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Abstract—With the advent of Internet of Things (IoT) 

technologies and availability of a large amount of data, deep 

learning has been applied in a variety of artificial intelligence (AI) 

applications. However, sharing personal data using IoT edge devices 

carries inherent risks to individual privacy. Meanwhile, the energy 

and memory resources needed during the inference process becomes 

a constraint to the resource-limited IoT edge devices. This paper 

brings memory hardware optimization to meet the tight power 

budget in IoT edge devices by considering the privacy, accuracy, and 

power efficiency tradeoff in differentially efficient deep learning 

systems. Based on a detailed analysis on these characteristics, an 

Integer Linear Programs (ILP) model is developed to minimize 

mean square error (MSE), thereby enabling optimal input data 

memory design. Our simulation results in 45-nm CMOS 

technology show that the proposed technique can enable near-

threshold energy-efficient memory operation for different privacy 

requirements, with less than 1% degradation in classification 

accuracy. 

 
Index Terms—Deep learning, embedded memory, power 

consumption, differential privacy, accuracy, Integer Linear 

Programs (ILP) model 

 

I. INTRODUCTION 

N recent years, deep learning, at the forefront of new 

developments in artificial intelligence (AI), is transforming 

many modern applications, from face identification, 

automatic translation, and computer vision, to self-driving cars, 

healthcare, and education. For example, deep learning has 

demonstrated exceptional performance in disease diagnosis of 

brain disorders and various forms of cancers [1, 2, 3], due to the 

availability of a large amount of patients’ data. Meanwhile, with 

the advent of wearable technologies and Internet of Things 

(IoT), there is a rising interest in providing a personalized 

experience with health recommender systems. For example, 

smart watches can record cardiac activities [4] and recent 

medical sensors can replace a finger prick for blood glucose 

testing [5]. The collected health data can be leveraged through 

deep learning to provide “personalized” methods of prevention, 

treatment, and care, thereby aiding persons with disabilities or 

aging people to address health disparities. As an example, in 

January 2019, CarePredict, the leading digital health company, 

launched an AI-powered platform for at-home use by aging 

seniors. The platform uses deep learning, combined with smart 

IoT devices, to unobtrusively monitor the daily activities 

performed by older adults [6]. 

Such learning-enabled benefit, however, does come with its 

own cost, such as the associated serious privacy concerns. 

Sharing personal data carries inherent risks to individual 

privacy. Due to the substantial requirements for computation 

and storage resources, today’s deep learning systems are 

typically built upon large, centralized data repositories. Based 

on this centralized-training paradigm, data owners need to 

upload their private data to the provider and do not have control 

over how their private data is being used [7, 8, 9].  

To protect privacy, one popular technique is differentially 

private deep learning algorithms [10], which add random noise 

to the computation so that the output does not significantly 

depend on any particular training sample (see Fig. 1). When 

introducing noise, the privacy-guarantee comes at the cost of 

compromising the accuracy of the models, and this privacy-

accuracy trade-off is represented in the differential privacy 

model through a parameter – privacy budget ( 𝜀 ), which 

represents the privacy loss in a system. A smaller value of 𝜀 

indicates a smaller privacy loss (i.e. stronger privacy guarantee) 

and a larger accuracy degradation of deep learning systems [11, 

12]. For a specific application, the value of 𝜀 is usually given 

based on the prior consensus between the users and the deep 

learning service providers [10, 13].  

In addition to privacy, as the deep learning networks grow, 

the energy and resources needed during the inference process, 

particularly memories, have become a major constraint to the 

resource-limited IoT devices [14]. As shown in Fig. 1, during 

the IoT edge inference process, memory traffic mainly contains 

two components: (i) weight storage for neural network models 

and (ii) input data memory to store images, voice, and other 

sensory signals [15]. In a deep learning accelerator, to store the 

weights, memory accesses usually consume several orders of 

magnitude higher energy than computation, making memory 

performance the bottleneck for processing [16]. For example, 

in AlexNet, nearly 3000M memory accesses are required, 

which dominates the power consumption of the entire learning 

system [16]. In another deep learning Integrated Circuit (IC) - 
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DianNao, the static random-access memory (SRAM) occupies 

56% of the silicon area and contributes to  over 60% power 

consumption of the entire chip [17]. To reduce the power 

consumption of weight storage, researchers have developed 

large embedded SRAM or exploit data reuse to reduce or even 

eliminate the off-chip memory traffic. ShiDian-Nao [18], for 

example, is an in-camera CNN accelerator, where the 

accelerator is placed on the same chip as the image sensor 

processor, storing all the weights in embedded memory and 

eliminating off-chip DRAM memory accesses, thereby 

achieving 60X higher energy-efficiency than DianNao. 

Additionally, researchers have developed approximate weight 

memories to optimize the power consumption of the weight 

storage [19] [20]. As more and more deep learning accelerators 

adopt embedded memories to store weight values, the input data 

storage becomes dominant for external memory traffic (e.g., 

96.6 mW to read one image compared to 45.3 mW for object 

detector in an embedded vision system [15]). Consequently, 

power-efficient embedded input data memory is one of the key 

design considerations for deep learning systems. Particularly, 

given the number of IoT devices is predicted to rapidly increase 

and reaching over 75 billion by 2025 [21], the resulting rapid 

explosion and scale of collected data brings increasing pressure 

for input data storage. This paper aims to optimize the power 

efficiency of the input data storage. We propose a new 

embedded memory design technique that considers the 

relationship between efficiency, accuracy, and privacy of 

differentially private deep learning systems, thereby meeting 

the increasing storage demands of edge inference. Specifically, 

this paper makes the following contributions: 

    Input data memory design for differentially private 

deep learning considering the tradeoff between 

privacy, accuracy, and power efficiency: To the best of 

the authors’ knowledge, this is the first work to connect 

the input data memory to the privacy, accuracy, and 

power efficiency trade-off in differentially private deep 

learning systems. We conclude that if the memory 

hardware can enable the optimal quality of the input data, 

the accuracy can be optimized for deep learning systems 

with different privacy levels (Sections III.B and III.C).  

    MSE based mathematical model for optimal memory 

design: Based on the general concept of mean square 

error (MSE), an Integer Linear Programs (ILP) model is 

developed to enable optimal input data memory design 

for differentially private deep learning. The developed 

model can be solved fast by existing solvers (e.g., Gurobi 

and Cplex), which significantly saves the design time as 

compared to the traditional ASIC design process 

(Sections III.D). 

    Novel low-power memory design: Based on the 

developed ILP model, a memory design technique is 

presented that combines the use of other memory 

techniques (bitcell upsizing and 8T+6T hybrid bitcells). 

Our analysis shows that significant MSE improvement 

can be enabled with the optimal design (Section IV-A). 

    Thorough evaluation: Finally, a comprehensive suite of 

simulations is performed on the proposed input data 

memory, and the enriched results include: silicon area 

constraint, power consumption, data quality, prediction 

accuracy, and privacy budget. Our evaluation results 

show that the proposed memory can achieve significant 

power savings while maintaining near optimal accuracy 

(details are shown in Section IV). 

The organization of the paper is as follows. A review of 

differentially private deep learning techniques is provided in 

Section II. Section III analyzes the impact of input data quality 

and memory in local devices on the system accuracy. Section 

IV presents the proposed memory hardware design process. The 

evaluation results are discussed in Section V. Finally, we 

conclude the paper in Section VI. 

 

II. LEARNING WITH DIFFERENTIAL PRIVACY 

A. Privacy Preservation in Deep Learning  

Privacy research has drawn attention in both industry and 

research communities. Large industry leaders, including: 
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Fig.1. Input data memory optimization for deep learning system with energy-efficiency, privacy, and inference accuracy 
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Apple, Facebook, and Google, have concluded that these types 

of threats can be accomplished by invasive analysts even when 

data has been anonymized [22, 23, 24]. For example, in 2006 

AOL released a list of 20 million web search queries which was 

found to have leaked the identity of a woman [25]. Similarly, 

Netflix introduced an open competition in 2006 that released a 

dataset that also leaked private data [26, 27]. One other area 

with potential privacy issues is biomedical research. For 

example, in genome wide association studies, the identity and 

any diseases a person has could be revealed based on results 

included in research papers [28]. Due to privacy risks such as 

these, a conscious effort to reduce data leaks has become of 

great interest, especially for companies using machine learning 

algorithms on collected big data. 

The privacy of deep learning models, such as neural 

networks, have recently come into question due to weaknesses 

and attack models that have been previously exploited [29]. 

Due to high requirements of computation and storage resources, 

today’s deep learning systems are typically built upon large, 

centralized data repositories. Many cloud providers also give 

access to computing platforms and learning frameworks for 

model training, such as Amazon Sagemaker and Google Cloud 

ML Engine. Based on this centralized-training paradigm, data 

owners need to upload their private data to the cloud provider 

and they do not have control over how their private data is being 

used. For instance, if a deep learning model was trained on the 

records of patients with a certain disease, learning that an 

individual’s record was part of the training data directly affects 

their privacy, and it opens a door to potential misuse (e.g., 

exploitation for the purpose of recruitment, insurance pricing, 

or granting loans) due to the following three potential privacy 

threats: (i) it is very easy for a malicious provider to steal the 

data if the provider has full access to the data [7]; (ii) even 

without full access to the data, the malicious provider can 

extract sensitive data from the trained models [8]; and (iii) A 

malicious remote user can also retrieve information of the 

training data by carefully querying the trained models [9].  

B. Differentially Private Deep Learning and State of the Art 

To preserve data privacy, differential privacy [10] is 

becoming the gold standard to offer both utility to the 

applications and rigorous privacy guarantees.  The formal 

definition is as follows: a randomized mechanism M  is 

considered to be (ε, δ)-differentially private if, for two adjacent 

inputs d  and d′ , it holds that Pr[M(d) ϵ S] ≤ eε ∙
Pr[M(d′) ϵ S] + δ, where S is any subset of the outputs. The 

privacy cost parameter ε is used to control the tradeoff between 

the privacy and the accuracy where smaller values of ε provide 

more privacy. The guarantee of differential privacy is: if an 

individual’s data is used in a differentially private calculation, 

the probability of any result of the calculation changes by at 

most a factor of 𝑒ε in comparison to if that individual’s data is 

not used in the calculation [30]. The parameter δ  is the 

probability of failure where the given differentially private 

mechanism may violate an individual’s privacy. This δ value 

explains the possibility of “bad events” that may result in a large 

loss in privacy. Specifically, when training an (ε, δ) -

differentially private neural network, the probability of 

violating the privacy, δ, is calculated after each step for a given 

privacy cost, ε. 

Recent works have adopted the use of (ε, δ) -differential 

privacy in order to protect the data of individuals. In [31], the 

authors presented a technique involving an ensemble of 

teachers that could train on subsets of a sensitive data. After 

training, the teachers would further train a student model based 

on public data that was labeled using the ensemble. The student 

model is trained based on the noisy voting of the various 

teachers that were trained using the model so that a stronger 

privacy guarantee can be enabled by the system. In [32], a 

method creating generative adversarial networks (GANs) that 

include differentially private mechanisms to provide privacy 

guarantees was presented. This technique for training a 

differentially private GAN only allows the analyst to inspect a 

model that already guarantees some level of differential 

privacy. Both the teacher ensemble and differentially private 

GAN training techniques employ the use of a privacy 

accountant (i.e. the moments accountant), described in [33], in 

order to compute a tighter bound on the differential privacy.  

In order to ensure differential privacy, perturbation can be 

introduced at various parts of the workflow, including: input, 

output, and objective perturbation [34]. Also, different types of 

noise can be added to the training and test datasets. The 

moments accountant shows that for the Gaussian (i.e. 

~N(0, σ2)) noise mechanism, if the value of standard deviation 

for this noise mechanism is chosen to be: 

                                  σ =
1

ε
(2 log

1.25

δ
)1/2,                               (1) 

then the noise mechanism will satisfy (ε, δ) -differentially 

privacy for a given sensitivity, Sf . Using this moments 

accountant technique to compute a tight bound on the privacy 

allows for each step in the training algorithm to result in (ε, δ)-

differential privacy with respect to the lot. 

 The system we propose uses the moments accountant to train 

a differentially private ConvNet model on the server (cloud) 

where sensitive data is used for training. By enabling the 

moments accountant for training we can guarantee privacy, but 

at the cost of some accuracy loss. This trained, differentially 

private model will then be downloaded to the edge computing 

devices for inference tasks. A diagram of the proposed system 

design can be seen in Fig. 1. Since inference is taken care of on 

the local devices, the privacy of the testing data being presented 

to the devices is not a big concern.  
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Fig. 2.  Differentially private convolutional neural network used in our analysis. 
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As discussed in Section I, the energy and resources needed 

during the inference process has become another constraint to 

the resource-limited IoT devices. Deep learning models can 

take up a large portion of an embedded device’s memory space 

and inference tasks. In particular, data movement on these 

devices can consume the majority of the total power [35]. 

Software compression techniques for reducing the size of each 

weight in deep learning models have been introduced, such as 

the TensorFlow Lite API [36], which allows for 4× reduction in 

total model size.  For hardware improvements, one of the most 

important issues that has been focused on is the intensive 

memory access of the embedded IoT devices. Very recently, 

[37] presented a memory-based noise addition technique for 

differentially private deep learning systems, illustrating the 

significance of the embedded memory to edge inference tasks. 

However, this technique adopted the traditional memory 

design, which misses out on many optimization opportunities 

to trade off among privacy, accuracy, and efficiency. 

This paper aims to optimize memory design to better support 

differentially private deep learning algorithms in local devices. 

To enhance the power efficiency of memories, memory failures 

are usually introduced due to process variations during the 

device manufacturing process. We first analyze the impact of 

memory failures on accuracy and privacy and then conclude the 

guidelines to optimize the memory for privacy, efficiency, and 

accuracy in AI applications with different requirements. 

 

III. IMPACT OF MEMORY FAILURES IN DIFFERENTIALLY 

PRIVATE DEEP LEARNING SYSTEMS 

In our analysis, we define a convolutional neural network 

model using the TensorFlow framework [38] in order to gain 

insight on how different types and levels of noise may influence 

the privacy-accuracy tradeoff. The model involves using an 

objective perturbation through additive Gaussian noise and uses 

the moments accountant [33] to compute the privacy cost after 

each step in the training process. The ConvNet model we tested 

was based on the architecture described in [37] with a single 

convolutional layer and can be seen in Fig. 2. The widely used 

MNIST dataset [39] was used for our initial simulations. 

MNIST consists of 60,000 training samples and 10,000 test 

samples, where each sample is a handwritten digit ranging from 

“0” to “9”; each sample is an image that contains 784 features 

representing 28×28 pixels. 

A. Impact of Image Quality on Classification Accuracy 

In order to investigate the relationship between the quality of 

the test dataset and its impact on the test classification accuracy, 

we inject bit level errors at varying memory failure rates 

(probabilities) to each image in the test dataset. Since the 

MNIST dataset consists of images, the well-known peak signal-

to-noise ratio (PSNR) metric is used to evaluate quality, which 

is defined in [21] as  

𝑃𝑆𝑁𝑅 = 10 log10 (
2552

𝑀𝑆𝐸
),                           (2) 

where MSE is the mean square error between the original 

images (Org) and the degraded images (Deg). 

Accordingly, by evaluating the PSNR values for a wide range 

of error injected test datasets using MNIST and comparing the 

test classification accuracy, we identify that the higher the 

image quality in the test dataset, the higher the output accuracy 

of the system will be overall. This relationship between PSNR 

and test classification accuracy is illustrated in Fig. 3.  Based on 

this monotonically increasing behavior, if the PSNR value of 

the dataset is improved, the accuracy will be enhanced. 

Accordingly, during the memory design process, if the memory 

hardware can enable the optimal quality of the dataset, the 

accuracy will be improved accordingly. As shown in Fig. 3, as 

the PSNR values of the MNIST dataset are increased from 5dB 

to 15dB, the accuracy is increased from 10% to 90% while 

meeting the privacy guarantee for the differentially private deep 

learning systems. It should be noted that PSNR is used in our 

analysis to evaluate the image quality of MNIST dataset, but 

considering different types of IoT data, MSE will be a general 

quality evaluation metric, which will be discussed in Section 

III-D.  

B.  Protecting Most Significant Bits (MSBs) of Data 

The amount of Gaussian noise that is used during training 

influences how accurate the inference of the finalized model 

performs. Therefore, different models with varying amounts of 

noise (i.e. sigma values) and epsilon values with a set delta 

value of 10−5  have been studied. For sigma, we tested 4 

different noise levels, 𝜎 ∈ 𝐙 ∶ 1 ≤ σ ≤ 4, and for each sigma 

value we tested 6 separate epsilon values, 𝜀 ∈ 𝐙 ∶ 5 ≤ 𝜀 ≤ 10. 
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Fig. 4.  Impact of memory failure rate on the accuracy of the learning system. 
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The relevant results for the (𝜎, 𝜀) pairs we tested are shown in 

Fig. 5. Our study shows that the best (𝜎, 𝜀) pairs (i.e. the values 

of sigma and epsilon that provide the best test classification 

accuracy) for the MNIST dataset are: 𝜎 = 1, 𝜀 = 9 and 𝜎 = 2, 

𝜀 = 8  as memory failure rates of the dataset are increased. 

When training using these values for the parameters, the 

probability of violating the privacy is recalculated after each 

step in the training process until the end delta value 𝛿 = 10−5 

to stay within a modest privacy budget [33]. 

One effective technique for increasing the PSNR of the test 

dataset when errors are present is to protect the most significant 

bits (MSBs) of the data from memory failures [19, 20]. To study 

the impact of the memory failures, we further investigate the 

individual cases of protecting 1, 2, or 3 MSBs and compare 

against the case without protecting any bits to see the influence 

of the MSBs on the test classification accuracy. Fig. 4 displays 

the test classification accuracy of 𝜎 = 2, 𝜀 = 8 differentially 

private ConvNet with the varying amount of MSBs protected. 

The protection of 2 or 3 bits has a significant influence on 

boosting the accuracy of the system to acceptable levels. 

C. Impact of Memory Failure on Privacy/Accuracy Trade-off 

Additionally, the impact of the memory failure on the 

privacy/accuracy trade-off is studied in differentially private 

deep learning systems. It can be seen from Fig. 5 (a) that, the 

parameter 𝜀  represents the general trade-off between privacy 

level and accuracy of the differentially private deep learning 

system. A larger value can potentially enable higher accuracy. 

Additionally, for this specific Gaussian (i.e. ~N(0, σ2)) noise 

addition mechanism, the value of 𝜎 also directly indicates the 

trade-off between privacy and accuracy. As shown in Fig. 5 (a), 

in general, as  𝜎  (i.e. the amount of noise) increases, the 

accuracy decreases.  

When comparing Fig. 5 (a) and (b), it can be observed that 

for an optimal input data memory with MSBs protected the 

accuracy/privacy tradeoff can be significantly improved. For 

example, in the case where 𝜎 = 2 and 𝜀 = 8, if the memory 

failure rate is 0.23, without protection, the accuracy will be 

much less than any acceptable amount (i.e. within 1% of the 

error free system). By introducing the protection to 2 MSBs, at 

the same failure rate, the accuracy will be increased to >96%, 

which is within 1% of the fault free differentially private model. 

In the following section, based on the design guidelines, a low 

power memory will be designed to minimize power 

consumption while keeping an acceptable accuracy for the 

differentially private deep learning systems. 

D. Integer Linear Programs (ILP) Model based Memory 

Design  

Based on the above analysis, we propose an input data 

memory design technique to improve the prediction accuracy 

of differentially private deep learning systems. To optimize the 

dataset quality, the design problem becomes an energy-

accuracy-cost tradeoff design problem. We apply the model for 

hybrid SRAM without bitcell integration cost (i.e., Model 2) in 

[40] to handle this problem. In the following we provide an 

independent brief introduction to the mathematical model. 

Assume the data points 𝑦1, 𝑦2, ⋯ , 𝑦𝑛 are stored in a memory, 

and each data point needs s memory bitcells to store. Then, the 

mean square error (MSE) of these data points is defined by 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖

(𝐷)
− 𝑦𝑖

(𝑂)
)

2
𝑛
𝑖=1  ,   

where 𝑦𝑖
(𝐷)

and 𝑦𝑖
(𝑂)

 are the degradated and original data 

values, respectively. The degradations are caused by hardware 

memory failures. The expected MSE can be calculated by  

𝐸(𝑀𝑆𝐸) =
1

𝑛𝑠
∑ ∑ 4𝑘𝑞𝑖𝑘

𝑠
𝑘=1

𝑛
𝑖=1 , 

where 𝑞𝑖𝑘 is the given failure probability of the 𝑘𝑡ℎ bitcell of 

the 𝑖𝑡ℎ  data [40]. Note that the general concept of MSE is 

widely used in data analytics and statistics, not only in image or 

video pixels. 

Suppose we have 𝑟1  and 𝑟2  design options for 6T and 8T 

SRAM, respectively. Let 𝑟 = 𝑟1 + 𝑟2 be the total design option. 

In addition, define binary decision variables  

𝑥𝑖𝑘𝑙 = {
1, if option 𝑙 is chosen for the 𝑖𝑘𝑡ℎ bitcell
0, otherwise
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Fig. 5. Impact of memory failure rate on privacy/accuracy tradeoff. (a) without MSB protected and (b) with 2 MSBs protected. 
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Then the following Integer Linear Programs (ILP) model can 

be formulized to enable an optimal input data memory using 6T 

sizing techniques and 8T+6T hybrid design  

 min
𝒙

∑ ∑ ∑ 4𝑘𝑞𝑖𝑘𝑙𝑥𝑖𝑘𝑙
𝑟
𝑙=1

𝑠
𝑘=1

𝑛
𝑖=1   (3) 

s.t.   ∑ 𝑥𝑖𝑘𝑙
𝑟
𝑙=1 ≥ 1, 𝑖 = 1, ⋯ , 𝑛; 𝑘 = 0, ⋯ , 𝑠 (4) 

 ∑ ∑ ∑ 𝑠𝑖𝑘𝑙𝑥𝑖𝑘𝑙
𝑟
𝑙=1

𝑠
𝑘=0

𝑛
𝑖=1 ≤ 𝑠𝑡𝑜𝑡𝑎𝑙  (5) 

 𝑥𝑖𝑘𝑙 ∈ {0,1},   𝑖 = 1, ⋯ , 𝑛; 𝑘 = 1, ⋯ , 𝑠; 𝑙
= 1, ⋯ , 𝑟 

(6) 

The objective function (3) is to minimize the expected MSE of 

the whole data set. Constraint (4) is to guarantee that one can 

choose exactly one design option for each bit cell. Note that 

since this is a minimization problem, (4) is equivalent to 

∑ 𝑥𝑖𝑘𝑙
𝑟
𝑙=1 = 1. The total area constraint (5) assures that the total 

area of the design cannot exceed the given limit 𝑠𝑡𝑜𝑡𝑎𝑙 , where 

𝑠𝑖𝑘𝑙  is a known parameter indicating the area cost of the 𝑖𝑘𝑡ℎ 

bitcell if it is selected to adopt the 𝑙𝑡ℎ design option. Finally, 

constraint (6) indicates that 𝑥𝑖𝑘𝑙 is a binary decision variable. 

The following section will present the memory design and 

evaluate results in a 45nm CMOS technology based on this 

optimization model. It should be noted that the developed ILP 

model can be used for optimal memory design in different 

technologies. 

 

IV. EMBEDDED MEMORY DESIGN FOR DEEP LEARNING   

To evaluate the effectiveness of the proposed memory design 

technique, 0.4V and 0.5V are used in our analysis based on a 

45nm CMOS technology to enable the maximum energy 

efficiency at near-threshold voltage [41, 42]. The deep learning 

system was set up using a single convolutional layer, a learning 

rate of 0.05, a batch size of 600, and an L2-norm gradient bound 

of 4.0 for norm clipping. The total epochs for any given privacy 

level are calculated during training and are based on the privacy 

parameters ε and δ, and the noise parameter σ. For example, 

with large target ε (i.e. less privacy) and/or large σ (i.e. more 

noise), the network model can be trained for more epochs 

without violating the chosen privacy level. 

A. Optimized Memory Design  

Traditional low-power memories often utilize bitcell sizing 

or more than 6T bitcells to reduce memory failures induced by 

process variations, thereby achieving power savings at low 

voltages. This is because, at low voltages, memory failures are 

mainly caused by the intra-die variations in process parameters 

(e.g., variations in channel length, channel width, oxide 

thickness, threshold voltage, line-edge roughness, and random 

dopant fluctuations [RDF]) and the inter-die variations (i.e. 

different process corners including “typical NMOS and typical 

PMOS”, “fast NMOS and slow PMOS”, “slow NMOS and fast 

PMOS”, “slow NMOS and slow PMOS”, and “fast NMOS and 

fast PMOS”) [19, 20, 43]. Among the different sources of intra-

die variations, RDF-induced threshold voltage (𝑉𝑡ℎ) variations 

are the most significant in causing memory failures [43], which 

can be expressed by  

                      𝜎𝑉𝑡ℎ =  𝜎𝑉𝑡ℎ0√
𝑊𝑚𝑖𝑛  𝐿𝑚𝑖𝑛

𝑊 𝐿
,                              (7) 

where 𝜎𝑉𝑡ℎ0 is the standard deviation of 𝑉𝑡ℎ, and W, L represent 

the width and length of the transistor. 𝜎𝑉𝑡ℎ for an NMOS and 

PMOS transistor with W equal to the minimum LEFF in the 45nm 

predictive technology is 46.9mV and 41.8mV, respectively. 

According to (7), 𝜎𝑉𝑡ℎ  is inversely proportional to √𝑊𝐿 , 

indicating that the deviation of 𝑉𝑡ℎ  is reduced as W and L 

increase. Therefore, upsizing bitcells can reduce memory 

failures at low voltages due to the reduced intra-die threshold 

voltage (𝑉𝑡ℎ) variations. 

In addition to upsizing bitcells, more than 6T bitcells can also 

mitigate process variation caused memory failures. Fig. 6 

shows the 6T bitcell and 8T bitcell width using 45 nm CMOS 

technology. As shown, 6T bitcells can achieve better area-cost 

performance while 8T can effectively reduce memory failures 

due to its decoupled read and write paths using two extra 

transistors. However, 8T bitcells causes about 9.6% area 

overhead compared to 6T.  

Memory failure rates are also strongly dependent on inter-die 

variations. Under inter-die variations, the dominant failures of 

6T and 8T occur in read operations at “fs” (fast NMOS and slow 

PMOS) and in write operations at “sf” (slow NMOS and fast 

PMOS) process corners, respectively [20]. In our analysis, 

10,000 Monte-Carlo simulations are performed with local intra-

die threshold voltage variations (RDF effects) at the worst 

process corners for 6T and 8T bitcells. The failure rates are 

listed in Table I. As shown, there are r = r1 + r2 = 4 + 3 = 7 

total options (including 4 upsized 6T options and 3 upsized 8T 

options). As expected, upsizing bitcells and 8T options can both 

result in a lower failure rate with a larger bitcell area. Also, as 

TABLE I. MEMORY FAILURE RATE  

memory 
bitcells 

height 
(μm) 

width 
(μm) 

area 
(μm2) 

area ratio 
sk 

failure rate  

@0.4V @0.5V 

6T: C61 0.45 1.523 0.685 1 0.5897 0.3436 

6T: C62 0.45 1.563 0.703 1.026 0.5341 0.3074 

6T: C63 0.45 1.603 0.721 1.053 0.4803 0.2771 

6T: C64 0.45 1.643 0.739 1.079 0.4342 0.2521 

8T: C81 0.45 1.669 0.751 1.096 0.0121 0.00082 

8T: C82  0.45  1.700  0.765  1.117  0.0043 0.00009 

8T: C83  0.45  1.740  0.783  1.143  0.002 0.00002 
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Fig. 6.  Different memory designs: (a) 6T SRAM schematic and minimum-

sized layout design in 45 nm technology (C61) and (b) 8T SRAM schematic 
and minimum-sized layout design (C81) in the same 45 nm technology. 
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the supply voltage decreases from 0.5V to 0.4V, the memory 

failure rate of the same bitcell increases accordingly. 

Solving (3)-(6) for a variety of 𝑠𝑡𝑜𝑡𝑎𝑙 values in the range [8.0, 

9.1] using Gurobi solver (version 7.0.2) at both 0.4V and 0.5V, 

the results are listed in Table II. In the traditional design, all 

bitcells select the same option as discussed in [40]. It can be 

seen that in most design cases significant MSE improvement 

can be enabled with the optimal design, including over 99% 

MSE improvement for both 0.4V and 0.5V if the total area 

constraint is 8.5 or 8.7. Another interesting observation is that 

for two different voltages, the optimization solutions under the 

same total area constraint have the same tendency: when 𝑠𝑡𝑜𝑡𝑎𝑙 

is small (e.g., < 8.3), the most cost-efficient bitcell (C61) is 

usually selected to meet the area constraint. In the extreme case, 

with 𝑠𝑡𝑜𝑡𝑎𝑙 = 8.0, all bitcells are C61, which is the only possible 

solution under such a strict area constraint. As 𝑠𝑡𝑜𝑡𝑎𝑙 increases 

beyond 8.5, a larger number of different 8T bitcells are selected 

to optimize the quality. It should be noted that as 𝑠𝑡𝑜𝑡𝑎𝑙 = 8.5 or 

8.9, the optimal solutions for 0.4V are different from the ones 

for 0.5V. This is because, for different memory bitcells, the 

relationship between memory failure and voltage may not be 

linear [20].   

B. Power Efficiency 

We have also evaluated the power efficiency of the optimized 

memory design, as displayed in Table III. All possible memory 

operations were considered for the total power estimation, 

including: read (i.e. read zero and read one), write (i.e. write 

zero to zero, zero to one, one to zero, and one to one), and hold 

(i.e. leakage power while holding zero and leakage power while 

holding one). As shown in Table III, operating at 0.4V enables 

significant power savings as compared to the traditional supply 

voltage (1V). As the total area constraint Stotal increases, the 

power consumption increases due to more 8T bitcells being 

included in the optimized design solution. If 8.7 is the target 

area constraint, then 74.82% and 86.11% power savings can be 

enabled at 0.5V and 0.4V compared to 1V, respectively.         

C. Input Data Quality and Accuracy  

We further evaluate the input data quality and prediction 

accuracy using the optimized memory. The results are listed in 

Table IV. The MNIST dataset [39], which was used as the 

original dataset for training the CNN model, displays almost no 

accuracy loss (0.01%) as compared to the fault free test 

samples. Additionally, the Fashion [44] and Kuzushiji-MNIST 

(KMNIST) [45] datasets are introduced to evaluate the 

efficiency of the proposed technique. The Fashion and 

KMNIST datasets are comprised of 28×28 grayscale images of 

70,000 fashion product and Japanese characters respectively, 

with each dataset containing samples from 10 categories. In 

both datasets the training set has 60,000 images and the test set 

has 10,000 images. Both Fashion and KMNIST datasets serve 

as drop-in replacements for the MNIST dataset, as they share 

the same image sizes and number of classes. The complexity of 

the Fashion dataset is considered to be moderately more 

complex to classify than the MNIST dataset while KMNIST is 

significantly more complex. This level of dataset complexity is 

TABLE II. RESULTS AND COMPARISONS  

𝑆𝑡𝑜𝑡𝑎𝑙 Optimal Design @ 0.5V Traditional Scenario MSE 

Improvement 𝑀𝑆𝐸𝑜𝑝𝑡. 𝑆7 𝑆6 𝑆5 𝑆4 𝑆3 𝑆2 𝑆1 𝑆0 𝑀𝑆𝐸𝑇𝑟𝑑. 𝐷𝑒𝑠.𝑜𝑝𝑡𝑛. 

8.0 12034.27 C61 C61 C61 C61 C61 C61 C61 C61 12034.27 C61 0.00% 

8.1 3003.22 C81 C61 C61 C61 C61 C61 C61 C61 12034.27 C61 75.04% 

8.3 200.77 C81 C81 C81 C61 C61 C61 C61 C61 10337.20 C62 98.06% 

8.5 28.56 C81 C81 C81 C81 C81 C61 C61 C61 8997.34 C63 99.68% 

8.7 2.91 C83 C83 C82 C81 C81 C81 C61 C61 7944.11 C64 99.96% 

8.9 0.80 C83 C83 C82 C81 C81 C81 C81 C81 18.01 C81 95.56% 

9.1 0.43 C83 C83 C83 C83 C83 C83 C82 C82 1.94 C82 77.84% 

𝑆𝑡𝑜𝑡𝑎𝑙 Optimal Design @ 0.4V Traditional Scenario MSE 

Improvement 𝑀𝑆𝐸𝑜𝑝𝑡. 𝑆7 𝑆6 𝑆5 𝑆4 𝑆3 𝑆2 𝑆1 𝑆0 𝑀𝑆𝐸𝑇𝑟𝑑. 𝐷𝑒𝑠.𝑜𝑝𝑡𝑛. 

8 26207.11 C61 C61 C61 C61 C61 C61 C61 C61 26207.11 C61 0.00% 

8.1 6883.95 C81 C61 C61 C61 C61 C61 C61 C61 26207.11 C61 73.73% 

8.3 735.63 C81 C81 C81 C61 C61 C61 C61 C61 22596.87 C62 96.74% 

8.5 150.27 C83 C83 C82 C81 C61 C61 C61 C61 19329.43 C63 99.22% 

8.7 56.60 C83 C83 C82 C81 C81 C81 C61 C61 16710.36 C64 99.66% 

8.9 45.46 C83 C83 C83 C83 C82 C81 C81 C61 270.28 C81 83.18% 

9.1 43.80 C83 C83 C83 C83 C83 C83 C82 C82 94.57 C82 53.69% 

 

 TABLE III. POWER CONSUMPTION OF OPTIMIZED MEMORY AT 45NM CMOS TECHNOLOGY @ 0.5V 

𝑆𝑡𝑜𝑡𝑎𝑙 Proposed optimal design Traditional design 
Preduction @ 0.4v 

(opt.) vs. 1v (Trd.) 

Preduction @ 0.5v 

(opt.) vs. 1v 
(Trd.) Popt. (W) @ 0.4V Popt. (W) @ 0.5V 

PTrd. (W) @ 

0.4V 

PTrd. (W) @ 

0.5V 
 PTrd. (W) @ 1.0V 

8 1.30E-06 2.07E-06 1.30E-06 2.07E-06 9.28E-06 86.03% 77.69% 

8.1 1.41E-06 2.53E-06 1.30E-06 2.07E-06 9.28E-06 84.85% 72.74% 

8.3 1.63E-06 3.01E-06 1.34E-06 2.15E-06 1.00E-05 83.74% 69.90% 

8.5 1.74E-06 3.50E-06 1.38E-06 2.29E-06 1.16E-05 85.02% 69.83% 

8.7 1.96E-06 3.55E-06 1.42E-06 2.42E-06 1.41E-05 86.11% 74.82% 

8.9 2.07E-06 4.09E-06 2.18E-06 4.22E-06 1.02E-04 97.97% 95.99% 

9.1 2.18E-06 3.85E-06 2.18E-06 3.87E-06 1.02E-04 97.86% 96.23% 

Popt.: power consumption of the proposed memory; PTrd.: power consumption of traditional memory design; Preduction: power reduction 
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reflected in the classification accuracy results. When training a 

CNN model with the same architecture on the Fashion dataset, 

the proposed memory yields a negligible accuracy loss when 

voltage scaling to 0.5V (0.03%) or 0.4V (0.33%). When 

training a CNN model with the same architecture using the 

KMNIST dataset, a dataset that is significantly more difficult to 

classify, the proposed memory still yields negligible loss in 

classification accuracy when voltage scaling to 0.5V (0.15%) 

or 0.4V (0.59%). 

The results in Table IV are based on the specific privacy level 

where the maximum accuracy is enabled for the MNIST dataset 

(i.e. 𝜎 = 2 , 𝜀 = 8). With the same privacy level, using the 

proposed memory design, the accuracy almost remains the 

same for the Fashion and KMNIST datasets while the supply 

voltage is reduced from 1V to 0.4V. The Fashion and KMNIST 

datasets display higher accuracies for lower levels of 𝜀, but still 

maintain high accuracy for varying levels of noise. 

D. Accuracy at Different Privacy Levels 

To evaluate the impact of privacy levels on the effectiveness 

of the proposed memory technique, varying σ and ε values are 

included in CNN model simulations. It shows that the privacy 

level has a noticeable impact on the inference accuracy of the 

differentially private deep learning systems. The MNIST, 

TABLE IV. INPUT DATA QUALITY AND ACCURACY 

 No Error 1V Trd. 0.5V Trd. 
This Work 

@ 0.5V 
0.4V Trd. 

This Work @ 

0.4V 

MNIST Dataset [39] 

      

      

      

      

      
Test Accuracy  
(𝜎 = 2, 𝜀 = 8) 

96.7% 96.67% 42.3% 96.69% 12.22% 96.6% 

Fashion Dataset [44] 

      

      

      

      

      
Test Accuracy  
(𝜎 = 2, 𝜀 = 8) 

87.1% 87.06% 31.75% 87.07% 11.59% 86.77% 

KMNIST Dataset [45] 

      

      

      

      

      
Test Accuracy  
(𝜎 = 2, 𝜀 = 8) 

80.16% 79.87% 36.84% 80.01% 14.99% 79.57% 
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Fashion, and KMNIST datasets were used to determine the 

impact of the privacy level on the inference accuracy. In 

general, the higher the privacy level is, the lower the test 

accuracy becomes. This relationship can be seen in Table V, 

which includes both high and low levels of privacy for 

comparison of test accuracy calculations. As displayed in Table 

V, the proposed memory design at both 0.4V and 0.5V performs 

similarly to the 1V traditional design and is capable of 

achieving inference accuracy within 1% of the fault free model 

at both low and high privacy levels. Therefore, the proposed 

memory can be a preferable solution for implementing power-

efficient differently private deep learning systems. 

 

V. CONCLUSION  

This paper analyzed the power efficiency, accuracy, and 

privacy characteristics of differentially private deep learning 

systems and presented an input data memory design with 

upsized devices and 8T+6T hybrid bitcells, thereby achieving 

power efficiency and accuracy optimization at different privacy 

levels. It concluded that the memory design, which achieves the 

optimal quality of the input data, can provide the highest 

prediction accuracy with different privacy levels. To enable the 

presented design technique, a mean squared error (MSE) based 

Integer Linear Programs (ILP) model was developed for 

optimal memory design with different silicon area constraints 

in differentially private deep learning systems, which 

significantly saved design time as compared with traditional 

time-consuming and laborious ASIC design processes. 

Simulation results demonstrate significant reduction in power 

consumption under different silicon area design constraints, 

with less than 1% degradation in classification accuracy for 

different privacy levels. Future investigations would include 

extension of the proposed optimal memory design to deal with 

activation private data storage in partitioned deep learning 

systems (e.g., [13]).   
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