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Design of Nonsubsampled Graph Filter Banks
via Lifting Schemes

Junzheng Jiang *“, David B. Tay

Abstract—Graph filter banks play a crucial role in the vertex
and spectral representation of graph signals. The notion of two-
channel nonsubsampled graph filter banks (NSGFBs) on an undi-
rected graph was introduced recently. The absence of downsam-
pling/upsampling operators allows greater flexibility in the design
of NSGFBs that achieve perfect reconstruction. However the design
of NSGFBs that take the spectral response into account has not been
adequately addressed yet. Based on the polynomial/rational lifting
scheme, this letter presents a simple method to design NSGFBs with
good spectral response and perfect reconstruction. Experimental
results will demonstrate the effectiveness of the proposed method in
tailoring the spectral responses of the lifted NSGFBs. Application
of the NSGFB to denoising will also be considered.

Index Terms—Graph signal processing, nonsubsampled graph
filter bank, lifting scheme, Laplacian matrix.

I. INTRODUCTION

RAPH signal processing (GSP) is a research field that is
G gaining prominence and finds a variety of applications
where the data is defined over an irregular domain, e.g. sensor
networks and social networks [1], [2]. One of the main ideas
behind GSP is the exploitation of pairwise relationships between
data values defined over nodes via a graph model. Some of
the fundamental principles from traditional signal processing
have been extended to the graph domain, giving rise to the
graph Fourier transform [3], graph filter [4], graph wavelet filter
bank [5]-[9], etc. Graph filter banks (GFBs), in particular, is a
topic that has drawn significant attention as they play a crucial
role in the vertex and spectral representation of graph signals.
GFBs with downsampling/upsampling (DU) operators are, in
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general, difficult to analyse and design, except in cases with
special graphs, such as bipartite graphs [6], [7].

In [9], the notion of two-channel nonsubsampled graph filter
banks (NSGFB) was introduced by Jiang, Cheng and Sun.
A two-channel NSGFB consists of an analysis filter bank
{Hy, H, } and a synthesis filter bank { G, G }. The absence of
the DU operators leads to the following perfect reconstruction
(PR) condition [9]

GOHO + G1H1 =1 (Il)

The analysis filter bank {Hg, H; } of an NSGFB on a graph
G is said to be normal if (i) the lowpass graph filter passes

the weighted constant signal, i.e. HODé/ 21 = Dé/ 21; and (ii)

the highpass graph filter blocks that signal, i.e. H; Dé/21 =0,
where Dy is the degree matrix of the graph Gand 1 = [1 ... 1]T.
In [9], the authors proposed two methods to design normal
NSGFBs satisfying the PR condition (I.1) but do not explicitly
take the spectral response into account. The spectral approach
to graph signal transforms provides a representation that is
similar to the Fourier transform for regular-domain signals.
A spectral/frequency domain interpretation of the transforms
allows a distinction between low-frequency and high-frequency
components of a graph signal. Another advantage with the spec-
tral approach is that the spectral filter 4(1) (A spectral variable)
can be designed independently of the graph structure [5]—-[8].
When the filter is applied to a specific graph, the filter adjusts
itself to the structure of the graph when X is substituted with a
graph matrix, e.g. Laplacian L, which encodes the structure of
the graph.

In this letter, we propose a simple yet flexible method to
design PR NSGFBs that is based on the lifting scheme applied
to the analysis filters. It allows the tailoring of the spectral
response via a lifting filter. Analysis filters with good frequency
characteristics can be designed by optimizing the lifting filters.
Transform based on lifting has also been previously proposed
in [11] for graph signals. Subsampling is however used in [11]
and some edge information are lost because of this. The filters
in[11] are specified in the vertex domain and shaping the spectral
response is not readily achievable. In this work there is no loss
of edge information (as there is no subsampling) and the control
the spectral characteristics of the filters, e.g. low-pass, is easily
achieved.

II. PRELIMINARIES AND LIFTING SCHEME

Let G = (V, E, W) be an undirected weighted graph with no
self-loops and multiple edges, where V' = {1,2,..., N} is the
set of nodes, E is the set of edges, and W = [w;;]1<; j<n is the
weighted adjacency matrix. The degree matrix Dy is a diagonal
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matrix whose i-th diagonal entry is given by d;; = jev Wij-
The symmetrically normalized Laplacian matrix is defined as
L™ =1-Dy DY 2WDg1/ ?. The eigendecomposition of Lg™
is given by L™ = UAU7, where U is the orthogonal eigen-
vector matrix and A = diag(Aq,...,Ay) is a diagonal eigen-
value matrix with eigenvalues 0 < A < --- <Ay < 2. The
eigenvalues of L™ can be interpreted as spectral frequen-
cies [5]-[7].

A signal on the graph G is represented by a vector x =
1 -+ x N]T, where each element x; represents a numerical
quantity associated with node ¢. The graph Fourier transform
X of a graph signal x is given by X = U”x. A graph filter is
represented by a matrix H that acts on an input signal x to
give an output signal y = Hx. A common class of filters are
functions of the normalized Laplacian matrix L™,

H = h(L§™) := Uh(A)U", (IL1)
where I is a function defined on [0, 2] and h(A) is a diagonal
matrix with diagonal entries h(A1), ..., h(ix). Fora filter H of
the form (II.1) and an input x, the graph Fourier transform of the
corresponding output Hx is given by Hx = h(A)X. Hence the
filter H has frequency response i(A;) at the spectral frequencies
Aiy 1 <1 < N [1], [3], [5]-[7]. Due to the above observation,
the function h is known as the spectral response function of the
filter H in (IL.1).

The lifting scheme, pioneered by Sweldens [10], can improve
the frequency response of the subband filters by using lifting
filters. The lifting in [10] was developed for regular domain
filter banks with critical subsampling. We, however adapt the
lifting for filter banks without subsampling, and operating on
signals defined over irregular domains, i.e. graphs. One of the
main advantages of lifting is that the PR constraint is structurally
imposed, and does need to be explicitly considered in the design
process. In other techniques, such as the complementary filter
method [14], the constraint needs to be explicitly considered,
which will complicate the design process. Motivated by this fact,
we apply the lifting scheme to improve the spectral response of
the filters in NSGFBs. There are two approaches to improve the
frequency response characteristic via the lifting scheme. The
first is to apply lifting to the synthesis filter bank,

Go=G{ +RHY, G, =G - RH/, (I1.2)
where {H{", H'} and {GO ,GT} are the prototype analysis
and synthesis filter banks respectively, and R is a lifting filter.
The second is to apply lifting to the analysis filter bank,

H, =H + G{R, H, = H{ - GR. (IL3)
If the prototype NSGFB is assumed to satisfy the PR condition
(I.1), then with the analysis filter bank in (II.3) and prototype
synthesis filter bank {GY', GT'}, we have GFHy + GIH; =
I+ (GFGY — GPGJ)R. Hence the resultant NSGFB sat-
isfies (I.1) provided that the prototype synthesis filters G&
and GI are commutative, i.e., GEGY = GG’ Following
a similar argument, we can show that the resultant NSGFB with
the prototype analysis filters {HZ', HY'} which commute, i.e.
HPH?Y = HPHY, and the synthesis filters { G, G1} in (I1.2),
also satisfies (I.1).

Proposition I1.1: Let the prototype NSGFB satisfies (I.1),
ie, G'HEY + GPHY = 1. If the prototype synthesis filters
{GF, GI'} are commutative, then the lifted NSGFB with the
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analysis filters in (I.3) satisfies (I.1). Conversely, if the prototype
analysis filters {HZ, HI’} are commutative, then the lifted
NSGFB with the synthesis filters in (I1.2) satisfies (I.1).

The commutativity between prototype synthesis filters { G/,
G’} follows if they both can be diagonalized by a common
nonsingular matrix. In [9], arepresentative class of analysis filter

bank is the spline filter bank {prh’ HSpln} of order n > 1

0,n 1n
_ Lzym/2)n Hspln _ (Lzym/2>n' The
spln

given by Hf)f’:;‘ = (I Tn
corresponding minimum degree synthesis filter bank {GO,n ,

G??};‘} is designed via the Bezout identity, where GE{’TIJI =
P,(LG™/2), G =p,(1— Lg™/2), and P, is the unique
polynomial solution of degree n—1 to the equation (1 —
t)"P,(t) + t"P,(1 — t) = 1. Now the synthesis filters are poly-
nomials of the symmetric Laplacian matrix. Therefore, they
share the same orthogonal eigenvector space, and this makes
them commutative. A similar argument can be made for the
commutativity of the prototype analysis filters.

III. DESIGN METHODOLOGY

The role of the analysis filter bank is to decompose the
input signal into different spectral frequency bands, while the
role of the synthesis filter bank is to reconstruct the signal.
The frequency characteristic of the former is therefore more
important than the latter in many applications. With the aim to
achieve good frequency characteristics for the analysis filters,
we concentrate on the lifting scheme (II.3) so that the spectral
responses of the lifted analysis filters approximate the desired
spectral responses dg(X) and d;(X). Typical examples of the
desired responses are the ideal brick-wall low-pass/high-pass
functions Ip(2) and I; (1) given by

)

1if 2 € [0,1] 0if 2 €[0,1
1,2].

IO()‘)E{Oif/\G(L o and 11 (3) = {1if/\€[ :

Consider an NSGFB with its analys1s filter bank {H{, HI}
and synthesis filter bank {G}, GT } being of the form (II.1),
ie. HY = hl(Lg™) and GIg =gl (Lg™), i = 0,1 for some
functions A (1), gF’ (1) on the interval A € [0,2]. In this sec-
tion, we design lifting filters of the form R = r(L§™) so
that the spectral response of the lifted analysis filter bank in
(11.3), i.e. {ho(A), hi(A)}, approximates the desired responses
{do(%),d1(A)}. One can readily verify that the lifted analysis
filters responses are given by ho(%) = h&' (1) + gf (A)r(X) and
hi(A) = h¥'(A) — g& (A)r(1). Hence the design of the lifting
filter R reduces to finding a function (1) so that h;(2) is close
to d;(1),7 = 0, 1, with respect to a chosen error criterion.
A least squares formulation of the design problem is to
determine the lifting filter (1) that minimizes
— dy (1| da,

o) = [ ha3) = do) P+ [ my
" (IIL 1)

where 0 < p,, < 2and 0 < ps < 2. The first term in the objec-
tive functional ¢(r) measures the difference between the lifted
spectral response hg(A) to the desired spectral response do(A)
on [0, 41,], while the second measures the difference between the
lifted spectral response hj(2) to the desired spectral response
d1(A) on 1, 2]. The edge frequency parameters jts and f, can
be prescribed by the designer.
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We will address the design of the filter (1) with two func-
tional forms. The first is the polynomial form and the second is
the rational form.

1) Polynomial Filters: The lifting filter is given by

L
A) =1+ Zrlkl =clr,
=1

where ¢, =[1 A --- AX)T and r = [rg r; --- 71]T. Define
the spectral response difference as e (1) = do(*) — h&' (1) and
e1(A) = dy(x) — hT(X). Applying (I1.2), we can recast the
minimization problem (III.1) as a least squares problem with
respect to the coefficients vector r,

(II1.2)

minr”Ar — 2b7r + ¢,

r

(IIL.3)

where

A= / cilgt (M) Pefdn + / cilgd (M)Peldx, (I1L4)

Hp 2
b:/ gf()\.)e()()\.)(:)\d)»—/ g (Me1(A)epdar, (IIL5)
0

s

andco = [} |eo(A)[2dA + f le1 (1)|2d. If either (i) the spec-

tral response g’ (1) # 0 on [O up] or (i) g7’ (A) # 0 on [us, 2],
then it can be verified that the matrix A in (IIL.4) is positive
definite and therefore non-singular. Hence the optimal solution
of the problem (1I1.3) is given by r* = A~ 'b.

The lifted analysis filter bank {Hp, H;} in (IL.3) may not
be normal even if the prototype analysis filter bank {HZ, HY'}
is. However, it will be normal if the lifting filter R satisfies

RDé/ %1 = 0. The above requirement is met for a lifting filter
R of the form (II.1) if its spectral response function r satisfies
r(0) = 0, which becomes o = 0 for a polynomial lifting filter
r(A) of the form (II.2). Similar to the optimal solution r* =
A~ !Db, for unconstrainted problem (II1.3), we can show that
#* = A 'b is the optimal solution of the constrained problem
(IIL.3) with 7y = 0, where ¥ = [ry --- r.]7, &, = [A -+ AL]7,
and A and b are defined by (II1.4) and (IIL.5) respectively, but
with ¢, replaced by c;,.

2) Rational Filters: We now consider the design of ratio-
nal lifting filters, i.e. 7(A) = %, where a() and b(A) are
polynomials with b(0) = 1. As the filter function is rational,
a formulation using (III.1) would involve integrals which are
difficult to evaluate analytically. An alternative formulation of
the minimization problem in (IIL.1), which replaces the integral
with a weighted discrete sum, is proposed as follows:

. P a(hq) 2
i A —ep(Aq
i, 2 wilgr (R - eolh)
)LiG[O,le]
a(Xq) 2
A 111.6
}‘ie[HNQ]
where 0 <A <A <--- <A, <2 and wy,...,w, are

weights specified by users according to the importance of dif-
ferent A; over the intervals. One typical example is with the
uniform partition: A; = @ and w; = % 1 <7 < n Another
example is with the spectral partition (withn = N): A; € A and

w; = Air1 — Ai, 1 <4 < N, where A is the set of eigenvalues
of Lg™, and Ay 11 = 2.

The presence of the denominator term is the main hurdle
to solving problem (IIL.6). If the denominator is removed, the
original problem reduces to a bi-quadratic problem. The poly-
nomials a(A) and b()) can then be optimized alternatively with
an iterative algorithm. This could lead to a solution that is biased
as the approximation error in the modified problem is different
to the original problem. We present an approach inspired by [12]
to solve the minimization problem (IIL.6).

Firstly, we approximate the original problem (II.6) via

9T (hi)a(rs) — eo(3i)b(3:)]?

min Z
a(r),b(x) rie O] I ( )|2

I —— )»,L €1 )"zb)\-z 2
+A€[# 2 1B )|2|gO Jolb) +er (360

(I1L.7)

which is a relaxation where pseudo denominators IA)()”) are fixed
during each iteration of the optimization. The values |b(%;)| will
be updated at the beginning of the next iteration, which is not the
same as |b(1;)| in general. Our aim is to reach [b(%;)| ~ |b(%;)|
via some iterative process.

Write a(A) = ZkK:“'O peA¥ and b(A) =1+ ZKz) giAF, and
setvectorscy(r) = [1A -+ ABe]T ¢, (X) = [A - )\Kb}T,p =
[pop1 - pr,]T andq = [q1 -+ qx,]T . Then the minimization

problem (II1.7) can be reformulated as

min Z = i 5 gf(ki)cg(?»i)p - eO(Xi)CqT()‘i)q
p.q ]|b()»i)| ’

2+ Z w

M‘E[O,l»bp
el 0@

— €0 ()\.Z)

98 (e ()P

2

+e1(hi)eg (hi)a+ er(ri)

(IIL.8)

When |b(%;)| = |b(x;)],1 < i < n, the minimization prob-
lems (II1.8) and (II1.6) are equivalent to each other. The closer
b(%s)| s to |b(x;) |, the closer the solution of (II.8) will be to the
solution of (III.6). In view of this, we propose an iterative method

where at each iteration, |b(%;)| is updated so that it is closer
to |b(;)|. Specifically, we update the pseudo denominators at
the m-th iteration as follows: |b, (A;)|2 = [bm(X:)]2 + p(m),
where p(m), m > 0 is a sequence of decreasing positive num-
bers and p(m) — 0 as m — oc. Since p(m) — 0, the approx-
imation gap between the problem (III.8) and the original one
in (II1.6) decreases with each subsequent iteration. At each
iteration, the coefficients vectors p and q are obtained by solving
the least squares problem (III.8). This iterative algorithm is
summarized in Algorithm 1.

Remark: Once the filter response function are obtained, the
transformation matrix corresponding to the actual filtering can
be obtained by substituting A with L™ . Polynomial or rational
filter functions can be implemented efficiently without the need
for eigendecomposition - see [1], [12] for details. Note also that
the designed filter functions are universal filters, and not limited
to a specified graph (which has a specified eigenvalue spectrum),
as the filters are defined for all possible eigenvalues, i.e. any
graph.
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Fig. 1. Spectral response of the spline prototype and the lifted analysis filters

with various lifting filters degree L.

Algorithm 1: Design of the Rational Lifting Filter.

Inputs: stop criterion ¢, iteration limit M, orders K, K,
weights w;, and gap sequence p = (p(m))m>o0-

Initialization: Initialize q( as a random vector with length
Ky, setm = 0.

Iteration:

1) Given q,,,, compute
bm (2:)]? = |1+l (Li)am|* + p(m), 1 < i < n.

2) Solve the least squares problem (II1.8) to get p and q.
Denote the solution by p,,, Q1.

3) If ||dm+1 — Qimllo < € or the number of iteration
exceeds M, terminate the iteration and output p,,, Q41
and m. Otherwise, set m = m + 1 and return to Step 1).

Outputs: p,,, q,,+1 and m.

IV. DESIGN DEMONSTRATIONS

The prototype filters used are given by HY = H?pln and

GF = (}Splln =1, i =0,1. In this section, we demonstrate
the design of both ratlonal and polynomial lifting filters so
that the lifted analysis filter bank {Hy, H;} achieves a good
approximation to the ideal low-pass/high-pass filter bank.

We first consider polynomial lifting filters of degree L with
coefficients determined by r* = A ~'b.Fig. 1 shows the spectral
responses of the prototype analysis filter bank and the lifted
analysis filter banks with different degrees L = 5, 10, 20. The
edge parameters used in (III.1) are ,, = 0.7 and pg = 1.3. The
error measure (IIL.1) value is ¢(r) = 5.7 x 10~2 when no lifting
is used. With lifting, the error measures are ¢(r) = 1.2 x 1072,
6.3 x 107° and 2.1 x 10~ when the lifting filters degrees are
L = 5,10, 20 respectively. This shows that the lifted analysis
filter bank {Hy, H; } better approximates the ideal filter bank
with a higher degree L. However, with a higher degree, the
complexity is higher and there is reduced vertex localization.

We next consider rational lifting filters designed using
Algorithm 1. The edge parameters used are f, = 0.7, 1y =
1.3. The discrete frequencies and weights selected using the
uniform partition: A, = @ (1 <i<n)and w; = % with
n = 200. The gap sequence p(m), m > 0 is given by p(m +
1) = p(m)/m*® with p(0) = 0.01. Fig. 2 shows the spec-
tral responses of the lifted analysis filters with (K, K3) =
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Fig. 2. Spectral response of analysis filters using rational lifting filters with

various degrees (K, Kp).

TABLE I
DENOISING PERFORMANCE OF THE LIFTING NSGFB

o 1/32 1/16 1/8 1/2

Noisy 27.88 | 21.88 | 15.85 | 3.79

Spline 26.36 | 19.82 | 14.58 | 7.94
Polynomial L = 5 27.30 | 23.78 | 19.77 | 8.64
Rational Ko =3, Kp =2 | 27.95 | 24.19 | 19.83 | 8.51
NSGFB-B1 [9] 27.42 | 21.43 | 16.43 | 6.44
NSGFB-L1 [9] 26.44 | 20.19 | 15.78 | 8.66

(3,3),(3,2),(7,3) and (8, 2), where K, (resp. K}) is the degree
of the numerator polynomial (resp. denominator polynomial)
of the rational function r(1). The error measures are ¢(r) =
3.4x107°, 3.3 x107°,1.7 x 107% and 2.4 x 10~7 when the
lifting filter degrees are (K., K;) = (3,3),(3,2),(7,3) and
(8,2), respectively. This shows that, compared to polynomial
lifting filters, rational lifting filters achieves a better approxima-
tion to the ideal filter bank, even with small degrees.

Application in denoising: The graph is a random geomet-
ric graph with NV = 4096 vertices, generated using the GSP-
BOX [13]. The test signal is obtained by combining the first 20%
eigenvectors of the normalized Laplacian matrix of the graph.
The random noise is generated from a uniform distribution
over the interval [—o, o]. Table I lists the signal-to-noise ratios
(SNRs) of the denoised and noisy signals under different noise
levels o. It is observed that the lifting NSGFBs achieve better
denoising performance than that of the spline and filter banks
from [9]. This can be attributed to the better spectral selectivity
of the lifting NSGFB.

V. CONCLUSION

This letter proposed a simple method to design two-channel
nonsubsampled graph filter banks with perfect reconstruction
and good frequency characteristics. The method is based on the
lifting scheme and it was shown the design process amounts to
the design of a lifting filter. Algorithms to design polynomial
and rational lifting filters were presented. Experimental results
demonstrate the effectiveness of the method in tailoring the
spectral response of the graph filters. Application of the filter
banks to graph signal denoising showed the advantage of having
better frequency selectivity.
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