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Abstract

A central question in sea-state modeling is the role that various physical effects have
on the evolution of the statistical properties of random sea states. This becomes a
critical issue when one is concerned with the likelihood of rare events such as rogue,
or freak, waves which can have significant destructive potential on deep sea ships
and other offshore structures. In this paper then, using a recently derived higher-order
model of deep water nonlinear waves, we examine the impact of constant vorticity
currents on the statistical properties of nonlinearly evolving random sea states. As
we show, these currents can both decrease and increase the kurtosis of the affiliated
distributions of the sea states, thereby diminishing or enhancing the likelihood of
rare events. We likewise numerically study the relationship between the kurtosis and a
non-dimensional parameter, the Benjamin—Feir Index, which has proven to be a useful
measure of when rare events are likely in oceanographic application.

Keywords Water waves - Modulational instability - Shear currents - Dysthe
equation - Random sea states

1 Introduction

There is now a wide range of literature which shows that nonlinear instabilities, in par-
ticular the modulational instability (MI), are responsible for significant modifications
to the statistical properties of water waves; see [1-4] among others. As explained in
[5], MI is especially important due to the relative rapidity with which it acts, being
orders of magnitude faster than say four-wave resonant interactions which form the
traditional backbone of our understanding of how nonlinearity drives changes in statis-
tics of random-wave fields [6,7]. A detailed set of theoretical and experimental results
[8-11] have also shown that MI could play a significant role in unidirectional deep-
water-rogue wave formation among other oceanographic phenomena. It is important
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to note though that there are several possible mechanisms for rogue-wave generation;
see [12], for example, which rules out MI as a mechanism altogether in certain oceanic
conditions.

However, much of the understanding around MI relies on highly idealized assump-
tions which cannot be expected to hold in natural settings. In particular, most analytic
understandings of MI rely on looking at the stability of perturbations to carrier waves
at essentially a fixed wave number. To address this shortcoming, in now seminal
papers, [13] and [14] analytically studied families of perturbations of wave packets
with narrow, but non-zero, spectral width around a central wave number. Using the
Nonlinear Schrodinger equation (NLSE), an analytic criterion determining when MI
is either manifested or suppressed depending on this spectral width, now referred to as
a Benjamin—Feir index (BFI) was derived. The results in [13] were explored numer-
ically in [1,2] by examining the mean properties associated with ensembles of initial
conditions.

As shownin [5] though, the movement of eigenvalues and corresponding bifurcation
in stability predicted in [13] appears at best in an ambiguous fashion. Regardless
though, the BFI was still shown in [5] to be an especially useful parameter since it
allows for a ready prediction of the kurtosis of a random wave field as a quadratic
function of the BFI. Thus, the BFI becomes a useful predictive tool for the appearance
of rare events, such as rogue waves in a random-nonlinear-wave field. Experimental
explorations of the results in [5] and [13] were undertaken in [3], where the role of
using higher-order nonlinear models than the NLSE were examined as well.

Later work has simulated the impact of wind and damping on the interplay between
the BFI and the kurtosis of a wave field; see [15,16]. However, the impact of vorticity
was not taken into account in these works, thereby ignoring a central mechanism for the
transfer of energy across length scales in oceanic flows. Moreover, as shown recently in
[17], linear shear profiles can have strong impacts on the behavior of mean properties
of surface wave flows with some shear profiles being able to suppress the Stokes
Drift at the surface. Therefore, while a relatively idealized case of shear, the interplay
between nonlinearity and constant vorticity can manifest in markedly different physics.
Building then on the work in [4] and [17], and complementing the results in [18], we
numerically explore the statistical properties of random-nonlinear-wave fields moving
over deep water and linear shear profiles. Moving beyond just examining the properties
of the NLSE with vorticity, we look at the statistical properties of solutions to a higher
order model, the vor-Dysthe equation (VDE) derived in [17]. As shown in [3,5] and
[16], the higher order terms associated with the Dysthe equation can have significant
impacts on the statistics of the waves, so it is a nontrivial question to examine how the
vorticity interacts with these higher order nonlinearities. Moreover, as shown in [9],
the NLSE can rapidly lose any quantitative predictive power in experimental settings
while the Dysthe equation provides far more accurate results over a relatively wide
range of experimental conditions.

Using our simulations, starting from normally distributed random-wave fields, we
show that the BFI condition with respect to predicting stability is not especially useful,
conforming to the results in [5]. While we are able to show that for sufficiently wide
enough initial distributions that the temporal modifications to the profile are slight,
which echoes the zero-vorticity results in [8—10], whether or not this corresponds to



Evolution of Spectral Distributions...

an actual bifurcation in stability or simply reflects that for a wide enough profile the
sideband growth affiliated with the MI has little impact is not clear. We note though
that classic MI analysis does provide a useful prediction of the timescale over which
the most significant dynamics in the statistics of the wave field occur.

Beyond the issue of MI, we see several interesting results from our work. In partic-
ular, we see that increasing vorticity enhances the kurtosis of the random-wave field.
Moreover, the VDE always predicts a larger kurtosis than the NLSE, with this differ-
ence between the models exacerbated by increasing vorticity. Likewise the affiliated
statistics of the spectral distribution show marked differences between the two models,
with the VDE tending to strongly skew distributions away from Gaussian conditions
through peak down shifting and one-sided tail enhancement. Finally, we study the
behavior of the kurtosis as a function of the BFI parameter. The quadratic relationship
found in [5] and [16] is shown to hold, though the nature of the fit is clearly dependent
on the vorticity, conforming to the dependence of the fit on physical parameters found
in [16].

Thus, we show that vorticity and higher order deep water models can have significant
impacts on our understanding of the likelihood of rare events, like rogue waves, in
deep-water-surface flows. In particular, shear profiles which tend to propagate in the
direction of the surface wave field acting on relatively narrow distributions of waves can
create strongly non-Gaussian distributions with significantly enhanced tails thereby
encouraging the occurrence of rare events. These results motivate further study of
currents in random-wave fields, especially as they pertain to the presence of wind and
wave dissipation.

The structure of the paper is an explanation of the model and discussion of the BFI
in Sect. 2. Section 3 presents our numerical results, while Sect. 4 presents a conclusion.
Explorations of two significant technical points are given in Appendix.

2 Modeling and Stability Theory

We examine the unsteady nonlinear wave propagation over a constant shear current.
To do this, we suppose the fluid velocity is of the form

u=u(x, )X +wx, )i=wzX+ Ve,
where ¢ is a harmonic function. We restrict fluid motion to the (x, z)-plane, thereby
ignoring transverse variations in the y dimension. Using well established arguments,
e.g. see [19], the dynamics of the fluid are found by solving the free boundary value

problem

Ap =0, —oo<z<nx,t),

N+ (wn+ @) ny — ¢, =0, z=n(x,t), (1)
b + w3y +1|u|2+gn—ﬁa M _p z=n(x,0), ()
t X t 2 0 Xm ) 5 )
lim ¢, =0,

z——00
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where 7 represents the free surface displacement, and g, p, and o represent the acceler-
ation due to gravity, the fluid density, and the coefficient of surface tension, respectively.
The system is non-dimensionalized via the choices

Note that we are assuming @ = (1) throughout the remainder of the paper. In
physical terms, this implies that @ is comparable to the natural timescale of this
problem, \/Ly/g. Letting L, ~ 1 m, then this corresponds to the horizontal velocity
of the fluid # ~ 300 cm/s at a depth of one meter below the fluid surface. Thus, we
are modeling the impact of strong surface currents moving over deep water. If we
were to assume w were of larger magnitude, the problem would no longer be weakly
nonlinear and asymptotic analysis would be significantly more difficult. Therefore,
throughout the remainder of the paper, we assume that the vorticity is not too large.
We also note that as z — —o0, the horizontal fluid velocity becomes unbounded in
this model, which is physically absurd. While we are only interested in results near
the surface in this work, in Appendix, we explore this issue and show that a more
physically realistic shear profile would produce similar results at the surface to those
presented throughout the remainder of the paper.

For a relatively small free-fluid surface over infinitely deep water z = €n(x, t), we
model a modulated-wave packet via the expansion

nGx, 1) =& e + i, e
+ € (M0(&, )+ ma(6, DD 4 pi(E, e M) L O ()

where T = €21, & = e(x +cgt), and O(x, 1) = kox + Q2 (ko, w)t, where the linear
dispersion relationship €2 (kg, w) is given by

sumﬂgzéGwi/ﬁ+4mM1+@%0.

We note that the form for ¢ follows directly from this expansion, allowing for every-
thing to be modeled by the terms in the expansion in 1. Here, s = sgn(kp), @ is
the non-dimensionalized magnitude of the vorticity of the flow, and & is the non-
dimensional surface tension given by

- Os
05 = —.
> pglLl

Throughout the remainder of this paper, we take the positive branch + of the dispersion
relationship, thereby ensuring that 2 > 0. Thus, for kp > 0, the surface waves to
leading order propagate to the left. Thus, if @ > 0, then throughout the bulk of the
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fluid, the shear current propagates with the surface waves, or is co-propagating, while
for w < 0, we say the shear current is counter-propagating.

To describe the evolution of the slowly evolving envelope 71 (&, ), we use two
models. The first model is the nonlinear Schrodinger equation (NLSE) derived in
[17], though see also [4], given by

101 +ad8§m + ant [mi1*m =0, 3)
where
ad(ko, w) = (0%923%!?5)
otnt o, ) = ko (sK3 (8 + 6:k3 + 26:k3)%) + wary)

T (25Q — ) (1 + cgo) (492 — 5(2ko(1 + 463k3) + 20))
ay(ko, ®) =s(cgko — 2Q)w* + ko (43565 + 2Qc, — ).

However, the NLSE is a relatively low-order model known to be only of limited use in
real-world modeling situations; see [9] in particular. A more robust model, following
the work in [20], is found by going to the next higher order in €, giving us the equation

(w—2sQ)n1 +1i (cés — Sk()&s) 8§m + 2iescg8§rm — e&sagm + i62ch3§m

—ia (@ — 25Q) Im > n1 + €@y |m|* demi
+edantdent + eidzm Mg Im|* =0, 4

where H denotes the Hilbert transform so that

Hf L / dk eikxisgn(k)f(k),
R

:271

and where f (k) is the Fourier transform of f(x) defined by

fk) = / dx e £ (x).
R

We call Eq. (4) the Vor-Dysthe equation (VDE). Details of its derivation can be
found in [17], though we note a difference in this work with that in [17]. In this work,
we found the inclusion of the higher order dispersion associated with the coefficient
ch, given by

ch = 2scg(2scgaq + 05) /(0 — 25Q2) — sozd2
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was necessary to remove artificial instabilities. Similar issues with Dysthe-like equa-
tions have been noted in [16] among other sources; see Appendix for a discussion
of this issue. Moreover, the coefficients &; are readily derived, but their forms are
cumbersome and thus we omit explicitly writing them for the sake of readability.

The traditional definition of modulational instability (MI) begins by studying the
stability of the plane wave, or Stokes wave, solutions of the NLSE given by

mE, 7) = A AT,

where A > Ois areal constant. Complementing the results in [4], we study the stability
of these solutions by considering perturbed solutions of the form

mpE 1) = (A+ 1(up(E. ) +iv, (€ D) + O (3)

where p is a small real parameter and up, and v}, are real-valued functions. Substituting
Eq. (5) into the NLSE given by Eq. (3) and linearizing gives

9 Up) _ 0 _adag Up
vy ) ada§+2A2anl 0 v

Separating variables, applying a Fourier transform in &, and introducing the & wave
number /, establishes that NLS plane-wave solutions are unstable with respect to MIs
if

0<? <2242,
g

This reduces to the classic requirement that MIs are suppressed if the coefficients of
dispersion and nonlinearity have opposite signs (i.e. the defocusing case). Thus, in
“Results” we make choices of w which keep us in the focusing case. See [17] for
further details.

As noted though in [13], this notion of MI is only defined for perturbations around
a monochromatic wave train. We are thus motivated to examine perturbations around
more complicated wave trains. To generate these simulations, we start both the NLSE
and VDE from the same collection of 2L periodic-initial conditions

oore o~ Tk
N1, 0) = ems Z kz/ZUZeszelkE’ k= Ts
—K+1

where 8k = /L and the phases 6 are randomly and independently chosen uniformly
between 0 and 2. We can then readily show that, for L > 1,

—_1)2
€ms ~ 1,02,
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where () denotes the ensemble average. In our coordinates then, motivated by the work
of [13] and [1] and more fully explored in [5], we study the stability of the initial wave
packet distributions with regard to the magnitude of the Benjamin—Feir Index (BFI),

where the BFI is defined to be
BFI = | 2n fms
g O

Note, this definition is identical with the spectral width criterion of [13] and the BFI
condition given in [4], see also [3]. It was claimed in [13], and in some sense verified
in [1], that wave packets should be stable with respect to MlIs for BFI < 1, which
corresponds to the initial spectral width o > o, where

Onl
Oc = [ — €rms-
od

However, [13] does not present numerical verification of their results, and [1] is
relatively brief in their verification of the BFI condition. The work in [5] shows that
the BFI condition does not yield a clear bifurcation in stability. Our results likewise
support this. However, also shown in [5] and followed up on in several later works, see
[3,15,16], it is shown that the kurtosis of the corresponding quasi-steady distribution
of the surface waves, say ];(Tf), where we take ¢ to be the timescale over which MI
acts, is a quadratic function of the the BFI. We likewise aim to establish a similar
relationship, thereby maintaining the utility of the BFI insofar as it then helps predict
a key feature of nonlinear-random wave fields.

3 Results

To understand the relationship between the vorticity w and the initial spectral width
o of our initial conditions, we generate ensembles of initial conditions and then run
these different initial conditions up to 7y, where 7 is given by

r = max {1.5/ay, 1},

so that MI has a sufficiently long enough timescale over which to act; see [17] for
a derivation of this result. We choose L = 5m so that the computational domain is
[— 57, 5m]. The number of modes is KT = 1024 or K = 512. Letting the length
scale L, = 1 m, the non-dimensional surface tension is 65 = 1075, It is thus ignored
throughout the remainder of the paper. We then compute the averaged spectral density
S(k, t; o) where

S ki) ~ (Jin (k. w5 o)),

which corresponds to the autocorrelation of the surface profile with respect to space.
Note, we normalize § so that it is a probability distribution. Using S(k, Ty, o), we
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then plot the time dynamics of the mean m(7)
m(t) = / kS (k, t;0)dk,
R

standard deviation 6 (1),

1/2
5(1) = (/ (k—m(r))2S(k,r;a)dk> ;
R
and the kurtosis lz(t)
TN N P 4 : _
k(x) = T /R(k m(t)*S (k, ;o) dk — 1,

so as to examine the impact of various shear profiles on the statistics of the waves
as well as establishing that statistical equilibrium has been achieved by ;. Note, we
interpret the kurtosis & as the degree to which the distribution S exhibits ‘heavy-
tail phenomena’, or the enhancement of the probability of what should otherwise be
rare events. Given that all Gaussian distributions have k = 0, all measurements are
then made relative to this fixed level. Moreover, following the approach in [1,2], by
comparing the initial spectral density to that at later times, we can see directly whether
MI manifests as significant distortions of the statistics, or if through suppression the
distributions remain relatively close to one another.

Throughout our results, we have used a pseudo-spectral method in space coupled
with a fourth-order Runge—Kutta scheme using integrating factors in time, with a time
step of dr = 1 x 1073, De-aliasing is implemented via Orszag’s ‘2/3-rule’. Averaging
was done with N = 512 ensemble members, thereby ensuring relative averaging
errors on the order of about 1%. We set ¢ = .05 throughout the remainder of the

paper.
Vorticity-Free Flow: @ = 0

We first examine the vorticity-free case so as to establish a base line against which to
measure non-zero shear. Looking at the time dynamics of the affiliated statistics when
the initial width o = 1.050,, where o ~ 4, we see in Fig. 1 the final steady distribution
S for tr = 1 as well as the affiliated time dynamics of the three primary moments m(7),
& (1), and k(7). As can be seen, any claim of stability of the distribution for either the
NLSE or VDE is tenuous at best. Note, the timescale for MI is 1/ay = 0.5 in this
case. We see this result borne out in the plots in Fig. 1b—d, which shows that saturation
of the affiliated statistics does not set in till somewhat after this MI timescale. Thus,
arguing that instability with respect to MI drives the observed statistical dynamics is
reasonable. Comparing the VDE to the NLSE, we see the added nonlinearity in the
VDE allows for yet greater deviations away from normality through the downshifting
of the spectral peak, see Fig. 1a, and the asymmetric widening of the VDE profile as
evidenced by the enhanced kurtosis and strong shift in the mean as seen in Fig. 1d
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Fig. 1 For ® = 0 and 0 = 1.050¢, in a the plot of the spectral distribution function S(k, tf, 1.050¢), in
b the plot of the mean m(7), in ¢ the plot of the standard deviation 6 (), and in d the plot of the kurtosis
k(7). In the graphs, the NLSE is (- -), the VDE (-), and the initial distribution is (- - - )

and b respectively. Note, that the peak shifts left but the mean shifts right indicates the
strong degree of skewness, or asymmetry, in the distribution the VDE induces. This
effect is seen to varying degrees in all subsequent plots.

In contrast, by more than doubling the initial spectral width to o = 24/20, we see
in Fig. 2 that an argument for stability against MI can be made. As can be seen for both
the NLSE and VDE, all of the affiliated statistics remain close to their initial values and
saturate rapidly, though we again see that the time of onset of saturation corresponds
to the MI timescale. But as predicted in [13], there should be profiles wide enough
such that the impact of MI is nominal, though it is, as noted in [5], difficult to argue
that what is being observed is a bifurcation as opposed to a weak nonlinear effect.
Despite the relative stability, we again note that the VDE still has significant impacts
on the statistics of the spectral distribution S, with in particular the VDE providing a
slight enhancement of the kurtosis relative to the NLSE, which essentially maintains
the normality of the initial distribution. This effect is also seen in the absence of an
inversion in the magnitude of 6 (7), i.e. compare Figs. 1b, 2b, which shows that in
the wider initial spectral width case, the VDE is wider than the NLSE, whereas in
the more narrow initial spectral width case the roles between the two equations are
reversed, reflecting the VDE’s tendency to strongly skew S(k, ¢, o).



C. W. Curtis, M. Murphy

0.05
®
%o.oz
0
-30 0 30
k
@ S(k,7y7,2v20.)
8.25 T
_eis LT T
Y
8
0 0.5 1 .
© (1), 0 = 2v/20, @ k(1), o = 2V20.

Fig.2 Forow =0ando = 2\/5%, in a the plot of the spectral distribution function S(k, t¢, 1.050¢), in
13 the plot of the mean m(7), in ¢ the plot of the standard deviation & (7), and in d the plot of the kurtosis
k(7). In the graphs, the NLSE is (- -), the VDE (-), and the initial distribution is (- - -)

Counter-propagating Shear: ® = — 0.5

For the first case of nontrivial shear, we look at setting @ = — 0.5 which corresponds to
the shear profile propagating against the movement of the surface wave. This parameter
choice gives us the BFI o. &~ 5.5. Here 1y = 1 since the MI timescale is given by
1/any =~ 0.3. As seen in Fig. 3, the BFI condition does not appear to hold, with
significant deviations away from the initial Gaussian profile happening on the predicted
MI timescale. Moreover, by again increasing the initial width to o = 2+/20¢, the
overall impact of MI is markedly reduced, with the VDE and NLSE all but producing
nearly identical results as seen in Fig. 4. We likewise again see the inversion in the
standard deviation between the two models for the narrow initial spectral width, see
Fig. 3b, while the inversion is absent in the wide initial width case, see Fig. 4.

That being said, while the VDE still produces a final distribution which is less
Gaussian and more favorable to far tail phenomena relative to the NLSE, we also see
that the counter propagating shear lowers the overall kurtosis compared to the case of
w = 0. Thus, while the overall distributions are wider in the w = — 0.5 case relative to
the w = 0 case, the drop in kurtosis induced by the counter-propagating shear would
seem to still reduce the relative importance of far-tail phenomena. We can then make
a prediction that counter-propagating shear would generally reduce the chances of
events like rogue-waves forming.



Evolution of Spectral Distributions...

0.1
©
&
o
5}/0.04
-20 0 20
k

(@ S(k,7¢,1.050.) (b) m(7), o = 1.050,

o5l
‘ 0 ‘
0 0.5 1 0 0.5 1
(¢) o(7), o0 = 1.050, d) ];J(T), o = 1.050,

Fig.3 For w = — 0.5 and 0 = 1.050¢, in a the plot of the spectral distribution function S(k, t¢, 1.050¢),
in b the plot of the mean m (), in ¢ the plot of the standard deviation 6 (7), and in d the plot of the kurtosis
k(7). In the graphs, the NLSE is (- -), the VDE (-), and the initial distribution is (- - -)

Co-propagating Shear: @ = 1.12

By letting w = 1.12, corresponding to a shear profile propagating in the direction of
the surface wave, we reduce the BFI threshold to o. ~ 1.01. This case becomes the
most interesting due to the results in [17] which show that for kg = 1 that w = 1.12
corresponds to the shear value which most suppresses Stokes drift, i.e. the mean
flow of Lagrangian tracers in the fluid. For this case, the MI timescale is given by
/oy =~ 11.8, so 7y &~ 18. This far longer timescale is seen in Fig. 5, where the
saturation of the statistics happens just before 7. Note, we also studied results on yet
far longer time scales where f; = 60 and the results obtained were essentially the same
as those presented. For the narrow initial spectral width ¢ = 1.050,, we see some of
the most pronounced deviations between the VDE and NLSE. As before, there is the
inversion in the deviation, see Fig. 5S¢, with the VDE tending to sharpen around the
mean. In this case though, the downshifting in the peak and corresponding one-sided
skewing of the distribution, see Fig. 5a with its concomitant rise in the kurtosis, Fig.
5d, is most dramatic for the @ = 1.12 case. Thus, the VDE markedly enhances far-tail
phenomena and provides strikingly different predictions than its counterpart model the
NLSE. We see then that the the co-propagating shear likely enhances the occurrence
of freak wave or other far-tail phenomena for relatively narrow spectral profiles.
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Fig.4 For w = —0.5 and ¢ = 24/20¢, in a the plot of the spectral distribution function S(k, ¢, 1.050¢),
i~n b the plot of the mean m (), in ¢ the plot of the standard deviation & (7), and in d the plot of the kurtosis
k(7). In the graphs, the NLSE is (- -), the VDE (-), and the initial distribution is (- - -)

Of course, as before, when o = Zﬁac, the added initial spectral width appears to
mitigate the impacts of any instabilities or nonlinearity; see Fig. 6. An interesting point
though is that while relatively stable, the widths of the profile for the w = 1.12 case
are not as wide as in the previous cases. This shows that the changed physics coming
with the different shear profiles do change the spectral width saturation threshold,
and therefore while the BFI condition from [13] is perhaps incorrect, there clearly
is a parameter- dependent mechanism which controls the degree to which a given
random-wave field achieves a steady statistical state.

Kurtosis and the BFI

Comparing across the plots in Fig. 7, we summarize the impact that varying BFI
indices, or varying initial spectral widths o for 1.050, < o < 2«/§ac, have on the
kurtosis of the final spectral distributions. As expected from the plots above, an increas-
ing BFI, or decreasing initial spectral width, corresponds to a stronger kurtosis and
thus a stronger deviation away from normality of the final spectral distribution. More-
over, increasing shear enhances the kurtosis, and finally the higher order nonlinearities
of the VDE always enhance the kurtosis relative to the value predicted by the NLSE.
They also in the presence of stronger shear can cause a greater deviation away from the
quadratic fit, see Fig. 7c. Likewise, we see that the quadratic fits are relatively good,
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Fig.5 Forw = 1.12 and 0 = 1.050¢, in a the plot of the spectral distribution function S(k, ¢, 1.050¢), in
b the plot of the mean m(t), in ¢ the plot of the standard deviation 6 (7), and in d the plot of the kurtosis
k(7). In the graphs, the NLSE is (- -), the VDE (-), and the initial distribution is (- - - )

though also it is clear varying vorticity values change the coefficients of the fit. This
conforms with the results in [16] which show that the quadratic relationship between
the kurtosis and the BFI varies depending on different damping and wind profiles.
Thus, varying physics has a significant impact on far-tail phenomena manifesting in
real-world situations.

4 Conclusion

In this work, we have studied the impact of modulational stability and other nonlin-
ear effects on the statistical properties of deep-water-surface wave flows moving over
constant-vorticity-shear currents. As we see, the vorticity profile has a strong influence
on the stability properties and far tails of the wave train, with co-propagating shears
exacerbating modulational instability and higher order nonlinear effects which pro-
duce slower decaying tales thereby increasing the likelihood of rare events. In contrast,
counter-propagating shears reduce the impact of modulational instability and higher
order nonlinear effects and in turn reduce the likelihood of rare events. Thus, we see
vorticity effects can have significant implications for what the most likely observed
deep water wavetrains and phenomena are. Likewise, in trying to interpret oceano-
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Fig.6 Forw =1.12ando = 2\/50(;, in a the plot of the spectral distribution function S(k, tf, 1.050¢), in
b the plot of the mean m(7), in ¢ the plot of the standard deviation 6 (), and in d the plot of the kurtosis
k(7). In the graphs, the NLSE is (- -), the VDE (-), and the initial distribution is (- - - )

graphic data, vortical effects should be taken into account in modeling so as to be able
to properly interpret observed data.
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Appendix
Shear Profiles over Infinitely Deep Fluids
As noted in the text, the assumption that the fluid velocity is to leading order given by

u~ wzf
is clearly unrealistic insofar as it leads to currents of infinite speed as one descends
through the fluid. A more realistic, though also more complicated, ansatz is to suppose
that to leading order we have that u ~ u(z)i where

wz, —hyg<z<0

(@) = { 72 +h13, ~h Shz < —ho
y L < — 1,

where 11 > ho > 1, so that we are looking at a deep, continuous shear profile which
is zero at or near the surface z = en(x, ) and at the depth z = — h1, after which the
fluid is to leading order quiescent. Note, we can also see this profile as satisfying to
leading order two ‘no-slip’ conditions, one near the free surface at z = 0 and one near
z=—hj.

While a full, nonlinear description of the above shear profile would require two more
freely evolving interfaces, and thus is beyond the scope of this paper, we can readily find
the dispersion relationship affiliated with this profile. This then allows us to provide
some analytic argument for why we study an otherwise unphysical velocity profile
in the main body of the text. Likewise, information from the dispersion relationship
provides us with a better understanding of how depth varying shear profiles induce
both surface and internal waves.

Following relatively classical approaches, we introduce three fluid velocities:

U = wzi + €V, —ho+em <z <en
—whg 2

i re— (z+h)i+eVgy, —hi+en <z<—ho+en
1—ho

uz = eVes, < —hi+ens

so that after linearizing around the small disturbances, we derive the dispersion rela-
tionship

k 1 [ gk h
%—i—w — Qtanh(kho)+ (5 (%er) tanh (kho) — 1) (%Hml(kah)) —0,

where

s ( - ‘%—];fs) + Q tanh(kSh)

Q(kdh) = - ,
Qs (sz - %Q tanh(ksh)
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and where 64 = hy; — hg and s = sgn(k). While in general we would have to find the
roots of a fifth-order polynomial to determine the values of €2, we see for i > hg
that 21 ~ s, and thus we get that the dispersion relationship simplifies to

k 1 k
% + w — Qtanh(khg) + (5 <g§ + a)> tanh(khg) — l) (o +sRQ) ~0,

where

. wh

w=—.
Sh

Since @ only approaches w at an algebraic rate, it seems appropriate to keep it included

in the analysis. Letting

[tanh(kho)| = 1 — €,

and noting that € vanishes to zero exponentially fast as we increase ko, we see the
reduced dispersion relationship factors into the form

Q29 + 5@) <g k| + s — QZ) te (93 — (50 + ) (glk] + st)) ~0.

Thus, we have a completely regular perturbation problem for the roots, which we
readily see are given by

. -
Q~ 3 (—sw:l:,/w2+4g|k|>, —%.

Thus, of the three roots we find, two give the dispersion relationship we find in the
body of the text using u ~ wzi. Looking at the affiliated disturbances of the relevant
free surface and internal wave, we find that

" " _
ny~ alzlﬁe"g +cc, m ~ 0112# cosh(khg) (Qz —(1=8) (glk| + sa)Q)) ¢! + cc.

Thus, if we choose Q so that Q> — (g|k| 4+ sw2) = 0, the magnitude of the internal
wave essentially vanishes, thereby localizing dynamics along the free surface near
z = 0. Therefore, while not necessarily physically justifiable throughout the bulk of
the fluid, our simplified shear profile assumption produces results which are asymp-
totically consistent with a more sophisticated treatment of the shear profile.

We note though that the more physically realistic shear profile shows that there is
a choice of €2 which corresponds to a non-trivial internal mode near z = —hgy. We
also note that this choice of 2 makes many of the terms in our modulation theory
singular, thus showing that this case would require a markedly different treatment.
While interesting, this issue is beyond the scope of the current paper and will be
addressed in future research.
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Higher Order-Dispersive Corrections to the VDE

To better understand why we must include the higher order corrections to the dispersion
used in the VDE, we examine how such terms are found from first principles. To leading
order from Eq. (1) over an infinitely deep fluid, we have that

n = _HQ’

where g(x, 1) = ¢ (x, n(x,1),t), Q = qx, and ‘H is the Hilbert transform. Likewise,
from Eq. (2) we have to leading order that

Or +wn +nx =0,

so that by combining the two expressions we have the wave equation in 1 alone given
by

N — oHn, — Hne = 0.

Using Fourier transforms, we can readily write a solution to the affiliated initial-value
problem in the form

1 o 1 "
n(x, [) — _/ ﬁo(k)elkx+l§2+(k)tdk 4 _/ ﬁo(k)elkx+lﬂf(k)tdk’
2 R 2 R

where
1
— _ 2
Qi(k) = 3 (a)s + Vo +4|k|> .

If we assume, as per usual when deriving NLS-type models, that

. 1~ (k—ko
no(k) = -4 ,

€

representing the assumption that the initial conditions are narrowly banded around a
carrier wave number ko, then we see that, taking only the plus branch of Q4,

00tk o
n(x, 1) =—/ A(k)etkE T2 ko) g
2w R
Pfrko) o ir(ﬂ”(ko),;ergQ,/,(k Lk ),;4) ~
—/A(k)e’kse Toh e R ) ak
R

2w

~
)

where
0(x,t, ko) = kox + Qko)t, cg(ko) = ' (ko), & = e(x + cgt), T = €1,

and where
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S ko, ) = - (Q(ko—i-ek) —Qko) — @ (ko)ek>

and where we have expanded the dispersion relationship up to O(e?) as is done in the
main body of the text. This expansion corresponds to the affiliated linear-evolution
equation for the slowly evolving envelope A(&, 7)

. Q" (ko) .,
i0; A = ( > 07 — —Q”’(k )87 — 2—52””(k )as>

As to the issue of why to include the € term, we note that the affiliated group
velocity of the slowly evolving envelope is given by

de ! (Q/(k tek) — Q' (k ))
k= e 0 0

- 3ec?
~Q" (ko)k | 1 — —k + 10e%cgk?

We see that the full dispersion relationship has exactly one root at k = 0, so that this
root is the only point of stationary phase in the corresponding integral representation
of the solution n(x, r). However, using our Taylor series expansion, were we to ignore
the €2 term, we would introduce a new stationary-phase point at ks, where

~ s
* =55
3€Cg

The presence of this stationary-phase point allows for the accumulation of energy
at high frequencies, which without a corresponding band-limiting requirement intro-
duces non-physical effects into the model. By including the € term though, we remove
this spurious high-frequency stationary-phase point, thereby avoiding the inclusion of
an otherwise unnecessary bandwidth condition on the slowly evolving envelope.
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