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Abstract—With the advent of Internet of Things (IoT)
technologies and availability of a large amount of data, deep
learning has been applied in a variety of artificial intelligence (AI)
applications. However, sharing personal data using IoT edge devices
carries inherent risks to individual privacy. Meanwhile, the energy
and memory resources needed during the inference process becomes
a constraint to the resource-limited IoT edge devices. This paper
brings memory hardware optimization to meet the tight power
budget in IoT edge devices by considering the privacy, accuracy, and
power efficiency tradeoff in differentially efficient deep learning
systems. Based on a detailed analysis on these characteristics, an
Integer Linear Programs (ILP) model is developed to minimize
mean square error (MSE), thereby enabling optimal input data
memory design. Our simulation results in 45-nm CMOS
technology show that the proposed technique can enable near-
threshold energy-efficient memory operation for different privacy
requirements, with less than 1% degradation in classification
accuracy.

Index Terms—Deep learning, embedded memory, power
consumption, differential privacy, accuracy, Integer Linear
Programs (ILP) model

I. INTRODUCTION

N recent years, deep learning, at the forefront of new

developments in artificial intelligence (Al), is transforming

many modern applications, from face identification,
automatic translation, and computer vision, to self-driving cars,
healthcare, and education. For example, deep learning has
demonstrated exceptional performance in disease diagnosis of
brain disorders and various forms of cancers [1, 2, 3], due to the
availability of a large amount of patients’ data. Meanwhile, with
the advent of wearable technologies and Internet of Things
(IoT), there is a rising interest in providing a personalized
experience with health recommender systems. For example,
smart watches can record cardiac activities [4] and recent
medical sensors can replace a finger prick for blood glucose
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testing [5]. The collected health data can be leveraged through
deep learning to provide “personalized” methods of prevention,
treatment, and care, thereby aiding persons with disabilities or
aging people to address health disparities. As an example, in
January 2019, CarePredict, the leading digital health company,
launched an Al-powered platform for at-home use by aging
seniors. The platform uses deep learning, combined with smart
IoT devices, to unobtrusively monitor the daily activities
performed by older adults [6].

Such learning-enabled benefit, however, does come with its
own cost, such as the associated serious privacy concerns.
Sharing personal data carries inherent risks to individual
privacy. Due to the substantial requirements for computation
and storage resources, today’s deep learning systems are
typically built upon large, centralized data repositories. Based
on this centralized-training paradigm, data owners need to
upload their private data to the provider and do not have control
over how their private data is being used [7, 8, 9].

To protect privacy, one popular technique is differentially
private deep learning algorithms [10], which add random noise
to the computation so that the output does not significantly
depend on any particular training sample (see Fig. 1). When
introducing noise, the privacy-guarantee comes at the cost of
compromising the accuracy of the models, and this privacy-
accuracy trade-off is represented in the differential privacy
model through a parameter — privacy budget (&), which
represents the privacy loss in a system. A smaller value of €
indicates a smaller privacy loss (i.e. stronger privacy guarantee)
and a larger accuracy degradation of deep learning systems [11,
12]. For a specific application, the value of € is usually given
based on the prior consensus between the users and the deep
learning service providers [10, 13].

In addition to privacy, as the deep learning networks grow,
the energy and resources needed during the inference process,
particularly memories, have become a major constraint to the
resource-limited IoT devices [14]. As shown in Fig. 1, during
the IoT edge inference process, memory traffic mainly contains
two components: (i) weight storage for neural network models
and (ii) input data memory to store images, voice, and other
sensory signals [15]. In a deep learning accelerator, to store the
weights, memory accesses usually consume several orders of
magnitude higher energy than computation, making memory
performance the bottleneck for processing [16]. For example,
in AlexNet, nearly 3000M memory accesses are required,
which dominates the power consumption of the entire learning
system [16]. In another deep learning Integrated Circuit (IC) -
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Fig.1. Input data memory optimization for deep learning system with energy-efficiency, privacy, and inference accuracy

DianNao, the static random-access memory (SRAM) occupies
56% of the silicon area and contributes to over 60% power
consumption of the entire chip [17]. To reduce the power
consumption of weight storage, researchers have developed
large embedded SRAM or exploit data reuse to reduce or even
eliminate the off-chip memory traffic. ShiDian-Nao [18], for
example, is an in-camera CNN accelerator, where the
accelerator is placed on the same chip as the image sensor
processor, storing all the weights in embedded memory and
eliminating off-chip DRAM memory accesses, thereby
achieving 60X higher energy-efficiency than DianNao.
Additionally, researchers have developed approximate weight
memories to optimize the power consumption of the weight
storage [19] [20]. As more and more deep learning accelerators
adopt embedded memories to store weight values, the input data
storage becomes dominant for external memory traffic (e.g.,
96.6 mW to read one image compared to 45.3 mW for object
detector in an embedded vision system [15]). Consequently,
power-efficient embedded input data memory is one of the key
design considerations for deep learning systems. Particularly,
given the number of IoT devices is predicted to rapidly increase
and reaching over 75 billion by 2025 [21], the resulting rapid
explosion and scale of collected data brings increasing pressure
for input data storage. This paper aims to optimize the power
efficiency of the input data storage. We propose a new
embedded memory design technique that considers the
relationship between efficiency, accuracy, and privacy of
differentially private deep learning systems, thereby meeting
the increasing storage demands of edge inference. Specifically,
this paper makes the following contributions:

e Input data memory design for differentially private
deep learning considering the tradeoff between
privacy, accuracy, and power efficiency: To the best of
the authors’ knowledge, this is the first work to connect
the input data memory to the privacy, accuracy, and
power efficiency trade-off in differentially private deep
learning systems. We conclude that if the memory
hardware can enable the optimal quality of the input data,

the accuracy can be optimized for deep learning systems
with different privacy levels (Sections III.B and II1.C).

e MSE based mathematical model for optimal memory
design: Based on the general concept of mean square
error (MSE), an Integer Linear Programs (ILP) model is
developed to enable optimal input data memory design
for differentially private deep learning. The developed
model can be solved fast by existing solvers (e.g., Gurobi
and Cplex), which significantly saves the design time as
compared to the traditional ASIC design process
(Sections II1.D).

e Novel low-power memory design: Based on the
developed ILP model, a memory design technique is
presented that combines the use of other memory
techniques (bitcell upsizing and 8T+6T hybrid bitcells).
Our analysis shows that significant MSE improvement
can be enabled with the optimal design (Section IV-A).

e Thorough evaluation: Finally, a comprehensive suite of
simulations is performed on the proposed input data
memory, and the enriched results include: silicon area
constraint, power consumption, data quality, prediction
accuracy, and privacy budget. Our evaluation results
show that the proposed memory can achieve significant
power savings while maintaining near optimal accuracy
(details are shown in Section I'V).

The organization of the paper is as follows. A review of
differentially private deep learning techniques is provided in
Section II. Section III analyzes the impact of input data quality
and memory in local devices on the system accuracy. Section
IV presents the proposed memory hardware design process. The
evaluation results are discussed in Section V. Finally, we
conclude the paper in Section VI.

II. LEARNING WITH DIFFERENTIAL PRIVACY

A. Privacy Preservation in Deep Learning

Privacy research has drawn attention in both industry and
research communities. Large industry leaders, including:



Apple, Facebook, and Google, have concluded that these types
of threats can be accomplished by invasive analysts even when
data has been anonymized [22, 23, 24]. For example, in 2006
AOL released a list of 20 million web search queries which was
found to have leaked the identity of a woman [25]. Similarly,
Netflix introduced an open competition in 2006 that released a
dataset that also leaked private data [26, 27]. One other area
with potential privacy issues is biomedical research. For
example, in genome wide association studies, the identity and
any diseases a person has could be revealed based on results
included in research papers [28]. Due to privacy risks such as
these, a conscious effort to reduce data leaks has become of
great interest, especially for companies using machine learning
algorithms on collected big data.

The privacy of deep learning models, such as neural
networks, have recently come into question due to weaknesses
and attack models that have been previously exploited [29].
Due to high requirements of computation and storage resources,
today’s deep learning systems are typically built upon large,
centralized data repositories. Many cloud providers also give
access to computing platforms and learning frameworks for
model training, such as Amazon Sagemaker and Google Cloud
ML Engine. Based on this centralized-training paradigm, data
owners need to upload their private data to the cloud provider
and they do not have control over how their private data is being
used. For instance, if a deep learning model was trained on the
records of patients with a certain disease, learning that an
individual’s record was part of the training data directly affects
their privacy, and it opens a door to potential misuse (e.g.,
exploitation for the purpose of recruitment, insurance pricing,
or granting loans) due to the following three potential privacy
threats: (i) it is very easy for a malicious provider to steal the
data if the provider has full access to the data [7]; (ii) even
without full access to the data, the malicious provider can
extract sensitive data from the trained models [8]; and (iii) A
malicious remote user can also retrieve information of the
training data by carefully querying the trained models [9].

B. Differentially Private Deep Learning and State of the Art

To preserve data privacy, differential privacy [10] is
becoming the gold standard to offer both utility to the
applications and rigorous privacy guarantees. The formal
definition is as follows: a randomized mechanism M is
considered to be (g, §)-differentially private if, for two adjacent
inputs d and d' , it holds that Pr[M(d)eS]<e®-
Pr[M(d") € S] + 8, where S is any subset of the outputs. The
privacy cost parameter € is used to control the tradeoff between
the privacy and the accuracy where smaller values of € provide
more privacy. The guarantee of differential privacy is: if an
individual’s data is used in a differentially private calculation,
the probability of any result of the calculation changes by at
most a factor of e® in comparison to if that individual’s data is
not used in the calculation [30]. The parameter & is the
probability of failure where the given differentially private
mechanism may violate an individual’s privacy. This 6 value
explains the possibility of “bad events” that may result in a large
loss in privacy. Specifically, when training an (g, 96) -

differentially private neural network, the probability of
violating the privacy, 6, is calculated after each step for a given
privacy cost, €.

Recent works have adopted the use of (g, §)-differential
privacy in order to protect the data of individuals. In [31], the
authors presented a technique involving an ensemble of
teachers that could train on subsets of a sensitive data. After
training, the teachers would further train a student model based
on public data that was labeled using the ensemble. The student
model is trained based on the noisy voting of the various
teachers that were trained using the model so that a stronger
privacy guarantee can be enabled by the system. In [32], a
method creating generative adversarial networks (GANSs) that
include differentially private mechanisms to provide privacy
guarantees was presented. This technique for training a
differentially private GAN only allows the analyst to inspect a
model that already guarantees some level of differential
privacy. Both the teacher ensemble and differentially private
GAN training techniques employ the use of a privacy
accountant (i.e. the moments accountant), described in [33], in
order to compute a tighter bound on the differential privacy.

In order to ensure differential privacy, perturbation can be
introduced at various parts of the workflow, including: input,
output, and objective perturbation [34]. Also, different types of
noise can be added to the training and test datasets. The
moments accountant shows that for the Gaussian (i.e.
~N(0, 62)) noise mechanism, if the value of standard deviation
for this noise mechanism is chosen to be:

o ==(2log =12, 1)
then the noise mechanism will satisfy (g, 6) -differentially
privacy for a given sensitivity, S¢. Using this moments
accountant technique to compute a tight bound on the privacy
allows for each step in the training algorithm to result in (g, §)-
differential privacy with respect to the lot.

The system we propose uses the moments accountant to train
a differentially private ConvNet model on the server (cloud)
where sensitive data is used for training. By enabling the
moments accountant for training we can guarantee privacy, but
at the cost of some accuracy loss. This trained, differentially
private model will then be downloaded to the edge computing
devices for inference tasks. A diagram of the proposed system
design can be seen in Fig. 1. Since inference is taken care of on
the local devices, the privacy of the testing data being presented
to the devices is not a big concern.
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Fig. 2. Differentially private convolutional neural network used in our analysis.
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Fig. 3. Influence of dataset quality on test accuracy (using MNIST dataset).

As discussed in Section I, the energy and resources needed
during the inference process has become another constraint to
the resource-limited IoT devices. Deep learning models can
take up a large portion of an embedded device’s memory space
and inference tasks. In particular, data movement on these
devices can consume the majority of the total power [35].
Software compression techniques for reducing the size of each
weight in deep learning models have been introduced, such as
the TensorFlow Lite API [36], which allows for 4x reduction in
total model size. For hardware improvements, one of the most
important issues that has been focused on is the intensive
memory access of the embedded IoT devices. Very recently,
[37] presented a memory-based noise addition technique for
differentially private deep learning systems, illustrating the
significance of the embedded memory to edge inference tasks.
However, this technique adopted the traditional memory
design, which misses out on many optimization opportunities
to trade off among privacy, accuracy, and efficiency.

This paper aims to optimize memory design to better support
differentially private deep learning algorithms in local devices.
To enhance the power efficiency of memories, memory failures
are usually introduced due to process variations during the
device manufacturing process. We first analyze the impact of
memory failures on accuracy and privacy and then conclude the
guidelines to optimize the memory for privacy, efficiency, and
accuracy in Al applications with different requirements.

III. IMPACT OF MEMORY FAILURES IN DIFFERENTIALLY
PRIVATE DEEP LEARNING SYSTEMS

In our analysis, we define a convolutional neural network
model using the TensorFlow framework [38] in order to gain
insight on how different types and levels of noise may influence
the privacy-accuracy tradeoff. The model involves using an
objective perturbation through additive Gaussian noise and uses
the moments accountant [33] to compute the privacy cost after
each step in the training process. The ConvNet model we tested
was based on the architecture described in [37] with a single
convolutional layer and can be seen in Fig. 2. The widely used
MNIST dataset [39] was used for our initial simulations.
MNIST consists of 60,000 training samples and 10,000 test
samples, where each sample is a handwritten digit ranging from
“0” to “9”; each sample is an image that contains 784 features
representing 28 X28 pixels.
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Fig. 4. Impact of memory failure rate on the accuracy of the learning system.

A. Impact of Image Quality on Classification Accuracy

In order to investigate the relationship between the quality of
the test dataset and its impact on the test classification accuracy,
we inject bit level errors at varying memory failure rates
(probabilities) to each image in the test dataset. Since the
MNIST dataset consists of images, the well-known peak signal-
to-noise ratio (PSNR) metric is used to evaluate quality, which
is defined in [21] as

2552

PSNR = 10log;o (22), @

MSE

where MSE is the mean square error between the original
images (Org) and the degraded images (Deg).

Accordingly, by evaluating the PSNR values for a wide range
of error injected test datasets using MNIST and comparing the
test classification accuracy, we identify that the higher the
image quality in the test dataset, the higher the output accuracy
of the system will be overall. This relationship between PSNR
and test classification accuracy is illustrated in Fig. 3. Based on
this monotonically increasing behavior, if the PSNR value of
the dataset is improved, the accuracy will be enhanced.
Accordingly, during the memory design process, if the memory
hardware can enable the optimal quality of the dataset, the
accuracy will be improved accordingly. As shown in Fig. 3, as
the PSNR values of the MNIST dataset are increased from 5dB
to 15dB, the accuracy is increased from 10% to 90% while
meeting the privacy guarantee for the differentially private deep
learning systems. It should be noted that PSNR is used in our
analysis to evaluate the image quality of MNIST dataset, but
considering different types of IoT data, MSE will be a general
quality evaluation metric, which will be discussed in Section
1I-D.

B. Protecting Most Significant Bits (MSBs) of Data

The amount of Gaussian noise that is used during training
influences how accurate the inference of the finalized model
performs. Therefore, different models with varying amounts of
noise (i.e. sigma values) and epsilon values with a set delta
value of 1075 have been studied. For sigma, we tested 4
different noise levels,c €Z : 1 < 0 < 4, and for each sigma
value we tested 6 separate epsilon values, e €Z : 5 < ¢ < 10.
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Fig. 5. Impact of memory failure rate on privacy/accuracy tradeoff. (a) without MSB protected and (b) with 2 MSBs protected.

The relevant results for the (g, €) pairs we tested are shown in
Fig. 5. Our study shows that the best (g, €) pairs (i.e. the values
of sigma and epsilon that provide the best test classification
accuracy) for the MNIST dataset are: 0 = 1, e =9 and o = 2,
& = 8 as memory failure rates of the dataset are increased.
When training using these values for the parameters, the
probability of violating the privacy is recalculated after each
step in the training process until the end delta value § = 107>
to stay within a modest privacy budget [33].

One effective technique for increasing the PSNR of the test
dataset when errors are present is to protect the most significant
bits (MSBs) of the data from memory failures [19, 20]. To study
the impact of the memory failures, we further investigate the
individual cases of protecting 1, 2, or 3 MSBs and compare
against the case without protecting any bits to see the influence
of the MSBs on the test classification accuracy. Fig. 4 displays
the test classification accuracy of o = 2, ¢ = 8 differentially
private ConvNet with the varying amount of MSBs protected.
The protection of 2 or 3 bits has a significant influence on
boosting the accuracy of the system to acceptable levels.

C. Impact of Memory Failure on Privacy/Accuracy Trade-off

Additionally, the impact of the memory failure on the
privacy/accuracy trade-off is studied in differentially private
deep learning systems. It can be seen from Fig. 5 (a) that, the
parameter € represents the general trade-off between privacy
level and accuracy of the differentially private deep learning
system. A larger value can potentially enable higher accuracy.
Additionally, for this specific Gaussian (i.e. ~N(0, 6?)) noise
addition mechanism, the value of ¢ also directly indicates the
trade-off between privacy and accuracy. As shown in Fig. 5 (a),
in general, as o (i.e. the amount of noise) increases, the
accuracy decreases.

When comparing Fig. 5 (a) and (b), it can be observed that
for an optimal input data memory with MSBs protected the
accuracy/privacy tradeoff can be significantly improved. For
example, in the case where o0 = 2 and ¢ = 8, if the memory
failure rate is 0.23, without protection, the accuracy will be

much less than any acceptable amount (i.e. within 1% of the
error free system). By introducing the protection to 2 MSBs, at
the same failure rate, the accuracy will be increased to >96%,
which is within 1% of the fault free differentially private model.
In the following section, based on the design guidelines, a low
power memory will be designed to minimize power
consumption while keeping an acceptable accuracy for the
differentially private deep learning systems.

D. Integer Linear Programs (ILP) Model based Memory
Design

Based on the above analysis, we propose an input data
memory design technique to improve the prediction accuracy
of differentially private deep learning systems. To optimize the
dataset quality, the design problem becomes an energy-
accuracy-cost tradeoff design problem. We apply the model for
hybrid SRAM without bitcell integration cost (i.e., Model 2) in
[40] to handle this problem. In the following we provide an
independent brief introduction to the mathematical model.

Assume the data points yy, y,, -+, J, are stored in a memory,
and each data point needs s memory bitcells to store. Then, the
mean square error (MSE) of these data points is defined by

1 0 (012
MSE:; ?=1(yi )_yi )) )

where yi(D) and yi(o) are the degradated and original data
values, respectively. The degradations are caused by hardware
memory failures. The expected MSE can be calculated by

E(MSE) = — %1, Tioy 44 que,
where q;; is the given failure probability of the k" bitcell of
the i*" data [40]. Note that the general concept of MSE is
widely used in data analytics and statistics, not only in image or
video pixels.

Suppose we have r; and r, design options for 6T and 8T
SRAM, respectively. Let r = r; + 1, be the total design option.
In addition, define binary decision variables

o = {1, if option [ is chosen for the ik'" bitcell
ikl =

0, otherwise
(=1 mk=1-,s51=1--71)



Then the following Integer Linear Programs (ILP) model can
be formulized to enable an optimal input data memory using 6T
sizing techniques and 8T+6T hybrid design

- K
min Yie1 Lk=1 21=1 4 Qi Xk ©)
s.t. Yieixg =1, i=1,,mk=0,-,s )
o1 Xke=0 Zl=1 SikiXikl < Stotal (©))
xp €{01}, i=1,--,m;k=1,-,s;l ©
=1, ,r

The objective function (3) is to minimize the expected MSE of
the whole data set. Constraint (4) is to guarantee that one can
choose exactly one design option for each bit cell. Note that
since this is a minimization problem, (4) is equivalent to
Yil=1 Xirr = 1. The total area constraint (5) assures that the total
area of the design cannot exceed the given limit S;,;4;, Where
Six1 is @ known parameter indicating the area cost of the ikt"
bitcell if it is selected to adopt the [** design option. Finally,
constraint (6) indicates that x;;; is a binary decision variable.

The following section will present the memory design and
evaluate results in a 45nm CMOS technology based on this
optimization model. It should be noted that the developed ILP
model can be used for optimal memory design in different
technologies.

IV. EMBEDDED MEMORY DESIGN FOR DEEP LEARNING

To evaluate the effectiveness of the proposed memory design
technique, 0.4V and 0.5V are used in our analysis based on a
45nm CMOS technology to enable the maximum energy
efficiency at near-threshold voltage [41, 42]. The deep learning
system was set up using a single convolutional layer, a learning
rate of 0.05, a batch size of 600, and an L2-norm gradient bound
of 4.0 for norm clipping. The total epochs for any given privacy
level are calculated during training and are based on the privacy
parameters € and §, and the noise parameter 6. For example,
with large target ¢ (i.e. less privacy) and/or large ¢ (i.e. more
noise), the network model can be trained for more epochs
without violating the chosen privacy level.

A. Optimized Memory Design

Traditional low-power memories often utilize bitcell sizing
or more than 6T bitcells to reduce memory failures induced by
process variations, thereby achieving power savings at low
voltages. This is because, at low voltages, memory failures are
mainly caused by the intra-die variations in process parameters
(e.g., variations in channel length, channel width, oxide
thickness, threshold voltage, line-edge roughness, and random
dopant fluctuations [RDF]) and the inter-die variations (i.e.
different process corners including “typical NMOS and typical
PMOS”, “fast NMOS and slow PMOS”, “slow NMOS and fast
PMOS”, “slow NMOS and slow PMOS”, and “fast NMOS and
fast PMOS”) [19, 20, 43]. Among the different sources of intra-
die variations, RDF-induced threshold voltage (V;;,) variations
are the most significant in causing memory failures [43], which
can be expressed by

1.5225um

1.66875 um
:i = i
B & el &
= B e

Fig. 6. Different memory designs: (a) 6T SRAM schematic and minimum-
sized layout design in 45 nm technology (C61) and (b) 8T SRAM schematic
and minimum-sized layout design (C81) in the same 45 nm technology.

TABLE I. MEMORY FAILURE RATE

memory | height | width area area ratio failure rate

bitcells (um) (um) (um?) Sk @0.4V | @0.5V
6T:C61 | 045 1.523 0.685 1 0.5897 | 0.3436
6T:C62 | 045 1.563 0.703 1.026 0.5341 | 0.3074
6T: C63 | 045 1.603 0.721 1.053 0.4803 | 0.2771
6T:C64 | 045 1.643 0.739 1.079 0.4342 | 0.2521
8T:C81 | 045 1.669 0.751 1.096 0.0121 | 0.00082
8T:C82 | 045 1.700 0.765 1.117 0.0043 | 0.00009
8T:C83 | 045 1.740 0.783 1.143 0.002 | 0.00002

— Wmin Lmin
Vin = Vino /—WL . 7

where gV, is the standard deviation of Vi, and W, L represent
the width and length of the transistor. gV, for an NMOS and
PMOS transistor with /¥ equal to the minimum Lzgr in the 45nm
predictive technology is 46.9mV and 41.8mV, respectively.
According to (7), oV, is inversely proportional to VWL,
indicating that the deviation of V,; is reduced as W and L
increase. Therefore, upsizing bitcells can reduce memory
failures at low voltages due to the reduced intra-die threshold
voltage (V) variations.

In addition to upsizing bitcells, more than 6T bitcells can also
mitigate process variation caused memory failures. Fig. 6
shows the 6T bitcell and 8T bitcell width using 45 nm CMOS
technology. As shown, 6T bitcells can achieve better area-cost
performance while 8T can effectively reduce memory failures
due to its decoupled read and write paths using two extra
transistors. However, 8T bitcells causes about 9.6% area
overhead compared to 6T.

Memory failure rates are also strongly dependent on inter-die
variations. Under inter-die variations, the dominant failures of
6T and 8T occur in read operations at “fs” (fast NMOS and slow
PMOS) and in write operations at “sf” (slow NMOS and fast
PMOS) process corners, respectively [20]. In our analysis,
10,000 Monte-Carlo simulations are performed with local intra-
die threshold voltage variations (RDF effects) at the worst
process corners for 6T and 8T bitcells. The failure rates are
listed in Table I. As shown, therearer=r; +1r, =4+3 =7
total options (including 4 upsized 6T options and 3 upsized 8T
options). As expected, upsizing bitcells and 8T options can both
result in a lower failure rate with a larger bitcell area. Also, as



TABLE II. RESULTS AND COMPARISONS

Stotal Optimal Design @ 0.5V Traditional Scenario MSE
MSE,p:. S; Se Ss Sy S; S, Sy So MSEr,q. Des.,pim, Improvement
8.0 12034.27 | C61 Col Col Col Col Col Col Col 12034.27 Col 0.00%
8.1 3003.22 C81 Col Co1 Co1 Col Col Co1 Co1 12034.27 Co1 75.04%
8.3 200.77 C81 C81 C81 | Co6l | Ceol Col Col Col 10337.20 C62 98.06%
8.5 28.56 C81 C81 C81 | C81 | C8l C61 C61 C61 8997.34 C63 99.68%
8.7 2.91 C83 | C83 | C82 | C81 | C81 | C81 | C61 | Cé61 7944.11 C64 99.96%
8.9 0.80 C83 | C83 | C8 | C81 | C8I C81 C81 C81 18.01 C81 95.56%
9.1 0.43 C83 | C83 | C83 | C83 | €83 | C83 | C82 | C82 1.94 C82 77.84%
Stotal Optimal Design @ 0.4V Traditional Scenario MSE
MSE,p:. S; Se Ss Sy S; S, Sy So MSEr,q. Des.open, Improvement
8 26207.11 Col Col Col Col Co1 Co1 Co1 Co1 26207.11 Col 0.00%
8.1 6883.95 C81 Col Col | Col | Ceol Col Col Col 26207.11 Col 73.73%
8.3 735.63 C81 C81 C81 Co1 Co1 Co1 Col1 Col1 22596.87 C62 96.74%
8.5 150.27 C83 | C83 | C8 | C81 | Cé6l C61 C61 C61 19329.43 C63 99.22%
8.7 56.60 C83 | C83 | C82 | C81 | C81 | C81 | C61 | Cé61 16710.36 C64 99.66%
8.9 45.46 C83 | C83 | C83 | C8 | C82 | C8I C81 C61 270.28 C81 83.18%
9.1 43.80 C83 | C83 | C83 | C83 | C83 | C83 | C82 | C82 94.57 C82 53.69%
TABLE IIIl. POWER CONSUMPTION OF OPTIMIZED MEMORY AT 45NM CMOS TECHNOLOGY @ 0.5V
Stotal Proposed optimal design Traditional design Preduction @ 0.5v
Pra (W) @ Pra (W) @ ( P"{"““”'”” 1@ 0'T4‘é (opt) vs. 1v
Pop. (W) @ 0.4V | Py (W)@ 0.5V 04V 0.5V Pra (W)@ 1.0V | (opt) vs. 1v (Trd.) (Trd.)
8 1.30E-06 2.07E-06 1.30E-06 2.07E-06 9.28E-06 86.03% 77.69%
8.1 1.41E-06 2.53E-06 1.30E-06 2.07E-06 9.28E-06 84.85% 72.74%
8.3 1.63E-06 3.01E-06 1.34E-06 2.15E-06 1.00E-05 83.74% 69.90%
8.5 1.74E-06 3.50E-06 1.38E-06 2.29E-06 1.16E-05 85.02% 69.83%
8.7 1.96E-06 3.55E-06 1.42E-06 2.42E-06 1.41E-05 86.11% 74.82%
8.9 2.07E-06 4.09E-06 2.18E-06 4.22E-06 1.02E-04 97.97% 95.99%
9.1 2.18E-06 3.85E-06 2.18E-06 3.87E-06 1.02E-04 97.86% 96.23%

P,,.: power consumption of the proposed memory; Pr..: power consumption of traditional memory design; Preducion: power reduction

the supply voltage decreases from 0.5V to 0.4V, the memory
failure rate of the same bitcell increases accordingly.

Solving (3)-(6) for a variety of Stotar values in the range [8.0,
9.1] using Gurobi solver (version 7.0.2) at both 0.4V and 0.5V,
the results are listed in Table II. In the traditional design, all
bitcells select the same option as discussed in [40]. It can be
seen that in most design cases significant MSE improvement
can be enabled with the optimal design, including over 99%
MSE improvement for both 0.4V and 0.5V if the total area
constraint is 8.5 or 8.7. Another interesting observation is that
for two different voltages, the optimization solutions under the
same total area constraint have the same tendency: when Stotal
is small (e.g., < 8.3), the most cost-efficient bitcell (C61) is
usually selected to meet the area constraint. In the extreme case,
with sttal = 8.0, all bitcells are C61, which is the only possible
solution under such a strict area constraint. As Stotai increases
beyond 8.5, a larger number of different 8T bitcells are selected
to optimize the quality. It should be noted that as Stota = 8.5 or
8.9, the optimal solutions for 0.4V are different from the ones
for 0.5V. This is because, for different memory bitcells, the
relationship between memory failure and voltage may not be
linear [20].

B. Power Efficiency

We have also evaluated the power efficiency of the optimized
memory design, as displayed in Table III. All possible memory
operations were considered for the total power estimation,
including: read (i.e. read zero and read one), write (i.e. write

zero to zero, zero to one, one to zero, and one to one), and hold
(i.e. leakage power while holding zero and leakage power while
holding one). As shown in Table III, operating at 0.4V enables
significant power savings as compared to the traditional supply
voltage (1V). As the total area constraint S increases, the
power consumption increases due to more 8T bitcells being
included in the optimized design solution. If 8.7 is the target
area constraint, then 74.82% and 86.11% power savings can be
enabled at 0.5V and 0.4V compared to 1V, respectively.

C. Input Data Quality and Accuracy

We further evaluate the input data quality and prediction
accuracy using the optimized memory. The results are listed in
Table IV. The MNIST dataset [39], which was used as the
original dataset for training the CNN model, displays almost no
accuracy loss (0.01%) as compared to the fault free test
samples. Additionally, the Fashion [44] and Kuzushiji-MNIST
(KMNIST) [45] datasets are introduced to evaluate the
efficiency of the proposed technique. The Fashion and
KMNIST datasets are comprised of 28x28 grayscale images of
70,000 fashion product and Japanese characters respectively,
with each dataset containing samples from 10 categories. In
both datasets the training set has 60,000 images and the test set
has 10,000 images. Both Fashion and KMNIST datasets serve
as drop-in replacements for the MNIST dataset, as they share
the same image sizes and number of classes. The complexity of
the Fashion dataset is considered to be moderately more
complex to classify than the MNIST dataset while KMNIST is
significantly more complex. This level of dataset complexity is



reflected in the classification accuracy results. When training a
CNN model with the same architecture on the Fashion dataset,
the proposed memory yields a negligible accuracy loss when
voltage scaling to 0.5V (0.03%) or 0.4V (0.33%). When
training a CNN model with the same architecture using the
KMNIST dataset, a dataset that is significantly more difficult to
classify, the proposed memory still yields negligible loss in
classification accuracy when voltage scaling to 0.5V (0.15%)
or 0.4V (0.59%)).

The results in Table IV are based on the specific privacy level
where the maximum accuracy is enabled for the MNIST dataset
(i.e. 0 = 2, ¢ = 8). With the same privacy level, using the

proposed memory design, the accuracy almost remains the
same for the Fashion and KMNIST datasets while the supply
voltage is reduced from 1V to 0.4V. The Fashion and KMNIST
datasets display higher accuracies for lower levels of &, but still
maintain high accuracy for varying levels of noise.

D. Accuracy at Different Privacy Levels

To evaluate the impact of privacy levels on the effectiveness
of the proposed memory technique, varying o and € values are
included in CNN model simulations. It shows that the privacy
level has a noticeable impact on the inference accuracy of the
differentially private deep learning systems. The MNIST,

TABLE IV. INPUT DATA QUALITY AND ACCURACY

No Error

MNIST Dataset [39]

OIS

Test Accuracy
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TABLE V. IMPACT OF PRIVACY LEVEL ON TEST ACCURACY

. Privacy This This

Dataset P;;l;aiyr /Noise Tlr\(; (")ff(;, Work @ (?ff;/ Work @
| Level : | osv | 04v

MNIST L2= 4,¢ =5 | High |95.89%]35.36%]| 95.91% [13.66%| 95.74%

0=2,6=10| Low [96.52%|48.49%)| 96.39% [14.15%]| 96.34%
o=4,¢=5| High [86.33%]|27.53%| 86.4% |11.25%| 86.1%
0=2,6=10| Low [87.54%|20.14%| 87.64% [10.33%]| 87.16%
o =4,6=5| High |81.38%]|25.14%| 81.46% |11.11%]| 81.29%
g=2,6=10] Low |83.01%|36.13%]| 82.98% [13.89%] 82.69%

Fashion

IKMNIST]

Fashion, and KMNIST datasets were used to determine the
impact of the privacy level on the inference accuracy. In
general, the higher the privacy level is, the lower the test
accuracy becomes. This relationship can be seen in Table V,
which includes both high and low levels of privacy for
comparison of test accuracy calculations. As displayed in Table
V, the proposed memory design at both 0.4V and 0.5V performs
similarly to the 1V traditional design and is capable of
achieving inference accuracy within 1% of the fault free model
at both low and high privacy levels. Therefore, the proposed
memory can be a preferable solution for implementing power-
efficient differently private deep learning systems.

V. CONCLUSION

This paper analyzed the power efficiency, accuracy, and
privacy characteristics of differentially private deep learning
systems and presented an input data memory design with
upsized devices and 8T+6T hybrid bitcells, thereby achieving
power efficiency and accuracy optimization at different privacy
levels. It concluded that the memory design, which achieves the
optimal quality of the input data, can provide the highest
prediction accuracy with different privacy levels. To enable the
presented design technique, a mean squared error (MSE) based
Integer Linear Programs (ILP) model was developed for
optimal memory design with different silicon area constraints
in differentially private deep learning systems, which
significantly saved design time as compared with traditional
time-consuming and laborious ASIC design processes.
Simulation results demonstrate significant reduction in power
consumption under different silicon area design constraints,
with less than 1% degradation in classification accuracy for
different privacy levels. Future investigations would include
extension of the proposed optimal memory design to deal with
activation private data storage in partitioned deep learning
systems (e.g., [13]).
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