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Abstract

With rapid progress in high-throughput genotyping and
neuroimaging, researches of complex brain disorders, such
as Alzheimer’s Disease (AD), have gained significant at-
tention in recent years. Many prediction models have been
studied to relate neuroimaging measures to cognitive status
over the progressions when these disease develops. Missing
data is one of the biggest challenge in accurate cognitive
score prediction of subjects in longitudinal neuroimaging
studies. To tackle this problem, in this paper we propose
a novel formulation to learn an enriched representation for
imaging biomarkers that can simultaneously capture both
the information conveyed by baseline neuroimaging records
and that by progressive variations of varied counts of avail-
able follow-up records over time. While the numbers of the
brain scans of the participants vary, the learned biomarker
representation for every participant is a fixed-length vec-
tor, which enable us to use traditional learning models to
study AD developments. Our new objective is formulated
to maximize the ratio of the summations of a number of
{1 -norm distances for improved robustness, which, though,
is difficult to efficiently solve in general. Thus we derive
a new efficient iterative solution algorithm and rigorously
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prove its convergence. We have performed extensive exper-
iments on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset. A performance gain has been achieved to
predict four different cognitive scores, when we compare the
original baseline representations against the learned repre-
sentations with enrichments. These promising empirical re-
sults have demonstrated improved performances of our new
method that validate its effectiveness.

1. Introduction

As one of the most prevalent and severe type of neurode-
generative disorders, Alzheimer’s Disease (AD) strongly
impacts human memory, thinking and behavior, which is
characterized by progressive impairment of memory and
other cognitive capabilities, triggered by the damage of neu-
rons. AD usually progresses along a temporal continuum,
initially from a pre-clinical stage, subsequently to mild cog-
nitive impairment (MCI) and ultimately deteriorating to AD
[36]. According to a recent report [1], AD is the sixth lead-
ing cause of death in the United States. It is estimated that
5.7 million individuals are living with AD and this number
is projected to grow to 13.8 million by mid-century, fueled
in large part by the aging of the Baby Boom Generation.
The number of AD sufferers worldwide is estimated to be
44 million now and 1 in 85 people will be affected by AD
by 2050 [1].

With all these facts, AD has attracted growing atten-
tions in recent years. Over the past decade, neuroimaging
measures have been widely studied to predict disease status
and/or cognitive performance [8, 30, 31, 24, 40, 29, 22, 38].
However, these approaches routinely perform standard re-
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gression and/or classification at all time points separately,
which thereby ignore the longitudinal variations of brain
phenotypes. Since AD is a progressive neurodegenerative
disorder, it would be beneficial to explore the temporal re-
lation among the longitudinal records of the biomarkers.

In the study of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) cohort, participants are followed up at
various time points, including the baseline (BL), the 6th
Month (M6), the 12th month (M12), the 18th month (M 18),
the 24th month (M24), and the 36th month (M36), which
provides the possibility for developing more effective pre-
dictive models by using longitudinal data from multiple
time points. To explore the temporal structure of brain phe-
notypes, longitudinal prediction models have been proposed
[33, 32, 34, 35, 17, 5, 4, 3] in recent years. However, in
these studies longitudinal information has been modeled as
tensors, which inevitably complicates the problem. As a re-
sult, it is not easy to extend classical machine learning mod-
els that can only deal with vector or matrix data to study AD
developments.

Missing data in medical records is another critical chal-
lenge when we study the longitudinal data. Higher mortal-
ity risk and cognitive impairment hinder older adults from
staying in studies that require multiple visits and thus result
in incomplete data [37, 39]. The missing imaging records
in the longitudinal medical data lead to samples with varied
lengths for different participants. To deal with this problem,
many existing AD studies using longitudinal medical data
choose to only use data samples with complete temporal
records for model analysis and ignore those with few time
points [33, 35, 17]. Apparently, discarding the samples with
less temporal records could potentially ruin the data set. To
address this, data imputation methods [14, 37, 39] have been
proposed to handle the missing records of the longitudinal
AD measures. With imputed data, regression and classifi-
cation studies can be conducted. However, whether or not
these data completion methods could preserve the longi-
tudinal structure of neuroimaging measurements is still an
under-explored topic in AD studies. What’s worse, these
missing data imputation methods could possibly introduce
undesirable artifacts, thereby possibly further worsen the
predictive power of the longitudinal learning models.

To solve the longitudinal prediction problem with in-
complete temporal inputs, in this study we propose a novel
formulation to learn an enriched biomarker representation
which combines the baseline biomarker measurements and
the dynamic temporal imaging measurements across the
following time points. In our enriched biomarker represen-
tation learning framework, we use the biomarker records
at all available time points (a subset of {M6, M12, M18,
M?24, M36}) of each participant, from which we learn a
projection that can map the baseline record into a lower-
dimensional fixed-length vector, regardless of the inconsis-

tent sizes of the medical records of the participants in a data
set. Armed with the fixed-length biomarker representations,
we can take advantage of conventional regression and/or
classification methods to predict the cognitive declines of
AD patients.

In our proposed framework to learn the enriched sample
representations, it first learns a projection from the avail-
able follow-up imaging records. It then applies the learned
projection to the baseline neuroimaging record to compute
a fixed-length enriched biomarker representation. Through
these procedures, the learned representation simultaneously
captures the information conveyed by both baseline neu-
roimaging record and the progressive summary of all avail-
able follow-up records of each participant. We further de-
velop the proposed objective by replacing the squared ¢o-
norm distances by the /1 -norm distances in our formulation,
to improve the robustness of the learned enriched represen-
tation against possible outlying samples caused by varied
numbers of the brain scans of the participants in the studied
cohort.

Despite its clear motivation to integrate the information
from both baseline neuroimaging records and the available
follow-up ones, the proposed objective ends up to be an
optimization problem that simultaneously maximizes and
minimizes the summations of a number of ¢;-norm dis-
tances. To solve this challenging optimization problem, we
derive an efficient non-greedy iterative algorithm with the-
oretically guaranteed convergence.

Extensive experiments have been performed on the
ADNI cohort that demonstrate the improved performance
resulting from our new approach. We first compare the
prediction power of the baseline biomarker representations
against its enriched counterparts obtained by learning us-
ing five different broadly used prediction models: linear re-
gression (LR), ridge regression (RR), Lasso [25], support
vector regression (SVR) [23] and convolutional neural net-
works (CNN) [2]. We achieve a clear performance gain on
the four cognitive scores on the voxel-based morphometry
(VBM) biomarkers, which validate the effectiveness of the
our proposed method.

In the remainder of this paper, we will first introduce the
optimization objective of our new learning model to learn
the projections to enrich the baseline imaging biomarker
representations in Section 2, followed by the mathematical
derivations of an iterative algorithm to solve the proposed
objective and the convergence analysis of the algorithm in
Section 3. Then we report the experimental results in our
comprehensive empirical studies that support our hypothe-
sis in Section 4. Finally, the paper is concluded in Section 5.

2. The objective of our new method

In this section, we will first formalize problem to
learn the enriched neuroimaging biomarker representations,
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where we will introduce the notations used in this paper.
Then we will gradually develop the proposed objective to
learn a single fixed-length vector representation that can si-
multaneously capture the information from both baseline
neuroimaging record and progressive changes of follow-up
records along all time points.

2.1. Notations

Throughout this paper, we will write matrices as bold
uppercase letters and vectors as bold lowercase letters. The
trace of the matrix M = [m;;] is defined as tr(M) =
>;m;. The ¢1-norm of a vector v is defined as ||v|; =
>, |vi| and the f5-norm of v is defined as || v|2 = />, vZ.

2.2. Problem formalization

In the task of predicting cognitive declines using the
ADNI dataset, we aim at learning a fixed-length biomarker
representation vector for every participant from both the
baseline neuroimaging record and all available follow-up
medical scans of the participant. We denote the neuroimag-
ing measures of each participant as: X = {x,X}. Here,
x € R is the biomarker representations of the participant
at the baseline time point, where d denotes the number of
the neuroimaging features; X = [x1,...,X,] € R4*" col-
lects all available follow-up biomarker records at each time
point in the later three years, where n denotes the number
of available numbers of neuroimaging records of the studied
participant.

Given the neuroimaging sample & of a participant in
a studied cohort, we aim to learn an enriched representa-
tion of y = f(X) that captures information from both the
baseline neuroimaging record and the progressive changes
along each time point. To be more specific, first from
X = [x1,...,%,] € R™ we intend to learn a projection
which summarizes the temporal variations of neuroimaging
records along all time points that follow the baseline time
point: W = ¢(X). Then by applying the learned projec-
tion W on the baseline neuroimaging record, we compute a
single fixed-length vector representation as following:

y = f(&X) = f(9(X),x). (1)

We hope the learned representation y cna simultaneously
capture the information conveyed by boht baseline neu-
roimaging record and the dynamic changes of follow-up
neuroimaging records. Because such learned biomarker
representations across samples of the dataset are of the same
length, they can be readily used by traditional learning mod-
els for a variety of analysis tasks to study cognitive declines.

2.3. Representation learning through projections

In this subsection, we will develop the proposed objec-
tive to learn a new single fixed-length vector representa-

tion for the neuroimaging records. By integrating the base-
line neuroimaging record and dynamic temporal changes
of follow-up neuroimaging records, we aim to preserve
the global and local consistencies among the neuroimaging
records in the learned projected subspace.

Usually healthy participants (marked as healthy control
(HC) in the ADNI dataset) and most patients diagnosed with
impairment will remain cognitively stable within 4-6 years
[6]. Namely, the neuroimaging measurements of the partic-
ipants will not experience drastic changes over a short time.
Thus, we aim to preserve this local consistency in the pro-
jected space via minimizing the local variance of records
among nearby months in the projected subspace. Mathe-
matically, we denote the K -nearest neighbors of x; as N\
and the local mean vector of x; as:

1

X =
K+1
* x; €{N;U{x;}}

X (2)

We can achieve the overall local consistency of the entire
dataset by minimizing the following objective [27]:

jLoca] (W) =tr (WTSLW> s

(3)
st. WIW =1,
where Sy, is defined as:
Sp = Z Sri, 4)
i=1

and

Si= >, (-R)x-%). O
x; €{N;U{x;}}

Obviously, as discussed in our earlier work in [27], Sy;
computes the local covariance matrix of the data points
around x;. Thus minimizing tr (W7 Sz, W) ensures the
local consistency around x; and minimizing Jrocal 10
Eq. (3) ensures the overall local consistency around all data
samples. The constant factor ﬁ is omitted in Egs. (3-5)
for brevity.

Apart from taking advantage of the local consistency
of the available neuroimaging records in the follow-up
months, we further take into account the global structure
of the neuroimaging records. Using a global projection
learned by the principal component analysis (PCA) [10], we
map the baseline measurements x in the high d-dimensional
space into a vector y in a lower r-dimensional space by
computing y = WT'x, such that data in the projected space
R" preserve as much information as possible:

T ciobal (W) = tr (WTScW)

“Y Wi —R2. ©)
=1
st. WIW =1,
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where we compute:
Sg = Z (x; — %) (x, - %), @)

which is the covariance matrix of input data X and we de-

fine:
1 n
X=— 2 8
X n;x ®)

which is the global mean of the input data X. Again, the
constant factor % is also omitted for brevity.

To integrate the global and local consistencies of neu-
roimaging records by sing the trace ratio of matrices, we
can formulate the new objective as:

B tr (WTSGW)
TW) =4 (WTS, W)

> W i =)

> W ey -ml;

=1 x; e{N;U{x;}}
st. WI'W =1
A critical problem of J,2(W) in Eq. (9) lies in that
it computes the ratio of the summations of a number of
squared /5-norm distances, which are notoriously known to

be sensitive to both outlying samples and features [28, 20].
Thus we further rewrite the objective in Eq. (9) as follows:

Z HWT (xi — i)H1
i=1

(C))

9

j(Zl(W) B 7
S OY wreg-xy,
=1 x; e{N;U{x;}}
s.t. WTW = I?

in which we compute the summations of a number of ¢;-
norm distances, because the /1-norm distance can promote
the robustness against outlier samples and features [26, 18,
28,11, 19, 15, 16].

Upon solving the optimization problem in Eq. (10), the
learned enriched neuroimaging representation not only pre-
serves the global variance of biomarker measures, but also
maintains the local geometric structure, which thereby is
both globally and locally consistent in the learned subspace.
Moreover, we enrich the neuroimaging representation x of
the input measures X by computing:

y = f(9(X),x) = WTx, (11)

which is a fixed-length single-vector representation and can
be readily used by any classical machine learning models
for regression or classification analyses. This indeed is the
main contribution of this paper.

3. The optimization algorithm to solve our ob-
jective

The proposed objective in Eq. (10) maximizes the ratio
of the summations of a number of ¢;-norm distances, which
is nonsmooth thereby difficult to efficiently solve in gen-
eral. Thus, following our previous works [7, 12] we derive
an efficient iterative solution algorithm and prove its con-
vergence in this section. As an important algorithmic con-
tribution, the proposed solution algorithm is non-greedy in
nature.

3.1. Solving a general optimization problem of ratio
maximization

We first study the following general optimization prob-
lem to maximize the ratio of a pair of functions and derive
an efficient iterative algorithm to solve it:

h(v)

max ———,

A ) where m(v) > 0 (Vv € C), (12)

where €2 is the feasible domain of the variable v.

To solve the above optimization problem, we propose a
simple, yet efficient, iterative algorithm as summarized in
Algorithm 1, whose convergence can be proved by Theo-
rem 1.

Algorithm 1: Algorithm to solve Eq. (12).

1. Randomly initialize v° € Q and set k = 1;
while not converge do
k—1
2. Caleulate A = L)
m(v")
3. Find a v* € Q satisfying

h(vF) — Xem(v*)

13
> h(v*1) — (13

)\km(kal) =0;

4.k=k+1;
end
Output: v.

Theorem 1 Algorithm 1 increases the objective in each it-
eration until convergence.

Proof. Because Vv € C m(v) > 0, according to Step 3 of
Algorithm (1), we can derive

h (x®)

= > \®), 14
m (x(®) ~ (14)
Step 2 of Algorithm (1) defines that
h (x(t—1
A0 — M (15)
m (x(t—l))
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Thus, we have

m (x®) = m (xt-D)’
which completes the proof. |

3.2. Our Algorithm to Solve Eq. (10)

Because our new objective in Eq. (10) is a special case
of the general optimization problem for ratio maximization
in Eq. (1), we can derive Algorithm 2 to solve Eq. (10),
whose convergence is thereby guaranteed by Algorithm 1
and Theorem 1.

Algorithm 2: Algorithm to solve Eq. (10).

1. Randomly initialize W(?) satisfying
(W(O))T WO =Tandsetk =1;
while not converge do
2. Calculate
A —

n

>

i=1

SO WD x|

=1 X ENiU{xi}
(17)

w1 ©

(Xi - i)

b

3. Find a W) satisfying

Q wi

- leobaI W(t) - A(t)jLocal W(t)

= 0;
(18)
by Algorithm 3;
4.t=t+1;

end
Output: W.

Now we need to solve the problem in Eq. (18) in Algo-
rithm (2), for which we first introduce the following two
lemmas.

Lemmal [/3, Theorem 1] For any vector & =
[517 to 7§m]T e Rm , we have

€] = max (sign(m)) "¢, (19)

where the maximum value is attained if and only if n =
a x & where a > 0 is a scalar.

Lemma?2 /9, Lemma 3.1] For any vector & =

(€1, &m]T € R™, we have
1ené? 1
=min 5 » =+ 20
€111 o, 5 ;:1 ot 57l (20)

where the minimum value is attained if and only if n; =
|§]‘7] € {1727 7m}'

According to Lemma 1 and Lemma 2, to solve the prob-
lem in Eq. (18) we introduce the following function:

£ WO w1 —

@3y
H wO WD O wO w1
where
H WO w1
(22)

r T
= Z w®  Bsign BT w(-b |

m=1

where sign(z) is the sign function, and
M WO w1

m=1

(23)
In Egs. (21-23), we denote w,(fb) and ws,t -1 as the m-th col-
umn of matrices W) and W*~1) respectively, and define
B and A,,, as follows:

B:[il_iaiQ_i7”'7in_§]7 (24)
—%i) (x; - %)

D D T

i=1 x;EN;U{x;} | wﬁfl_l) (Xj — iz)

(25)

Theorem 2 For any W) € R7 and W1 ¢ Rixr,
we have

£ WO wit-D <o wi | (26)

The equality holds if and only if W) = W{—1),

Due to the space limit, the proof of Theorem 2 will be pro-
vided in the extended longer journal version of this paper in
the future.

Substituting W® =
L (W(t), W(t_l)), we have:

W1 into the function

£ wtb wit-t —o wit-b —o. (27

4830



In the ¢-th iteration in solving the objective function in
Eq. (10), the optimal solution W™ satisfies

L(W*WF1) > (W w1 =0, (28)
Then, we have:
Q(W*> > L W*,W(t_l)
>L£ Wit w1 (29)

=0 Wi =
Theorem 2 and Eq. (29) indicate that the solution of the
problem in Eq. (18) can be transformed to solve the prob-
lem of £ (W® W({=1) > 0, which can be solved by
the projected subgradient method with Armigo line search.
Thus we compute the subgradient of £ (W), W({~1)) at
WO as:

oL(W® WD) = Bsign BTWID
® ..

2

(30)
Ok [Alw?), Aowi o A w
Note that for a given matrix W) | here we define the

operator:

N

(D)

)

WO —wO  wo TWu))_

which can project W (*) onto an orthogonal cone. This guar-
antees the orthogonality constraint of the projection matrix
(WO WO =1,

Algorithm 3 summarizes the solution to the problem in
Eq. (18).

4. Experiments

In this section, we experimentally evaluate the predic-
tion performance of the enriched biomarker representations
learned by our proposed method by applying it to the ADNI
database.

4.1. ADNI dataset description

Data used in the preparation of the experiments were ob-
tained from the ADNI database (adni.loni.usc.edu).
We download 1.5 T MRI scans and demographic informa-
tion for 821 ADNI-1 participants. We perform voxel-based
morphometry (VBM) and FreeSurfer on the MRI data by
following [21] and extracted mean modulated gray mat-
ter (GM) measures for 90 target regions of interest (ROI).
These measures are adjusted for the baseline intracranial
volume (ICV) using regression weights derived from the
HC participants at the baseline. We also download the
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Algorithm 3: Solve the optimization problem (18).

Input: W) and the parameter 0 < 3 < 1;
1. Calculate

A =

n

D

=1

Xn: oo wen T(Xj—fi

1=1 x;eN;U{x;}

WD (% - %)

1

) [
(32)
thus the subgradient is computed as

Gt —gr wi=—b w1 (33)

and set m = 1;
while Q (W®)) < 0do
2. Calculate W) = P (W(tfl) + BmG(tfl));
3. Calculate Q (W(t)) by Eq. (10);
end
Output: W.

longitudinal scores of the participants in five independent
cognitive assessments including Alzheimer’s Disease As-
sessment Scale (ADAS), Mini-Mental State Examination
(MMSE), and Fluency test (FLU).

The time points examined in this study for both imag-
ing records and cognitive assessments includes baseline,
M6, M12, M18, M24 and M36. All the participants’ data
used in our enriched neuroimaging representation study
are required to have a baseline measurement, baseline
cognitive score and at least two available records from
M6/M12/M18/M24/M36. A total of 544 sample subjects
are involved in our study, among which we have 92 AD
samples, and 205 MCI samples and 247 HC samples. Four
cognitive assessment scores are included: (1) ADAS TO-
TAL scores from ADAS cognitive assessment, (2) MMSE
score from MMSE cognitive assessment, (3) FLU ANIM
and (4) FLU VEG scores from Fluency cognitive assess-
ment.

4.2. Performance comparison on the ADNI cohort

In this subsection, we will compare the predictive power
of the enriched biomarker representations learned by our
new method against the original counterparts of the base-
line record using the VBM biomarkers. Due to space limit,
more experimental results, such as those on the FreeSurfer
biomarkers will be provided in the extended longer journal
version of this paper in the future.



4.2.1 Experiment settings

To validate the usefulness of our proposed method, we com-
pare cognitive outcomes prediction performance using two
type of the neuroimaging inputs — the learned enriched rep-
resentation and BL biomarker measurement. In our exper-
iments, several methods proven to generalize well, such as
linear regression (LR), ridge regression (RR), Lasso, sup-
port vector regression (SVR), and CNN are leveraged. LR
is the simplest and widely used regression model in sta-
tistical learning and brain image analysis. RR is a regu-
larized version of LR that induces sparsity to account for
over-fitting. Lasso regression performs both variable selec-
tion and regularization in order to enhance the prediction
accuracy. SVR is the regression version of support vector
machine (SVM) , which is widely applied in many differ-
ent applications. CNN regression is the regression version
of convolutional neural networks, which has demonstrated
its superior performance compared to the classical machine
learning models.

For LR, RR, Lasso and SVR models, we conduct a stan-
dard 5-fold cross-validation approach by computing the root
mean square error (RMSE) between the predicted values
and ground truth values of the cognitive scores on the test-
ing data. In the standard 5-fold cross-validation, the data are
equally and randomly divided into 5 groups. In every trial,
one group is treated as testing data and the other four groups
are used as training data. This process repeats five times in
turn so that all the data can be fairly treated. In RR and
Lasso methods, the regularization parameters are fine tuned
by search the grid of {1071° ... 1071,1,10,---,10'°}.
In the SVR model, the Gaussian kernel is leveraged, and
box constraints parameters are also fine tuned following a
grid search of {107°,...,1071,1,10,--- ,10°}.

There is a slight difference for the CNN experimental
settings. For the CNN regression model, we randomly se-
lect 70% of the neuroimaging measurements as the train-
ing set, 20% of the neuroimaging measurements as the val-
idation set and the remaining 10% of the neuroimaging
measurements as the testing set. The validation set in the
CNN experimental setting is designed to provide an un-
biased evaluation of the model fit on the training dataset
while tuning model hyper parameters. The evaluation met-
rics reported are based on the results on the testing dataset.
We construct a two layer convolution architecture for the
cognitive outcomes prediction: (1) 16 1 x 5 convolutions
(unpadded convolutions), followed by a rectified linear unit
(ReLU) and a 1 x 2 max pooling operation; (2) 32 1 x 10
convolutions (unpadded convolutions) with ReL.U and a
1 x 2 max pooling operation. The dropout technique is also
leveraged to reduce overfitting in CNN models and prevent
complex co-adaptations on training data. In all our experi-
ments, the dropout probability is set to be 0.3 and the batch
size is set to be 16.

4.2.2 Experiment results

From Figure 1, we can see that the proposed enriched neu-
roimaging representation is consistently better than baseline
representation in five different methods, LR, RR, Lasso,
SVR and CNN. It can be attributed to the following rea-
sons. Firstly, the original baseline neuroimaging repre-
sentation only deals with one single cognitive measure,
it cannot benefit from longitudinal correlation across dif-
ferent neuroimaging records over the time. Instead, our
proposed enriched neuroimaging biomarker representation
could capture not only the baseline neuroimaging record,
but also the temporal local consistency among the follow-
up neuroimaging records. Our enriched neuroimaging rep-
resentation could integrate the neuroimaging records at
fix time point and the its dynamic temporal changes at
the same time. As AD is progressively degenerative dis-
ease, this incorporation of future information about subjects
could assist in predictions. Secondly, the original baseline
neuroimaging measurements exhibits high dimensionality,
which could be redundant and noisy. Thus the traditional
methods are easily suffered from “the curse of dimension-
ality”. Via the projection learned from the objective in
Eq. (10), we map the baseline cognitive measurement into
a low dimension space mitigating the issue of high dimen-
sionality. Thus, from Figure 1 we can see that, compared to
the original high dimensional baseline representation, our
enriched representation achieves a great improvement when
using LR, RR and Lasso to predict cognitive outcomes.

In all, by incorporating the global and local consistency
of the original biomarker representations of each partici-
pant, we learn a low-dimensional consistent fixed-length
enriched neuroimaging biomarker representation. Through
the enriched biomarker representation, we obtain a predic-
tion performance gain using the five different commonly
used regression models on VBM biomarkers, which certi-
fies the usefulness of our proposed enriched biomarker rep-
resentations.

5. Conclusion

In this paper, we propose a novel formulation to learn
an enriched neuroimaging biomarker representation using
available longitudinal data. Our enriched biomarker repre-
sentation is implemented by solving a new objective that en-
forces both global and local consistency of the neuroimag-
ing measurements of each participant in the projected sub-
space, where the global consistency is designed to preserve
similar distributions of neuroimaging measurements of each
participant during the project, and the local consistency
is designed to preserve the pairwise relationship of neu-
roimaging measurements of each participant. The objective
simultaneously maximizes and minimizes the summations
of a number of /1 -norm distances, which is difficult to solve
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Figure 1. Experiment results using VBM biomarkers. We use the original representation (left) and enriched representation (right) to predict
ten different baseline cognitive outcomes using five different methods — linear regression (LR), ridge regression (RR), Lasso, support
vector regression (SVR), convolutional neural networks (CNN). The root mean squared error (RMSE) value for each cognitive outcome is
calculated for comparison. The percentage improvement of each method compared the original representation and enriched representation

is also listed.

in general. We develop an efficient iterative solution algo-
rithm that is non-greedy and theoretically proved to con-
verge. We conducted experiments on the VBM biomark-
ers. Via the enriched neuroimaging representation, we can
achieve a performance gain in predicting ten different cog-
nitive outcomes using five regression models.
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