λi) are fixed
during each iteration of the optimization. The values |b̂(λi)|will
be updated at the beginning of the next iteration, which is not the
same as |b(λi)| in general. Our aim is to reach |b̂(λi)| ≈ |b(λi)|
via some iterative process.
Write a(λ) =

∑Ka

k=0 pkλ
k and b(λ) = 1 +

∑Kb

k=1 qkλ
k, and

set vectors cp(λ) = [1λ · · · λKa ]T , cq(λ) = [λ · · · λKb ]T ,p =
[p0 p1 · · · pKa

]T andq = [q1 · · · qKb
]T . Then theminimization

problem (III.7) can be reformulated as

min
p,q

∑

λi∈[0,µp]

wi

|b̂(λi)|2
∣
∣
∣gP1 (λi)c

T
p (λi)p− e0(λi)c

T
q (λi)q

− e0(λi)
∣
∣
∣
2

+
∑

λi∈[µs,2]

wi

|b̂(λi)|2
∣
∣
∣gP0 (λi)c

T
p (λi)p

+ e1(λi)c
T
q (λi)q+ e1(λi)

∣
∣
∣
2

. (III.8)

When |b̂(λi)| = |b(λi)|, 1 ≤ i ≤ n, the minimization prob-
lems (III.8) and (III.6) are equivalent to each other. The closer
|b̂(λi)| is to |b(λi)|, the closer the solution of (III.8) will be to the
solution of (III.6). In viewof this,we propose an iterativemethod
where at each iteration, |b̂(λi)| is updated so that it is closer
to |b(λi)|. Specifically, we update the pseudo denominators at
the m-th iteration as follows: |b̂m(λi)|2 = |bm(λi)|2 + ρ(m),
where ρ(m), m ≥ 0 is a sequence of decreasing positive num-
bers and ρ(m) → 0 as m → ∞. Since ρ(m) → 0, the approx-
imation gap between the problem (III.8) and the original one
in (III.6) decreases with each subsequent iteration. At each
iteration, the coefficients vectorsp andq are obtained by solving
the least squares problem (III.8). This iterative algorithm is
summarized in Algorithm 1.
Remark: Once the filter response function are obtained, the

transformation matrix corresponding to the actual filtering can
be obtained by substituting λ with Lsym

G . Polynomial or rational
filter functions can be implemented efficiently without the need
for eigendecomposition - see [1], [12] for details. Note also that
the designed filter functions are universal filters, and not limited
to a specified graph (which has a specified eigenvalue spectrum),
as the filters are defined for all possible eigenvalues, i.e. any
graph.
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Fig. 1. Spectral response of the spline prototype and the lifted analysis filters
with various lifting filters degree L.

Algorithm 1: Design of the Rational Lifting Filter.
Inputs: stop criterion ε, iteration limitM , orders Ka,Kb,
weights wi, and gap sequence ρ = (ρ(m))m≥0.
Initialization: Initialize q0 as a random vector with length
Kb, set m = 0.
Iteration:
1) Given qm, compute
|b̂m(λi)|2 = |1 + cTq (λi)qm|2 + ρ(m), 1 ≤ i ≤ n.
2) Solve the least squares problem (III.8) to get p and q.
Denote the solution by pm,qm+1.
3) If ‖qm+1 − qm‖∞ ≤ ε or the number of iteration
exceeds M , terminate the iteration and output pm,qm+1

and m. Otherwise, set m = m+ 1 and return to Step 1).
Outputs: pm,qm+1 and m.

IV. DESIGN DEMONSTRATIONS

The prototype filters used are given by HP
i = Hspln

i,1 and

GP
i = Gspln

i,1 = I, i = 0, 1. In this section, we demonstrate
the design of both rational and polynomial lifting filters so
that the lifted analysis filter bank {H0,H1} achieves a good
approximation to the ideal low-pass/high-pass filter bank.
We first consider polynomial lifting filters of degree L with

coefficients determined by r∗ = A−1b. Fig. 1 shows the spectral
responses of the prototype analysis filter bank and the lifted
analysis filter banks with different degrees L = 5, 10, 20. The
edge parameters used in (III.1) are μp = 0.7 and μs = 1.3. The
error measure (III.1) value isφ(r) = 5.7× 10−2 when no lifting
is used. With lifting, the error measures are φ(r) = 1.2× 10−3,
6.3× 10−5 and 2.1× 10−6 when the lifting filters degrees are
L = 5, 10, 20 respectively. This shows that the lifted analysis
filter bank {H0,H1} better approximates the ideal filter bank
with a higher degree L. However, with a higher degree, the
complexity is higher and there is reduced vertex localization.
We next consider rational lifting filters designed using

Algorithm 1. The edge parameters used are μp = 0.7, μs =
1.3. The discrete frequencies and weights selected using the
uniform partition: λi =

2(i−1)
n (1 ≤ i ≤ n) and wi =

2
n with

n = 200. The gap sequence ρ(m), m ≥ 0 is given by ρ(m+
1) = ρ(m)/m1.5 with ρ(0) = 0.01. Fig. 2 shows the spec-
tral responses of the lifted analysis filters with (Ka,Kb) =

Fig. 2. Spectral response of analysis filters using rational lifting filters with
various degrees (Ka,Kb).

TABLE I
DENOISING PERFORMANCE OF THE LIFTING NSGFB

(3, 3), (3, 2), (7, 3) and (8, 2), whereKa (resp.Kb) is the degree
of the numerator polynomial (resp. denominator polynomial)
of the rational function r(λ). The error measures are φ(r) =
3.4× 10−5, 3.3× 10−5, 1.7× 10−6 and 2.4× 10−7 when the
lifting filter degrees are (Ka,Kb) = (3, 3), (3, 2), (7, 3) and
(8, 2), respectively. This shows that, compared to polynomial
lifting filters, rational lifting filters achieves a better approxima-
tion to the ideal filter bank, even with small degrees.
Application in denoising: The graph is a random geomet-

ric graph with N = 4096 vertices, generated using the GSP-
BOX [13]. The test signal is obtained by combining the first 20%
eigenvectors of the normalized Laplacian matrix of the graph.
The random noise is generated from a uniform distribution
over the interval [−σ, σ]. Table I lists the signal-to-noise ratios
(SNRs) of the denoised and noisy signals under different noise
levels σ. It is observed that the lifting NSGFBs achieve better
denoising performance than that of the spline and filter banks
from [9]. This can be attributed to the better spectral selectivity
of the lifting NSGFB.

V. CONCLUSION

This letter proposed a simple method to design two-channel
nonsubsampled graph filter banks with perfect reconstruction
and good frequency characteristics. The method is based on the
lifting scheme and it was shown the design process amounts to
the design of a lifting filter. Algorithms to design polynomial
and rational lifting filters were presented. Experimental results
demonstrate the effectiveness of the method in tailoring the
spectral response of the graph filters. Application of the filter
banks to graph signal denoising showed the advantage of having
better frequency selectivity.
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