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Abstract

With rapid progress in high-throughput genotyping and
neuroimaging, researches of complex brain disorders, such
as Alzheimer’s Disease (AD), have gained significant at-
tention in recent years. Many prediction models have been
studied to relate neuroimaging measures to cognitive status
over the progressions when these disease develops. Missing
data is one of the biggest challenge in accurate cognitive
score prediction of subjects in longitudinal neuroimaging
studies. To tackle this problem, in this paper we propose
a novel formulation to learn an enriched representation for
imaging biomarkers that can simultaneously capture both
the information conveyed by baseline neuroimaging records
and that by progressive variations of varied counts of avail-
able follow-up records over time. While the numbers of the
brain scans of the participants vary, the learned biomarker
representation for every participant is a fixed-length vec-
tor, which enable us to use traditional learning models to
study AD developments. Our new objective is formulated
to maximize the ratio of the summations of a number of
�1-norm distances for improved robustness, which, though,
is difficult to efficiently solve in general. Thus we derive
a new efficient iterative solution algorithm and rigorously
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prove its convergence. We have performed extensive exper-
iments on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset. A performance gain has been achieved to
predict four different cognitive scores, when we compare the
original baseline representations against the learned repre-
sentations with enrichments. These promising empirical re-
sults have demonstrated improved performances of our new
method that validate its effectiveness.

1. Introduction

As one of the most prevalent and severe type of neurode-

generative disorders, Alzheimer’s Disease (AD) strongly

impacts human memory, thinking and behavior, which is

characterized by progressive impairment of memory and

other cognitive capabilities, triggered by the damage of neu-

rons. AD usually progresses along a temporal continuum,

initially from a pre-clinical stage, subsequently to mild cog-

nitive impairment (MCI) and ultimately deteriorating to AD

[36]. According to a recent report [1], AD is the sixth lead-

ing cause of death in the United States. It is estimated that

5.7 million individuals are living with AD and this number

is projected to grow to 13.8 million by mid-century, fueled

in large part by the aging of the Baby Boom Generation.

The number of AD sufferers worldwide is estimated to be

44 million now and 1 in 85 people will be affected by AD

by 2050 [1].

With all these facts, AD has attracted growing atten-

tions in recent years. Over the past decade, neuroimaging

measures have been widely studied to predict disease status

and/or cognitive performance [8, 30, 31, 24, 40, 29, 22, 38].

However, these approaches routinely perform standard re-
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gression and/or classification at all time points separately,

which thereby ignore the longitudinal variations of brain

phenotypes. Since AD is a progressive neurodegenerative

disorder, it would be beneficial to explore the temporal re-

lation among the longitudinal records of the biomarkers.

In the study of the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) cohort, participants are followed up at

various time points, including the baseline (BL), the 6th

Month (M6), the 12th month (M12), the 18th month (M18),

the 24th month (M24), and the 36th month (M36), which

provides the possibility for developing more effective pre-

dictive models by using longitudinal data from multiple

time points. To explore the temporal structure of brain phe-

notypes, longitudinal prediction models have been proposed

[33, 32, 34, 35, 17, 5, 4, 3] in recent years. However, in

these studies longitudinal information has been modeled as

tensors, which inevitably complicates the problem. As a re-

sult, it is not easy to extend classical machine learning mod-

els that can only deal with vector or matrix data to study AD

developments.

Missing data in medical records is another critical chal-

lenge when we study the longitudinal data. Higher mortal-

ity risk and cognitive impairment hinder older adults from

staying in studies that require multiple visits and thus result

in incomplete data [37, 39]. The missing imaging records

in the longitudinal medical data lead to samples with varied

lengths for different participants. To deal with this problem,

many existing AD studies using longitudinal medical data

choose to only use data samples with complete temporal

records for model analysis and ignore those with few time

points [33, 35, 17]. Apparently, discarding the samples with

less temporal records could potentially ruin the data set. To

address this, data imputation methods [14, 37, 39] have been

proposed to handle the missing records of the longitudinal

AD measures. With imputed data, regression and classifi-

cation studies can be conducted. However, whether or not

these data completion methods could preserve the longi-

tudinal structure of neuroimaging measurements is still an

under-explored topic in AD studies. What’s worse, these

missing data imputation methods could possibly introduce

undesirable artifacts, thereby possibly further worsen the

predictive power of the longitudinal learning models.

To solve the longitudinal prediction problem with in-

complete temporal inputs, in this study we propose a novel

formulation to learn an enriched biomarker representation

which combines the baseline biomarker measurements and

the dynamic temporal imaging measurements across the

following time points. In our enriched biomarker represen-

tation learning framework, we use the biomarker records

at all available time points (a subset of {M6, M12, M18,

M24, M36}) of each participant, from which we learn a

projection that can map the baseline record into a lower-

dimensional fixed-length vector, regardless of the inconsis-

tent sizes of the medical records of the participants in a data

set. Armed with the fixed-length biomarker representations,

we can take advantage of conventional regression and/or

classification methods to predict the cognitive declines of

AD patients.

In our proposed framework to learn the enriched sample

representations, it first learns a projection from the avail-

able follow-up imaging records. It then applies the learned

projection to the baseline neuroimaging record to compute

a fixed-length enriched biomarker representation. Through

these procedures, the learned representation simultaneously

captures the information conveyed by both baseline neu-

roimaging record and the progressive summary of all avail-

able follow-up records of each participant. We further de-

velop the proposed objective by replacing the squared �2-

norm distances by the �1-norm distances in our formulation,

to improve the robustness of the learned enriched represen-

tation against possible outlying samples caused by varied

numbers of the brain scans of the participants in the studied

cohort.

Despite its clear motivation to integrate the information

from both baseline neuroimaging records and the available

follow-up ones, the proposed objective ends up to be an

optimization problem that simultaneously maximizes and

minimizes the summations of a number of �1-norm dis-

tances. To solve this challenging optimization problem, we

derive an efficient non-greedy iterative algorithm with the-

oretically guaranteed convergence.

Extensive experiments have been performed on the

ADNI cohort that demonstrate the improved performance

resulting from our new approach. We first compare the

prediction power of the baseline biomarker representations

against its enriched counterparts obtained by learning us-

ing five different broadly used prediction models: linear re-

gression (LR), ridge regression (RR), Lasso [25], support

vector regression (SVR) [23] and convolutional neural net-

works (CNN) [2]. We achieve a clear performance gain on

the four cognitive scores on the voxel-based morphometry

(VBM) biomarkers, which validate the effectiveness of the

our proposed method.

In the remainder of this paper, we will first introduce the

optimization objective of our new learning model to learn

the projections to enrich the baseline imaging biomarker

representations in Section 2, followed by the mathematical

derivations of an iterative algorithm to solve the proposed

objective and the convergence analysis of the algorithm in

Section 3. Then we report the experimental results in our

comprehensive empirical studies that support our hypothe-

sis in Section 4. Finally, the paper is concluded in Section 5.

2. The objective of our new method
In this section, we will first formalize problem to

learn the enriched neuroimaging biomarker representations,
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where we will introduce the notations used in this paper.

Then we will gradually develop the proposed objective to

learn a single fixed-length vector representation that can si-

multaneously capture the information from both baseline

neuroimaging record and progressive changes of follow-up

records along all time points.

2.1. Notations

Throughout this paper, we will write matrices as bold

uppercase letters and vectors as bold lowercase letters. The

trace of the matrix M = [mij ] is defined as tr(M) =∑
i mi. The �1-norm of a vector v is defined as ‖v‖1 =∑
i |vi| and the �2-norm of v is defined as ‖v‖2 =

√∑
i v

2
i .

2.2. Problem formalization

In the task of predicting cognitive declines using the

ADNI dataset, we aim at learning a fixed-length biomarker

representation vector for every participant from both the

baseline neuroimaging record and all available follow-up

medical scans of the participant. We denote the neuroimag-

ing measures of each participant as: X = {x,X}. Here,

x ∈ �d is the biomarker representations of the participant

at the baseline time point, where d denotes the number of

the neuroimaging features; X = [x1, . . . ,xn] ∈ �d×n col-

lects all available follow-up biomarker records at each time

point in the later three years, where n denotes the number

of available numbers of neuroimaging records of the studied

participant.

Given the neuroimaging sample X of a participant in

a studied cohort, we aim to learn an enriched representa-

tion of y = f(X ) that captures information from both the

baseline neuroimaging record and the progressive changes

along each time point. To be more specific, first from

X = [x1, . . . ,xn] ∈ �d×n we intend to learn a projection

which summarizes the temporal variations of neuroimaging

records along all time points that follow the baseline time

point: W = g(X). Then by applying the learned projec-

tion W on the baseline neuroimaging record, we compute a

single fixed-length vector representation as following:

y = f(X ) = f(g(X),x). (1)

We hope the learned representation y cna simultaneously

capture the information conveyed by boht baseline neu-

roimaging record and the dynamic changes of follow-up

neuroimaging records. Because such learned biomarker

representations across samples of the dataset are of the same

length, they can be readily used by traditional learning mod-

els for a variety of analysis tasks to study cognitive declines.

2.3. Representation learning through projections

In this subsection, we will develop the proposed objec-

tive to learn a new single fixed-length vector representa-

tion for the neuroimaging records. By integrating the base-

line neuroimaging record and dynamic temporal changes

of follow-up neuroimaging records, we aim to preserve

the global and local consistencies among the neuroimaging

records in the learned projected subspace.

Usually healthy participants (marked as healthy control

(HC) in the ADNI dataset) and most patients diagnosed with

impairment will remain cognitively stable within 4–6 years

[6]. Namely, the neuroimaging measurements of the partic-

ipants will not experience drastic changes over a short time.

Thus, we aim to preserve this local consistency in the pro-

jected space via minimizing the local variance of records

among nearby months in the projected subspace. Mathe-

matically, we denote the K-nearest neighbors of xi as Ni

and the local mean vector of xi as:

xi =
1

K + 1

∑
xj∈{Ni∪{xi}}

xj . (2)

We can achieve the overall local consistency of the entire

dataset by minimizing the following objective [27]:

J Local (W) = tr
(
WTSLW

)
,

s.t. WTW = I,
(3)

where SL is defined as:

SL =
n∑

i=1

SLi, (4)

and

SLi =
∑

xj∈{Ni∪{xi}}
(xj − xi) (xj − xi)

T
. (5)

Obviously, as discussed in our earlier work in [27], SLi

computes the local covariance matrix of the data points

around xi. Thus minimizing tr
(
WTSLiW

)
ensures the

local consistency around xi and minimizing JLocal in

Eq. (3) ensures the overall local consistency around all data

samples. The constant factor 1
K+1 is omitted in Eqs. (3–5)

for brevity.

Apart from taking advantage of the local consistency

of the available neuroimaging records in the follow-up

months, we further take into account the global structure

of the neuroimaging records. Using a global projection

learned by the principal component analysis (PCA) [10], we

map the baseline measurements x in the high d-dimensional

space into a vector y in a lower r-dimensional space by

computing y = WTx, such that data in the projected space

�r preserve as much information as possible:

J Global (W) = tr
(
WTSGW

)

=
n∑

i=1

∥∥WT (xi − x)
∥∥2
2
,

s.t. WTW = I,

(6)
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where we compute:

SG =
n∑

i=1

(xi − x) (xi − x)
T
, (7)

which is the covariance matrix of input data X and we de-

fine:

x =
1

n

n∑
i=1

xi, (8)

which is the global mean of the input data X. Again, the

constant factor 1
n is also omitted for brevity.

To integrate the global and local consistencies of neu-

roimaging records by sing the trace ratio of matrices, we

can formulate the new objective as:

J�22
(W) =

tr
(
WTSGW

)
tr (WTSLW)

=

n∑
i=1

∥∥WT (xi − x)
∥∥2
2

n∑
i=1

∑
xj∈{Ni∪{xi}}

∥∥WT (xj − xi)
∥∥2
2

,

s.t. WTW = I.

(9)

A critical problem of J�22
(W) in Eq. (9) lies in that

it computes the ratio of the summations of a number of

squared �2-norm distances, which are notoriously known to

be sensitive to both outlying samples and features [28, 20].

Thus we further rewrite the objective in Eq. (9) as follows:

J�1(W) =

n∑
i=1

∥∥WT (xi − x)
∥∥
1

n∑
i=1

∑
xj∈{Ni∪{xi}}

∥∥WT (xj − xi)
∥∥
1

,

s.t. WTW = I,

(10)

in which we compute the summations of a number of �1-

norm distances, because the �1-norm distance can promote

the robustness against outlier samples and features [26, 18,

28, 11, 19, 15, 16].

Upon solving the optimization problem in Eq. (10), the

learned enriched neuroimaging representation not only pre-

serves the global variance of biomarker measures, but also

maintains the local geometric structure, which thereby is

both globally and locally consistent in the learned subspace.

Moreover, we enrich the neuroimaging representation x of

the input measures X by computing:

y = f(g(X),x) = WTx, (11)

which is a fixed-length single-vector representation and can

be readily used by any classical machine learning models

for regression or classification analyses. This indeed is the

main contribution of this paper.

3. The optimization algorithm to solve our ob-
jective

The proposed objective in Eq. (10) maximizes the ratio

of the summations of a number of �1-norm distances, which

is nonsmooth thereby difficult to efficiently solve in gen-

eral. Thus, following our previous works [7, 12] we derive

an efficient iterative solution algorithm and prove its con-

vergence in this section. As an important algorithmic con-

tribution, the proposed solution algorithm is non-greedy in

nature.

3.1. Solving a general optimization problem of ratio
maximization

We first study the following general optimization prob-

lem to maximize the ratio of a pair of functions and derive

an efficient iterative algorithm to solve it:

max
v∈C

h(v)

m(v)
, where m(v) ≥ 0 (∀v ∈ C), (12)

where Ω is the feasible domain of the variable v.

To solve the above optimization problem, we propose a

simple, yet efficient, iterative algorithm as summarized in

Algorithm 1, whose convergence can be proved by Theo-

rem 1.

Algorithm 1: Algorithm to solve Eq. (12).

1. Randomly initialize v0 ∈ Ω and set k = 1;

while not converge do

2. Calculate λk =
h(vk−1)

m(vk−1)
;

3. Find a vk ∈ Ω satisfying

h(vk)− λkm(vk)

> h(vk−1)− λkm(vk−1) = 0;
(13)

4. k = k + 1;

end
Output: v.

Theorem 1 Algorithm 1 increases the objective in each it-
eration until convergence.

Proof. Because ∀v ∈ C m(v) > 0, according to Step 3 of

Algorithm (1), we can derive

h
(
x(t)

)
m

(
x(t)

) ≥ λ(t). (14)

Step 2 of Algorithm (1) defines that

λ(t) =
h
(
x(t−1)

)
m

(
x(t−1)

) . (15)
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Thus, we have

h
(
x(t)

)
m

(
x(t)

) ≥ h
(
x(t−1)

)
m

(
x(t−1)

) , (16)

which completes the proof. �

3.2. Our Algorithm to Solve Eq. (10)

Because our new objective in Eq. (10) is a special case

of the general optimization problem for ratio maximization

in Eq. (1), we can derive Algorithm 2 to solve Eq. (10),

whose convergence is thereby guaranteed by Algorithm 1

and Theorem 1.

Algorithm 2: Algorithm to solve Eq. (10).

1. Randomly initialize W(0) satisfying(
W(0)

)T
W(0) = I and set k = 1;

while not converge do
2. Calculate

λ(t) =
n∑

i=1

∥∥∥∥ W(t−1)
T

(xi − x)

∥∥∥∥
1

n∑
i=1

∑
xj∈Ni∪{xi}

‖ W(t−1)
T

(xj − xi)) ‖1
;

(17)

3. Find a W(t) satisfying

Q W(t)

= J Global W(t) − λ(t)J Local W(t)

≥ 0;
(18)

by Algorithm 3;

4. t = t+ 1;

end
Output: W.

Now we need to solve the problem in Eq. (18) in Algo-

rithm (2), for which we first introduce the following two

lemmas.

Lemma 1 [13, Theorem 1] For any vector ξ =
[ξ1, · · · , ξm]

T ∈ �m , we have

‖ξ‖1 = max
η∈�m

(sign(η))T ξ, (19)

where the maximum value is attained if and only if η =
a× ξ, where a > 0 is a scalar.

Lemma 2 [9, Lemma 3.1] For any vector ξ =
[ξ1, · · · , ξm]

T ∈ �m, we have

‖ξ‖1 = min
η∈�m

+

1

2

m∑
i=1

ξ2i
ηi

+
1

2
‖η‖1, (20)

where the minimum value is attained if and only if ηj =
|ξj |, j ∈ {1, 2, · · · ,m}.

According to Lemma 1 and Lemma 2, to solve the prob-

lem in Eq. (18) we introduce the following function:

L W(t),W(t−1) =

H w(t),W(t−1) − λ(t)M W(t),W(t−1) ,
(21)

where

H W(t),W(t−1)

=

r∑
m=1

w(t)
m

T

B sign BT w(t−1)
m ,

(22)

where sign(x) is the sign function, and

M W(t),W(t−1) =

1

2

r∑
m=1

w(t)
m

T

Amw(t)
m + w(t−1)

m

T

Amw(t−1)
m .

(23)

In Eqs. (21–23), we denote w
(t)
m and w

(t−1)
m as the m-th col-

umn of matrices W(t) and W(t−1) respectively, and define

B and Am as follows:

B = [x1 − x,x2 − x, · · · ,xn − x] , (24)

Am =
n∑

i=1

∑
xj∈Ni∪{xi}

(xj − xi) (xj − xi)
T∣∣

w
(t−1)
m

T

(xj − xi)

∣∣ . (25)

Theorem 2 For any W(t) ∈ �d×r and W(t−1) ∈ �d×r,
we have

L W(t),W(t−1) ≤ Q W(t) . (26)

The equality holds if and only if W(t) = W(t−1).

Due to the space limit, the proof of Theorem 2 will be pro-

vided in the extended longer journal version of this paper in

the future.

Substituting W(t) = W(t−1) into the function

L (
W(t),W(t−1)

)
, we have:

L W(t−1),W(t−1) = Q W(t−1) = 0. (27)
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In the t-th iteration in solving the objective function in

Eq. (10), the optimal solution W� satisfies

L (
W�,Wk−1

) ≥ L (
Wk−1,Wk−1

)
= 0. (28)

Then, we have:

Q (W�) ≥ L W�,W(t−1)

≥ L W(t−1),W(t−1)

= Q W(t−1) = 0.

(29)

Theorem 2 and Eq. (29) indicate that the solution of the

problem in Eq. (18) can be transformed to solve the prob-

lem of L (
W(t),W(t−1)

) ≥ 0, which can be solved by

the projected subgradient method with Armigo line search.

Thus we compute the subgradient of L (
W(t),W(t−1)

)
at

W(t) as:

∂L(W(t),W(t−1)) = B sign BTW(t−1)

− λk
[
A1w

(t)
1 ,A2w

(t)
2 , · · · ,Apw

(t)
p .

(30)

Note that for a given matrix W(t) , here we define the

operator:

P W(t) = W(t) W(t)
T

W(t)

)− 1
2

, (31)

which can project W(t) onto an orthogonal cone. This guar-

antees the orthogonality constraint of the projection matrix(
W(t)

)T
W(t) = I.

Algorithm 3 summarizes the solution to the problem in

Eq. (18).

4. Experiments
In this section, we experimentally evaluate the predic-

tion performance of the enriched biomarker representations

learned by our proposed method by applying it to the ADNI

database.

4.1. ADNI dataset description

Data used in the preparation of the experiments were ob-

tained from the ADNI database (adni.loni.usc.edu).

We download 1.5 T MRI scans and demographic informa-

tion for 821 ADNI-1 participants. We perform voxel-based

morphometry (VBM) and FreeSurfer on the MRI data by

following [21] and extracted mean modulated gray mat-

ter (GM) measures for 90 target regions of interest (ROI).

These measures are adjusted for the baseline intracranial

volume (ICV) using regression weights derived from the

HC participants at the baseline. We also download the

Algorithm 3: Solve the optimization problem (18).

Input: W(t) and the parameter 0 < β < 1;

1. Calculate

λ(t) =
n∑

i=1

∥∥∥∥ W(t−1)
T

(xi − x)

∥∥∥∥
1

n∑
i=1

∑
xj∈Ni∪{xi}

‖ W(t−1)
T

(xj − xi)) ‖1

(32)

thus the subgradient is computed as

G(t−1) = ∂L W(t−1),W(t−1) (33)

and set m = 1;

while Q (
W(t)

)
< 0 do

2. Calculate W(t) = P (
W(t−1) + βmG(t−1)

)
;

3. Calculate Q (
W(t)

)
by Eq. (10);

end
Output: W.

longitudinal scores of the participants in five independent

cognitive assessments including Alzheimer’s Disease As-

sessment Scale (ADAS), Mini-Mental State Examination

(MMSE), and Fluency test (FLU).

The time points examined in this study for both imag-

ing records and cognitive assessments includes baseline,

M6, M12, M18, M24 and M36. All the participants’ data

used in our enriched neuroimaging representation study

are required to have a baseline measurement, baseline

cognitive score and at least two available records from

M6/M12/M18/M24/M36. A total of 544 sample subjects

are involved in our study, among which we have 92 AD

samples, and 205 MCI samples and 247 HC samples. Four

cognitive assessment scores are included: (1) ADAS TO-

TAL scores from ADAS cognitive assessment, (2) MMSE

score from MMSE cognitive assessment, (3) FLU ANIM

and (4) FLU VEG scores from Fluency cognitive assess-

ment.

4.2. Performance comparison on the ADNI cohort

In this subsection, we will compare the predictive power

of the enriched biomarker representations learned by our

new method against the original counterparts of the base-

line record using the VBM biomarkers. Due to space limit,

more experimental results, such as those on the FreeSurfer

biomarkers will be provided in the extended longer journal

version of this paper in the future.
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4.2.1 Experiment settings

To validate the usefulness of our proposed method, we com-

pare cognitive outcomes prediction performance using two

type of the neuroimaging inputs – the learned enriched rep-

resentation and BL biomarker measurement. In our exper-

iments, several methods proven to generalize well, such as

linear regression (LR), ridge regression (RR), Lasso, sup-

port vector regression (SVR), and CNN are leveraged. LR

is the simplest and widely used regression model in sta-

tistical learning and brain image analysis. RR is a regu-

larized version of LR that induces sparsity to account for

over-fitting. Lasso regression performs both variable selec-

tion and regularization in order to enhance the prediction

accuracy. SVR is the regression version of support vector

machine (SVM) , which is widely applied in many differ-

ent applications. CNN regression is the regression version

of convolutional neural networks, which has demonstrated

its superior performance compared to the classical machine

learning models.

For LR, RR, Lasso and SVR models, we conduct a stan-

dard 5-fold cross-validation approach by computing the root

mean square error (RMSE) between the predicted values

and ground truth values of the cognitive scores on the test-

ing data. In the standard 5-fold cross-validation, the data are

equally and randomly divided into 5 groups. In every trial,

one group is treated as testing data and the other four groups

are used as training data. This process repeats five times in

turn so that all the data can be fairly treated. In RR and

Lasso methods, the regularization parameters are fine tuned

by search the grid of {10−10, . . . , 10−1, 1, 10, · · · , 1010}.

In the SVR model, the Gaussian kernel is leveraged, and

box constraints parameters are also fine tuned following a

grid search of {10−5, . . . , 10−1, 1, 10, · · · , 105}.

There is a slight difference for the CNN experimental

settings. For the CNN regression model, we randomly se-

lect 70% of the neuroimaging measurements as the train-

ing set, 20% of the neuroimaging measurements as the val-

idation set and the remaining 10% of the neuroimaging

measurements as the testing set. The validation set in the

CNN experimental setting is designed to provide an un-

biased evaluation of the model fit on the training dataset

while tuning model hyper parameters. The evaluation met-

rics reported are based on the results on the testing dataset.

We construct a two layer convolution architecture for the

cognitive outcomes prediction: (1) 16 1 × 5 convolutions

(unpadded convolutions), followed by a rectified linear unit

(ReLU) and a 1 × 2 max pooling operation; (2) 32 1 × 10
convolutions (unpadded convolutions) with ReLU and a

1× 2 max pooling operation. The dropout technique is also

leveraged to reduce overfitting in CNN models and prevent

complex co-adaptations on training data. In all our experi-

ments, the dropout probability is set to be 0.3 and the batch

size is set to be 16.

4.2.2 Experiment results

From Figure 1, we can see that the proposed enriched neu-

roimaging representation is consistently better than baseline

representation in five different methods, LR, RR, Lasso,

SVR and CNN. It can be attributed to the following rea-

sons. Firstly, the original baseline neuroimaging repre-

sentation only deals with one single cognitive measure,

it cannot benefit from longitudinal correlation across dif-

ferent neuroimaging records over the time. Instead, our

proposed enriched neuroimaging biomarker representation

could capture not only the baseline neuroimaging record,

but also the temporal local consistency among the follow-

up neuroimaging records. Our enriched neuroimaging rep-

resentation could integrate the neuroimaging records at

fix time point and the its dynamic temporal changes at

the same time. As AD is progressively degenerative dis-

ease, this incorporation of future information about subjects

could assist in predictions. Secondly, the original baseline

neuroimaging measurements exhibits high dimensionality,

which could be redundant and noisy. Thus the traditional

methods are easily suffered from “the curse of dimension-

ality”. Via the projection learned from the objective in

Eq. (10), we map the baseline cognitive measurement into

a low dimension space mitigating the issue of high dimen-

sionality. Thus, from Figure 1 we can see that, compared to

the original high dimensional baseline representation, our

enriched representation achieves a great improvement when

using LR, RR and Lasso to predict cognitive outcomes.

In all, by incorporating the global and local consistency

of the original biomarker representations of each partici-

pant, we learn a low-dimensional consistent fixed-length

enriched neuroimaging biomarker representation. Through

the enriched biomarker representation, we obtain a predic-

tion performance gain using the five different commonly

used regression models on VBM biomarkers, which certi-

fies the usefulness of our proposed enriched biomarker rep-

resentations.

5. Conclusion

In this paper, we propose a novel formulation to learn

an enriched neuroimaging biomarker representation using

available longitudinal data. Our enriched biomarker repre-

sentation is implemented by solving a new objective that en-

forces both global and local consistency of the neuroimag-

ing measurements of each participant in the projected sub-

space, where the global consistency is designed to preserve

similar distributions of neuroimaging measurements of each

participant during the project, and the local consistency

is designed to preserve the pairwise relationship of neu-

roimaging measurements of each participant. The objective

simultaneously maximizes and minimizes the summations

of a number of �1-norm distances, which is difficult to solve
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Figure 1. Experiment results using VBM biomarkers. We use the original representation (left) and enriched representation (right) to predict

ten different baseline cognitive outcomes using five different methods – linear regression (LR), ridge regression (RR), Lasso, support

vector regression (SVR), convolutional neural networks (CNN). The root mean squared error (RMSE) value for each cognitive outcome is

calculated for comparison. The percentage improvement of each method compared the original representation and enriched representation

is also listed.

in general. We develop an efficient iterative solution algo-

rithm that is non-greedy and theoretically proved to con-

verge. We conducted experiments on the VBM biomark-

ers. Via the enriched neuroimaging representation, we can

achieve a performance gain in predicting ten different cog-

nitive outcomes using five regression models.
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