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Abstract— The advances in deep reinforcement learning re-
cently revived interest in data-driven learning based approaches
to navigation. In this paper we propose to learn viewpoint
invariant and target invariant visual servoing for local mobile
robot navigation; given an initial view and the goal view or
an image of a target, we train deep convolutional network
controller to reach the desired goal. We present a new archi-
tecture for this task which rests on the ability of establishing
correspondences between the initial and goal view and novel
reward structure motivated by the traditional feedback control
error. The advantage of the proposed model is that it does not
require calibration and depth information and achieves robust
visual servoing in a variety of environments and targets without
any parameter fine tuning. We present comprehensive evalua-
tion of the approach and comparison with other deep learning
architectures as well as classical visual servoing methods in
visually realistic simulation environment [1]. The presented
model overcomes the brittleness of classical visual servoing
based methods and achieves significantly higher generalization
capability compared to the previous learning approaches.

I. INTRODUCTION

Traditional approaches to navigation in novel environ-
ments often required solution to many components, includ-
ing mapping, motion planning and low level control. The
reliance of motion planning on high quality geometric maps
and trajectory following on perfect localization, resulted in
fragmented and brittle solutions which had to be fine-tuned
for particular environments. In contrast to these methods
biological systems have more flexible representations of
environments and control policies which enable them to
robustly navigate in previously unseen environments. These
observations and the emergence of effective data driven
techniques for learning control policies directly from obser-
vations recently spurred large body of research in learning
navigation. In this paper we propose a learning approach to
visual servoing for mobile robots in indoors environments.
In the broader context of navigation task, visual servoing
discussed here can be viewed as local navigation skill for
view based navigation, where the goal is to reach the desired
view or navigate towards the target of interest. While there
is a large body of work on classical approaches to visual
servoing, they rely on the extraction, tracking and matching
of a set of visual features which are difficult and brittle tasks.
Related attempts to overcome these difficulties using learning
based approaches have been recently considered in [2], with
the focus on improving the pose estimation and perception
component for 6-DOF pose based visual servoing in table
top environments. We study the problem in mobile robot
navigation setting and propose to learn the control policy
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Fig. 1. Visualization of the proposed method. The three images on the top
are current view, target view and Q-value table. Brightest color shows up
in the left block of the Q-value table indicates taking a turning-right action.
The three images at bottom are the visualizations of dense correspondence
map on z/y-axis and the feature map output by the perception module.
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jointly with the perception component. The contributions of
this work are as follows:

(i) We show how general image correspondence map can
be distilled by deep convolutional networks and trained in
an end-to-end manner to learn a policy for target reach-
ing and goal view reaching task; (ii)) We design a novel
dense reward structure and train the model using deep
reinforcement learning (DRL) framework; (iii) We present
a comprehensive comparison of our model with alternative
deep CNN architectures and training approaches proposed
for this task as well as classical image based visual servoing
techniques, showing superior performance of our approach.
Comprehensive evaluation is carried out using visually real-
istic simulated household environments [1] with variety of
targets and goals, demonstrating good generalization ability
of the approach.

II. RELATED WORK

Here we review the related work focusing on local navi-
gation skills most relevant to our approach. A class of local
navigation methods assumes that the goal is specified in
an agent’s local coordinate frame, often assuming perfect
localization. Authors in [3] learn a local navigation policy
using deep reinforcement learning and Value iteration net-
works, [4] learn how to predict the next waypoint given
a long-range goal and use traditional optimal control to
compute the desired trajectory given local ego-centric map
of the environment. Kumar et al. [5] consider visual-teach-
and-repeat approach where the environment is represented



in terms of trajectories experienced in exploration. Efficient
retrieval of the views along with the actions enables novel
traversals of the environment.

Locomotion policies proposed in [6] and [7] use siamese
network to extract feature maps from the input images and
estimate the discrete motion. Pathak et al. [8] combines
forward dynamics with inverse dynamics model to solve
the bi-modal ego-motion estimation problem. Savinov et
al. [9] stack the start and goal image up as an input to
their locomotion network, training the model in a supervised
way. Disadvantage of these models is poor generalization
capability and very dense sampling of the intermediate views
to represent the trajectories.

Related problem of semantic target driven navigation was
considered by [10], [11] where object is specified as an
image or as an semantic category [12] considering mid-range
navigation tasks and more loose definition of goal success.
Similarly to us many of the learning based methods train
their models in simulated environments, followed by transfer
or adaptation of the learned policies to real robots. Authors
in [13] and [3] successfully transfer their model trained on
GibsonEnv [1] to the real world.

Besides going to a semantic goal, people have also ex-
plored other goal representations; Amini et al. [14] use a
local topological map and Codevilla et al. [15] steer a toy
truck through high-level map related commands.

There is also a large body of work on classical visual
servoing methods. More recent discussion can be found
in [16]. Image based visual servoing has been adapted
for short range mobile robots navigation in [17] and pose
based visual servoing task was studied in [2] where 6-DOF
pose regression is estimated by deep networks followed by
traditional control.

The work closest to ours is Sadeghi et al. [10], [18]
and Yexin et al. [19]. They both study the target reaching
problem and use DRL to train the model in simulation.
In [10] the policy is guided by heatmap obtained through
the correlation in the feature spaces of object and current
robot’s view. The attention mask obtained from semantic
segmentation is computed by [19] and used as an input for
the policy learning. Both approaches focus on the problem
of reaching semantic target and rest on the availability of
powerful architectures and representations pre-trained for
object detection and semantic segmentation. Furthermore the
attention mechanism does not lend itself to homing scenarios
in navigation, where the goal of the agent is specified as the
goal view and may not contain interesting objects.

III. APPROACH

Consider an agent that operates in a novel indoor envi-
ronment. Instead of navigating with the help of a pre-built
metric map, our agent is provided with a set of images taken
at different locations, forming a view based topological map
of the environment [9]. Our goal is to train the agent to
do short-range navigation to reach desired location or target
of interest in the field of view of the agent. Let’s assume
that the agent starts at some random state sy and obtains an

observation . State s is characterized by the pose of the
agent x,y coordinates and the heading angle 6 in a world
reference frame unknown to the agent. The observation 1
can be either an RGB image or an RGB-D image including
depth information as additional channel. A target view image
I, taken at goal position s, is provided to the agent. I, is
assumed to have some overlap with the initial field of view
Iy. The goal for the agent is to learn a policy for reaching the
goal state s, by executing a sequence of actions a. The action
space A can be either continuous or discrete depending on
the control method.

We approach this problem using learned data-driven strat-
egy and compare and discuss the advantages of this approach
to classical image based visual servoing [20] and learned
visual servoing approaches [2].

Classical visual servoing computes correspondences at
few selected points between current observation I; and target
view I, followed by analytic derivation of the feedback
control law for continuous velocities at each each step.
Learning method learns a mapping from I; and I, to actions
in reinforcement learning framework and predicts at each
state a discrete action a moving towards the goal location.
The action space includes seven actions, which are moving
forward 0.1m in 7 orientations [—7, -, —1%,0, &5, &, 7)-
We will start our discussion with the geometry of the
problem, discussing the brittleness and drawbacks of the
geometric methods to motivate our learning based solution.

A. Classical Visual Servoing

Visual servoing control has been developed in early 90’s
with the goal of increasing the accuracy of the control of
robot end effector by using visual feedback control. Two
main classes of systems are position based and image based
visual servo. While the position based visual servo strives to
first estimate the relative pose between the initial and target
view, the image based visual servo derives the error signal
directly from measurements. The image features f can vary
dramatically (e.g. points or lines), but the effective relation-
ships between robot’s pose and its velocities is characterized
by feature Jacobian J;(s) which can be derived analytically

f=1Jp(s)8 (1)

where § = [V, Vy, Vs, W, wy, w2 L. Jp(s) is also referred
to as interaction matrix. For image points the relationship
between image velocities and motion of the end effector is
characterized by the well known optical flow equation [16].
For a holonomic mobile robot moving on the xz-plane, the
velocity space is three-dimensional [v;,v,,w,]? and the

optical flow equation reduces to:
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where @ and v is the optical flow, A is the focal length

for the camera, Z is the depth of the feature point and
(up, vp) is the image principal point. In practice, if N >= 2
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correspondences are detected, we can stack up rows Jy to
get the interaction matrix for all features J. The control law
can then be obtained by computing the pseudo-inverse of
Eq. (2) for the desired camera motion $* = J}"(f* - ).

For image based visual servoing (IBVS), in addition
to challenges of detection, matching and tracking of geo-
metric features, there are additional well-known difficulties
for visual navigation tasks [16]. It is possible to have an
inconsistent set of feature velocities such that no possible
camera motion will result in the required image motion.
For example, nearly collinear features will cause very small
camera motion. The performance of the model relies on the
feature depth Z in Equation (2). Some approaches considered
using a constant depth for all the feature points or depth
estimates from motion is also helpful. The motion based
methods often failed when camera motion got smaller. For
the configurations where the desired orientation is notably
different from the current orientation and differential drive
robots with non-holonomic constraints, the overlap between
current view and goal view often becomes too small result-
ing in the failure of the correspondence computation. The
proposed learning based approach helps to overcome the
brittleness of the traditional methods.

B. Learned Visual Servoing

We formulate the problem of learning visual servoing
(LVS) in the reinforcement learning framework. An agent
starts at a state sg in the environment and the goal is to
navigate to the given target view. At each s;, the agent
receives an observation [;. Given the observation, the agent
takes action a; and receives a reward r(s;,a;). We are
interested in learning control policy a; = ¢g(¥(I;, 1)) and
representation of current view and goal view, that predicts
the action advancing the agent towards the goal, where
¢p is the action module and v is the perception module.
In traditional Q-learning approach, the goal is to learn a
Q-function Q(s¢,a;) quantifying the goodness of different
actions in each state. By following a policy 7y, the agent
produces a sequence of Q-states (s;,a;)l_, after T steps.
Our goal is to train a policy 7 that maximizes the total
reward received through the trajectory.

Deep Q Network: For large state spaces the Q function
cannot be computed exactly. We use a Deep Q Network
(DQN) [21] to approximate the value of a Q-state, Q(s¢, at),
the action-value of unobserved pose s; of the mobile agent.
Our DQN architecture has two components: a perception
module and an action module as shown in Figure 2. The
perception module consists of four convolutional layers, all
using ReLU activation and batch normalization for efficient
training. The first three convolutional layers have kernel size
5 x5 x 16,3 x 3 x 32,3 x 3 x 64, strides of 2,1,1 and
each of them is followed by a max pooling layer to reduce
spatial support of the feature map. The last CNN layer is
a 1 x 1 convolutional layer which outputs a 16 x 16 x 1-
sized feature map. As input we examine several intermediate
representations of RGB views before passing them into the
perception module. For the action component the feature
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Fig. 2. Learned Visual Servoing Architecture. Visual representation is the
dense correspondence extracted from two input images I, I4. Perception
module extracts features from the visual representation. Action module
predicts the Q-values for each action based on the feature input.

map is flattened into a 256-dimensional vector followed by a
fully-connected layer which outputs Q-values for all actions
in our feedback policy (see Figure 1). Note that our model’s
architecture is highly flexible. Given different kinds of visual
input, we can vary the design of the perception module and
leave the action module untouched. We also tried to insert
an LSTM layer in front of the FC-layer to learn a recurrent
policy. We didn’t get a performance boost compared to the
reactive policy. All the experiment results mentioned in the
paper are achieved without using an LSTM layer.

Input Visual Representations: Motivated by classical visual
servoing, the input to our perception module is the map of
dense correspondences. In the first stage we compute the
dense correspondences (shown in Figure 2) using ground
truth information of known pose and camera depth. Learned
and fine-tuned dense correspondences as in [22] can be later
incorporated in our model. The input is a two-channel image
where each channel represents the relative offset on x/y-
axis from each point in the current view to a corresponding
point in the target view. We also observe that applying
image smoothing to the dense correspondence map during
testing stage improves the model’s stability, as smoothed
correspondence map has fewer depth discontinuities that can
negatively affecting the final prediction. In experiments (Exp
D) we corrupt the high-quality dense correspondences in
various ways to see the effect of the noise on the final
robustness of our model.

Reward: For the task of driving to a target view, the robot
traverses a trajectory so as to minimize the error between
start view and goal view. Since view difference between two
different locations with similar orientation is rather small, the
image error is a weak signal for our learning task. To measure
the ’progress’ to the goal during navigation, we compute
dpotar distance between poses (x¢,yt, 0;) and (24,Y4,0,).
dpoiar is expressed in the coordinate frame of the goal, where
p is the distance between robot’s center and the goal position,
« is the angle between robot’s reference frame and the vector
connecting center of the robot with the goal position and
is the angle difference between current orientation of the
robot and heading direction. The distance to the goal d is a
weighted sum of these position and angular distances. Note
that when at the goal all p = a = 8 = 0. The distance to the



goal is related to feedback control law error for differential
drive robots outlined in [16].

pP= \/(mg —24)% + (yg — yt)?
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dpotar distance enforces the agent to travel towards the target
and rotate to align with target pose when the agent is in the
vicinity of the target. In practice, A, and Ag are both set
to 0.2. We also consider dp,se distance [23] for comparison
and use d for clarity to denote the distance below.

The reward is designed to encourage the robot to move
in the direction to minimize the distance to the goal. The
reward function is,

R = max | 0, min dt_l,l — min i@ )
dinit dinit

where d;,;; is the initial distance between the agent and the
goal and d; is the current distance of the agent to the goal.
The right term in the max function measures the progress of
the agent towards the goal after taking action ay.

Note that we are having a dense reward setup as the
environment is simulated. We leave the design of sparse
rewards to future work when we train an agent in real-world
scenes.

3)

IV. EXPERIMENTS

Datasets: All the experiments are completed in Gibso-
nEnv [1]. Gibson environment contains visually realistic
reconstructions of indoors scenes, with varying appearances
and layouts. We randomly select 16 indoor scenes as training
data and 6 others for testing. During training, we randomly
sample the starting robot poses. Examples of sampling on
one test scene is shown by Figure 3. Sampled initial views
and target views are shown by Figure 4. The target views
are chosen at certain distance and orientations away from
the starting point. The distance ranges from 0.5 to 4.0m.
The orientation and target pose heading angle ranges from
—m /4 to w/4 with respect to the initial pose. Usually it will
take the agent from 5 to 35 steps to reach the goal. We make
sure that the target view and start view has at least 16 x 16
pixel overlapping area. During testing, for each scene, we
manually select approximately 10 starting poses where there
is enough open space in front of them. The target images
are chosen in a similar way as training data. We evaluate
different approaches by computing the success rate of visual
servoing results. The success criteria is that the robot pose
is within 0.2m to the target pose during navigation.
Training Details: We use Actor-Critic architecture [21] and
replay memory when training our model. Each minibatch
consists of losses over 128 random state-action tuples sam-
pled from replay memory. Each tuple contains the state
representation, the action and the reward after taking the
action. We use RMSprop Optimizer, learning rate of 10~°.
The model is optimized for 50000 iterations on a single GPU,
which takes 6 hours.

Fig. 3. Occupancy map of the Dardan’ scene in the testing dataset. We
sample 7 starting viewpoints in the environment represented by the red
triangles. The blue triangles are the target poses. Their distance to the start
viewpoint and orientation vary from each other.
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Fig. 4. Visualizations of start views and target images from different test
scenes. First and fourth column shows the start views while second, third,
fifth and sixth column shows the target views.

A. Intermediate Representations for LVS

We compare the performance of different perception mod-
ule architectures while using the same reward structure and
action module in DQN.

LocomotionNet [9]. Input to the network is a triplet of
RGB images comprising of previous observation, current
observation and target image. The input images are stacked
up into a 9-channel image and put through a sequence
of convolutional layers to extract features. Convolving the
current view with previous view will provide the knowledge
of the previous action. Convolving the current view with
target image indicates the signal to the goal.

FlowNet. We combine current view and target image into a
pair and use FlowNet [24] to compute the optical flow. The
optical flow is represented as a two-channel flow map that
is an input of our perception module.

SiameseNet. The perception module follows the architecture
proposed by [6]. It is modeled as a siamese network for
computing feature maps respectively from input images. The
current observation and target image are used as inputs. The
output feature maps are flattened into a vector and then
concatenated into a large feature vector as the final output.
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Examples of a robot driving to a view (first row) and driving to an object (second row). The first column shows the target view and the target

object. The last column is the overview of the two trials. Between them are the observations along the driving.

Inverse Dynamics. We adopt the architecture of [8] to learn
the network weights and train the model through supervised
learning. Then we fix the weights of the trained model and
use it as the perception module.

Correlation Map [25]. The perception module computes
the correlation between patches from two feature maps and
outputs the correlation map as the final visual representation.
The feature map extraction architecture is similar to our
perception module but having two more pooling layers. We
compute the correlation between two 8 x 8 x 64 feature maps
and obtain a 8 x 8 x 8 x 8 correlation map.

We separate the test cases into short-range navigation
where the target location is within 10 steps starting from
the initial pose and longer-range navigation where the agent
needs at least 15 steps to reach the goal. It takes the robot
more than 25 steps to reach the furthest goal.

TABLE I
VISUAL REPRESENTATION

\ Approach | Short/Long-Range |

26.5% 1 18.2%
14.3% / 28.8%
85.7% 1 80.3%
90.9% / 86.9%

LocomotionNet [9]
SiameseNet [6]
CorrespondenceMap
Smoothed CorrespondenceMap

Table I shows the experiment results. We didn’t get
satisfying results for some of the approaches so their results
are missing from the table. The optical flow detected by
FlowNet is not very helpful because FlowNet is trained to
learn small displacement while our displacement spans over
80 pixels in some test cases. In the following experiment,
we use smoothed correspondence map as the default input
when we evaluate our LVS model.

B. Reward

Here we hold up the input visual representation to be the
dense correspondence map, but vary the reward structure.
The dense correspondence which we denote as ground-truth
correspondence is computed for each pixel in the common
field of view using the available depth information. We com-
pare the performance of using two distance metric, dpoiar
distance and dp.s. distance [23], and two reward setups,
distance minimization reward DistMinimize used by our
model and Sadeghi’s progressive reward Progress [10].

TABLE II
REWARD STRUCTURE

\ Reward | Distance Metric | Success Rate |
DistMinimize dpolar 83.5%
Progress polar 73.2%
Progress dpose 54.9%

Table II shows the results. Using both d,sc metric and
using DistMinimize reward boosts the success rate for
more than 10%. The advantage of DistMinimize over
Progress is that in the latter, the robot will receive a positive
reward even though the distance to the goal is not shortened.
This makes the agent hesitant to move towards the goal.
Furthermore, using dps. distance forces the robot to head
towards the goal and avoids the risk of losing correspondence
(overlap) to the target view. This is helpful for some difficult
test case as shown in Figure 6.

C. Classical Visual Servoing Evaluation

Here we evaluate IBVS on a non-holonomic robot from
two aspects: image point features and depth data. We ex-
periment with three point feature variations: ground-truth
sparse correspondence (GtCorresp), learned sparse corre-
spondence (LearnedCorresp) and SIFT. For ground-truth
correspondence, we deliberately select 4 correspondences
with the largest offset, as these are the feature points most
indicative of the motion between images. We don’t evaluate
dense correspondence since the interaction matrix inverse
computation is time-consuming and it is more likely that
the feature velocities are inconsistent when you have a large
number of features. We take an off-shelf learned correspon-
dence [26] method as input. Falsely detected correspondence
are removed through geometric verification, both in case
of learned correspondences and SIFT features. We try four
depth wvariations: ground-truth depth (GtDepth), constant
depth (ConstantDepth), noisy depth (NoisyDepth) and no
depth. Ground-truth depth image is taken directly form the
simulated environment. Constant depth is setup to be 4.0 as
all the target viewpoints are within 4 meters. Noisy depth is
computed by adding a gaussian noise with ¢ = 0,0 = 0.5
to the ground-truth depth image. For the no depth setup,
we only compute the angular velocity w, and use constant
velocity v = 0.1.



TABLE III
DIFFERENT IBVS SETUPS

[ Feature+Depth [ Textured | Nontextured | Corridor ]

GtCorr+GtDepth 80.4% 72.2% 80.4%
LearnedCorr + GtDepth 40.0% 23.2% 32.9%
SIFT + GtDepth 41.3% 18.5% 24.7%
GtCorr + noisyDepth 52.0% 42.5% 46.8%
GtCorr + constantDepth 57.0% 56.2% 48.3%
GtCorr + noDepth 32.8% 29.9% 28.2%
GtDenseCorr + noDepth 87.6% 88.8% 84.8%
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Fig. 6. Visualization of a test case where correspondence is missing during
navigation. Given the start view and goal view, the robot should move right
then turn left. Using IBVS, robot stops due to loss of FOV overlap. Using
LVS, robot is able to reach the goal.

Table III, compares the success rate of different IBVS
methods under various environments. The results show that
classical visual servoing’s performance is highly correlated
with the quality of feature points and depth data. Using
carefully selected ground-truth correspondences boosts the
model’s performance by more than 40% than using detected
features. Using constant depth instead of ground-truth depth
degrades the performance by 20%. Using noisy depth results
in 28% drop in success rate demonstrating that IBVS is
sensitive to the depth changes. We also evaluate our LVS
method (GtDenseCorr + noDepth) on the same test environ-
ment. It outperforms IBVS by at least 8% in textured and
nontextured environments especially in the following case:
when the target location is on the opposite of the robot’s
orientation, the robot might lose the common area between
current observation and the goal image. In another word,
there is no correspondence between I; and I,. A robot using
IBVS will stop under this condition while it will continue
move forward using LVS based on its learning experience.
Figure 6 demonstrates this hard case.

D. Noisy Correspondences

To evaluate the robustness of our trained model we add
gaussian noise to the displacement at each pixel in the corre-
spondence map. The variance o of the gaussian distribution
controls the amount of offset. We also vary the density of
the detected features using uniform distribution. Parameter
Coverage controls the probability of a pixel having a
correspondence. Before we input the noisy correspondence
map to the model, we convolve the map with averaging
smoothing filter.

Figure 7 shows the results. Our model is robust to large
offset errors and still achieves 80% success rate when the
offset deviates from the ground-truth for up to 32 pixels.
For the missed correspondence noise, it is surprising that

Moise on Correspondence Offset Noise on Correspondence Density
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Fig. 7. Comparison of the performance of the model under different noise
settings. Left image demonstrates the Gaussian noise on correspondence
offset. Right image demonstrates the uniform noise on correspondence
coverage

the performance is still above 75% when 50% of features
is missing. The smoothing reduces the sparsity and has
favorable effect on the resulting policy. This demonstrates
that our model is robust to several types of correspondence
errors.

E. Target Object Servoing

Even though our model is not trained on object targets, it
can be easily adapted to navigate towards semantic targets.
To identify the target of interest, we run an object detec-
tor [27] on the images collected by randomly driving the
robot in the environment and crop the detected object of
interest. The crop is then used as the target image, followed
by computation of the correspondence map between current
view and target view. The correspondence map is input to
the model and we drive the robot by following the action
predictions. Figure 5 gives out one example of a robot driving
to an object. This suggests that the proposed method might
be suitable for semantic target navigation considered previ-
ously [10]. We don’t do large-scale quantitative evaluations
of our model’s performance on the driving-to-object task as
the object locations are not labeled in the environment.

V. CONCLUSION

We demonstrated learning view and target invariant visual
servoing for local navigation. We examine the performance
of a variety of input representations and train the model
using deep Q-learning framework. Both the input of our
model and the reward structure are motivated by classical
visual servoing methods. The ability to train the model in an
end-to-end fashion significantly improves the robustness and
performance of the approach compared to classical visual
servoing methods, where a small set of fixed features is
selected for the task. We present comprehensive comparison
of the model to alternative representations proposed in the
literature. While the current model assumes dense correspon-
dence, it is robust to errors in the correspondence maps. In
the future work we plan to incorporate depth information
explicitly, carry our more extensive experiments with target
objects and presence of obstacles and validate our approach
on mobile robot platform.
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