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ABSTRACT
This paper presents MultiTrack, a commodity WiFi based
human sensing system that can track multiple users and
recognize activities of multiple users performing them si-
multaneously. Such a system can enable easy and large-scale
deployment for multi-user tracking and sensing without the
need for additional sensors through the use of existing WiFi
devices (e.g., desktops, laptops and smart appliances). The
basic idea is to identify and extract the signal reflection cor-
responding to each individual user with the help of multiple
WiFi links and all the availableWiFi channels at 5GHz. Given
the extracted signal reflection of each user, MultiTrack ex-
amines the path of the reflected signals at multiple links to
simultaneously track multiple users. It further reconstructs
the signal profile of each user as if only a single user has per-
formed activity in the environment to facilitate multi-user
activity recognition. We evaluate MultiTrack in different
multipath environments with up to 4 users for multi-user
tracking and up to 3 users for activity recognition. Experi-
mental results show that our system can achieve decimeter
localization accuracy and over 92% activity recognition ac-
curacy under multi-user scenarios.
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1 INTRODUCTION
Indoor human tracking and activity recognition is gaining
increasing attention and undergoing fast development in
a variety of real-world applications, especially in human-
computer interaction (HCI) area. Particularly, indoor hu-
man tracking is a building block for more comprehensive
context-based services that enable interaction between cy-
berworld and physical world. For example, it provides human
computer interface for visually impaired people to explore
and navigate surrounding areas and receive location-based
services [15]. In addition, human activity recognition can
be naturally intergraded with a broad array of applications
that require cyber-physical interactions, such as in smart
home, virtual/augmented reality, gaming and exercise mon-
itoring [3, 23, 25, 30, 32]. Tracking human location and ac-
tivity can also be used to monitor well-being and suggest
behavioral changes for people with special needs [7, 15, 34].

Existing work in indoor tracking and activity recognition
mainly relies on dedicated sensors (i.e., RFID, motion sen-
sors, mobile device) [4, 36, 43, 49, 51] that are worn/carried
by the user or depth/infrared cameras and visible light sen-
sors [6, 10, 12] that are installed in the environment (e.g.,
Kinect, leap motion, light sensor [17, 18, 22]). These solu-
tions require significant deployment overhead and incur
non-negligible cost. Moreover, the camera and visible light
based approaches cannot work in non-line-of-sight (NLOS)
scenarios and often involve user privacy concerns. The sys-
tems that rely on sensors worn/carried by the user could
be inconvenient and cumbersome as they require user’s ex-
plicit involvement. For example, users at home especially
elderly and children may forget to carry the device or might
be reluctant or feel uncomfortable to carry tracking devices.

Recently, Radio Frequency (RF) based device-free human
sensing becomes an appealing alternative. It analyzes the
radio signal reflections from human body for human tracking
and activity recognition thus doesn’t require user to wear or
carry any sensor. It also provides better coverage and works
under NLOS scenario as wireless signals can penetrate walls
when compared to camera or visible light based approach.
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Figure 1: Basic idea of MultiTrack.

Existing work in RF based device-free sensing uses either
specialized (e.g., USRP) [1, 2, 27] or commodity hardware [29,
35, 45]. In this work, we focus on latter approach as it can
reuse existing WiFi infrastructure to facilitate easy and large-
scale deployment without incurring additional cost due to
the proliferation of WiFi devices and networks.
However, current commodity WiFi sensing systems are

mainly designed for and tested with the presence of a sin-
gle user in the physical environment. They cannot work
well when multiple users are present in the same environ-
ment simultaneously. This is because the received signals
are mixture of signal reflections from different users and
these systems cannot identify the signal reflections that cor-
respond to each individual. WiMU [38] attempts to address
this issue by searching the possible combination of multiple
known gestures based on the assumption that all gestures
in each set of simultaneously performed gestures are per-
defined. However, such an assumption often cannot hold in
practice for multiple user tracking as the walking trajectory
of each individual tends to be random and cannot be pre-
defined. Similarly, if one or more users perform unknown
activities to WiMU, while other users perform predefined
activities, WiMU cannot recognize the predefined activities
due to the interference from the users performing unknown
background activities [38].

In this paper, we propose MultiTrack, a commodity WiFi
based sensing system for multi-user tracking and activity
recognition. MultiTrack is able to track the locations of multi-
ple users that walk simultaneously with decimeter accuracy,
which is comparable to the accuracy of existing systems that
focus on only a single user. In addition, it can recognize the
activities from multiple users simultaneously or the activity
of the target users when there are other users performing
unknown background activities.

The basic idea of our system is to identify and extract the
signal reflection from each individual user with the help of
multiple WiFi links and all the available WiFi channels at
5GHz. As shown in Figure 1, we can leverage existing WiFi

access points and WiFi devices (e.g., desktops, laptops, smart
appliances) to form multiple WiFi links. Such WiFi links can
quantify the radio signal propagation in terms of the power
delay profile, which describes the power intensity of received
signals as a function of propagation delay. Figure 1 (a) shows
the power delay profile under static environment at the wire-
less link LinkT 1R1 without any human presence. Once there
are multiple users performing activities or walking simulta-
neously, we can obtain another power delay profile under
multi-user case, as shown in Figure 1 (b). By subtracting
the profile under multi-user from the one under static en-
vironment, we can obtain the profile of signal reflections
that resulted only from the activities of multiple users, as
shown in Figure 1 (c). Then, we can segment the multi-user
reflection profile into single user reflection profile, which
corresponds to the signal reflected from each individual user.
By analyzing the single user reflection profile at multiple
links, we are able to perform multi-user tracking. Moreover,
we can reconstruct the signal profile of each user as if only
a single user has performed activity in the environment to
facilitate multi-user activity recognition.

Intuitively, we can derive the power delay profile from the
Channel State Information (CSI) that measured at each re-
ceived WiFi packet. However, commonly used WiFi channel
that used to send out eachWiFi packet only has 20MHz/40MHz
bandwidth, which provide a time or distance resolution at
50/25ns or 15/7.5 meters for distinguishing different signal
propagations. Such a resolution is larger than the dimen-
sion of a typical room and is unable to distinguish signal
reflections from different users in confined indoor spaces.
Inspired by pioneer work on channel splice [48], we propose
to send out probe signals at all available channels of 5GHz
(i.e., over 600MHz). We then combine all the channels at
5GHz to derive a fine-grained power delay profile, which is
used to separate the signal reflection from each individual
user.
Moreover, even with stitched channels that spread over

600MHz bandwidth at 5GHz frequency, the reflected signal
from users within close proximity could still partially mix
together. And such a scenario could be quite common when
the indoor environment has limited space (i.e., small office,
bedroom). To solve this problem, instead of modeling each
human as a single reflector in existing work [19, 28], we pro-
pose to model each human into primary reflector (i.e., upper
body) and secondary reflector (i.e., arms, legs and head). By
incorporating primary and secondary reflector model with
fine-grained power delay profile, we are able to obtain a
more accurate user reflection profile for user tracking. For
activity recognition, our system extracts Doppler frequency
shift based feature from the signal reflection of each user,
which isolates the signal dynamic due to human activity
from the signal reflected from static objects and walls. The
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extracted feature is then compared against the features of
known activities to facilitate multi-user activity recognition.

We experimentally evaluate MultiTrack in three different
indoor environments (i.e., home, classroom and corridor)
with up to four users that are walking simultaneously. For
multi-user activity recognition, we evaluate our system using
six different bodyweight exercises (sit up, squat, lunge, spinal
balance, bicycle crunch, and toe-touch crunch) with up to
three users performing either pre-defined or unknown activ-
ities simultaneously. The results shows MultiTrack achieves
high recognition accuracy even when non-target users are
performing unknown background activities. The contribu-
tion of our work are summarized as follows:

• We show that the commodity WiFi can be utilized to
perform multi-user tracking and activity recognition.
Such an approach does not require any dedicated or
specialized devices and can work under NLOS scenar-
ios.

• We leverage the large bandwidth at 5GHz to extract
fine-grained power delay profile at multiple WiFi links
to disentangle signal reflection from multiple users in
the multipath rich environment. We model the human
body as primary and secondary reflectors to further
separate users within close proximity for improved
tracking accuracy.

• We conduct extensive experiments in different mul-
tipath environments. Experimental results show that
MultiTrack achieves decimeter localization accuracy
and over 92% recognition accuracy even when non-
target user is performing unknown activities simulta-
neously in the background.

2 SYSTEM DESIGN
System Overview
The basic idea of our system is to identify and separate the
signal reflections from different users by leveraging multiple
WiFi links and the large WiFi bandwidth at 5GHz. By ana-
lyzing the separated signal reflection of each individual, our
system can achieve multi-user tracking and activity recog-
nition. Figure 2 shows the flow of our system. The system
first performs channel scanning and CSI collection, in which
one WiFi transmitter continuously sends out probe packets
through all available channels at 5GHz in each time frame
and three or more WiFi receivers extract Channel State In-
formation (CSI) measurement from each received packet.
Note that the time is divided into non-overlap time frames
and each time frame is less than the coherence time where
the multipath environment is considered consistent. The
extracted CSI measurements then go through calibration
process to mitigate both amplitude and phase errors.

Channel Scanning and 

CSI Collection

CSI  Measurements Calibration

Multiple Channel Splice

Reflection Profile Segmentation

Close Proximity Separation
Individual Profile 

Construction

Localization and Tracking Activity Recognition

Individual

Activities

Individual

Locations

Multi-Link Overlay

Similarity Comparison

User 
Enrolled
Activity

Unknown

Activities

Feature Extraction

Figure 2: Overview of system flow.

After CSI measurements calibration, our system stitches
all the available channels together to derive a fine-grained
power delay profile. We adopt inverse non-uniform Discrete
Fourier Transform (NDFT) to overcome the problem of un-
equal and non-contiguity spreading of available channels on
5GHz frequency band that used for commodity WiFi. The
derived fine-grained power delay profile at each link then
goes through Reflection Profile Segmentation to determine
the number of users and to segment the power delay profile
into single user reflection profiles, where each one represents
the signal reflection dominated by one individual user.

Next, our system splits into two subsystems. The first one
is for multi-user tracking and the other one is for multi-user
activity recognition. For localization and tracking subsystem,
we first leverage Close Proximity Separation component,
where the human body is modeled as primary and secondary
reflectors, to further refine the separated single user reflec-
tion profile. Then, we overlay the refined signal reflection
profile from multiple links and identify the converged one
with highest power as users’ locations.

For activity recognition subsystem, we first reconstruct
the power delay profile of each user as if only a single user
has performed activity in the environment. Then, we extract
Doppler frequency shift based on the reconstructed signal
profile to isolate the signal reflections from surrounding
objects and environments. We next extract energy-based fre-
quency contour in the Doppler frequency shift as feature and
calculate the similarity of such feature with respect to each
enrolled activity using Muti-Dimensional Dynamic Time
Warping (MD-DTW). The one that has the highest and also
sufficient similarity compare to the profile in the library is
then identified as the recognized activity.

CSI Collection and Calibration
For system with 802.11n/ac wireless network, we are able
to extract channel state information (CSI) from the WiFi
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NIC. Such CSI can be viewed as a sampled version of the
channel frequency response h(f ). Particularly, the standard
20/40MHz WiFi channel measures the amplitude and phase
information for each of the 56/128 orthogonal frequency-
division multiplexing (OFDM) subcarriers. In our work, we
utilize the total 24 available 20MHz channels at 5GHz band.
By setting the channel hopping delay as 0.2ms, we are able
to ensure our system can hop through all available channels
within the coherence time.

Due to hardware limitation of COTS WiFi NICs, the ex-
tracted raw CSI measurements involve significant distortions.
Such distortions or errors are mainly caused by clock unsyn-
chronization. We adopt the error correction approach from
previous work [48] for data calibration. In particular, we
mitigate the amplitude error by averaging raw CSI measure-
ments from multiple packets that collected within coherence
time. We mitigate the constant phase error by picking a ref-
erence channel from all existing channels and compensate
the phase difference between each channel pair. The linear
component of phase error can be further separated into two
parts. The first part of linear phase error can be calibrated by
averaging several CSI phase measurements captured at each
channel of certain receiver. To correct the second part of lin-
ear phase error, we search for an optimum phase offset that
minimize the difference between power delay profile derived
from all the available channels under the same multipath
environment.

Multi-Channel Splice
This step is used to splice together all the available channels
at 5GHz band to derive a fine-grained power delay profile.
Because of the regulation imposed by different countries, the
available channels are unequally and non-contiguous spread
across 5GHz band. In particular, the total 24 available chan-
nels of 5GHz band on the Intel 5300 NICs are divided into
three parts: from channel 36 to 64 (5.17GHz to 5.33GHz), from
channel 100 to 140 (5.49GHz to 5.71GHz) and from channel
149 to 165 (5.735GHz to 5.835GHz). The non-available chan-
nels are disabled by vendors in compliance with the local
regulation. Thus, simply adopting IFFT to transform spliced
CSI measurements from available channels to power delay
profile is not possible since IFFT only applies to uniformly-
spaced frequency measurements.
In our system, we utilize inverse Non-uniform Discrete

Fourier Transform(NDFT) which can be applied to non-
uniformly spaced channels. To derive fine-grained power
delay profile, we denote the CSI measurements from all avail-
able channels at 5GHz band as:

co = [c̃1,o , ..., c̃n,o , ...], (1)

where n and o denotes the nth channel at the oth receiver.
Given the sampled channel response CSI, the power delay

profile g at given channel can be derived using IFFT:

gn =
L∑
l=1

alδ (t − tl ), (2)

where l denotes the sequence number of total L multipath, al
and tl are the amplitude and signal propagation time delay
of lth path, δ (t) is the Dirac delta function.
Then, we can formulate the inverse NDFT problem as

following:
min
g

| |co − F g| |2, (3)

where g represents the power delay profile we are trying to
find and F is Fourier matrix. The goal is to search for an
optimum solution of power delay profile that can minimize
the difference between the Fourier Transformation of g and
spliced CSI measurements from all available channels.
The searching for optimum power delay profile has non-

linear and no-closed form solution. Furthermore, the direct
search can yield large number of possible results due to large
bandwidth of 5GHz channels. In order to filter out the un-
desirable solutions, we need to include certain constraints
to reduce the search space. Previous work utilizes the ob-
servation that within indoor environments where only few
multipath would dominate the signal propagation [37]. Such
constraint works well when the multipath propagation is
relative simple (e.g., only a single user inside the room). But
it can suffer from performance degradation when there are
multiple users within the same environment which creates
far more complicated signal propagation.
To overcome such problem, we leverage the layout and

distance information between each transmitter and receiver
pair. Assuming the signal propagation from the transmitter
to one or more receivers has line-of-sight in the system
setup, such LoS propagations will dominate the power in
the received signal (i.e., the LOS path has the largest power).
Therefore, among all the possible solutions of g, our system
favors the one that has larger power at the LoS propagation.
We utilize the proximal gradient method to solve our convex
optimization problem [11]. After performing inverse NDFT,
we are able to derive a fine-grained power delay profile with
the improved time resolution at 5ns .

Reflection Profile Segmentation
In this step, we separate the signal reflection of each indi-
vidual user based on the derived fine-grained power delay
profile at multiple WiFi links as shown in Figure 3. As the
derived power delay profile contains signal reflections from
both the static environments and multiple users, we first
perform static environment subtraction, where the profile
that include multi-user activities is subtracted by the profile
under static environment. Note that the profile of static en-
vironment can be collected when there is no human present
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(a) Static environment profile (b) Multi-user profile (c) Multi-user reflection
Figure 3: Illustration of static environment subtraction.

(i.e., the power delay profile under static environment re-
main constant). After static environment subtraction, we
obtain the profile solely containing the signal reflections
from multi-user activities, which is referred as multi-user
signal reflection profile.
As we can see from Figure 3(c), after static environment

subtraction, we are able to observe that there are two major
signal reflection components in the multi-user reflection pro-
file. Next, we segment the multi-user signal reflection profile
into multiple single user reflection profile with each one rep-
resenting the signal reflection from one user. By detecting
the number of major signal reflection components, we can
determine how many users are in the same environment and
further segment each user’s reflection profile. This is done
by using a moving window based approach.
In particular, we accumulate the power differential be-

tween adjacent time points within each slidingwindow. Then
we compare the accumulated value to an empirical threshold
to determine the duration for each individual profile. In our
experiments, the threshold is set to be 0.6 times the standard
deviation of the accumulated differential across multi-user
reflection profile. After identifying the duration of the de-
sired profile, we are able to determine the number of users
and obtain single user reflection profile. We repeat this pro-
cess over the multi-user reflection profiles derived from all
available transmission links.
It is worth noting that, when multiple users are at the

same distance with respect to a transmission link, the signal
reflection from these users will overlap (i.e., with the similar
propagation time delay) in the multi-user reflection profile
at that transmission link. Thus simply utilizing power de-
lay profile derived from a single link could not distinguish
multiple users under that scenario. Here, we propose to use
multiple transmission links (e.g., 3) to overcome this prob-
lem. Due to geometric relation between three transmission
links, one or more transmission links could capture signal
reflection from multiple users without overlapping. There-
fore, we can determine the number of users based on these
transmission links that do not experience severe overlap.

Localization and Tracking
Close Proximity Separation. Even after reflection profile seg-
mentation process, it is still possible the segmented reflection

Primary Reflector

Secondary Reflector

Tx

Rx

Tx

Rx

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 4: Illustration of primary/secondary reflector.

profile contains signal reflection from more than one single
user, when two or more users are in close proximity (i.e.,
less than 0.3m). It is difficult to further separate the reflected
signal component dominated by individual due to bandwidth
limitation of commodityWiFi. Thus it is necessary to address
such issue since it is quite common when tracking multiple
users within the confined space.

Next, we present the insights that can be utilized to solve
the problem of close proximity separation. We know that
the received signal can be represented by the sum of mul-
tiple components travelling through different paths with
varies ToF (time-of-flight). Left side of Figure 4 represents
the profile of a single user reflection after static environment
subtraction. We can observe that the profile includes reflec-
tion path with stronger power which most likely come from
user’s upper body, and reflection path with weaker power
which could be from different limbs of that user. This leads
to our first insight: single user body involves different parts
that reflect RF signal through different paths. So instead of
considering each user as single reflector which contains only
dominant ToF path in the previous work, we can further
model individual user into combination of primary reflector
and secondary reflector.

Furthermore, as users are located within close proximity,
the reflection path from different users will be partially com-
bined together due to limited commodity WiFi time/distance
resolution. Right side of Figure 4 shows the power delay pro-
file of two users with less than 0.3m distance in between. We
can still observe the strong power come from the primary re-
flector of each user in the multi-user profile. Meanwhile, we
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can also observe that previous weaker power of secondary
reflector path increases due to the inclusion of another user.
This leads to our second insight: the increase in the number
of users in close proximity would result in a non-negligible
increase of the reflection power within that range.

By utilizing those two insights, we can further formulate
close proximity separation problem as following:

min
gs

| |gs − R(i, j)| |2, (4)

where R(i, j) represents the combined power delay profile
for i number of users with j distance in between and gs
represents the mulit-user profile after static environment
subtraction. Such power delay profile is acquired through
empirical data. The goal is to search for an optimum solu-
tion that can minimize the difference between the gs and
combined multi-user profile.

Obviously, such function is non-linear and no closed-form
solution exists. Furthermore, it is computation heavy due to
the large search space of possible results. In order to solve the
problem, we add a constraint which is the derived individual
reflection profile should satisfy the geometric relationship
between different transmission links. By adding such con-
straint, we are able to further reduce the large search space
and compute the result efficiently.

Multi-Link Overlay. Given the single user reflection profile
after close proximity separation, we localize each user us-
ing multi-link overlay. First, we map all the timed delay
power level from the single user reflection profile to the cor-
responding round trip distance. This will result in a heatmap
where strength of the reflection represents the likelihood
of the user’s location. Then, by overlaying the heatmap de-
rived from multiple transmission links (i.e., 3), we are able
to pinpoint each user. Figure 5 shows the overlay results
using 3 transmission links where the x and y axis correspond
to the localization environment. We can observe that after
multi-link overlay, the peak with red color shows the user’s
location which represents the converge of strong reflector
from the individual reflection profile at multiple links. By re-
peating such process over all the individual profile obtained
from reflection profile segmentation process, we are able to
localize each user.

Activity Recognition
Individual Profile Construction. We perform individual pro-
file construction to obtain signal reflection profile dominated
by a single user as if only a single user has performed activity
in the environment. To construct individual user reflection
profile, we combine the segmented profile from previous
step (i.e., single user reflection profile) with the profile of
static environment. By doing this, we are able to construct
the individual profile containing both signal reflection from

Figure 5: Example of multiple link overlay.

Static Environment Profile User 1 Reflection Profile 

Constructed User 1 Profile

Figure 6: Illustration of individual profile construction.

target user activity and the static environment but without
interference from other user activities. For example, individ-
ual profile on the bottom of Figure 6 is constructed by adding
static environment profile from top left to the single user
reflection profile of the first user from top right.
As demonstrated in Figure 6, after individual profile con-

struction, the profile component in red color represents the
signal that is mainly affected by 1st user. Then the profile
component in black color is mainly affected by static envi-
ronment. It is easy to observe from Figure 6, after individual
profile construction process, the signal reflection mainly af-
fected by 1st user is preserved whereas the signal reflection
most likely affected by the other user is mitigated. The recon-
structed individual profile enable us to extract environment-
independent features for multi-user activity recognition.

Doppler Shift based Feature Extraction. Because of the rich
multipath propagation within indoor environment, the con-
structed individual profile contains signal components re-
flected by both target motions and the surrounding objects
and environment. It is difficult to separate target user’s move-
ment from static environments using raw signal. To over-
come such problem, we exploit the fact that Doppler shift
represents frequency change information of the movement,
which wouldn’t be affected by signal reflection from sur-
rounding environment. Here, we propose to extract Doppler
shift by utilizing short-term Fourier transform (STFT) and
compute the spectrogram which is the time-frequency rep-
resentation of the given frequency response. Specifically, we
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apply STFT to the individual profile with a Gaussian window
with length shorter than 0.1s where we assume Doppler shift
is constant within such window.

Figure 7 shows the spectrogram of a user performing lunge
exercise towards the transmission link then turning away
from it. We can observe that when user’s body move towards
the receiver, there is an increase follow by decrease positive
Doppler frequency shift which indicates acceleration and
deceleration motion. Then during the time period that user
retracts his/her body away from the receiver, we can observe
the similar Doppler frequency shift trend in the spectrogram
where the frequency shift is negative.

Next, we extract the energy based frequency contour of
derived spectrogram from previous step. To achieve that,
we first normalize the energy level of given spectrogram
into the same scale (i.e., from 0 to 1). Then we choose a pre-
defined band (power level between 0.90 to 0.95) and combine
the centroid frequencies at this band together resulting in
two frequency contours (both positive and negative). Such
contours represents the strongest signal reflection compo-
nent caused by user motion as shown in Figure 7. Then the
extracted energy-based frequency contour will be used as
feature for similarity comparison.

Similarity Comparison. As one user may perform activity
with different speeds and multiple receivers could be used
for activity recognition, we utilize Muti-Dimensional Dy-
namic Time Warping (MD-DTW) [45] to align the extracted
feature to the ones in user enrolled profile. MD-DTW allows
us to overcome the problem of pace variety and provides
a robust metric for measuring the similarity. In particular,
the similarity is quantified by the Euclidean distance of the
optimal warping path between the contour and the activity
profile. During activity recognition, we extract energy-based
frequency contour as feature and use Muti-Dimensional Dy-
namic Time Warping to calculate the similarity between the
feature extracted under training and testing instances. The
one with the highest and sufficient similarity (i.e., > 0.73)
in the activity profile is then identified as the recognized
activity. The one with insufficient similarity (i.e., < 0.73) to
existing activity is identified as unknown activity.

3 PERFORMANCE EVALUATION
Experiment Setup
We conduct experiments with four laptops (one transmitter,
three receiver) with the default transmitter receiver setup
shown in Figure 8. All laptops run Ubuntu 12.04 LTS and are
equipped with the WiFi NICs of Intel5300 for extracting CSI
measurements [9]. The transmitter hops through all available
20MHz WiFi channels at 5GHz bands in an 802.11n network.
There are total 24 available channels enabled by the Intel5300
card. They fall into three non-contiguous segments. The first

1010

-10

-5

5

Energy based Frequency Contour

Energy based Frequency Contour

Figure 7: Spectrogram of lunge with energy based frequency
contour.

Transmitter

Receiver

Figure 8: Illustration of experiment setup.

segment is from 5.18GHz to 5.32 GHz (i.e., the channels
from 36 to 64), whereas the second segment is from 5.5GHz
to 5.70GHz (i.e., the channels from 100 to 140). The third
one is from 5.73GHz to 5.83GHz (i.e., the channels from
149 to 165). The channel hopping delay is set as 0.2ms. As
the coherence time in typical indoor environment is about
several hundreds milliseconds [8], we can collect packets
across channels within coherence time as well as obtain
multiple packets at each channel within coherence time. For
each packet, we extract CSI for 30 subcarriers, which are
equally distributed in a 20MHz channel.
To evaluate the performance of MultiTrack, we conduct

separate experiments to test the localization and activity
recognition components. For localization and tracking com-
ponent, we conduct experiments in 3 indoor environments:
a 25ft by 30ft classroom, a 15ft by 20ft living room and a
narrow corridor. Figure 8 shows the deployment of devices
in different environments. In total, 5 volunteers (3 males
and 2 females) participate in the experiment. We obtain the
ground truth through camera-based tracking techniques. In
particular, a video camera is installed to capture the tracking
process. Each volunteer is instructed to wear different color
hats as markers for easier identification purpose. Then, we
convert the pixel location of the marker into real world 2D
location which served as ground truth.
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1) Sit Up 2) Squat 3) Lunge

4) Spinal Balance 5) Bicycle Crunch 6) Toe-Touch Crunch

Figure 9: Illustration of six body weight exercises.

For activity recognition component, the experiment is
conducted in the living room environment. We evaluate the
performance of our system with six commonly used body
weight exercises including: sit up, squat, lunge, spinal bal-
ance, bicycle crunch and toe-touch crunch, as shown in Fig-
ure 9. As a benchmark, we ask each volunteer to perform one
activity fifty times alone, and ten instances of each activity
are used to build the activity profile. To test the multi-user
compatibility of our system, we experiment with the scenario
where three users are performing different exercises simul-
taneously. Furthermore, to evaluate the robustness of our
system to unknown activities, we conduct the experiment
that two users are performing pre-defined exercises and the
third user is performing unknown activity simultaneously.
The detail about the data for activity recognition are as

following: for single user case (i.e., only one user is perform-
ing activity), each volunteer (5 in total) is asked to perform
each of six types of activities 50 times (300 instances for each
type of activity). Then, for each type of activity, we randomly
select 10 instances as training data to build the activity pro-
file (i.e., the profile is not tied to each user), which is used
for both single user and multi-user activity recognition. The
rest of the 290 instances for each type of activity are used as
the testing data for single user case recognition.
For multi-user case, there are two experimental setups.

The first setup includes three users performing activities
simultaneously: two users randomly perform six types of
activities while the 3rd user preforms unknown activities
(i.e., serving as background interference) for 50 times (150
instances for each type of activity). The second setup in-
cludes two users perform activities simultaneously without
unknown background activity for 50 times (100 instances
for each type of activity). In total, we have an averaged 250
instances for each type of activity under multi-user case.

Multi-User Tracking Performance
We first show the results of tracking a single user under
different environments for comparison. Figure 10 shows the
localization error CDF of our system at different places under

single user cases. We can observe that MultiTrack achieves
localization errors of 0.39m, 0.57m and 0.65m over 80th per-
centile. When compare with state-of-the-art device-free com-
modity WiFi based single user tracking systems (i.e., Widar
2.0 [29], IndoTrack [20], LiFS [42] and WiDeo [14] with me-
dian accuracy as 0.75m, 0.48m, 0.7m and 0.7m), our system
achieves better or comparable performance with a median
localization accuracy at around 0.5m. This is because our
system utilizes a much larger channel bandwidth at 5GHz,
which provides fine-grained power delay profiles to charac-
terize user’s location.
Next, we evaluate the localization performance in multi-

user scenarios. The experiment is conducted in classroom
environment as it allows multiple users to walk simultane-
ously. The CDF of localization error is plotted in Figure 11.
We observe that the median localization error for 2, 3 and 4
users are 0.46m, 0.55m and 0.81m respectively. This demon-
strates our system has the ability to track multiple users
simultaneously with decimeter localization accuracy. More-
over, under multi-user case, our system performance is also
comparable to the results under single user case for both the
state-of-art systems and our own system.

Multi-User Tracking with Close Proximity
Next, we study how our system performs when two users are
in close proximity in the living room environment. Specifi-
cally, the distance between two users are 1m, 0.5m and less
than 0.5m. Figure 12 shows the performance of our system
under these scenarios. In particular, the median error of our
system is 0.25m, 0.3m and 0.35m when the distance between
the users are 1m, 0.5m or less than 0.5m respectively. Such
result shows that our system achieves high accuracy even
when users are in close proximity. We note that the localiza-
tion accuracy in living room environment is better than that
of the classroom. This is because the living room is much
smaller but with the same number of wireless links. Thus,
a higher density of wireless links in the environment could
also help to improve the tracking accuracy.

Multi-User Tracking Under NLOS
In this study, we investigate the impact of NLOS to tracking
accuracy by placing theWiFi devices in two connected rooms
with line-of-sight blocked. The experiment is also conducted
in classroom environment. Figure 13 presents the CDF of
localization errors under different number of users. Results
show that under NLOS scenarios, system performs slightly
worse. Still, NLOS scenario has the median localization error
of 0.46m, 0.52m and 0.61m with respect to 1, 2 and 3 users
scenarios. This demonstrates that the our system could work
under the NLOS scenario which allows us to deploy the
proposed system to a wider range of applications.
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Figure 15: Recognition accuracy under
multi-user scenario.
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Figure 16: Recognition accuracy when
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Multi-User Activity Recognition
We first present the results of activity recognition when there
is only a single user performing activity in the environment
as a benchmark. Figure 14 shows the confusion matrix of
activity recognition accuracy under single user scenario. We
observe that our system achieves an overall recognition ac-
curacy of 95% with the standard deviation at about 1.2%. By
comparing the details across different activities, we find that
the recognition accuracy are comparable. Moreover, activity
like sit up, squat and lunge have higher recognition accuracy,
whereas the bicycle crunch and spinal balance have lower
accuracy. In particular, the lunge achieves 97% accuracy com-
pared to 94% recognition accuracy of spinal balance. This
is possibly due to the relative larger body motion involve-
ment in exercise like lunge. Consequently, more details of
the target motion could be captured by CSI measurement.
Figure 15 illustrates the average recognition accuracy

across different activities when multiple user scenarios (i.e.,
2 or 3 users) are performing the activities at the same time.
We can observe that our system can maintain high accuracy
even when there are three users performing different exer-
cises simultaneously. Specifically, the average recognition
accuracy is over 94% for two users whereas it is 95.3% for
single user scenario. Furthermore, the accuracy only drop by
2% when three users are performing different exercise simul-
taneously compared to single user case. The above results
show our system can recognize activities of multiple users
preforming them simultaneously with high accuracy.

Impact of Unknown Activities
We next test the resilience of our activity recognition sys-
tem to unknown activities. We ask the third user to perform

unknown activities while two other users are performing
different per-defined exercises at the same time. Figure 16
presents the recognition accuracy of each exercise for each
individual user. We find that the recognition accuracy of our
system is comparable to the single user scenario. Moreover,
by comparing Figure 16 and Figure 14, we observe that the
system performance does not have obvious degradation even
under the interference of the unknown activity performed by
the third user. This study demonstrates our system can rec-
ognize the activities of target users when there are unknown
background activities.

4 RELATED WORK
In general, the approach for indoor tracking and activity
recognition can be divided into following categories based
on its underlying technique: camera and visible light based,
wearable device based and RF signal based.

Camera and visible light based. Much work has been
done to enable indoor tracking using dedicated cameras [31,
33]. With the advancement of imaging technology, recent
work like Eaglesense [47] and OpenPTrack [24] can track
multiple people within the same environment. Though these
approaches can achieve high accuracy, it raises great con-
cern of user privacy and only work under LoS scenarios.
Recently, due to fast development of visual light commu-
nications, visible light based approach has attracted lots of
research interests [18, 53]. Such work still can not work un-
der NLoS scenario and require specialized light source which
incur non-negligible cost and installation overhead.

Wearable device based.With the advancement of wear-
able devices, many work have been proposed to solve track-
ing and activity recognition problem. For example, Ashbrook
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et al. [4] proposed work the predict user future movements
based on the individual GPS trajectories. TouchRing [36] fo-
cus on subtle finger movements detection with ring shaped
printed electrodes wore by users. Baudisch et al. [5] invented
an imaginary ball game using accelerometers attached to the
players hands and belt. Though effective, these methods all
require users to wear physical sensors.

RF signal based. Device-free indoor tracking utilizing
COTS hardware has been an active research field in recent
years. Kjærgaard et al. proposed several work [16, 26] on
WiFi positioning and flock detection. System like LiFS [42]
leverage signal phase characteristic in and out of the Fres-
nels Zone to achieve tracking but requires specific and dense
deployment of WiFi devices. Li et al. [19, 20] proposed sev-
eral work by incorporating DFS with AoA to achieve indoor
tracking. Qian et al. [28, 29] developed a serious of systems
that can jointly estimate AoA, DFS and ToF which enables
decimeter tracking. These systems, however, can not work
under multi-user scenarios.
Besides indoor tracking and localization, many research

have been dedicated to achieve activity recognition using
commodity WiFi as well. Wall++ [52] proposed by Zhang
et al. can achieve context-aware sensing by capturing air-
borne electromagnetic noises. Systems like WiFall [46] E-
eyes [45] and CARM [44] are able to recognize large scale
motions (i.e., falling, walking, etc.) Moreover, several work
has been proposed to enable vital sign monitoring related ap-
plications [21, 41]. System proposed by Wang et al. [40] can
recognize the words user spoke by tracking the mouth move-
ment. WiFinger [35] is capable of tracking small scale finger
motions. Those systems however all require localization-
specific training and cannot support multi-user scenario.
Much research has been dedicated to solve environment-

dependent and multi-user compatible problem using com-
modity WiFi. Systems like CrossSense [50] and EI [13] adopt
deep learning techniques to achieve tracking accuracy im-
provement comparing to existing systems. However, they
all require large number of training samples and constant
update when environment changes. Virmani et al. [39] pro-
posed WiAG that utilizes profile transition function to es-
timate user’s new orientation and position once change
happens. Meanwhile WiDance [30] achieves environment-
independent sensing by extracting motion-induced Doppler
shift to enable dancing move direction recognition. The sys-
tems mentioned above though can be effective, all lack multi-
user support. System likeWiMU proposed by Venkatnarayan
et al. [38] can achieve multi-user gesture recognition by
matching the generated virtual samples of desired gesture
combination to the collected samples. The proposed system
partially solved multi-user compatible problem. But it can
only work when system has pre-knowledge of all possible

activities. It can not work when non-target users perform
unknown activities in the background.

5 DISCUSSION
Multi-User Support Capability. The underlying idea of
our system is to separate signal reflection for each individual
user. As the WiFi bandwidth at 5GHz provides a distance
resolution at around 0.3 meters when separating signal reflec-
tions, our system thus is limited when multiple users are too
close to each other (e.g., less than 0.3 meters). We have tested
our system in a typical indoor environment (i.e., a 15 ft by 20
ft living room ) with up to four users. This is a typical use case
as the system can support a reasonable number of users that
living together in indoor environments (e.g., smart-home
environment). And such a case provides sufficient physical
distance separation for our system to work. On the other
hand, with very crowded environments, such as classroom,
a train station or an airport, our system is less applicable due
to extremely small distance separations between users.
Machine LearningTechniques.The current activity recog-
nition process using Euclidean distance based method to
calculate the similarity between testing samples and user
enrolled profile is relatively simple. A more sophisticated
machine learning based classification method (i.e., convolu-
tional neural network) could be used to increase recognition
accuracy and system resilient to noises. We would like to in-
clude this part as our future work to further improve system
accuracy and robustness.

6 CONCLUSION
This paper presents MultiTrack, which is capable of tracking
multiple users and recognizing activities of multiple users
perform them simultaneously. The proposed system doesn’t
require user to carry or wear any dedicated sensors and
can reuse existing commodity WiFi devices. The insight is
that the signal reflection from each individual user in multi-
user scenarios can be extracted with the help of multiple
WiFi links and the large bandwidth at 5GHz. By analyz-
ing the extracted signal reflection of each user, MultiTrack
achieves multi-user tracking and activity recognition. Experi-
mental results under different multipath environments show
that MultiTrack can achieve decimeter localization accuracy
when 4 users are walking simultaneously. Meanwhile, Mul-
tiTrack can achieve activity recognition accuracy over 92%
when multiple users are performing activities concurrently
with background interference from unknown activities. In
addition, we show that our system can work under NLOS
scenario and provide considerable localization accuracy even
when users are in close proximity.
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